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Abstract
Given a string on an integer alphabet, we present an algorithm that computes the set of all
distinct squares belonging to this string in time linear in the string length. As an application,
we show how to compute the tree topology of the minimal augmented suffix tree in linear time.
Asides from that, we elaborate an algorithm computing the longest previous table in a succinct
representation using compressed working space.
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1 Introduction

A square is a string of the form SS, where S is some non-empty string. It is well-known that
a string of length n contains at most n2/4 squares. This bound is the number of all squares,
i.e., we count multiple occurrences of the same square, too. If we consider the number of all
distinct squares, i.e., we count exactly one occurrence of each square, then it becomes linear
in n: The first linear upper bound was given by Fraenkel and Simpson [17] who proved that
a string of length n contains at most 2n distinct squares. Later, Ilie [26] showed the slightly
improved bound of 2n−Θ(lgn). Recently, Deza et al. [10] refined this bound to b11n/6c. In
the light of these results one may wonder whether future results will “converge” to the upper
bound of n: The distinct square conjecture [17, 27] is that a string of length n contains at
most n distinct squares; this number is known to be independent of the alphabet size [37].
However, there still is a big gap between the best known bound and the conjecture. While
studying a combinatorial problem like this, it is natural to think about ways to actually
compute the exact number.

This article focuses on a computational problem on distinct squares, namely, we wish
to compute (a compact representation of) the set of all distinct squares in a given string.
Gusfield and Stoye [23] tackled this problem with an algorithm running in O(nσT ) time,
where σT denotes the number of different characters contained in the input text T of length n.
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Although its running time is optimal O(n) for a constant alphabet, it becomes O
(
n2) for a

large alphabet since σT can be as large as O(n).
We present an algorithm (Section 4.1) that computes this set in O(n) time for a given

string of length n over an integer alphabet of size nO(1). Like Gusfield and Stoye, we can use
the computed set to decorate the suffix tree with all squares (Section 5.1). As an application,
we provide an algorithm that computes the tree topology of the minimal augmented suffix
tree [1] in linear time (Section 5.2). The fastest known algorithm computing this tree topology
takes O(n lgn) time [5].

For our approach, we additionally need the longest previous factor table [18, 8]. As a
side result of independent interest, we show in Section 3 how to store this table in 2n+ o(n)
bits, and give an algorithm that computes it using compressed working space.

2 Definitions

Our computational model is the word RAM model with word size Ω(lgn) for some natural
number n. Let Σ denote an integer alphabet of size σ = |Σ| = nO(1). An element w in Σ∗
is called a string, and |w| denotes its length. We denote the i-th character of w with w[i],
for 1 ≤ i ≤ |w|. When w is represented by the concatenation of x, y, z ∈ Σ∗, i.e., w = xyz,
then x, y and z are called a prefix, substring and suffix of w, respectively. For i, j with
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends at
position j in w.

The longest common prefix (LCP) of two strings is the longest prefix shared by both
strings. The longest common extension (LCE) query asks for the longest common prefix
of two suffixes of the same string. The time for an LCE query is denoted by tLCE.

A factorization of a string T is a sequence of non-empty substrings of T such that the
concatenations of the substrings is T . Each substring in the factorization is called a factor.

In the rest of this paper, we take a string T of length n > 0, and call it the text. We
assume that T [n] = $ is a special character that appears nowhere else in T , so that no suffix
of T is a prefix of another suffix of T . We further assume that T is read-only; accessing a
character costs constant time. We sometimes need the reverse of T , which is given by the
concatenation T [n− 1] · · ·T [1] · T [n] = T [n− 1] · · ·T [1]$.

The suffix tree of T is the tree obtained by compacting the trie of all suffixes of T ; it
has n leaves and at most n − 1 internal nodes. The leaf corresponding to the i-th suffix
T [i..n] is labeled with i. Each edge e is associated with a non-empty substring x of T called
the edge label of e. Each edge label x is represented by tuple (i, `) of integers such that
T [i..i+ `− 1] = x. This way the suffix tree of T takes O(n) words of space, and it can be
computed in O(n) time for strings of length n over an integer alphabet of size nO(1) [11].
The string label of a node v is defined as the concatenation of all edge labels on the path
from the root to v; the string depth of a node is the length of its string label.

SA and ISA denote the suffix array and the inverse suffix array of T , respectively [36].
The access time to an element of SA is denoted by tSA. LCP is an array such that LCP[i] is
the length of the longest common prefix of T [SA[i]..n] and T [SA[i − 1]..n] for i = 2, . . . , n.
For our convenience, we define LCP[1] := 0. The arrays SA, ISA, and LCP can be constructed
in O(n) time [30, 32, 31].

A range minimum query (RMQ) asks for the smallest value in a sub-array of an
integer array. There are data structures that can answer RMQs on an integer array of
length n in constant time while taking 2n+ o(n) bits of space [15]. An LCE query for the
suffixes T [s..n] and T [t..n] can be answered with an RMQ data structure on LCP with the
range [min(ISA[s], ISA[t]) + 1..max(ISA[s], ISA[t])] in constant time.



H. Bannai, S. Inenaga, and D. Köppl 22:3

A bit vector is a string on the binary alphabet {0, 1}. A select query on a bit vector
asks the position of the i-th ‘0’ or ‘1’ in the bit vector. There is a data structure that can be
built in O(n) time with O(n) bits of working space such that it takes o(n) bits on top of the
bit vector, and can answer a select query in constant time [6].

