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Abstract
Canonical orderings and their relatives such as st-numberings have been used as a key tool in
algorithmic graph theory for the last decades. Recently, a unifying link behind all these orders
has been shown that links them to well-known graph decompositions into parts that have a
prescribed vertex-connectivity.

Despite extensive interest in canonical orderings, no analogue of this unifying concept is
known for edge-connectivity. In this paper, we establish such a concept named edge-orders and
show how to compute (1,1)-edge-orders of 2-edge-connected graphs as well as (2,1)-edge-orders
of 3-edge-connected graphs in linear time, respectively. While the former can be seen as the
edge-variants of st-numberings, the latter are the edge-variants of Mondshein sequences and non-
separating ear decompositions. The methods that we use for obtaining such edge-orders differ
considerably in almost all details from the ones used for their vertex-counterparts, as different
graph-theoretic constructions are used in the inductive proof and standard reductions from edge-
to vertex-connectivity are bound to fail.

As a first application, we consider the famous Edge-Independent Spanning Tree Conjecture,
which asserts that every k-edge-connected graph contains k rooted spanning trees that are pair-
wise edge-independent. We illustrate the impact of the above edge-orders by deducing algorithms
that construct 2- and 3-edge independent spanning trees of 2- and 3-edge-connected graphs, the
latter of which improves the best known running time from O(n2) to linear time.
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1 Introduction

Canonical orderings serve as a fundamental tool in various fields of algorithmic graph theory,
see [2, 26] for a wealth of over 30 applications. Under this name, canonical orderings were
published in 1988 for maximal planar graphs [8] and soon after generalized to 3-connected
planar graphs [14]. Interestingly, it turned out only recently [26] that the well-known non-
separating ear decompositions [6] are in fact strict generalizations of canonical orderings
to arbitrary 3-connected graphs, and that this generalization was, independently, already
known as (2,1)-sequences [19] in 1971 long before canonical orderings were even proposed
(anticipating many of their later planar features).

Mondshein [19] characterized (2,1)-sequences, or (2,1)-orders, as we will call them, by
decomposing a graph into 2-connected and connected parts. Indeed, the unifying link above
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75:2 Edge-Orders

Table 1 Left: (k, l)-orders of (k + l)-connected graphs known so far and the best-known running
times for constructing them. Right: (k, l)-edge-orders of (k + l)-edge-connected graphs (this paper).

k\l 1 2
1 st-numbering [9] O(m)

2 Mondshein sequence
[25] O(m)

Chain decomposition [7]
O(n2m); if planar [21] O(m)

3 (3,1)-order for tri-
angulations [4] O(m)

5-canonical decomposition for
triangulations [20] O(m)

4

k\l 1
1 st-edge-numbering [1]

O(m) (+in this paper)
2 (2,1)-edge-order O(m)

(in this paper)
3

4

allows to describe any canonical ordering of a graph G = (V,E) as a total order on V such
that for certain i, the first i vertices induce a 2-connected graph and the remaining vertices
induce a connected graph in G [26] (and hence, does not use any reference to planarity). The
general concept behind canonical orderings is thus connectivity, with all of its implications
for planarity, instead of planarity itself.

Several publications [20, 7, 4] extended this approach to (k, l)-orders with (k, l) 6= (2, 1).
Such (k, l)-orders may be described canonically as total orders on V such that for certain i,
the first i vertices induce a k-connected graph and the remaining vertices induce a l-connected
graph (a related description for planar triangulations is given in [4]). We note that this is
not a definition, as “certain i” has to be quantified for every particular (k, l). This is usually
done in dependence of a graph decomposition, which tend to become more complex, as k or
l grow: e.g. for (2, 1)-orders, “certain i” is quantified by taking every vertex i that completes
an ear with the predecessors of i in a fixed open ear decomposition of G.

Several relatives of (2,1)-orders fit into the context of (k, l)-orders: The well-known
st-numberings and st-orientations are actually (1,1)-orders of 2-connected graphs, where i
ranges over all vertices, the chain decompositions of [7] are (2,2)-orders of 4-connected graphs,
and more orders on restricted graph classes such as planar graphs and triangulations are
known (see Table 1 left).

The purpose of this paper is to extend this unifying view further to (k, l)-edge-orders,
each of which can be described as a total order on E such that for certain i, the first i edges
induce a k-edge-connected graph and the remaining edges induce a l-edge-connected graph.
Despite the many known and heavily used vertex-orders above, these natural edge-variants do
not seem to be well-studied. In fact, we are only aware of one technical report by Annexstein
et al. [1], which deals with (1,1)-edge-orders (under the name st-edge-orderings). For the
(1, 1)-edge-order we present, i ranges over all edges except st; for the (2, 1)-edge-order, i ranges
over all edges that complete an ear with the predecessors of i in a fixed ear decomposition
of G.

