
The Dependent Doors Problem: An Investigation
into Sequential Decisions without Feedback∗†

Amos Korman1 and Yoav Rodeh2

1 CNRS and University Paris Diderot, Paris, France
amos.korman@irif.fr

2 Weizmann Institute of Science, Rehovot, Israel
yoav.rodeh@gmail.com

Abstract
We introduce the dependent doors problem as an abstraction for situations in which one must
perform a sequence of possibly dependent decisions, without receiving feedback information on
the effectiveness of previously made actions. Informally, the problem considers a set of d doors
that are initially closed, and the aim is to open all of them as fast as possible. To open a door,
the algorithm knocks on it and it might open or not according to some probability distribution.
This distribution may depend on which other doors are currently open, as well as on which
other doors were open during each of the previous knocks on that door. The algorithm aims
to minimize the expected time until all doors open. Crucially, it must act at any time without
knowing whether or which other doors have already opened. In this work, we focus on scenarios
where dependencies between doors are both positively correlated and acyclic.

The fundamental distribution of a door describes the probability it opens in the best of condi-
tions (with respect to other doors being open or closed). We show that if in two configurations of
d doors corresponding doors share the same fundamental distribution, then these configurations
have the same optimal running time up to a universal constant, no matter what are the dependen-
cies between doors and what are the distributions. We also identify algorithms that are optimal
up to a universal constant factor. For the case in which all doors share the same fundamental
distribution we additionally provide a simpler algorithm, and a formula to calculate its running
time. We furthermore analyse the price of lacking feedback for several configurations governed
by standard fundamental distributions. In particular, we show that the price is logarithmic in d
for memoryless doors, but can potentially grow to be linear in d for other distributions.

We then turn our attention to investigate precise bounds. Even for the case of two doors,
identifying the optimal sequence is an intriguing combinatorial question. Here, we study the case
of two cascading memoryless doors. That is, the first door opens on each knock independently
with probability p1. The second door can only open if the first door is open, in which case it will
open on each knock independently with probability p2. We solve this problem almost completely
by identifying algorithms that are optimal up to an additive term of 1.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Sequencing and Schedul-
ing

Keywords and phrases No Feedback, Sequential Decisions, Probabilistic Environment, Explora-
tion and Exploitation, Golden Ratio

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.81

∗ The full version of this paper appears in https://arxiv.org/abs/1704.06096.
† This work has received funding from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No 648032).

EA
T

C
S

© Amos Korman and Yoav Rodeh;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 81; pp. 81:1–81:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.81
https://arxiv.org/abs/1704.06096
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

81:2 The Dependents Doors Problem

1 Introduction

Often it is the case that one must accomplish multiple tasks whose success probabilities are
dependent on each other. In many cases, failure to achieve one task will tend to have a more
negative affect on the success probabilities of other tasks. In general, such dependencies
may be quite complex, and balancing the work load between different tasks becomes a
computational challenge. The situation is further complicated if the ability to detect whether
a task has been accomplished is limited. For example, if task B highly depends on task A
then until A is accomplished, all efforts invested in B may be completely wasted. How should
one divide the effort between these tasks if feedback on the success of A is not available?

In this preliminary work we propose a setting that captures some of the fundamental
challenges that are inherent to the process of decision making without feedback. We
introduce the dependent doors problem, informally described as follows. There are d ≥ 2
doors (representing tasks) which are initially closed, and the aim is to open all of them as
fast as possible. To open a door, the algorithm can “knock” on it and it might open or
not according to some governing probability distribution, that may depend on other doors
being open or closed1. We focus on settings in which doors are positively correlated, which
informally means that the probability of opening a door is never decreased if another door is
open. The governing distributions and their dependencies are known to the algorithm in
advance. Crucially, however, during the execution, it gets no direct feedback on whether or
not a door has opened unless all d doors have opened, in which case the task is completed.

This research has actually originated from our research on heuristic search on trees [4].
Consider a tree of depth d with a treasure placed at one of its leaves. At each step the
algorithm can “check” a vertex, which is child of an already checked vertex. Moreover, for
each level of the tree, the algorithm has a way to compare the previously checked vertices on
that level. This comparison has the property that if the ancestor of the treasure on that level
was already checked, then it will necessarily be considered as the “best” on that level. Note,
however, that unless we checked all the vertices on a given level, we can never be sure that
the vertex considered as the best among checked vertices in the level is indeed the correct
one. With such a guarantee, and assuming that the algorithm gets no other feedback from
checked vertices, any reasonable algorithm that is about to check a vertex on a given level,
will always choose to check a child of the current best vertex on the level above it. Therefore,
the algorithm can be described as a sequence of levels to inspect. Moreover, if we know the
different distributions involved, then we are exactly at the situation of the dependent doors
problem. See the full version for more details on this example.