We identify occurrences of substrings with their position and length in the text, i.e., if x
is a substring of T , then there is an i with 1 ≤ i ≤ n and an ` with 0 ≤ ` ≤ n− i+ 1 such
that T [i..i+ `− 1] = x. In the following, we will represent the occurrences of substrings by
tuples of position and length. When storing these tuples in a set, we call the set distinct, if
there are no two tuples (i, `) and (i′, `) such that T [i..i+ `− 1] = T [i′..i′ + `− 1]. A special
kind of substring is a square: A square is a string of the form SS for S ∈ Σ+; we call S
and |S| the root and the period of the square SS, respectively. Like with substrings, we
can generate a set containing some occurrences of squares. A set of all distinct squares is
a distinct set of occurrences of squares that is maximal under inclusion.

3 A Compact Representation of the LPF Array

The longest previous factor table LPF of T is formally defined as

LPF[j] := max {` | there exists an i ∈ [1..j − 1] such that T [i..i+ `− 1] = T [j..j + `− 1]} .

It is useful for computing the Lempel-Ziv factorization of T = f1 · · · fz, which is defined
as fi = T [k..k + max(1, LPF[k])] with k :=

∑i−1
j=1 |fj |+ 1 for 1 ≤ i ≤ z.

In the following, we will use the text T =
0
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$ as our running example whose
LPF array is represented by the small numbers above the characters. The Lempel-Ziv
factorization of T is given by
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baba|
6

$, where the small numbers denote the factor
indices, and the vertical bars denote the factor borders.

I Corollary 1. Given LPF, we can compute the Lempel-Ziv factorization in O(n) time. If
the factorization consists of z factors, the factorization can be represented by an array of
z lgn bits, where the x-th entry stores the beginning of the x-th factor. Alternatively, it can
be represented by a bit vector of length n in which we mark the factor beginnings. A select
data structure on top of the bit vector can return the length and the position of a factor in
constant time.

Since we will need LPF in Section 4, we are interested in the time and space bounds for
computing LPF. We start with the (to the best of our knowledge) state of the art algorithm
with respect to time and space requirements.

I Lemma 2 ([9, Theorem 1]). Given SA and LCP, we can compute LPF in O(ntSA) time.
Besides the output space of n lgn bits, we only need constant working space.

Apart from this algorithm, we are only aware of some practical improvements [40, 28].
Let us consider the size of LCP needed in Lemma 2. Sadakane [41] showed a 2n+o(n)-bits

representation of LCP. Thereto he stores the permuted longest-common-prefix array
PLCP defined as PLCP[SA[i]] = LCP[i] in a bit vector in the following way (also described
in [13]): Since PLCP[1] + 1,PLCP[2] + 2, . . . ,PLCP[n] + n is a non-decreasing sequence with
1 ≤ PLCP[1]+1 ≤ PLCP[n]+n = n (PLCP[i] ≤ n−i since the terminal $ is a unique character
in T ) the values I[1] := PLCP[1] and I[i] := PLCP[i] − PLCP[i − 1] + 1 (2 ≤ i ≤ n) are
non-negative. By writing I[i] in the unary code 0I[i]1 to a bit vector S subsequently for each
2 ≤ i ≤ n, we can compute PLCP[i] = select1(S, i)−2i and LCP[i] = select1(S, SA[i])−2SA[i].
Moreover,

∑n
i=1 I[i] ≤ n and therefore S is of length at most 2n.

CPM 2017



22:4 Computing All Distinct Squares in Linear Time for Integer Alphabets

Table 1 Algorithms computing LPF; space is counted in bits. The output space |LPF| is not
considered as working space. 0 < ε ≤ 1 is a constant.

algorithm time working space |LPF|

Lemma 2,[9] O(ntSA) |SA|+ |LCP|+O(lgn) n lgn

Corollary 3,[35, 24] O(n) n lgn+ 2n+O(lgn) n lgn

Lemma 6,[34] O(n/ε) (1 + ε)n lgn+O(n) 2n+ o(n)

Lemma 6,[16] O(ntSA) O(n lg σ) 2n+ o(n)

By using Sadakane’s LCP-representation, we get LPF with the algorithm of Crochemore
et al. [9] in the following time and space bounds:

I Corollary 3. Having SA and LCP stored in n lgn bits (this allows tSA= O(1)) and 2n+o(n)
bits, respectively, we can compute LPF with O(lgn) additional bits of working space (not
counting the space for LPF) in O(n) time.

By plugging in a suffix array construction algorithm like the in-place construction algorithm
by Goto [21], we get the bounds shown in Table 1.

Although this result seems compelling, this approach stores SA and LPF in plain arrays
(the former for getting constant time access). In the following, we will show that the LPF
array can be stored more compactly. We start with a new representation of LPF, for which we
use the same trick as for PLCP due to the following property (which is crucial for squeezing
PLCP into 2n+ o(n) bits).

I Lemma 4. n− j ≥ LPF[j] ≥ LPF[j − 1]− 1 for 2 ≤ j ≤ n.

Proof. There is an i with 1 ≤ i < j − 1 such that T [i..i+ LPF[j − 1]− 1] = T [j − 1..j − 1 +
LPF[j − 1]− 1]. Hence T [i+ 1..i+ LPF[j − 1]− 1] = T [j..j − 1 + LPF[j − 1]− 1]. J

We conclude that the sequence LPF[1] + 1, LPF[2] + 2, . . . , LPF[n] + n is non-decreasing with
1 ≤ LPF[1] + 1 ≤ LPF[n] + n ≤ n. We immediately get:

I Corollary 5. LPF can be represented by a bit vector with a select data structure such that
accessing an LPF value can be performed in constant time. The data structures use 2n+ o(n)
bits.

