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Abstract
We introduce correlated randomized dependent rounding where, given multiple points y1, . . . ,yn
in some polytope P ⊆ [0, 1]k, the goal is to simultaneously round each yi to some integral
zi ∈ P while preserving both marginal values and expected distances between the points. In
addition to being a natural question in its own right, the correlated randomized dependent
rounding problem is motivated by multi-label classification applications that arise in machine
learning, e.g., classification of web pages, semantic tagging of images, and functional genomics.
The results of this work can be summarized as follows: (1) we present an algorithm for solving
the correlated randomized dependent rounding problem in uniform matroids while losing only
a factor of O(log k) in the distances (k is the size of the ground set); (2) we introduce a novel
multi-label classification problem, the metric multi-labeling problem, which captures the above
applications. We present a (true) O(log k)-approximation for the general case of metric multi-
labeling and a tight 2-approximation for the special case where there is no limit on the number
of labels that can be assigned to an object.
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1 Introduction

Randomized rounding [32] is a fundamental technique in approximation algorithms. In this
approach, given a solution y ∈ Rk to some linear program, each yi is independently rounded
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34:2 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

into an integral value. Unfortunately, when constraints on the rounded solution are present,
randomized rounding does not always produce a feasible solution. Hence, dependent rounding
schemes were introduced [1, 2, 10, 12, 22, 26, 35]. In general, dependent rounding needs to
solve the following problem: given a polytope P ⊆ [0, 1]k over ground set K of size k and
y ∈ P, round y into z ∈ P ∩ {0, 1}k such that E [z] = y. Intuitively, z has the following two
properties: (1) z is always integral and feasible since z ∈ P ∩ {0, 1}k; and (2) z preserves the
marginal values given by y for each element in K since E [z] = y. The above problem has
been extensively studied and was solved for different types of polytopes P, e.g., bipartite
matching and b-matching [22, 26], uniform matroids [35], spanning trees [2], and general
matroids [12]1.

In this work we consider a natural extension of dependent rounding in which we are given
many points in P and the goal is to round all the points, while preserving both marginal
values and expected distances (up to some loss) between any pair of points. Formally, given
a polytope P ⊆ [0, 1]k over ground set K of size k and y1, . . . ,yn ∈ P, we need to round
each yi to some zi such that the following hold: (1) zi ∈ P ∩ {0, 1}k for every i = 1, . . . , n;
(2) E

[
zi
]

= yi for every i = 1, . . . , n; and (3) there exists some loss factor α such that
E
[
||zi − zj ||1

]
≤ α||yi − yj ||1 for every i, j = 1, . . . , n. We call this problem correlated

randomized dependent rounding. Note that requirements (1) and (2) imply that each zi is a
feasible rounding of yi that preserves marginal values, as in the standard dependent rounding
setting. The novelty of our problem lies in requirement (3) which states that for all pairs of
points the expected distance after the rounding, i.e., E

[
||zi − zj ||1

]
, is within a factor of α

from the original distance between the points, i.e., ||yi − yj ||1. Additionally, it will be useful
also to consider an extension of the above where each point yi (and thus also zi) is required
to be in a different polytope Pi.

Our main reason for introducing the correlated randomized dependent rounding setting
originates from multi-label classification problems. In classification problems, one must assign
labels to objects given some observed data. In this work we consider classification problems
where multiple labels can be assigned to each object. Such problems naturally arise in various
settings, e.g., classification of textual data such as web pages [38, 39], semantic tagging of
images and videos [7, 30, 42], and functional genomics [4, 5].

The assignment of labels to objects should be done in a manner that is most consistent
with the observed data, from which two important ingredients are derived. The first is
an assignment cost for every (object,label) pair, reflecting a recommendation given by a
local learning process which infers label preferences of objects. The second is similarity
information on pairs of objects, giving rise to separation costs incurred once different label
sets are assigned to a pair of similar objects. Our goal is to find a labeling that minimizes a
global cost function, while taking into account both local and pairwise information.