Another manifestation of d dependent doors can arise in the context of cryptography.
Think about a sequence of d cascading encryptions, and separate decryption protocols to
attack each of the encryptions. Investing more efforts in decrypting the i’th encryption would
increase the chances of breaking it, but only if previous encryptions where already broken.
On the other hand, we get no feedback on an encryption being broken unless all of them are.

The case of two doors can serve as an abstraction for exploration vs. exploitation problems,
where it is typically the case that deficient performances on the exploration part may result
in much waste on the exploitation part [10, 17]. It can also be seen as the question of balance
between searching and verifying in algorithms that can be partitioned thus [1, 15]. In both

1 Actually, the distribution associated with some door i may depend on the state of other doors (being
open or closed) not only at the current knock, but also at the time of each of the previous knocks on
door i.

A. Korman and Y. Rodeh 81:3

examples, there may be partial or even no feedback in the sense that we don’t know that the
first procedure succeeded unless the second one also succeeds.

For simplicity, we concentrate on scenarios in which the dependencies are acyclic. That is,
if we draw the directed dependency graph between doors, then this graph does not contain
any directed cycles. The examples of searching and verifying and the heuristic search on
trees can both be viewed as acyclic. Moreover, despite the fact that many configurations are
not purely acyclic, one can sometimes obtain a useful approximation that is.

To illustrate the problem, consider the following presumably simple case of two dependent
memoryless doors. The first door opens on each knock independently with probability 1/2.
The second door can only open if the first door is open, in which case it opens on each knock
independently, with probability 1/2. What is the sequence of knocks that minimizes the
expected time to open both doors, remembering that we don’t know when door 1 opens? It is
easy to see that the alternating sequence 1, 2, 1, 2, 1, 2, . . . results in 6 knocks in expectation.
Computer simulations indicate that the best sequence gives a little more than 5.8 and starts
with 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2. Applied to this particular scenario, our theoretical
lower bound gives 5.747, and our upper bound gives a sequence with expected time 5.832.

1.1 Context and Related Work
This paper falls under the framework of decision making under uncertainty, a large research
subject that has received significant amount of attention from researchers in various disciplines,
including computer science, operational research, biology, sociology, economy, and even
psychology and cognition, see, e.g., [2, 3, 5, 6, 7, 8, 9, 16].

Performing despite limited feedback would fit the framework of reinforced learning [17]
and is inherent to the study of exploration vs. exploitation type of problems, including
Multi-Armed Bandit problems [10]. In this paper we study the impact of having no feedback
whatsoever. Understanding this extreme scenario may serve as an approximation for cases
where feedback is highly restricted, or limited in its impact. For example, if it turns out that
the price of lacking feedback is small, then it may well be worth to avoid investing efforts in
complex methods for utilizing the partial feedback.

Of particular interest is the case of two doors. As mentioned, difficulties resulting from
the lack of feedback can arise when one aims to find a solution by alternating between
two subroutines: Producing promising candidate solutions and verifying these candidates.
Numerous strategies are based on this interplay, including heuristics based on brute force or
trail and error approaches [1, 15], sample and predict approaches [11, 14, 17], iterative local
algorithms [12, 13], and many others. Finding strategies for efficiently balancing these two
tasks can be therefore applicable.

1.2 Setting
There are d ≥ 2 doors and each door can be either open or closed. Doors start closed, and
once a door opens it never closes. To open a door, an algorithm can knock on it and it might
open or not according to some probability distribution. The goal is to minimize the expected
number of knocks until all doors open. Crucially, the algorithm has no feedback on whether
or not a door has opened, unless all doors have opened, in which case the task is completed.

The probability that a door opens may depend on the state of other doors (being open or
closed) at the time of the current knock as well as on their state during each of the previous
knocks on the door. For example, the probability that a certain knock at door i succeeds
may depend on the number of previous knocks on door i, but counting only those that were

ICALP 2017

81:4 The Dependents Doors Problem

made while some other specific door j was open. The idea behind this definition is that the
more time we invest in opening a door the more likely it is to open, and the quality of each
knock depends on what is the state of the doors it depends on at the time of the knock.

Below we provide a semi-formal description of the setting. The level of detail is sufficient
to understand the content of the main text, which is mainly concerned with independent and
cascading configurations. The reader interested in a more formal description of the model is
referred to the full version.

A specific setting of doors is called a configuration (normally denoted C). This includes
a description of all dependencies between doors and the resulting probability distributions.
In this paper we assume that the dependency graph of the doors is acyclic, and so we may
assume that a configuration describes an ordering of the doors, such that each door depends
only on lower index doors. Furthermore, we assume that the correlation between doors is
positive, i.e., a door being open can only improve the chances of other doors to open.