To get a better working space bound, we have to come up with a new algorithm since the
algorithm of Lemma 2 creates a plain array to get constant time random write-access for
computing the entries of LPF. To this end, we present two algorithms that compute LPF
in this representation with the aid of the suffix tree. The two algorithms are derivatives
of the algorithms [34, 16] that compute the Lempel-Ziv factorization, either in O(n lg lg σ)
time using O(n lg σ) bits, or in O

(
n/ε2

)
time using (1 + ε)n lgn+O(n) bits, for a constant

0 < ε ≤ 1. The current bottleneck of both algorithms is the suffix tree implementation with
respect to space and time. Due to current achievements [39, 35], the algorithms now run in
O(n) time using O(n lg σ) bits, or in O(n/ε) time using (1 + ε)n lgn+O(n) bits, respectively.

We aim at building the LPF-representation of Corollary 5 directly such that we do not
need to allocate the plain LPF array using n lgn bits in the first place. To this end we create
a bit vector of length 2n and store the LPF values in it successively. In more detail, we follow
the description of the Lempel-Ziv factorization algorithms presented in [34, 16]. There, the
algorithms are divided into several passes. In each pass we successively visit leaves in text
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order (determined by the labels of the leaves). To compute LPF, we only have to do a single
pass. Similarly to the first passes of the two Lempel-Ziv algorithms, we use a bit vector BV
to mark already visited internal nodes. On visiting a leaf we climb up the tree until reaching
the root or an already marked node. In the former case (we climbed up to the root) we
output zero. In the latter case, we output the string depth of the marked node. By doing so,
we have computed LPF[1..j] after having processed the leaf with label j.

I Lemma 6. We can compute LPF in O(ntSA) time with O(n lg σ) bits of working space, or
in O(n/ε) time using (1 + ε)n lgn +O(n) bits of working space, for a constant 0 < ε ≤ 1.
Both variants include the space of the output in their working spaces.

Proof. Computing the string depth of a node needs access to an RMQ data structure of
LCP, and an access to SA. Both accesses can be emulated by the compressed suffix array in
tSA time, given that we have computed PLCP in the above representation. J

4 The Set of All Distinct Squares

Given a string T , our goal is to compute all distinct squares of T . Thereto we return a set
of pairs, where each pair (s, `) consists of a starting position s and a length ` such that
T [s..s+ `− 1] is the leftmost occurrence of a square. The size of this set is linear due to

I Lemma 7 (Fraenkel and Simpson [17]). A string of length n can contain at most 2n distinct
squares.

We follow the approach of Gusfield and Stoye [23]. Their idea is to compute a set
of squares (the set stores pairs of position and length like described in Section 2)1 with
which they can generate all distinct squares. They call this set of squares a leftmost
covering set. A leftmost covering set obeys the property that every square of the text
can be constructed by right-rotating a square of this set. A square (k, `) is constructed by
right-rotating a square (i, `) with i ≤ k iff each tuple (i+ j, `) with 1 ≤ j ≤ k− i represents
a square T [i+ j..i+ `+ j − 1] = T [i+ j..i+ `− 1]T [i..i+ j − 1].

The set of the leftmost occurrences of all squares is a set of all distinct squares. Unfor-
tunately, the leftmost covering set computed in [23] is not necessarily a set of all distinct
squares since (a) it does not have to be distinct, and (b) a square might be missing that can
be constructed by right-rotating a square of the computed leftmost covering set.

For illustration, the squares of our running example T = ababaaababa$ are highlighted
with bars. The set of all squares is {(1, 4), (2, 4), (5, 2), (6, 2), (7, 4), (8, 4)}. If we take the
leftmost occurrences of all squares, we get {(1, 4), (2, 4), (5, 2)}; this set comprises all squares
marked by the solid bars, i.e., the dotted bars correspond to occurrences of squares that are
not leftmost. In this example, the dotted bars form the set {(6, 2), (7, 4), (8, 4)}, which is a
set of all distinct squares. A leftmost covering set is {(1, 4), (5, 2)}.

Our goal is to compute the set of all leftmost occurrences directly by modifying the
algorithm of [23]. To this end, we briefly review how their approach works: They compute their
leftmost covering set by examining the borders between all Lempel-Ziv factors f1 · · · fz = T .
That is because of

1 It differs to the set we want to compute by the fact that they allow, among others, occurrences of the
same square in their set.

CPM 2017
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pfx fx+1

q

`R `R`L `L

p fxfx−1

q

`R
`R`L`L

Figure 1 Search for squares on Lempel-Ziv borders. The left image corresponds to squares of
type Lemma 8(1), the right image to the type Lemma 8(2). Given two adjacent factors, we determine
a position q that is p positions away from the border (the direction is determined by the type of
square we want to search for). By two LCE queries we can determine the lengths `L and `R that
indicate the presence of a square if `L + `R ≥ p.

I Lemma 8 ([23, Theorem 5]). The leftmost occurrence of a square T [i..i+ 2p− 1] touches
at least two Lempel-Ziv factors. Let fx (1 ≤ x ≤ z) be the factor that contains the center of
the square i+ p− 1. Then either
(a) the square has its left end (position i) inside fx and its right end (position i+ 2p− 1)

inside fx+1, or
(b) the left end of the square extends into fx−1 (or even further left). The right end can be

contained inside fx or fx+1.

Having a data structure for computing LCE queries on the text and on its inverse, they
can probe at the borders of two consecutive factors whether there is a square. Roughly
speaking, they have to check at most |fx| + |fx+1| many periods at the borders of every
two consecutive factors fx and fx+1 due to the above lemma (1 ≤ x ≤ z, set fz+1 to the
empty string). This gives

∑z
x=1 tLCE (|fx|+ |fx+1|) = O(ntLCE) time, during which they can

compute a leftmost covering set L. Figure 1 visualizes how the checks are done. Applying the
algorithm on our running example will yield the set L = {(1, 4), (5, 2), (7, 4)}. To transform
this set into a set of all distinct squares, their algorithm runs the so-called Phase II that
uses the suffix tree. It begins with computing the locations of the squares belonging to a
subset L′ ⊆ L in the suffix tree in O(n) time. This subset L′ is still guaranteed to be a
leftmost covering set. Finally, their algorithm computes all distinct squares of the text by
right-rotating the squares in L′. In their algorithm, the right-rotations are done by suffix link
walks over the suffix tree. Their running time analysis is based on the fact that each node
has at most σT incoming suffix links, where σT denotes the number of different characters
occurring in the text T . Given that the number of distinct squares is linear, Phase II runs in
O(nσT ) time.