We show a simple algorithm how a (1,1)-edge-order can be computed and prove that
it has running time O(m). Our main contribution is then an algorithm that computes a
(2,1)-edge-order of a 3-edge-connected graph in time O(m) (see Table 1 right), of which the
corresponding result for the vertex-counterpart took over 40 years.

Just like (2,1)-orders, which immediately led to improvements on the best-known running
time for five applications [5, 26], (2,1)-edge-orders seem to be an important and useful
tool for many graph algorithms. We give an application of them, which is related to the
edge-independent spanning tree conjecture [13]: By using a (2,1)-edge-order, we show that
three edge-independent spanning trees of 3-edge-connected graphs can be computed in time
O(m), improving the best-known running time O(n2) by Gopalan et al. [11].
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We also considered the 3-edge-partition problem, but surprisingly did not find an easy
reduction to (2, 1)-edge-orders. However, we note that this problem can be solved in linear
time using existing algorithms: A 3-edge-partition can be computed by two linear-time
reductions, first to the vertex-subset tripartitioning problem [28, Theorem 2b], and then [27]
to the problem of computing a non-separating ear decomposition. It is also possible to find
an alternative simple and direct linear-time reduction along the lines of [26, Application 5].

After giving preliminary facts on ear decompositions, we explain the linear-time algorithms
for computing (1,1)- and (2,1)-edge-orders in Sections 3–5. Section 6 then shows algorithms
for computing two and three edge-independent spanning trees.

1.1 Vertex-connectivity vs. edge-connectivity
In many cases, the vertex-variant of a connectivity problem is more challenging than its
edge-variant, as the latter may be reduced to the former by taking its line-graph or by using
the reduction from k-edge- to k-vertex-connectivity of Galil and Italiano [10]. From a top-level
perspective, our (2,1)-edge-order algorithm follows the proof outline of its vertex-counterpart
in [26]. Thus, it needs to be motivated that there is no obvious linear-time reduction to [26]
that produces the results of this paper (of course there is a non-obvious reduction that just
takes the algorithm of this paper and does not invoke [26] at all).

Clearly, a reduction to line-graphs is not possible, as this may involve a quadratic blow-up
in the graph size and thus in the running time. Using the reduction of Galil-Italiano, we
can reduce a 3-edge-connected graph G to a 3-connected graph G′, and then compute a
(2,1)-order of G′ in linear time using [26]. However, it can be shown that there is no obvious
way of transforming the (2,1)-order of G′ back to a (2,1)-edge-order of G.

Another hint that such a reduction might be elusive is given by our application to
edge-independent spanning trees. Despite extensive research, it is still not known how to
reduce these to vertex-independent spanning trees (which may in turn be computed from a
(2,1)-order [26]), not even for the corresponding existence results. In fact, an attempt trying
to prove this turned out to be false [12]. If there was a reduction to (2,1)-orders, it would
directly imply a reduction to vertex-independent spanning trees.

Hence, there is no obvious way of producing our results using old ones. Indeed, the
different parts of our proof require substantially new ideas and non-trivial formalizations
in comparison to [26]: Mader-sequences differ from the (BG)-sequences used in [26] (and,
although they are not too far apart, it took a 27-page paper to show that the former can
be computed in linear time as well [18]), the notions of non-separateness and Gi differ
considerably, and, here, we need last-values in addition to just birth-values.

2 Preliminaries

We use standard graph-theoretic terminology and consider only graphs that are finite and
undirected, but may contain parallel edges and self-loops. In particular, cycles may have
length one or two. A separator of size one is called a cut-vertex. The 2-connected components
of a graph are its inclusion-wise maximal connected subgraphs having no cut-vertex. For
k ≥ 1, let a graph G be k-edge-connected if n := |V | ≥ 2 and G has no edge-cut of size less
than k.

I Definition 1 ([15, 29]). An ear decomposition of a graph G = (V,E) is a sequence
(P0, P1, . . . , Pk) of subgraphs of G that partition E such that (i) P0 is a cycle that is no
self-loop and (ii) every Pi, 1 ≤ i ≤ k, is either a path that intersects P0 ∪ · · · ∪ Pi−1 in its
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endpoints or a cycle that intersects P0 ∪ · · · ∪ Pi−1 in a unique vertex qi (which we call
endpoint as well). Each Pi is called an ear. An ear is short if it is an edge and long otherwise.

I Theorem 2 ([22]). A graph is 2-edge-connected if and only if it has an ear decomposition.