To provide some intuition for the formal problem given below and the possible range
of its parameters, we provide a concrete example. The objective in the example is that of
assigning topics to web pages, where objects are the web pages and labels are the topics.
Here, it is very natural for a web page to discuss more than one topic. The assignment cost
of a (webpage,topic) pair can be derived from the features associated with a web page, e.g.,
its words, or shingles, and the domain it is located in. However, consider information from
search queries leading to the web page. A specific search query is typically observed only a

1 In some of the above works, additional properties of z are required, e.g., concentration of linear functions
over z. Since such concentration bounds are not required for the metric multi-labeling (MML) problem,
the discussion on this topic is postponed to a full version of the paper.
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handful of times, and though features can be extracted from it, a very natural way to use
the latter information is by having pairwise similarity relations between web pages, if both
were reached by the same search query.

We note that when assigning multiple labels to objects, it is often desirable to bound
the number of labels assigned to objects. As a matter of fact, in most of the papers cited
above the total number of labels can be in the thousands or even millions, while each object
is expected to be assigned only a handful of labels. In particular, in the above example,
we expect a single webpage to be assigned only a small fraction of all possible topics. This
property imposes further constraints on our objective that we elaborate on below.

We are now ready to introduce the metric multi-labeling (MML) problem. In (MML) we
are given a set of nodes V , where each node corresponds to an object, and a set of labels
K = {1, 2, . . . , k}. The pairwise relations are given in the form of an edge set E and a weight
function s : E → R+, capturing similarity between objects. Additionally, the bound function
b : V → N specifies how many labels can be assigned to each node. Finally, we are given
an assignment cost function c : V ×K → R. Assignment costs may be either positive or
negative, reflecting a recommendation given by a local learning process which infers the label
preferences of objects. Intuitively, if c(v, `) ≥ 0 (or c(v, `) < 0) we say that node v dislikes
(or likes) label `. A detailed explanation as to why assignment costs might be either positive
or negative is deferred to a full version of the paper. The learning process determining
assignment costs ignores pairwise relations between objects. Clearly, the labeling cost of
completely agreeing with this recommendation is the minimum possible, and this is our
benchmark labeling. We evaluate the assignment cost of a labeling by its deviation from the
benchmark labeling.

A feasible multi-labeling f : V → 2K \ ∅ is an assignment of at least one label to every
node, such that |f(v)| ≤ bv, i.e., the number of labels assigned to v is at most bv. For the
special case where bv = k for every v ∈ V , i.e., there is no upper bound on the number of
labels that can be assigned to a node, we denote the problem by (Unbounded-MML).

The cost of a multi-labeling is measured by the sum of two terms: assignment costs and
separation costs. Let us first focus on assignment costs, which measure the deviation of f
from the benchmark labeling. Specifically, for every node v, the benchmark labeling assigns
to v all labels it likes, i.e., labels ` for which c(v, `) < 0, and does not assign to v any of
the labels it dislikes, i.e., labels ` for which c(v, `) ≥ 0. Thus, focusing on a single label
`, f deviates from the benchmark labeling by c(v, `) if ` ∈ f(v) and ` is a label v dislikes,
i.e., c(v, `) ≥ 0. Similarly, f deviates from the benchmark labeling by |c(v, `)| if ` /∈ f(v)
and ` is a label v likes, i.e., c(v, `) < 0. Formally, denote by K+(v) , {` ∈ K : c(v, `) ≥ 0}
the collection of all labels v dislikes, and by K−(v) , {` ∈ K : c(v, `) < 0} the collection
of all labels v likes. Then, the total assignment cost of node v with respect to f is:∑
`∈K+(v) c(v, `)1{`∈f(v)} +

∑
`∈K−(v) |c(v, `)|1{`/∈f(v)}.

Let us now focus on the separation costs. The separation cost of edge (u, v) is the number
of labels nodes u and v disagree on, i.e., the `1 distance between the characteristic vectors of
f(u) and f(v). Formally, a pair of nodes (u, v), given a multi-labeling f , incurs the following
separation cost: s(u, v) · ||1f(u) − 1f(v)||1. For any subset of labels S ⊆ K, 1S denotes the
characteristic vector of S. Summing up over the above we are now ready to provide a formal
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definition of the (MML) problem: find a feasible multi-labeling f that minimizes

∑
v∈V

 ∑
`∈K+(v)

c(v, `)1{`∈f(v)} +
∑

`∈K−(v)

|c(v, `)|1{`/∈f(v)}


+

∑
(u,v)∈E

s(u, v)||1f(u) − 1f(v)||1 . (1)

Summarizing, (MML) is a novel classification model in which multiple labels can be assigned
to objects. We emphasize that in (MML), obtaining a solution to the (global) optimization
objective is decoupled from the local learning process for the objects, thus allowing us to
view the output of these processes as part of the input to (MML), and treating them in a
“black box" fashion.