4.1 Algorithm Computing the Set of All Distinct Squares
In the following, we will present our modification of the above sketched algorithm. To speed
up the computation, we discard the idea of using the suffix links for right-rotating squares
(i.e., we skip Phase II completely). Instead, we compute a list of all distinct squares directly.
To this end, we show a modification of the sketched algorithm such that it outputs this list
sorted first by the lengths (of the squares), and second by the starting position.

First, we want to show that we can change the original algorithm to output its leftmost
covering set in the above described order. To this end, we iterate over all possible periods, and
search not yet reported squares at all Lempel-Ziv borders, for each period. To achieve linear
running time, we want to skip a factor fx when the period becomes longer than |fx|+ |fx+1|.
We can do this with an array Z of z lg z bits that is zero initialized. When the currently
tested period p exceeds |fx|+ |fx+1|, we write Z[x]← min {y > x : |fy|+ |fy+1| ≥ p} such
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that Z[x] refers to the next factor whose length is sufficiently large. By doing so, if Z[x] 6= 0,
we can skip all factors fy with y ∈ [x..Z[x]− 1] in constant time. This allows us running the
modified algorithm still in linear time.

We have to show that the modified algorithm still computes the same set. To this end, let
us fix the period p (over which we iterate in the outer loop). By [23, Lemma 7], processing
squares satisfying Lemma 8(1) before processing squares satisfying Lemma 8(2) (all squares
have the same period p) produces the desired output for period p.

Finally, we show the modification that computes all distinct squares (instead of the
original leftmost covering set). On a high level, we use an RMQ data structure on LPF
to filter already found squares. The filtered squares are used to determine the leftmost
occurrences of all squares by right-rotation. In more detail, we modify Algorithm 1 of [23]
by filtering the squares in the following way (see Algorithm 1 in the full version [2]): For
each period p, we use a bit vector B marking the beginning positions of all found squares
with period p. On reporting a square, we additionally mark its starting position in B. By
doing so, an invariant of the algorithm below is that all right-rotated squares of a marked
square are already reported.

Let us assume that we are searching for the leftmost occurrences of all squares whose
periods are equal to p. Given the starting position s of a square returned by [23, Algorithm 1],
we consider the square (s, 2p) and its right-rotations as candidates of our list: If B[s] = 1,
then this square and its right-rotations have already been reported. Otherwise, we report
(s, 2p) if LPF[s] < 2p. In order to find the leftmost occurrences of all not yet reported
right-rotated squares efficiently, we first compute the rightmost position e of the repetition
of period p containing the square (s, 2p) by an LCE query. Second, we check the interval
I := [s+ 1..min(s+ p− 1, e− 2p+ 1)] for the starting positions of the squares whose LPF
values are less than 2p. To this end, we perform an RMQ query on LPF to find the position j
whose LPF value is minimal in I. If LPF[j] > 2p, then there is no leftmost occurrence of a
square with the period p in the considered range. Otherwise, we report (j, 2p) and recursively
search for the text position with the minimal LPF value within the intervals [s+ 1..j − 1]
and [j + 1..min(s + p − 1, e − 2p + 1)]. In overall, the time of the recursion is bounded
by twice the number of distinct squares starting in the interval I, since a recursion step
terminates if it could not report any square.

I Theorem 9. Given an LCE data structure with tLCE access time and LPF, we can compute
all distinct squares in O(ntLCE + occ) = O(ntLCE) time, where occ is the number of distinct
squares.

Proof. We show that the returned list is the list of all distinct squares. No square occurs in
the list twice since we only report the occurrence of a square (i, `) if LPF[i] < `. Assume that
there is a square missing in the list; let (i, `) be its leftmost occurrence. There is a square (j, `)
reported by the (original) algorithm [23] such that i− `/2 < j ≤ i and right-rotating (j, `)
yields (i, `). Since we right-rotate all found squares, we obviously have reported (j, `).

The occ term in the running time is dominated by the ntLCE term due to Lemma 7. J

The next corollary, which is immediate from Theorem 9, yields the main result.

I Corollary 10. Given a string T of length n over an integer alphabet of size nO(1), we can
compute all distinct squares in T in O(n) time.

CPM 2017
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4.2 Need for RMQ on LPF
Our algorithm performs right-rotations of a square (s, 2p) with an RMQ on the interval
I := [s+ 1..min(s+ p− 1, e− 2p+ 1)], where e is the last position of the maximal repetition
of period p that contains the square. Without an RMQ data structure, we could linearly
scan all LPF values in I, giving O(p) = O(n) time. We cannot do better since the LPF values
are arbitrary in general. For instance, consider the text T = abaaabaababaaabaaa$. The
text aligned with LPF is shown in the table below.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T a b a a a b a a b a b a a a b a a a $

LPF 0 0 1 2 4 3 4 3 2 8 7 6 5 5 4 3 2 1 0

The square abaaabaa has two occurrences starting at positions 1 and 10. The square
baaabaaa at position 11 is found by right-rotating the occurrence of abaaabaa at position 10.
It is found by a linear scan over LPF or an RMQ on LPF. A slight modification of this
example can change the LPF values around this occurrence. This shows that we cannot
perform a shortcut in general (like stopping the search when the LPF value is at least twice
as large as p).