According to Whitney [29], every ear decomposition has exactly m−n+1 ears (m := |E|).
For any i, let Gi = (Vi, Ei) := P0 ∪ · · · ∪ Pi and Ei := E − Ei. We denote the subgraph
of G that is induced by Ei as Gi = (Vi, Ei). Clearly, Gj ⊂ Gi for every i < j. We
note that this definition of Gi differs from the definition Gi := G − Vi that was used for
(2,1)-vertex-orders [26], due to the weaker edge-connectivity assumption.

For any ear Pi, let inner(Pi) := V (Pi) − Gi−1 be the set of inner vertices of Pi (for
P0, every vertex is an inner vertex). Hence, for a cycle Pi 6= P0, inner(Pi) = V (Pi) − qi.
Every vertex of G is an inner vertex of exactly one long ear, which implies that, in an ear
decomposition, the inner vertex sets of the long ears partition V .

I Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For an edge
e, let birthD(e) be the index i such that Pi contains e. For a vertex v, let birthD(v) be
the index i such that Pi contains v as inner vertex and let lastD(v) be the maximal index
birth(vw) over all neighbors w of v. Whenever D is clear from the context, we will omit the
subscript D.

Thus, Plast(v) is the last ear that contains v and, seen from another perspective, the first
ear Pi such that Gi does not contain v. Clearly, a vertex v is contained in Gi if and only if
last(v) > i.

3 The (1,1)-edge-order

Although (1,1)-edge-orders can be seen as edge-counterparts of st-numberings, they do
not seem to be well-known. Let two edges be neighbors if they share a common vertex.
Annexstein et al. gave essentially the following definition.

I Definition 4 ([1]). Let G = (V,E) be a graph with an edge st that is not a self-loop. A
(1,1)-edge-order through st of G is a total order < on the edge set E − st such that m ≥ 2,

every edge e, except for one incident to s, has a neighbor e′ with e′ < e and
every edge e, except for one incident to t, has a neighbor e′ with e < e′.

Hence, the two exceptional edges incident to s and t must be, respectively, the minimal
and maximal edge of E − st with respect to <. Clearly, if G has a (1,1)-edge-order through
st, G is 2-edge-connected, as neither st nor any other edge can be a bridge of G (note that
this requires m ≥ 2). The converse statement was shown in [1, Prop. 4] using a special
type of ear decompositions based on breadth-first-search (however, without giving details
of the linear-time algorithm). Here, we aim for a simple and direct (unlike, e.g., reducing
to (1,1)-orders via line-graphs) exposition of the underlying idea and show that any ear
decomposition can be transformed to a (1,1)-edge-order in linear time.

We will use the incremental list order-maintenance problem, which maintains a total order
subject to the operations of (i) inserting an element after a given element and (ii) comparing
two distinct given elements by returning the one that is smaller in the order. Bender et al. [3]
show a simple solution for an even more general problem with amortized constant time per
operation; we will call this the order data structure.

I Lemma 5. Let G be a 2-edge-connected graph with an edge st that is not a self-loop. Then
a (1,1)-edge-order through st can be computed in time O(m).
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Proof. We compute an ear decomposition D of G such that st ∈ P0. This can be done
in linear time by any text-book-algorithm; see [24] for a simple one. Let <0 be the total
order that orders the edges in P0 − st consecutively from s to t. Thus, every edge has a
smaller and a larger neighbor, except for st and the two exceptional edges incident to s and
t. Clearly, <0 is a (1,1)-edge-order through st of the 2-edge-connected graph G0. We extend
<i−1 iteratively to a (1,1)-edge-order <i of Gi by adding the next ear Pi of D; then <m−n

gives the claim.
The order itself is stored in the order data structure. For every vertex x in Gi−1, let

min(x) be the smaller of its two incident edges in Pbirth(x) with respect to <i−1 (for later
arguments, define max(x) analogously as the larger such edge); clearly, min(x) and max(x)
can be computed in constant time while adding Pj . When adding the ear Pi with (not
necessarily distinct) endpoints x and y, let e be the smallest edge in {min(x),min(y)} with
respect to <i−1 (this needs amortized constant time by using at most one comparison of the
data structure). Consider all edges of Pi in consecutive order starting with a neighbor of e.
We obtain <i from <i−1 by inserting these edges as one consecutive block immediately after
the edge e (if Pi is a cycle with endpoint s the edges are insert in front of the other edges);
this takes amortized time proportional to the length of Pi. Then the first edge of Pi has a
smaller neighbor in <i while the last has a larger neighbor in <i (for cycles Pi 6= P0, this
exploits that qi has another incident edge in Gi−1 or the exceptional edge incident to s (or t)
might change), which implies that <i is a (1,1)-edge-order. J

This (special) (1,1)-edge-order will allow for a very easy computation of two edge-
independent spanning trees in Section 6 and serve as a building block for the computation
of three such trees. If one wants to keep the root-paths in two edge-independent spanning
trees short, a different (1,1)-edge-order [1] may be computed by maintaining min(x) as the
incident edge of x that is minimal in Gi in the above algorithm (this can be done efficiently
by updating min(x) whenever an ear with endpoint x is added). However, the latter order
cannot be used for three edge-independent spanning trees.