Perhaps the simplest configuration is when all doors are independent of each other. In this
case, door i can be associated with a function pi : N→ [0, 1], where pi(n) is the probability
that door i is not open after knocking on it n times. Another family of acyclic configurations
are cascading configurations. Here, door i cannot open unless all doors of lower index are
already open. In this case, the configuration can again be described by a set of functions
{pi}di=1, where pi(n) describes the probability that door i is not open after knocking on it n
times, where the count starts only after door i− 1 is already open.

In general, given a configuration, each door i defines a non-decreasing function pi : N→
[0, 1], called the fundamental distribution of the door, where pi(n) is the probability that the
door is not open after knocking on it n times in the best of conditions, i.e., assuming all
doors of lower index are open. In the case of independent and cascading configurations, the
fundamental distribution pi coincides with the functions mentioned above. Two doors are
similar if they have the same fundamental distribution. Two configurations are similar if for
every i, door i of the first configuration is similar to door i of the second.

When designing an algorithm, we will assume that the configuration it is going to run in
is known. As there is no feedback, a deterministic algorithm can be thought of as a possibly
infinite sequence of door knocks. A randomized algorithm is therefore a distribution over
sequences, and as all of them will have expected running time at least as large as that of
an optimal sequence (if one exists), the expected running time of a randomized algorithm
cannot be any better. Denote by TC(π), the expected time until all doors open when running
sequence π in configuration C. We define TC = minπ TC(π). As proved in the full version of
the paper, there exists a sequence achieving this minimum. Therefore, by the aforementioned
arguments, we can restrict our discussion to deterministic algorithms only.

If we had feedback we would knock on each door until it opens, and then continue to
the next. Denoting by Ei =

∑∞
n=0 pi(n) the expected time to open door i on its own, the

expected running time then does not depend on the specific dependencies between doors
at all, and is

∑
iEi. Also, this value is clearly optimal. To evaluate the impact of lacking

feedback for a configuration C, we therefore define:

Price(C) = TC∑
iEi

.

Obviously Price(C) ≥ 1, and for example, if all doors start closed and open after just 1 knock,
it is in fact equal to 1. In the full version of this paper we also show that Price(C) ≤ d.

A. Korman and Y. Rodeh 81:5

1.3 Our Results
We have two main results. The first one, presented in Section 2, states that any two similar
configurations have the same optimal running time up to a constant factor. We stress
that this constant factor is universal in the sense that it does not depend on the specific
distributions or on the number of doors d.

Furthermore, given a configuration, we identify an algorithm that is optimal for it up to a
constant factor. We then show that for configurations where all doors are similar, there is a
much simpler algorithm which is optimal up to a constant factor, and describe a formula that
computes its approximate running time. We conclude Section 2 by analysing the price of
lacking feedback for several configurations governed by standard fundamental distributions.
In particular, we show that the price is logarithmic in d for memoryless doors, but can
potentially grow to be linear in d for other distributions.

We then turn our attention to identify exact optimal sequences. Perhaps the simplest
case is the case of two cascading memoryless doors. That is, the first door opens on each
knock independently with probability p1. The second door can only open if the first door is
open, in which case it opens on each knock independently, with probability p2. In Section 3
we present our second main result: Algorithms for these configurations that achieve the
precise optimal running time up to an additive term of 1.

On the technical side, to establish such an extremely competitive algorithm, we first
consider a semi-fractional variant of the problem and find a sequence that achieves the precise
optimal bound. We then approximate this semi-fractional sequence to obtain an integer
solution losing only an additive term of 1 in the running time. A nice anecdote is that in the
case where p1 = p2 and are very small, the ratio of 2-knocks over 1-knocks in the sequence
we get approaches the golden ratio. Also, in this case, the optimal running time approaches
3.58/p1 as p1 goes to zero. It follows that in this case, the price of lacking feedback tends to
3.58/2 and the price of dependencies, i.e., the multiplicative gap between the cascading and
independent settings, tends to 3.58/3.

2 Near Optimal Algorithms

The following important lemma is proved in the full version using a coupling argument:

I Lemma 1. Consider similar configurations C,X and I, where X is cascading and I
is independent. For every sequence π, TI(π) ≤ TC(π) ≤ TX (π). This also implies that
TI ≤ TC ≤ TX .

The next theorem presents a near optimal sequence of knocks for a given configuration. In
fact, by Lemma 1, this sequence is near optimal for any similar configuration, and so we
get that the optimal running time for any two similar configurations is the same up to a
universal multiplicative factor.

I Theorem 2. There is a polynomial algorithm2, that given a configuration C generates a
sequence π such that TC(π) = Θ(TI). In fact, TC(π) ≤ 2 + 4TI ≤ 2 + 4TC.