4.3 Practical Evaluation
We have implemented the algorithm computing the leftmost occurrences of all squares in
C++11 [33]. The primary focus was on the execution time, rather than on a small memory
footprint: We have deliberately chosen plain 32-bit integer arrays for storing all array data
structures like SA, LCP and LPF. These data structures are constructed as follows: First, we
generate SA with divsufsort [38]. Subsequently, we generate LCP with the Φ-algorithm [29],
and LPF with the simple algorithm of [9, Proposition 1]. Finally, we use the bit vector class
and the RMQ data structure provided by the sdsl-lite library [20]. In practice, it makes
sense to use an RMQ only for very large LCP values and periods (i.e., RMQs on LPF) due
to its long execution time. For small values, we naively compared characters, or scanned
LPF linearly.

We ran the algorithm on all 200MiB collections of the Pizza&Chili Corpus [12]. The
Pizza&Chili Corpus is divided in a real text corpus with the prefix pc, and in a repetitive
corpus with the prefix pcr. The experiments were conducted on a machine with 32 GB of
RAM and an Intel® Xeon® CPU E3-1271 v3. The operating system was a 64-bit version of
Ubuntu Linux 14.04 with the kernel version 3.13. We used a single execution thread for the
experiments. The source code was compiled using the GNU compiler g++ 6.2.0 with the
compile flags -O3 -march=native -DNDEBUG.

Table 2 shows the running times of the algorithm on the described datasets. It seems
that large factors tend to slow down the computation, since the algorithm has to check all
periods up to maxx(|fx| + |fx+1|). This seems to have more impact on the running time
than the number of Lempel-Ziv factors z.

4.4 Online Variant
In this section, we consider the online setting, where new characters are appended to the end of
the text T . Given the text T [1..i] up to position i with the Lempel-Ziv factorization f1 · · · fy =
T [1..i], we consider computing the set of all distinct squares of f1 · · · fy−2, i.e., up to the last
two Lempel-Ziv factors. For this setting, we show that we can compute the set of all distinct
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Table 2 Practical evaluation of the algorithm computing all distinct squares on the datasets
described in Section 4.3. Execution time is in seconds, K = 103. It is the median of several conducted
experiments, whose variance in time was small. The expression avgLCP is the average of all LCP
values, and z is the number of Lempel-Ziv factors.

collection σ avgLCP z maxx |fx| maxx |fxfx+1| |occ| time
pc-dblp.xml 97 44 7035K 1K 1K 7K 70
pc-dna 17 60 13,970K 98K 98K 133K 310
pc-english 226 9390 13,971K 988K 1094K 13K 2639
pc-proteins 26 278 20,875K 46K 68K 3108K 245
pc-sources 231 373 11,542K 308K 308K 340K 792
pcr-cere 6 3541 1447K 176K 185K 47K 535
pcr-einstein.en 125 45,983 50K 907K 1634K 18,193K 3953
pcr-kernel 161 149,872 775K 2756K 2756K 9K 6608
pcr-para 6 2268 1927K 71K 74K 37K 265

squares in O
(
nmin

(
lg2 lgn/ lg lg lgn,

√
lgn/ lg lgn

))
time using O(n) words of space. To

this end, we adapt the algorithm of Theorem 9 to the online setting. We need an algorithm
computing LPF online, and a semi-dynamic LCE data structure (answering LCE queries on
the text and on the reversed text while supporting appending characters to the text).

The main idea of our solution is to build suffix trees with two online suffix tree construction
algorithms. The first is Ukkonen’s algorithm that computes the suffix tree online in O(ntnav)
time [43], where tnav is the time for inserting a node and navigating (in particular, selecting
the child on the edge starting with a specific character). We can adapt this algorithm to
compute LPF online: Assume that we have computed the suffix tree of T [1..i − 1]. The
algorithm processes the new character T [i] by (1) taking the suffix links of the current suffix
tree, and (2) adding new leaves where a branching occurs. On adding a new leaf with suffix
number i, we additionally set LPF[i] to the string depth of its parent. By doing so, we can
update the LPF values in time linear in the update time of the suffix tree. We build the
semi-dynamic RMQ data structure of Fischer [14] (or of [42] if n is known beforehand) on
top of LPF. This data structure takes O(n) words and can perform query and appending
operations in constant amortized time.

The second suffix tree construction algorithm is a modified version [4] of Weiner’s
algorithm [44] that builds the suffix tree in the reversed order of Ukkonen’s algorithm in
O(ntnav) time. Since Weiner’s algorithm incrementally constructs the suffix tree of a given
text from right to left, we can adapt this algorithm to compute the suffix tree of the reversed
text online in O(ntnav) time.

To get a suffix tree construction time of O
(
nmin

(
lg2 lgn/ lg lg lgn,

√
lgn/ lg lgn

))
, we

use the predecessor data structure of Beame and Fich [3]. We create a predecessor data
structure to store the children of each suffix tree node, such that we get the navigation
time tnav = O

(
min

(
lg2 lgn/ lg lg lgn,

√
lgn/ lg lgn

))
for both suffix trees. We also create

a predecessor data structure to store the out-going suffix link of each node of the suffix tree
constructed by Weiner’s algorithm. Overall, these take a total of O(n) words of space.

Finally, our last ingredient is a dynamic lowest common ancestor data structure with
O(n) words that performs querying and modification operations in constant time [7]. The
lowest common ancestor of two suffix tree leaves with the labels j and k is the node whose
string depth is equal to the longest common extension of T [j..i] and T [k..i] — remember
that we consider the text T up to the position i, hence T [j..i] is (currently) the j-th suffix.
Building this data structure on the suffix tree of the text T and on the suffix tree of the
reversed text allows us to compute LCE queries in both directions in constant time.