4 The (2,1)-edge-order

We define (2,1)-orders as special ear decompositions.

I Definition 6. Let G be a graph with distinct edges rt and ru (t = u is possible). A
(2,1)-edge-order through rt and avoiding ru (see Figure 1) is an ear decomposition D of G
such that
1. rt ∈ P0,
2. Pm−n = ru, and . i.e., the last ear is the short ear ru
3. for every 0 ≤ i < m− n, Gi contains inner(Pi) and, if Pi is short, at least one endpoint

of Pi.

Property 6.2 implies that Gi contains the vertices r and u for every 0 ≤ i < m− n. We
call Property 6.3 the non-separateness of D. The non-separateness of D states that every
inner vertex of a long ear Pi has an incident edge in G that is in Gi, and that every short ear
Pi (seen as edge) has a neighbor in Gi. The name refers to the following helpful property.

I Lemma 7. Let D be a (2,1)-edge-order. Then, for every 0 ≤ i < m− n, Gi is connected.

Proof. Consider any i < m− n and let e be any edge in Gi. By Property 6.2, r ∈ Gi. We
show that Gi contains a path from one of the endpoints of e to r. This gives the claim, as
Gi is an edge-induced graph and therefore does not contain isolated vertices.
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P0

P1

P2

P4

P3

P7

P9

P5
P6

P8

r

t

u

a

b

c

d

e

f

g

h

Figure 1 A (2,1)-edge-order of a 3-edge connected graph.

Let Pj be the unique ear that contains e. If Pj is short, Pj = e and e has a neighbor in
Gj due to the non-separateness of D. If Pj is long, at least one endpoint of e must be an
inner vertex of Pj and e has a neighbor in Gj for the same reason. Hence, in both cases we
find a neighbor that is contained in an ear Pk with k > j. By applying induction on the
indices of these ears, we find a path that starts with an endpoint of e and ends with the only
edge left in Gm−n−1, namely ru. J

Next, we show that the existence of a (2,1)-edge-order proves the graph to be 3-edge-
connected.

I Lemma 8. If G has a (2,1)-edge-order, G is 3-edge-connected.

Proof. Let D be a (2,1)-edge-order through rt and avoiding ru. Consider any vertex v of G.
By transitivity of edge-connectivity, it suffices to show that G contains three edge-disjoint
paths between v and r. Let Pi be the ear that contains v as inner vertex. In particular
i < m − n, as Pi is long. Then Gi has an ear decomposition and, due to Theorem 2,
contains two edge-disjoint paths between v and r. By Properties 6.2+3, Gi contains v and r.
According to Lemma 7, Gi is connected. Thus, Gi contains a third path between v and r,
which is edge-disjoint from the first two, as Gi and Gi are edge-disjoint. J

Let G have a (2,1)-edge-order. Then Lemma 8 implies δ(G) ≥ 3. This in turn gives that,
for every vertex v, Plast(v) is not the first ear that contains v, which implies that Plast(v)
must have v as endpoint. In particular, if vw is an edge and last(v) = last(w) = birth(vw),
Pbirth(vw) is the short ear vw and, according to the non-separateness of D, we have i = m−n,
which implies vw = ru.

I Lemma 9. For any vertex v, Plast(v) has v as an endpoint. For any edge vw satisfying
last(v) = last(w) = birth(vw), vw = ru.

The converse of Lemma 8 is also true: If G is 3-edge-connected, G has a (2,1)-edge-order.
This gives a full characterization of 3-edge-connected graphs; however, proving the latter
direction is more involved than Lemma 8. In the next section, we will prove the stronger
statement that such a (2,1)-edge-order does not only exist but can actually be computed
efficiently.

5 Computing a (2,1)-edge-order

At the heart of our algorithm is the following classical construction of 3-edge-connected
graphs due to Mader.
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v

w
⇒

v

w

(a) vertex-vertex-
addition: v = w

is allowed.

a bv

w
⇒

a b

w

(b) edge-vertex-addition:
w ∈ {a, b} is allowed.

⇒

a b

c d

v

w

a b

c d

(c) edge-edge-addition: a, b ∈ {c, d}
is allowed.

Figure 2 Mader-operations.

rt ru

P0

r

t/u

P1

Figure 3 A (2,1)-edge-order of K3
2 through rt and avoiding ru.