Proof. Denote by p1, . . . , pd the fundamental distributions of the doors of C. For a finite
sequence of knocks α, denote by SCC(α) the probability that after running α in configuration

2 A polynomial algorithm in our setting generates the next knock in the sequence in polynomial time in
the index of the knock and in d, assuming that reading any specific value of any of the fundamental
distributions of a door takes constant time.

ICALP 2017

81:6 The Dependents Doors Problem

C, some of the doors are still closed. Note that if α is sorted, that is, if all knocks on door 1
are done first, followed by the knocks on doors 2, etc., then SCX (α) = SCI(α).

We start by showing that for any T , we can construct in polynomial time a finite sequence
αT of length T that maximizes the probability that all doors will open, i.e., minimizes
SCI(αT). As noted above, if we sort the sequence, this is equal to SCX (αT).

The algorithm follows a dynamic programming approach, and calculates a matrix A,
where A[i, t] holds the maximal probability that a sequence of length t has of opening all of
the doors 1, 2, . . . , i. All the entries A[0, ·] are just 1, and the key point is that for each i and
t, knowing all of the entries in A[i, ·], it is easy to calculate A[i+ 1, t]:

A[i+ 1, t] = tmax
k=0

A[i, t− k] · (1− pi+1(k)) .

Calculating the whole table takes O(dT 2) time, and A[d, T] will give us the highest probability
a sequence of length T can have of opening all doors. Keeping tabs on the choices the max
in the formula makes, we can get an optimal sequence αT , and can take it to be sorted.

Consider the sequence π = α2 ·α4 · · ·α2n · · · . The complexity of generating this sequence
up to place T is O(dT 2), and so this algorithm is polynomial. Our goal will be to compare
TX (π) with TI(π?), where π? is the optimal sequence for I.

The following observation stems from the fact that for any natural valued random variable
X, E [X] =

∑∞
n=0 Pr [X > n] and Pr [X > n] is a non-increasing function of n.

I Observation 3. Let {an}∞n=1 be a strictly increasing sequence of natural numbers, and X
be some natural valued random variable. Then:

∞∑
n=1

(an+1 − an)Pr [X > an+1] ≤ E [X] ≤ a1 +
∞∑
n=1

(an+1 − an)Pr [X > an] .

For a sequence π, denote by π[n] the prefix of π of length n. In this terminology, TC(π) =∑∞
n=0 SCC(π[n]). Setting an = 2 + 4 + . . .+ 2n in the right side of Observation 3, and letting

X be the number of rounds until all doors open when using π, we get:

TX (π) ≤ 2 +
∞∑
n=1

2n+1 · SCX (π[2 + . . .+ 2n]) ≤ 2 +
∞∑
n=1

2n+1 · SCX (α2n)

= 2 +
∞∑
n=1

2n+1 · SCI(α2n) ≤ 2 +
∞∑
n=1

2n+1 · SCI(π?[2n]) ≤ 2 + 4TI(π?)

The last step is using Observation 3 with an = 2n−1. Theorem 2 concludes. J

2.1 Configurations where all Doors are Similar
In this section we focus on configurations where all doors have the same fundamental
distribution p(n). We provide simple algorithms that are optimal up to a universal constant,
and establish the price of lacking feedback with respect to a few natural distributions.
Corresponding proofs appear in the full version of the paper.

2.1.1 Simple Algorithms
Let us consider the following very simple algorithm Asimp. It runs in phases, where in
each phase it knocks on each door once, in order. As a sequence, we can write Asimp =
(1, 2, . . . , d)∞. Let X1, . . . , Xd be i.i.d. random variables taking positive integer values,
satisfying Pr [Xi > n] = p(n). The following is straightforward:

A. Korman and Y. Rodeh 81:7

I Claim 4. TI(Asimp) = Θ (d · E [max {X1, . . . , Xd}])

This one is less trivial:

I Claim 5. If all doors are similar then TI(Asimp) = Θ(TI)

The claim above states that Asimp is optimal up to a multiplicative constant factor in the
independent case, where all doors are similar. As a result, we can also show:

I Claim 6. Denote by αn the sequence 12n

, . . . , d2n . If all doors are similar then for any
configuration C, TC (α0 · α1 · α2 · · ·) = Θ(TC).

In plain words, the above claim states that the following algorithm is optimal up to a universal
constant factor for any configuration where all doors are similar: Run in phases where phase
n consists of knocking 2n consecutive times on each door, in order.

2.1.2 On the Price of Lacking Feedback

By Claims 4 and 5, investigating the price of lacking feedback when all doors are similar
boils down to understanding the expected maximum of i.i.d. random variables.