Given the text T [1..i] = f1 · · · fy up to the i-th character, the entries of
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LPF[1.. |f1 · · · fy−2| − 1] are fixed (i.e., they will not change when appending new char-
acters) due to the properties of the Lempel-Ziv factorization. We let the semi-dynamic RMQ
data structure grow with LPF, but only up to the fixed range of LPF. Similarly, the text
positions from 1 up to |f1 · · · fy−2| − 1 are represented as leaves in both suffix trees that are
fixed, i.e., these leaves will always be leaves representing their respective suffixes. To sum up,
our data structures support LCE queries and RMQs on LPF in the range [1.. |f1 · · · fy−2| − 1]
in constant time.

We adapt the algorithm of Section 4.1 by switching the order of the loops (again).
The algorithm first fixes a Lempel-Ziv factor fx and then searches for squares with a
period between one and |fx| + |fx+1|. Unfortunately, we would need an extra bit vector
for each period so that we can track all found leftmost occurrences. Instead, we use the
predecessor data structure of [3] storing the found occurrences of squares as pairs of starting
positions and lengths. These pairs can be stored in lexicographic order (first sorted by
starting position, then by length). The predecessor data structure will contain at most occ
elements, hence takes O(occ) = O(n) words of space. An insertion or a search costs us
O
(

min
(

lg2 lgn/ lg lg lgn,
√

lgn/ lg lgn
))

time.
Let us assume that we have computed the set for T [1..i− 1], and that the Lempel-Ziv

factorization of T [1..i − 1] is f1 · · · fy. If appending a new character T [i] will result in
a new factor fy+1, we check for squares of type Lemma 8(1) and Lemma 8(2) at the
borders of fy−1. Duplicates are filtered by the predecessor data structure storing all
already reported leftmost occurrences. The algorithm outputs only the leftmost occur-
rences with the aid of LPF, whose entries are fixed up to the last two factors (this is
sufficient since we search for the starting position of the leftmost occurrence of a square with
type Lemma 8(1) only in T [1.. |f1 · · · fy−1|], including right-rotations). In overall, we need
O
(

(|fy−1|+ |fy|) min
(

lg2 lgn/ lg lg lgn,
√

lgn/ lg lgn
))

time.

5 Applications

In this section, we provide two applications of the (offline) variant.

5.1 Decorating the Suffix Tree with All Squares
Gusfield and Stoye described a representation of the set of all distinct squares by a decoration
of the suffix tree, like the highlighted nodes (additionally annotated with its respective square)
shown in the suffix tree of our running example below.
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This representation asks for a set of tuples of the form (node, length) such that each
square T [i..i+ `− 1] is represented by a tuple (v, `), where v is the highest node whose string
label has T [i..i+ `− 1] as a (not necessarily proper) prefix. We show that we can compute
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this set of tuples in linear time by applying the Phase II algorithm [23] described in Section 4
to our computed set of all distinct squares. The Phase II algorithm takes a list Li storing
squares starting at text position i, for each 1 ≤ i ≤ n. Each of these lists has to be sorted in
descending order with respect to the squares’ lengths. It is easy to adapt our algorithm to
produce these lists: On reporting a square (i, `), we insert it at the front of Li. By doing so,
we can fill the lists without sorting, since we iterate over the period length in the outer loop,
while we iterate over all Lempel-Ziv factors in the inner loop.

Finally, we can conduct Phase II. In the original version, the goal of Phase II was to
decorate the suffix tree with the endpoints of a subset of the original leftmost covering
set. We will show that performing exactly the same operations with the set of the leftmost
occurrences of all squares will decorate the suffix tree with all squares directly. In more
detail, we first augment the suffix tree leaf having label i with the list Li, for each 1 ≤ i ≤ n.
Subsequently, we follow Gusfield and Stoye [23] by processing every node of the suffix tree
with a bottom-up traversal. During this traversal we propagate the lists of squares from
the leaves up to the root: An internal node u inherits the list of the child whose subtree
contains the leaf with the smallest label among all leaves in the subtree rooted at u. If the
edge to the parent node contains the ending position of one or more squares in the list (these
candidates are stored at the front of the list), we decorate the edge with these squares, and
pop them off from the list. By [23, Theorem 8], there is no square of the set L′ (defined in
Section 4) neglected during the bottom-top traversal. The same holds if we exchange L′ with
our computed set of all distinct squares:

I Lemma 11. By feeding the algorithm of Phase II with the above constructed lists Li

containing the leftmost occurrences of the squares starting at the text position i, it will
decorate the suffix tree with all distinct squares.

Proof. We adapt the algorithm of Section 4.1 to build the lists Li. These lists contain
the leftmost occurrences of all squares. In the following we show that no square is left out
during the bottom-up traversal. Let us take a suffix tree node u with its children v and w.
Without loss of generality, assume that the smallest label among all leaves contained in the
subtree of v is smaller than the label of every leaf contained in w’s subtree. For the sake
of contradiction, assume that the list of w contains the occurrence of a square (i, `) at the
time when we pass the list of v to its parent u. The length ` is smaller than v’s string depth,
otherwise it would already have been popped off from the list. But since v’s subtree contains
a leaf whose label j is the smallest among all labels contained in the subtree of w, the square
occurs before at T [j..j + `− 1] = T [i..i+ `− 1], a contradiction to the distinctness. J

This concludes the correctness of the modified algorithm. We immediately get:

I Theorem 12. Given LPF, an LCE data structure on the reversed text, and the suffix tree
of T , we can decorate the suffix tree with all squares of the text in O(ntLCE) time. Asides
from these data structures, we use (occ+n) lgn+ z lg z+ min(n+ o(n) , z lgn) +O(lgn) bits
of additional working space.

I Corollary 13. We can compute the suffix tree and decorate it with all squares of the text
in O(n/ε) time using (3n+ occ + 2nε) lgn+ z lg z +O(n) bits, for a constant 0 < ε ≤ 1.