I Definition 10. The following operations on graphs are called Mader-operations (see
Figure 2).
(a) vertex-vertex-addition: Add an edge between the not necessarily distinct vertices v and

w (possibly a parallel edge or, if v = w, a self-loop).
(b) edge-vertex-addition: Subdivide an edge ab with a vertex v and add the edge vw for a

vertex w.
(c) edge-edge-addition: Subdivide two distinct edges ab and cd with vertices v and w,

respectively, and add the edge vw.

The edge vw is called the added edge of the Mader-operation. Let K3
2 be the graph that

consists of exactly two vertices and three parallel edges.

I Theorem 11 ([16]). A graph G is 3-edge-connected if and only if G can be constructed
from K3

2 using Mader-operations.

According to Theorem 11, applying Mader-operations on 3-edge-connected graphs pre-
serves 3-edge-connectivity. We will call a sequence of Mader-operations that constructs a
3-edge-connected graph a Mader-sequence. It has been shown that a Mader-sequence can be
computed efficiently.

I Theorem 12 ([18, Thm. 4]). A Mader-sequence of a 3-edge-connected graph can be computed
in time O(n+m).

Our algorithm for computing a (2,1)-edge-order works as follows. Assume we want
a (2,1)-edge-order of G through rt and avoiding ru. We first compute a suitable Mader-
sequence of G using Theorem 12 and start with a (2,1)-edge-order of its first graph K3

2 . This
(2,1)-edge-order is easy to find (see Figure 3). The crucial part of the algorithm is then to
iteratively modify the given (2,1)-edge-order to a (2,1)-edge-order of the next graph in the
sequence efficiently.

There are several technical difficulties to master. First, the edges rt and ru may be
contained in different 2-connected components A′ and B′ (implying that r is a cut-vertex).
As this would raise problems in the computation of the initial K3

2 later, we perform in such
a case the following reduction in advance. Let A be the connected component of G \ {r}
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containing t, A := G[V (A) ∪ {r}] and B := G \ V (A) (note that r may still be a cut-vertex
of B). Since r is a cut-vertex of G, A and B are still 3-edge-connected. We compute a
(2,1)-edge-order DA of A avoiding rt through an arbitrary edge ruA ∈ A′ \ {rt}, and a
(2,1)-edge-order DB of B avoiding an arbitrary edge rtB ∈ B′ \ {ru} through ru. Then
concatenating DA with DB gives a (2,1)-edge-order of G. Hence, we assume from now on
that rt and ru are in the same 2-connected component of the input graph G.

Second, the edge rt (and analogously ru) of G is not necessarily contained in the previous
graph of the Mader-sequence, as it may have been created by a Mader-operation that
subdivided a previous edge rt with the new vertex t (a more general view on this dynamics
follows from the bijection between the graphs H of the Mader-sequence and H-subdivisions
that are contained in G as subgraphs [18, Thm.+Cor. 1]; we refer to [23, Sections 2.3 and 4]
for details of this bijection). In such cases, we take t as replacement vertex for t (and likewise
u for u) in the previous graph, and iterate this procedure to obtain replacement vertices for
t and u in the graph before that previous graph, and so forth. This way, the replacement
vertices t and u in any graph of the Mader-sequence containing r are neighbors of r.

Now a special Mader-sequence is used to harness the dynamics of the vertices r, t and
u: Choose a DFS-tree of G with root r such that rt and ru are backedges (this is possible,
since r has degree at least three) and compute a Mader-sequence of this DFS-tree that
contains these two edges in its initial K3

2 (this is possible, since rt and ru are in the same
2-connected component of G). This way the K3

2 consists of the two vertices r and t = u by
the construction of [18, p. 6], and thus all graphs in the Mader-sequence contain r (and t and
u are always neighbors of r). The vertices t and u are not present in this initial K3

2 unless
they are identical to t = u (they are however contained in the two paths from r to t = u of
the K3

2 -subdivision the bijection maps to). For every graph in the Mader-sequence, we will
compute a (2,1)-edge-order through rt and avoiding ru using the previous (2,1)-edge-order
(which depends on the previous and possibly different replacement vertices); then the choice
of t and u ensures that the final (2,1)-edge-order of G is indeed through rt and avoids ru, as
desired.

Thus, consider a graph G of the above Mader-sequence for which we know a (2,1)-edge-
order D and let G′ be the next graph in that sequence. Then G′ is only one Mader-operation
away and we aim for an efficient modification of D into a (2,1)-edge-order D′ of G′. We will
prove that there is always a modification that is local in the sense that the only ears that are
modified are “near” the added edge of the Mader-operation.