Price = Θ
(

E [max {X1, . . . , Xd}]
E [X1]

)
(1)

Note that we omitted dependency on the configuration, as by Theorem 2, up to constant
factors, it is the same price as in the case where the doors are independent. Let us see a few
examples of this value. First:

I Lemma 7. If X1, . . . , Xd are i.i.d. random variables taking natural number values, then:

E [max(X1, . . . , Xd)] = Θ
(
κ+ d

∞∑
n=κ

Pr [Xi > n]
)

Where κ = min {n ∈ N | Pr [X1 > n] < 1/d}

I Example 8. After the first knock on it, each door opens with probability 1− 1/d and if it
doesn’t, it will open at its d+ 1’st knock. The expected time to open each door on its own is
2. By Lemma 7, as κ = d+ 1, we get that Price = Ω(κ) = Ω(d). Since always Price ≤ d,
Price = Θ(d).

I Example 9. If p(n) = qn for some 1/2 < q < 1, then Price = Θ(log(d)).

I Example 10. If for some c > 0 and a > 1, p(n) = min(1, c/na), then Price = Θ(d 1
a).

Sometimes we know a bound on some moment of the distribution of opening a door. If
E [X1] < M , since Price ≤ d, then T = O(d2M). Also,

I Example 11. If E [Xa
1] < M for some a > 1, then T = O

(
d1+ 1

aM1/a(1 + 1
a−1)

)
.

For example, if the second moment of the time to open a door on its own is bounded, we get
an O(d3/2) algorithm.

ICALP 2017

81:8 The Dependents Doors Problem

3 Two Memoryless Cascading Doors

One can say that by Theorem 2 we solved much of the dependent doors problem. There
is an equivalence of the independent and cascading models, and we give an up to constant
factor optimal algorithm for any situation. However, we still find the question of finding the
true optimal sequences for cascading doors to be an interesting one. What is the precise cost
of having no feedback, in numbers? Even the simple case of two doors, each opening with
probability 1/2 on each knock, turns out to be quite challenging and has a not so intuitive
optimal sequence.

In this section, we focus on a very simple yet interesting case of the cascading door
problem, and solve it almost exactly. We have two doors. Door 1 opens with probability
p1 each time we knock on it, and door 2 opens with probability p2. We further extend the
setting to consider different durations. Specifically, we assume that a knock on door 1 takes
one time unit, and a knock on door 2 takes c time units. Denote q1 = 1− p1 and q2 = 1− p2.
For brevity, we will call a knock on door 1 a 1-knock, and a knock on door 2 a 2-knock.

The Semi-Fractional Model. As finding the optimal sequence directly proved to be difficult,
we introduce a relaxation of our original model, termed the semi-fractional model. In this
model, we allow 1-knocks to be of any length. A knock of length t, where t is a non-negative
real number, will have probability of 1 − qt1 of opening the door. In this case, a sequence
consists of the alternating elements 1t and 2, where 1t describes a knock of length t on door 1.
We call sequences in the semi-fractional model semi-fractional sequences, and to differentiate,
we call sequences in the original model integer sequences.

As our configuration C will be clear from context, for a sequence π, we define E [π] = TC(π)
to be the expected running time of the sequence. Clearly, every integer sequence has a similar
semi-fractional sequence with the same expected running time. As we will see, the reverse is
not far from being true. That being so, finding the optimal semi-fractional sequence will
give an almost optimal integer sequence.

3.1 Equivalence of Models
I Theorem 12. Every semi-fractional sequence π has an integer sequence π′, s.t., E [π′] ≤
E [π] + 1.

For this purpose, in this subsection only, we describe a semi-fractional sequence π as a
sequence of non-decreasing non-negative real numbers: π0, π1, π2, . . ., where π0 = 0. This
sequence describes the following semi-fractional sequence (in our original terms):

1π1−π0 · 2 · 1π2−π1 · 2 · · ·

This representation simplifies our proofs considerably. Here are some observations:
1-knocks can be of length 0, yet we still consider them in our indexing.
The sequence is an integer sequence iff for all i, πi ∈ N.
The i-th 2-knock starts at time πi + c(i− 1) and ends at πi + ci.
The probability of door 1 being closed after the completion of the i-th 1-knock is qπi

1 ,
and so the probability it opens at 1-knock i is qπi−1

1 − qπi
1

I Lemma 13. For two sequences π = (π0, π1, . . .) and π′ = (π′1, π′2, . . .), if for all i, πi ≤
π′i ≤ πi + 1 then E [π′] ≤ E [π] + 1.