As an application, we consider the common squares problem: Given a set of non-empty
strings with a total length n, we want to find all squares that occur in every string in O(n)
time. We solve this problem by first decorating the generalized suffix tree built on all strings
with the distinct squares of all strings. Subsequently, we apply the O(n) time solution of
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Hui [25] that annotates each internal suffix tree node v with the number of strings that
contain v’s string label. This solves our problem since we can simply report all squares
corresponding to nodes whose string labels are found in all strings. This also solves the
problem asking for the longest common square of all strings in O(n) time, analogously to
the longest common substring problem [22].

The last subsection is dedicated to another application of our suffix tree decoration:

5.2 Computing the Tree Topology of the MAST in Linear Time
A modification of the suffix tree is the minimal augmented suffix tree (MAST) [1].
This tree can answer the number of the non-overlapping occurrences of a substring S of T in
O(|S|) time. The MAST can be built in O(n lgn) time [5].
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In this section, we show how to compute the tree topology of the MAST in linear time.
The topology of the MAST differs to the suffix tree topology by the fact that the root of
each square is the string label of an MAST node. Our goal is to compute a list storing the
information about where to insert the missing nodes. The list stores tuples consisting of a
node v and a length `; we use this information later to create a new node w splitting the
edge (u, v) into (u,w) and (w, v), where u is the (former) parent of v. We will label (w, v)
with the last ` characters and (u, v) with the rest of the characters of the edge label of (u, v).

To this end, we explore the suffix tree with a top-down traversal while locating the roots
of the squares in the order of their lengths. To locate the roots of the squares in linear time
we use two data structures. The first one is a semi-dynamic lowest marked ancestor data
structure [19]. It allows marking a node and querying for the lowest marked ancestor of a
node in constant amortized time. We will use it to mark the area in the suffix tree that has
already been processed for finding the roots of the squares.

The second data structure is the list of tuples of the form (node, length) computed in
Section 5.1, where each tuple (v, `) consists of the length ` of a square T [i..i+ `− 1] and the
highest suffix tree node v whose string label has T [i..i+ `− 1] as a (not necessarily proper)
prefix. We sort this list, which we now call L, with respect to the square lengths with a
linear time integer sorting algorithm.

Finally, we explain the algorithm locating the roots of all squares. We successively process
all tuples of L, starting with the shortest square length. Given a tuple of L containing the
node v and the length `, we want to split an edge on the path from the root to v and insert a
new node whose string depth is `/2. To this end, we compute the lowest marked ancestor u
of v. If u’s string depth is smaller than `/2, we mark all descendants of u whose string depths
are smaller than `/2, and additionally the children of those nodes (this can be done by a
DFS or a BFS). If we query for the lowest marked ancestor of u again, we get an ancestor w
whose string depth is at least `/2, and whose parent has a string depth less than `/2. We
report w and the subtraction of `/2 from w’s string depth (if `/2 is equal to the string depth
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of w, then w’s string label is equal to the root of v’s string label, i.e., we do not have to
report it).

I Theorem 14. We can compute the tree topology of the MAST in linear time using linear
number of words.

Proof. By using the semi-dynamic lowest marked ancestor data structure, we visit a node
as many times as we have to insert nodes on the edge to its parent, plus one. This gives
O(n+ 2occ) = O(n) time. J

Open Problems. It is left open to compute the number of the non-overlapping occurrences
of the string labels of the MAST nodes in linear time. Since RMQ data structures are
practically slow, we wonder whether we can avoid the use of any RMQ without loosing
linear running time. The current bottleneck of the online algorithm is the predecessor data
structure in terms of the running time. Future integer dictionary data structures can improve
the overall performance of this algorithm.

Acknowledgements. We thank Thomas Schwentick for the question whether we can run
our algorithm online, for which we provided a solution in Section 4.4.
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Small Observation. In [23, Line 6 of Algorithm 1b], the condition start+ k < h1 has to be
changed to start+ k ≤ h1. Otherwise, given the text T = abaabab$, the algorithm would
find only the square aa, but not abaaba.

A Algorithm Execution with one Step at a Time

In this section, we process the running example T = ababaaababa$ with the algorithm
devised in Section 4.1 step by step. SA, LCP, PLCP, and LPF are given in the table below
(the LZ row partitions the text into factors, their borders are represented by the vertical
bars):

i 1 2 3 4 5 6 7 8 9 10 11 12

T a b a b a a a b a b a $

SA 12 11 5 6 9 3 7 1 10 4 8 2

LCP 0 0 1 2 1 3 3 5 0 2 2 4

PLCP 5 4 3 2 1 2 3 2 1 0 0 0

LPF 0 0 3 2 1 2 5 4 3 2 1 0

LZ f1 f2 f3 f4 f5 f6

The text T =
1

a|
2

b|
3

aba|
4

aa|
5

baba|
6

$ = f1 · · · f6 is factorized in six Lempel-Ziv factors. We call
T [1+ |f1 · · · fi−1|] (first position of the i-th factor) and T [1+ |f1 · · · fi|] (position after the i-th
factor) the left border and the right border of fi, respectively. The idea of the algorithm
is to check the presence of a square at a factor border and at an offset value q of the border
with LCE queries. q is either the addition of p to the left border, or the subtraction of p from
the right border (see Figure 1).
The algorithm finds the leftmost occurrences of all squares in the order (first) of their lengths
and (second) of their starting positions. We start with the period p = 1 and try to detect
squares at each Lempel-Ziv factor border. To this end, we create a bit vector B marking all
found squares with period p = 1. A square of this period is found at the right border of f3.
It is of type Lemma 8(1), since its starting position is in f3. To find it, we take the right
border b = 6 of f3, and the position q := b− p = 5. We perform an LCE query at b and q
in the forward and backward direction. Only the forward query returns the non-zero value
of one. But this is sufficient to find the square aa of period one. Its LPF value is smaller
than 2p = 2, so it is the leftmost occurrence. It is not yet marked in B, thus we have not yet
reported it. Right-rotations are not necessary for period 1. Having found all squares with
period 1, we clear B.