I Lemma 13. Let D = (P0, P1, . . . , Pm−n) be a (2,1)-edge-order of a 3-edge-connected graph
G through rt and avoiding ru for replacement vertices t and u. Let G′ be obtained from G

by applying one Mader-operation Γ and let t′ and u′ be the replacement vertices of G′. Then
a (2,1)-edge-order D′ of G′ through rt′ avoiding ru′ can be computed from D using only
constantly many amortized constant-time modifications.

Lemma 13 is our main technical contribution and we split its proof into the following
three sections. First, we introduce the operations leg, belly and head in order to combine
several cases that can be handled similarly for the different types of Γ. Second, we show how
to modify D to D′ and, third, we discuss computational issues.

For all three sections, let vw be the added edge of Γ such that v subdivides the edge
ab ∈ E(G) and w subdivides cd ∈ E(G) (if applicable). Thus, the vertex t′ in G′ is either t,
v or w, and the vertex u′ in G′ is either u, v or w (hence, t′r and ru′ will never be self-loops).
In all three sections, birth and last will always refer to D, unless stated otherwise.

Let Pi 6= P0 be an ear with a given orientation and let x be a vertex in Pi. If Pi is a
path, we define Pi[, x] and Pi[x, ] as the maximal subpaths of Pi that end and start at x,
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a b

w

v

Figure 4 The result of operation leg (dashed lines), black vertices are in Gbirth(ab)−1.

respectively; if Pi is a cycle, we take the same definition with the additional restriction that
Pi[, x] starts at qi and Pi[x, ] ends at qi. Occasionally, the orientation of Pi will not matter;
if none is given, an arbitrary orientation can be taken. For paths A and B, let A+B be the
concatenation of A and B.

5.1 Legs, bellies and heads
While the operations leg and belly are inspired by the ones in [26], the operation head is
new. All three operations will show for some special cases how D can be modified to a
(2,1)-edge-order D′. A complete description for all cases (using these operations) will be
given in the next section.

5.1.1 Legs
Let Γ be either an edge-vertex-addition such that ab 6= ru and last(w) < birth(ab) or an
edge-edge-addition such that ab 6= ru and birth(cd) < birth(ab). If Pbirth(ab) is long, at least
one of a and b is an inner vertex, say w.l.o.g. b. Otherwise, Pbirth(ab) = ab is short and, as D
is non-separating, at least one of a and b, say w.l.o.g. b, has an incident edge in Gbirth(ab)
(note that this requires ab 6= ru). In both cases, orient Pbirth(ab) from a to b. The operation
leg constructs D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive ears
Pbirth(ab)[, a] +av+ vw and vb+Pbirth(ab)[b, ] in that order and, if Γ is an edge-edge-addition,
additionally subdividing the edge cd in Pbirth(cd) with w (see Figure 4). Note that this
definition is well-defined also for cycles Pbirth(ab), including self-loops.

We omit the proof that D′ is a (2,1)-edge-order through rt′ avoiding ru′.

5.1.2 Bellies
Let Γ be either an edge-vertex-addition such that last(w) = birth(ab) and w /∈ {a, b} or
an edge-edge-addition such that birth(cd) = birth(ab) (note that c, d ∈ {a, b} is allowed.)
Consider the shortest path in Pbirth(ab) from an endpoint to one of the vertices {a, b}, say
w.l.o.g. b, such that w is contained in this path. We orient Pbirth(ab) from a to b. Pbirth(ab)
is a long ear with b as inner vertex. If Γ is an edge-edge-addition, one of the vertices {c, d},
say w.l.o.g. c, is contained in Pbirth(ab)[, w].

If birth(ab) > 0, the operation belly constructs D′ from D by replacing the ear Pbirth(ab) of
D by the two consecutive ears Pbirth(ab)[, a] +av+vw+Pbirth(ab)[w, ] and vb+Pbirth(ab)[b, w]
in that order (if edge-vertex-addition) and by the two consecutive ears Pbirth(ab)[, a] + av +
vw + wd + Pbirth(ab)[d, ] and vb + Pbirth(ab)[b, c] + cw (if edge-edge-addition), see Figure 5.
Note that this definition is well-defined also if Pbirth(ab) is a cycle. If birth(ab) = 0, the
vertices v and w cut P0 in two distinct paths P0,1 and P0,2 having endpoints v and w. Let
P0,1 be the path containing r. Then the operation belly constructs D′ from D by replacing
the ear Pbirth(ab) of D by the two consecutive ears P0,1 + vw and P0,2 in this order. If
rt ∈ {ab, cd}, then either v = t′ or w = t′, respectively.