A. Korman and Y. Rodeh 81:9

Lemma 13 is the heart of our theorem. Indeed, once proven, Theorem 12 follows in a
straightforward manner. Given a semi-fractional sequence π, define π′i = dπie. Then, π′
is an integer sequence, and it satisfies the conditions of the lemma, so we are done. The
lemma makes sense, as the sequence π′ in which for all i > 0, π′i = πi + 1, can be thought
of as adding a 1-knock of length one in the beginning of the sequence. Even if this added
1-knock did nothing, the running time would increase by at most 1. However, the proof is
more involved, since in the lemma, while some of the 2-knocks may have an increased chance
of succeeding, some may actually have a lesser chance.

Proof. Given a sequence π and an event X, we denote by E [π |X] the expected running
time of π given the event X. Let Xi denote the event that door 1 opens at its i-th 1-knock.
As already said:

Pr [Xi] = q
πi−1
1 − qπi

1 =
∫ πi

πi−1

qx1 ln(q1) dx

Where the last equality comes as no surprise, as it can be seen as modelling door 1 in a
continuous fashion, having an exponential distribution fitting its geometrical one. Now:

E [π] =
∞∑
i=1

Pr [Xi] E [π |Xi] =
∞∑
i=1

∫ πi

πi−1

qx1 ln(q1) dx·E [π |Xi] =
∫ ∞

0
qx1 ln(q1)·E

[
π
∣∣Xi(x)

]
dx

Where i(x) = maxi {x ≥ πi−1}, that is, the index of the 1-knock that x belongs to when
considering only time spent knocking on door 1. Defining X ′i and i′(x) in an analogous way
for π′, we want to show that for all x,

E
[
π′
∣∣∣X ′i′(x)

]
≤ 1 + E

[
π
∣∣Xi(x)

]
as using it with the last equality will prove the lemma. We need the following three claims:
1. If j ≤ i, then E [π |Xj] ≤ E [π |Xi]
2. For all x, i′(x) ≤ i(x)
3. For all i, E [π′ |X ′i] ≤ 1 + E [π |Xi]
Together they give what we need:

E
[
π′
∣∣∣X ′i′(x)

]
≤ 1 + E

[
π
∣∣Xi′(x)

]
≤ 1 + E

[
π
∣∣Xi(x)

]
The first is actually true trivially for all sequences, as the sooner the first door opens, the
better the expected time to finish. For the second, since for all i, π′i ≥ πi, then x ≥ π′i implies
that x ≥ πi, and so:

i′(x) = max
i

{
x ≥ π′i−1

}
≤ max

i
{x ≥ πi−1} = i(x)

For the third, denote by Yj the event that door 2 opens at the j’th 2-knock. Then:

E [π |Xi] =
∞∑
j=i

(πj + cj)Pr [Yj |Xi]

Let us consider this same expression as it occurs in π′. First note that Pr [Yj |Xi] =
Pr
[
Y ′j
∣∣X ′i], as all that matters for its evaluation is j − i. Therefore:

E [π′ |X ′i] =
∞∑
j=i

(π′j + cj)Pr
[
Y ′j
∣∣X ′i] ≤ ∞∑

j=i
(πj + 1 + cj)Pr [Yj |Xi]

= E [π |Xi] +
∞∑
j=i

Pr [Yj |Xi] ≤ E [π |Xi] + 1 . J

ICALP 2017

81:10 The Dependents Doors Problem

3.2 The Optimal Semi-Fractional Sequence
A big advantage of the semi-fractional model is that we can find an optimal sequence for it.
For that we need some preparation:

I Definition 14. For a semi-fractional sequence π, and some 0 ≤ x ≤ 1, denote by Ex [π]
the expected running time of π when started with door 1 being closed with probability x. In
this notation, E [π] = E1 [π].

I Lemma 15. Let y = x/(q2 + p2x). Then:

Ex
[
1t · π

]
= t+ Eqt

1x
[π] Ex [2 · π] = c+ x

y
Ey [π]

Proof. The first equation is clear, since starting with door 1 being closed with probability x,
and then knocking on it for t rounds, the probability that this door is closed is qt1x.

As for the second equation, if door 1 is closed with probability x, then knocking on door 2,
we have a probability of p2(1− x) of terminating, and so the probability we did not finish is:

1− p2(1− x) = 1− p2 + p2x = q2 + p2x = x

y

It remains to show that conditioning on the fact that we indeed continue, the probability
that door 1 is closed is y. It is the following expression, evaluated after a 2-knock:

Pr [door 1 is closed]
Pr [door 1 is closed] + Pr [door 1 is open but not door 2] = x

x+ (1− x)q2
= y . J

Applying Lemma 15 iteratively on a finite sequence w, we get:

Ex [wπ] = a(x,w) + b(x,w)Eδ(x,w) [π] (2)

Of specific interest is δ(x,w). It can be thought of as the state3 of our algorithm after
running the sequence w, when we started at state x. Lemma 15 and Equation (2) give us
the behaviour of δ(x,w):

δ(x, 1t) = qt1x , δ(x, 2) = x

q2 + p2x
, δ(x, aw) = δ(δ(x, a), w) .