http://dx.doi.org/10.1007/978-3-319-51963-0_28
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13
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Next, we search for squares with period 2. We find a square of type Lemma 8(2) at
the left border b = 2 of f2. To this end, we perform an LCE query starting from b and
q := b+ p = 4 in both directions. Both LCE queries show that T [1..5] is a repetition with
period p = 2. Thus we know that T [1..4] is a square. It is not yet marked in B, and has an
LPF value smaller than 2p = 4, i.e., it is a not yet reported leftmost occurrence. On finding
a leftmost occurrence of a square, we right-rotate it, and report all right-rotations whose
LPF values are below 2p. This is the case for T [2..5], which is the leftmost occurrence of the
square baba.

After some unsuccessful checks at the next factor borders, we come to factor f5 and
search for a square of type Lemma 8(2). Two LCE queries in both directions at the left
border b = 8 of f5 and q := b+ p = 10 reveal that T [7..11] is a repetition of period 2. The
substring T [7..10] is a square, but its LPF value is 5(≥ 2p), i.e., we have already reported this
square. Although we have already reported it, some right-rotation of it might not have been
reported yet (see Section 4.2 for an example). This time, all right-rotations (i.e., T [8..12])
have an LPF value ≥ 2p, i.e., there is no leftmost occurrence of a square of period 2 found
by right-rotations. In overall, we have found and reported the leftmost occurrences of all
squares once.

B More Evaluation

Table 3 Running times in seconds, evaluated on different input sizes. We took prefixes of 1MiB,
10MiB, 50MiB, and 100MiB of all collections.

collection 1MiB 10MiB 50MiB 100MiB 200MiB

pc-dblp.xml 0.2 3 16 33 70
pc-dna 0.3 3 23 56 310
pc-english 0.2 5 42 500 2639
pc-proteins 0.3 4 25 74 245
pc-sources 0.2 3 31 286 792
pcr-cere 0.6 6 30 79 535
pcr-einstein.en 0.4 12 83 1419 3953
pcr-kernel 0.2 8 233 1274 6608
pcr-para 0.4 4 26 98 265

C Proofs

Proof of Theorem 12

Proof. We need (occ+n) lgn bits for storing the lists Li (occ lgn bits for storing the lengths
of all squares in an integer array, and n lgn bits for the pointers to the first element of each
list). The array Z uses z lg z bits. The Lempel-Ziv factors are represented as in Corollary 1.
The time tLCE is the maximum time of the LCE data structure and the suffix tree for
answering an LCE query. J

Proof of Theorem 13

Proof. We use Theorem 6 to store SA, ISA, LCP, and LPF in (1 + ε)n lgn + O(n) bits.
Subsequently, we build an RMQ data structure on LCP such that LCE queries can be
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answered in constant time. We additionally need the suffix array, its inverse, and the LCP
array (with an RMQ data structure) of the reversed text to answer LCE queries on the
reversed text. Finally, we endow LPF with an RMQ data structure for the right-rotations.
An LCE query on the text can be answered by the string depth of a lowest common ancestor
in the suffix tree in constant time. J

D Pseudo Code

Algorithm 1: Modified Algorithm 1 of [23].
1 b(f) denotes the left end of a factor f = T [b(f)..b(f) + |f | − 1], lcp and lcs compute the LCE

in T and the LCE in the reverse of T (mirroring the input indices by i 7→ n− i for
1 ≤ i ≤ n− 1), respectively.

2 Let f1, . . . , fz be the factors of the Lempel-Ziv factorization
3 fz+1 ← T [n] // dummy factor
4 Function recursive-rotate(s : starting position, e: ending position)
5 m← LPF.RMQ[s..e]
6 if m > 2p then return
7 report(m, 2p) and B[m]← 1
8 recursive-rotate(s,m− 1) and recursive-rotate(m+ 1,e)
9 Function right-rotate(s : starting position of square, p: period of square)

10 if B[s] = 1 then return
11 if LPF[s] < 2p then report(s, 2p) and B[s]← 1
12 `← lcp(s, s+ p)
13 recursive-rotate(s+ 1, s+ p− 1, s+ `− p)
14 Z ← array of size z lg z bits, zero initialized
15 m← max(|f1|+ |f2| , . . . , |fz−1|+ |fz|)
16 for p = 1, . . . ,m do
17 B ← bit vector of length n, zero initialized
18 for x = 1, . . . , z do
19 if |fx|+ |fx+1| < p then
20 y ← x

21 while |fy|+ |fy+1| < p do
22 if Z[y] 6= 0 then y ← Z[y]
23 else incr y

24 Z[x]← y and x← y

25 if |fx| ≥ p then // probe for squares satisfying Lemma 8(1)
26 q ← b(fx+1)− p
27 `R ← lcp(b(fx+1), q) and `L ← lcs(b(fx+1)− 1, q − 1)
28 if `R + `L ≥ p and `R > 0 then // found a square of length 2p with its

right end in fx+1

29 s← max(q − `L, q − p+ 1) // square starts at s

30 right-rotate(s, p)

31 q ← b(fx) + p // probe for squares satisfying Lemma 8(2)
32 `R ← lcp(b(fx), q) and `L ← lcs(b(fx)− 1, q − 1)
33 s← max(b(fx)− `L, b(fx)− p+ 1) // square starts in a factor preceding fx

34 if `R + `L ≥ p and `R > 0 and s+ p ≤ b(fx+1) and `L > 0 then // found a square
of length 2p whose center is in fx

35 right-rotate(s, p)
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