We omit the proof that D′ is a (2,1)-edge-order through rt′ avoiding ru′.
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Figure 5 The result of the operation belly (dashed lines).

ba v

Figure 6 The dashed lines show the result of the operation head.

5.1.3 Heads
Let Γ be an edge-vertex-addition such that w ∈ {a, b}, last(a) = birth(ab) and, if ab = ru,
then r 6= a. W.l.o.g. let w = a. Then a is an endpoint of Pbirth(ab) (Pbirth(ab) cannot be
a self-loop, as last(a) = birth(ab)). We orient Pbirth(ab) from a to b. The operation head
constructs D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive ears av+ va

and vb+ Pbirth(ab)[b, ] in that order (see Figure 6). Note that this definition is well-defined
also for cycles Pbirth(ab).

We omit the proof that D′ is a (2,1)-edge-order through rt′ avoiding ru′.

5.2 Modifying D to D’
We will now show how to obtain a (2,1)-edge-order D′ through rt′ avoiding ru′ from D. By
symmetry, assume w.l.o.g. that birth(ab) ≥ birth(cd). Note that applying the operations
belly, leg and head preserves all properties of a (2, 1)-edge-order. Recall that, for every
subdivision the Mader-sequences does on rt or ru, respectively, the subdividing vertex is t′
or u′, as explained after Figure 3. We have the following case distinctions:

1. Γ is a vertex-vertex-addition. (See Figure 2a.)
(a) vw is a self-loop at v (v = w): Obtain D′ from D by adding the new short ear vv

directly after the ear Plast(v)−1. This ensures that the new ear is non-separating.
(b) v 6= w and vw 6= {rt, ru}: If last(v) ≤ last(w), D′ is obtained from D by adding

the new short ear vw directly after the ear Plast(w)−1, ensuring that the new ear is
non-separating. If last(v) > last(w), the new short ear vw is added directly after
the ear Plast(v)−1.

(c) vw = rt (the added edge is a parallel edge): the Mader-sequence gives us the
information whether rt is rt′ or the new added edge is rt′. If rt = rt′ then add
the new edge immediately after the ear Plast(t)−1. Otherwise obtain D′ from D by
replacing rt with rt′ in P0 and adding the old edge rt as an short ear immediately
after the ear Plast(t)−1.

(d) vw = ru (the added edge is a parallel edge): the Mader-sequence gives us the
information whether ru is ru′ or the new added edge is ru′. Depending on this
information, obtain D′ from D by either adding the new edge directly before or
directly after the last ear of D.

5. Γ is an edge-vertex-addition. (See Figure 2b.)
(a) birth(ab) < last(w): Obtain D′ from D by adding the new short ear vw directly

after the ear Plast(w)−1 and subdivide the ear Pbirth(ab) with v. This operation is also
well-defined when Pbirth(ab) is a cycle or self-loop. Also, the new ear is non-separating
and, since v is incident to w, the ear Pbirth(ab) remains non-separating.
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(b) last(w) < birth(ab) and ab 6= ru: Apply leg
(c) birth(ab) = last(w) and w /∈ {a, b}: Apply belly.
(d) birth(ab) = last(w) and w ∈ {a, b}; if ab = ru, then r 6= w: Apply head.
(e) ab = ru and if birth(ab) = last(w) and w ∈ {a, b} then r = w: Obtain D′ from D

by replacing the ear ru by the two consecutive ears wv + vu and rv.
6. Γ is an edge-edge-addition. (See Figure 2c.)

(a) birth(ab) = birth(cd): Apply belly.
(b) birth(ab) > birth(cd) and ab 6= ru: Apply leg.
(c) ab = ru: Let w.l.o.g. r = a. Obtain D′ from D by replacing the last ear of D by the

two consecutive ears bv + vw and rv in this order.

In all cases, D′ is clearly an ear decomposition. Properties 6.1–3 are satisfied due to the
given case distinction and the mentioned properties. Hence, D′ is a (2, 1)-edge-order through
rt′ avoiding ru′.

There are several subtleties in sorting out the computational complexity of this approach,
mostly raised by the question how fast we can compute one of the above cases in which we
are in. The proof of the linear runtime is omitted due to space constraints.

I Theorem 14. Given edges tr and ru of a 3-edge-connected graph G, a (2,1)-edge-order D
of G through tr and avoiding ru can be computed in time O(m).

The proposed algorithms for (1,1)-edge-orders and (2,1)-edge-orders (as well as the
computation of edge-independent spanning trees in the next section) are certifying in the
sense of [17]: For (1,1)-edge-orders through st, it suffices to check that every edge e 6= st has
indeed a smaller and larger neighboring edge. For (2,1)-edge-orders, it suffices to check in
linear time that D is an ear decomposition of G and that D satisfies Properties 6.1–3.