We start with the state being 1, since we want to calculate E1 [π]. Except for this first
moment, as we can safely assume any reasonable algorithm will start with a 1-knock, the
state will always be in the interval (0, 1). A 1-knock will always decrease the state and a
2-knock will increase it.

Our point in all this, is that we wish to exploit the fact that our doors are memoryless,
and if we encounter a state we’ve already been at during the running of the sequence, then
we should probably make the same choice now as we did then. The following definition and
lemma capture this point.

I Definition 16. We say a non-empty finite sequence w is x-invariant, if δ(x,w) = x.

The following Lemma is proved in the full version of this paper, and formalizes our intuition
about how an optimal algorithm should behave.

I Lemma 17. If w is x-invariant, and Ex [wπ] ≤ Ex [π] then Ex [w∞] ≤ Ex [wπ].

3 There is an intuitive meaning behind this. Going through Lemma 15, we can see that δ(1, w) is actually
the probability that after running w, door 1 is closed conditioned on door 2 being closed. Indeed, After
running some finite sequence, the only feedback we have is that the algorithm did not finish yet. We
can therefore calculate from our previous moves what is the probability that door 1 is closed, and that
is the only information we need for our next steps.

A. Korman and Y. Rodeh 81:11

Figure 1 How the state evolves as a function of time. 1-knocks decrease the state, and 2-knocks
increase it. Note that r = logq1 (y) and s = logq1 (x).

3.2.1 The Actual Semi-Fractional Sequence
I Theorem 18. There is an optimal semi-fractional sequence π? of the form 1s(21t)∞, for
some positive real values s and t, and its running time is:

E [π?] = min
z∈[0,1]

(
logq1(1− z) +

c+ (1− p2z) logq1(1− p2z)
p2z

)
.

Proof. In the full version of this paper, we prove that there is an optimal semi-fractional
sequence π. It clearly starts with a non-zero 1-knock, and so we can write π = 1s2π′.
Intuitively, in terms of its state, this sequence starts at 1, goes down for some time with
a 1-knock, and then jumps back up with a 2-knock. The state it reaches now was already
passed through on the first 1-knock, and so as this is an optimal sequence we can assume it
will choose the same as it did before, and keep zig-zaging up and down.

We next prove that indeed there is an optimal sequence following the zig-zaging form
above. Again, take some optimal π, and write π = 1s2π′. Denote x = δ(1, 1s) and
y = δ(1, 1s2) = δ(x, 2) > x (see Figure 1). Taking r = logq1(y) < s, we get δ(1, 1r) = y.
Denoting t = s− r, this means that 1t2 is y-invariant. Since π is optimal, then:

E [π] = E
[
1r(1t2)π′

]
≤ E [1rπ′] which implies: Ey

[
1t2π′

]
≤ Ey [π′] .

So by Lemma 17:

Ey
[
(1t2)∞

]
≤ Ey

[
1t2π′

]
which implies: E

[
1r(1t2)∞

]
≤ E

[
1r1t2π′

]
= E [π] .

Therefore, 1r(1t2)∞ = 1s(21t)∞ is optimal. We denote this sequence π?.
Now for the analysis of the running time of this optimal sequence. We will use Lemma 15

many times in what follows.

E1
[
1s(21t)∞

]
= s+ Ex

[
(21t)∞

]
.

Denote α = (21t)∞.

Ex [α] = Ex
[
21tα

]
= c+ x

y
Ey
[
1tα
]

= c+ x

y
(t+ Ex [α]) .

Since t = s− r = logq1(x/y):

Ex [α] = c

1− x
y

+
x
y

1− x
y

logq1(x/y) .

ICALP 2017

81:12 The Dependents Doors Problem

By Lemma 15, as our y is the state resulting from a 2-knock starting at state x, it follows
that y = x/(q2 + p2x). Since x/y = q2 + p2x, then 1− x/y = p2(1− x) and then we get:

c

p2(1− x) + q2 + p2x

p2(1− x) logq1(q2 + p2x) .

And in total:

E1
[
1s(21t)∞

]
= logq1(x) +

c+ (q2 + p2x) logq1(q2 + p2x)
p2(1− x) .

Changing variable to z = 1− x, results in q2 + p2x = 1− p2z, and we get the expression in
the statement of the theorem. J

3.3 Actual Numbers
Theorem 18 gives the optimal semi-fractional sequence and a formula to calculate its expected
running time. This formula can be approximated as accurately as we wish for any specific
values of p1, p2 and c, but it is difficult to obtain a closed form formula from it. In the full
version, we show an approximation with an additive error term p2/ log(1/q1). This is pretty
close to p2/p1, and so when p1 ≥ p2 it is just an additive error of 1.