Let us now focus on our results. We introduce the correlated randomized dependent
rounding problem and the (MML) problem. We tackle the correlated dependent rounding
problem for the case of multiple (possibly different) uniform matroids, as summarized in the
following theorem.

I Theorem 1. Let K be a ground set of size k and M1, . . . ,Mn be n uniform matroids
over K, where rank(Mi) = bi. Additionally, let yi ∈ {y ∈ [0, 1]k :

∑k
`=1 y` ≤ bi} for every

i = 1, . . . , n. Then there is an efficient algorithm for sampling z1, . . . , zn s.t.: (1) zi is the
characteristic vector of an independent set of Mi for every i = 1, . . . , n; (2) E

[
zi
]

= yi for
every i = 1, . . . , n; and (3) E

[
||zi − zj ||1

]
≤ O(log k)||yi − yj ||1 for every i, j = 1, . . . , n.

Note that the loss in the distance, i.e., property (3) above, depends only on the size of the
ground set k and not on the number of given matroids n.

We use the above to obtain a (true) approximation of O(log k) for (MML). For the special
case of (Unbounded-MML) we present a tight 2-approximation.

I Theorem 2. The (MML) problem admits a (true) approximation of O(log k).

I Theorem 3. The (Unbounded-MML) problem admits an approximation of 2.

I Theorem 4. Assuming the unique games conjecture, the (Unbounded-MML) problem does
not admit an approximation better than 2 (1− 1/k).

Let us now focus on our approach and techniques. Consider the correlated dependent
rounding problem, we now elaborate as to why known techniques fail when applied to it. The
problem of rounding of online paging [6] is closely related to correlated dependent rounding.
Unfortunately, techniques developed in the paging context allow us to bound distances
only between some of the pairs of points, i.e., E

[
||zi+1 − zi||1

]
for every i = 1, . . . , n − 1,

as opposed to the desired E
[
||zi − zj ||1

]
for every i, j = 1, . . . , n. Therefore, a different

approach is required.
We note that achieving requirements (1) and (2) alone, i.e., zi ∈ P ∩ {0, 1}k and

E
[
zi
]

= yi for every i = 1, . . . , n, has already been achieved by any of the dependent
rounding algorithms that can be applied to a uniform matroid, e.g., [10, 12, 35] (just execute
the algorithm independently for each yi). Obviously, this approach completely fails when
considering requirement (3), i.e., E

[
||zi − zj ||1

]
≤ α||yi − yj ||1, as α might be unbounded.

The reason for the latter is that if yi = yj for some i 6= j, then ||yi − yj ||1 = 0 but
E
[
||zi − zj ||1

]
> 0 (as the two executions of dependent rounding, one for yi and the other

for yj , are independent).
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Our approach to solving the above is to correlate all n executions of dependent round-
ing, one for each y1, . . . ,yn. Specifically, we execute the randomized dependent rounding
algorithm of [35] for each yi separately, but use the same random bits as input for all n
different executions. Remarkably, this simple approach suffices. However, we note that the
analysis of our algorithm uses the specific inner-workings of the algorithm of [35]. Hence,
it seems that correlated dependent rounding cannot be easily solved through a “black box”
application of any dependent rounding algorithm, e.g., [10, 12].

Let us now focus on the special case (Unbounded-MML) and illustrate why known
algorithms and techniques fail when applied to it. (Unbounded-MML) is inspired by the
metric labeling problem, first introduced in full generality by [25]. In the metric labeling
problem we are given an edge weighted graph G = (V,E), a collection K of k labels, a
non-negative assignment cost function c : V ×K → R+, and a metric d over K. The goal is
to assign a single label to each node while minimizing the sum of assignment and separation
costs. As in (Unbounded-MML), assignment costs are defined using c, whereas the separation
cost of edge (u, v) is the distance in the metric d between the labels assigned to u and v.
It is important to note that metric labeling differs from (Unbounded-MML) in two main
points: (1) each object can be assigned exactly one label, as opposed to multiple labels
in (Unbounded-MML), and (2) the assignment cost function c is non-negative, whereas in
(Unbounded-MML) assignment costs may be either positive or negative.