6 Edge-Independent Spanning Trees

Let k spanning trees of a graph be edge-independent if they all have the same root vertex r
and, for every vertex x 6= r, the paths from x to r in the k spanning trees are edge disjoint.
The following conjecture was stated 1988 by Itai and Rodeh.

I Conjecture (Edge-Independent Spanning Tree Conjecture [13]). Every k-edge-connected
graph contains k edge-independent spanning trees.

The conjecture has been proven constructively for k ≤ 2 [13] and k = 3 [11] with running
times O(m) and O(n2), respectively, for computing the corresponding edge-independent
spanning trees. For every k ≥ 4, the conjecture is open. We first give a short description of
an algorithm for k = 2 and then show the first linear-time algorithm for k = 3.

For k = 2, compute the (1,1)-edge-order < through tr using Lemma 5. The first tree T1
consists of the edges min(x) for all vertices x 6= r (as defined in Lemma 5), while the second
tree T2 consists of tr and the edges max(x) for all vertices x /∈ {r, t}. Then T1 and T2 are
spanning, as no edge can be taken twice, and edge-independent, as, from every vertex x, the
path of smaller edges to r obtained by iteratively applying min() must be edge-disjoint from
the path of larger edges to r.

For k = 3, choose any vertex r and two distinct edges tr and ru in the 3-edge-connected
graph G. Compute a (2,1)-edge-order D through tr and avoiding ru in time O(m) using
Theorem 14. For every vertex x ∈ V , the idea is now to find two edge-disjoint paths from x

to r in Gbirth(x) (after all, Gbirth(x) is 2-edge-connected and thus contains a (1,1)-edge-order)
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(b) Although < is a (1,1)-edge-order for every
Gi, 0 ≤ i ≤ m − n, < is not consistent: Any
down-consistent tree contains the root-paths
12, 11, 10, 2 in G2 and 6, 5, 3, 2 in G5, which
implies a cycle.

Figure 7 (1,1)-edge-orders that are consistent and not consistent to the (2,1)-edge-order of
Figure 1.

and a third path from x to r in Gbirth(x) using the non-separateness of D. The subtle part is
to make this idea precise: We have to construct the first tree T1 in such a consistent way
that the paths of smaller edges from x to r for all vertices x ∈ V are contained in T1 (and
the same for T2 and paths of larger edges).

For a (1,1)-edge-order < through tr of G, let a spanning tree T1 ⊆ G be down-consistent
to a given (2,1)-edge-order through tr if (a) every path in T1 to r is strictly decreasing
in < and (b) for every 0 ≤ i ≤ m − n, T1 ∩ Gi is a spanning tree of Gi (analogously,
up-consistent spanning trees T2 of G− r are defined by strictly increasing paths to t). Now
let a (1,1)-edge-order be consistent to a given (2,1)-edge-order D′ if G contains r-rooted
spanning trees T1 and T2 that are down- and up-consistent to D′, respectively. By the very
same argument as used for k = 2, T1 and T2 + tr are edge-independent and, in addition, do
not use any edge of Gbirth(x) for any x ∈ V .

In fact, the special (1,1)-edge-order that is computed by Lemma 5 is consistent to D:
There, the trees T1 and T2 consist of the edges min(x) and max(x) for x ∈ V , which
makes T1 down-consistent and T2 + tr up-consistent to D (see Figure 7a). We note that a
simpler definition of consistent as used for the vertex-variant [6], i.e., as orders that remain
(1,1)-edge-orders for all subgraphs Gi, 0 ≤ i ≤ m− n, does not suffice here (see Figure 7b).

It remains to construct the third edge-independent spanning tree. For every edge e 6= ru

of G, we compute a pointer to an arbitrary neighboring edge e′ in Gbirth(e). This edge e′
exists, as D is non-separating, and satisfies birth(e′) > birth(e). Similarly, for every vertex
x ∈ V −r−u, we compute a pointer to an incident edge e′ of x with birth(e′) > birth(x). Both
computations take linear total time by comparing birth values. The third edge-independent
spanning tree is then the union of ur and the u-rooted spanning tree of G− r that interprets
the pointers as parent edges. Hence, we obtain the following theorem.

I Theorem 15. Given the two edges rt and ru of a 3-edge-connected graph G, three edge-
independent spanning trees of G rooted at r (such that two of them contain rt and ru as
unique root edges, respectively) can be computed in time O(m).

Similarly as for the more general (2,1)-edge-orders, one could be interested why the
reduction from k-edge- to k-vertex-connectivity by Galil and Italiano [10] does not give
edge-independent spanning trees from their vertex-counterparts; we omit the argument due
to space constraints.
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