In general, when p1 is small, then the running time is shown to depend on θ ≈ cp1/p2,
which is the expected time to open door 2 on its own, divided by the time to open door 1 on
its own - a natural measure of the system. Then, ignoring the additive mistake, we show there
that the lower bound is approximately F(θ)/p1, where F is some function not depending
on the parameters of the system. For example F(1) = 3.58. So opening two similar doors
without feedback when p is small takes about 3.58 times more time than opening one door
as opposed to the case with feedback, where the factor is only 2.

We also note, that when the two doors are independent and similar, it is quite easy to
see that the optimal expected running time is at most 3/p. As a last interesting point, if
c = 1 and p = p1 = p2 approaches zero, then the ratio between the number of 2-knocks and
the number of 1-knocks approaches 1

2 (1 +
√

5), which is the golden ratio. These last two
points are also shown in the full version of the paper.

3.4 Examples
For p1 = p2 = 1/2 and c = 1, the lower bound is 5.747. Simulations show that the best
algorithm for this case is slightly more than 5.8, so the lower bound is quite tight, but our
upper bound is 6.747 which is pretty far. However, the sequence we get from the upper
bound proof starts with:

1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, . . .

The value it gives is about 5.832, which is very close to optimal. For p1 = p2 = 1/100 and
c = 1, the sequence we get is:

197, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, . . .

And the value it gives is about 356.756, while the lower bound can be calculated to be
approximately 356.754. As we see this is much tighter than the +1 that our upper bound
promises.

A. Korman and Y. Rodeh 81:13

References
1 Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error. In

Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 31–40, 2013. doi:10.1145/2488608.2488613.

2 David E. Bell. Regret in decision making under uncertainty. Operations Research, 30(5):961–
981, 1982. doi:10.1287/opre.30.5.961.

3 Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary
search (and pretty good for quantum as well). In 49th Annual IEEE Symposium on Found-
ations of Computer Science, FOCS, 2008, October 25-28, 2008, Philadelphia, PA, USA,
pages 221–230, 2008. doi:10.1109/FOCS.2008.58.

4 Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching on trees with noisy memory.
CoRR, abs/1611.01403, 2016. URL: http://arxiv.org/abs/1611.01403.

5 Matthias Brand, Christian Laier, Mirko Pawlikowski, and Hans J. Markowitsch. Decision
making with and without feedback: The role of intelligence, strategies, executive functions,
and cognitive styles. Journal of Clinical and Experimental Neuropsychology, 31(8):984–998,
2009. PMID: 19358007. doi:10.1080/13803390902776860.

6 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabil-
istic binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
519–532, 2016. doi:10.1145/2897518.2897656.

7 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with
noisy information. SIAM J. Comput., 23(5):1001–1018, October 1994. doi:10.1137/
S0097539791195877.

8 L.A. Giraldeau and T. Caraco. Social Foraging Theory. Monographs in behavior and
ecology. Princeton University Press, 2000.

9 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’07, pages 881–890, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

10 Michael N. Katehakis and Arthur F. Veinott, Jr. The multi-armed bandit problem:
Decomposition and computation. Math. Oper. Res., 12(2):262–268, May 1987. doi:
10.1287/moor.12.2.262.

11 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994.

12 Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. Toward more localized local
algorithms: removing assumptions concerning global knowledge. Distributed Computing,
26(5-6):289–308, 2013. doi:10.1007/s00446-012-0174-8.

13 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, 1986. doi:10.1137/0215074.

14 Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

15 Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2006.
16 Andrzej Pelc. Searching games with errors – fifty years of coping with liars. Theor. Comput.

Sci., 270(1-2):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.
17 Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT

Press, Cambridge, MA, USA, 1st edition, 1998.

ICALP 2017

http://dx.doi.org/10.1145/2488608.2488613
http://dx.doi.org/10.1287/opre.30.5.961
http://dx.doi.org/10.1109/FOCS.2008.58
http://arxiv.org/abs/1611.01403
http://dx.doi.org/10.1080/13803390902776860
http://dx.doi.org/10.1145/2897518.2897656
http://dx.doi.org/10.1137/S0097539791195877
http://dx.doi.org/10.1137/S0097539791195877
http://dl.acm.org/citation.cfm?id=1283383.1283478
http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1007/s00446-012-0174-8
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1016/S0304-3975(01)00303-6

	Introduction
	Context and Related Work
	Setting
	Our Results

	Near Optimal Algorithms
	Configurations where all Doors are Similar
	Simple Algorithms
	On the Price of Lacking Feedback

	Two Memoryless Cascading Doors
	Equivalence of Models
	The Optimal Semi-Fractional Sequence
	The Actual Semi-Fractional Sequence

	Actual Numbers
	Examples