Consider a further restricted special case of (Unbounded-MML) where all assignment
costs are non-negative. If one applies the algorithm of [25] by expanding the label set K to
2K \ ∅ and considering the `1 metric on the expanded set2, then this not only results in a
large approximation guarantee of O(k), but also the running time of the algorithm scales
with 2k and not k. More generally, we wish to claim that existing techniques and algorithms
for the metric labeling problem cannot be directly applied to (Unbounded-MML). Consider a
node v which has multiple labels ` it likes, i.e., c(v, `) < 0. Since only a single label is allowed
per node in metric labeling, it must be the case that whatever algorithm or technique we
use, there is at least one label v likes that ultimately is not assigned to v. Thus, potentially
incurring a huge loss in the objective.

We address the above difficulties by employing two approaches. First, we use a global
charging argument over all labels in K when bounding the separation cost of an edge (u, v).
Typically, such global arguments are avoided, e.g., all known algorithm for metric labeling
(either with a general or a specific metric) do not employ any type of global argument.
Second, we distort the optimal marginal probabilities xv,` given by the linear programming
relaxation for (Unbounded-MML). This enables us to balance both positive and negative
assignment costs, along with separation costs.

Let us now mention some related work. An extensively studied topic is that of dependent
rounding of fractional solution. A randomized variant of pipage rounding [1] was given
by [22] who applied it to assignment polytopes (see also [26, 35]). An approach based on
maximum entropy for dependent rounding was introduced by [3] in the context of max-min
allocations, and was later extended to spanning trees by [2]. When considering general matroid
independence polytopes, [10, 12] provided methods of conducting dependent rounding.

(MML) gets as input costs for assigning labels to objects and a similarity measure between
objects. The labeling costs are based on a multi-label learning process (supervised learning)
which is applied to a set of instances, each belonging potentially to multiple classes (labels),

2 Only the general algorithm of [25] is known for the case of `1 distances over the k-dimensional hypercube,
and it achieves an approximation of O(k). This guarantee is tight as it based on tree metrics.
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34:6 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

and predicts a set of class labels given a new instance. Multi-label classification has attracted
much attention following various real world problems requiring usage of multiple labels [37],
and thorough surveys in this area can be found in [34, 36]. The basic approach transforms
the original problem into several instances of simpler binary classification problems, where
each instance corresponds to a single label. This method is called binary relevance, and it
assumes that labels are independent of each other, and thus one needs to solve k separate
binary-label classification problems, where k denotes the number of labels. Approaches
based on classifier chains have been adopted to model interdependencies between labels while
maintaining acceptable computational complexity [33].

The label power set approach transforms the problem into a multi-class problem [14],
where labels in the multi-class problem are a cross product of the original labels (and cover all
possible combinations of these labels), resulting in the problem of mapping each data point to
a binary vector. The main drawback of this approach is poor scaling in terms of the number
of labels (e.g., vision problems where the number of categories may be large). A different
approach addresses the problem directly, in its full generality, and is much harder than the
traditional binary and multi-class problems, which in fact are special cases of multi-labeling.
Some notable examples of multi-label algorithms, which are extensions based on binary
problems, are adaptations of AdaBoost [21], the ML-kNN [41] based on kNN algorithm [20],
and Clare which is an adapted decision tree algorithm for multi-label classification [31].

Another related machine learning approach is kernel pairwise classification [40]. Here,
relations between pairs of samples are given using kernels. Supervised pairwise prediction
aims to predict such pairwise relationships based on known relationships. Pairwise prediction
takes a pair of instances as its input, and outputs the relationship between the two instances.
The application of kernel methods to pairwise classification is based on a kernel function
between two pairs of instances [24]. The main difference between this approach and our
setting is that it does not consider single items, but rather focuses only on pairwise relations.

Metric labeling is an elegant and powerful mathematical model capturing a wide range of
classification problems, where information about objects, as well as their pairwise relations, is
given. Notice that such a scenario is not captured by neither known multi-class classification
techniques, nor by existing pairwise kernel based techniques. The problem was first formulated
in full generality by [25], and captures many classification problems that arise in various
settings. Specifically, metric labeling has applications in important fields such as Markov
theory [13, 27], image processing and computer vision [18, 8], as well as language modeling [29].
In [25], the authors gave an O(log k)-approximation for any metric3, and a 2-approximation
for the uniform metric case. The latter is known to be tight assuming the unique games
conjecture [28]. It is worth mentioning that metric labeling is of much importance in the
combinatorial optimization setting, as it captures well studied problems such as multiway
cut [9, 15, 16, 17, 23] and 0-extension [11, 19].

2 Preliminaries

We formulate the following natural linear programming relaxation for the (MML) problem
(similarly to the relaxation given by [25] for uniform metric labeling). Variable xv,` is the
(fractional) indicator for labeling node v with label `. The first constraint guarantees that
each node v receives between 1 and bv labels. The following two constraints, along with
the fact that the problem is a minimization problem, imply that zu,v,` = |xu,` − xv,`|, i.e.,

3 The metric over the labels determines their pairwise distances and can be arbitrary in general.
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zu,v,` is the separation cost of nodes u and v with respect to label `. Hence, the fourth
constraint asserts that du,v equals ||xu − xv||1, where xu = (xu,1, . . . , xu,`) for every u ∈ V .
The objective of the relaxation follows directly from the definition of (MML) (1).

min ∑
v∈V

[∑
`∈K+(v)

c(v,`)xv,`+
∑

`∈K−(v)
|c(v,`)|(1−xv,`)

]
+
∑

u,v∈V
s(u,v)du,v

s.t. 1 ≤
∑
`∈K

xv,` ≤ bv ∀v ∈ V

zu,v,` ≥ xu,` − xv,` ∀u, v ∈ V
zu,v,` ≥ xv,` − xu,` ∀u, v ∈ V

du,v =
∑
`∈K

zu,v,` ∀u, v ∈ V

0 ≤ xv,` ≤ 1 ∀v ∈ V,∀` ∈ K

The following observation simplifies the analysis of the separation cost considerably.

I Observation 5. Without loss of generality we can simply assume that any two adjacent
nodes differ in only a single coordinate, by a value ε > 0, which can be made arbitrarily
small. Specifically, given (u, v) ∈ E we assume that xu = (xu,1, xu,2, . . . , xu,k) and xv =
(xu,1 + ε, xu,2, . . . , xu,k).

3 Correlated Randomized Dependent Rounding

Denote by MK,bv
the uniform matroid over K of rank bv, and recall that P(MK,bv

) = {x ∈
[0, 1]k :

∑k
`=1 x` ≤ bv} is the standard independent set polytope corresponding to MK,bv .

For completeness, we start by presenting the basic building block of [35] for rounding a single
point in PMK,bv

, as we later require its inner-workings.
Let us now focus on rounding a single point in the uniform matroid polytope. The basic

building block (Algorithm 1) receives two marginal probabilities, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1,
for the ith and jth labels correspondingly, and randomly updates them. At least one of the
updated marginal probabilities, denoted by α′ and β′, is “rounded” to either 0 or 1. This is
done while deterministically preserving the sum of the marginal probabilities, and each of
the marginal probabilities is preserved in expectation. Lemma 6 summarizes the above, and
its proof is deferred to a full version of the paper.
It is important to note that 0 ≤ α′, β′ ≤ 1 always, i.e., Algorithm 1 returns valid marginal
probabilities.

I Lemma 6. Upon the termination of Algorithm 1:
1. E [α′] = α and E [β′] = β.
2. α′ + β′ = α+ β always.
3. One of i and j is declared fixed and its marginal value belongs to {0, 1}.

Define a label tree T of K to be a full binary tree with exactly k leaves, where each leaf
corresponds to a distinct label of K. We now describe the rounding procedure which we
denote by label tree rounding. It receives as input a label tree T , a point xv ∈ P(MK,bv

), a
collection of independent random thresholds θz ∼ Unif [0, 1] for every non-leaf node z of T ,
and one additional independent random threshold θ ∼ Unif [0, 1]. The label tree rounding
procedure operates as follows:
1. Every leaf of T sends to its parent its label and its marginal value as given by the

relaxation, i.e., a leaf that corresponds to label ` ∈ K sends to its parent (`, xv,`).

ICALP 2017



34:8 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

Algorithm 1 Resolve(i, α, j, β).
draw a threshold θ ∼ Unif [0, 1].
if (case (a)) 0 ≤ α+ β ≤ 1 then

if θ ≤ α/(α+β) then
α′ ← α+ β, β′ ← 0 , and s← j.

else
α′ ← 0, β′ ← α+ β, and s← i.

end if
end if
if (case (b)) 1 < α+ β ≤ 2 then

if θ ≤ (1−β)/(2−α−β) then
α′ ← 1, β′ ← α+ β − 1 , and s← i.

else
α′ ← α+ β − 1, β′ ← 1, and s← j.

end if
end if
return (i, α′, j, β′) and declare s as fixed.

2. Every non-leaf node z of T (that is not the root) receives from its two children (i, α)
and (j, β); it executes Algorithm 1 with parameters (i, α, j, β) and θz as the random
threshold to obtain (α′, β′); updates the marginal probabilities of i and j to be α′ and β′
respectively; and sends to its parent in T the label that was not fixed from {i, j} along
with its newly updated marginal probability.

3. The root r of T operates exactly as any other non-leaf node of T with the following
exception: instead of sending the label that was not fixed to its parent along with its
newly updated marginal probability, r uses the given random threshold θ to round the
label that was not fixed, i.e., after the execution of Algorithm 1 by r if s ∈ {i, j} denotes
the label that is not fixed and the newly updated marginal probability of s equals γ, then
r sets the marginal of s to be 1 if θ ≤ γ and 0 otherwise.

The following lemma summarizes the desired properties of the label tree rounding procedure,
and its proof is deferred to a full version of the paper.

I Lemma 7. Let v ∈ V , xv ∈ P(MK,bv
), T a label tree of K, and denote by x̃v the vector

of marginal probabilities obtained by executing the label tree rounding procedure. Then,
1. x̃v ∈ {0, 1}k.
2. Let Bv ,

∑
`∈K xv,`, then bBvc ≤

∑
`∈K x̃v,` ≤ dBve always.

3. For every ` ∈ K: Pr [x̃v,` = 1] = xv,`.

Let us now focus on rounding multiple points in the uniform matroid polytope. In this
section we describe how to round multiple points in P(MK,bv

) while: (1) preserving marginal
probabilities; and (2) being “faithful” to the original `1 distances between any pair of points
in P(MK,bv

). Our correlated rounding procedure receives as input a fixed label tree T , along
with n points {xv}v∈V in P(MK,bv

). Intuitively, it applies the label tree rounding procedure
to all n points simultaneously, while using the same given tree T and the same random
thresholds in all executions. A formal description appears in Algorithm 2. As before, we
denote by x̃v the output of Algorithm 2 for node v ∈ V .

Lemma 8 bounds the expected separation cost of neighbouring nodes u and v. Assuming
xu and xv differ only in label 1 (as Observation 5 states without loss of generality), the
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Algorithm 2 Correlated Rounding
(
{xv}v∈V , T

)
.

For every non-leaf node z of T draw an independent threshold θz ∼ Unif [0, 1].
Draw an independent threshold θ ∼ Unif [0, 1] for the root r of T .
∀v ∈ V : execute label tree rounding with input T , xv, {θz}z non-leaf node of T , and θ.
Output the resulting {x̃v}v∈V .

executions of Algorithm 1 can differ between u and v only at non-leaf nodes of T that lie on
the (single) path from the leaf that represents label 1 and the root r of T . At the heart of
the proof lies the following observation: the expected additive increase in ||xu − xv||2 is O(ε)
for each of the non-leaf nodes of T that lie on the above mentioned path.

I Lemma 8. Let u, v ∈ V be such that xu and xv satisfy Observation 5, let x̃u and x̃v be the
output of Algorithm 2 for nodes u and v correspondingly, and let δ be the depth of T . Then,

E [||x̃u − x̃v||1] ≤ O(δ)ε .

Proof. Recall that Observation 5 states that xu and xv are identical, except that xv,1 =
xu,1 + ε. Hence, let P be the path from the leaf in T representing label 1 to the root r of T ,
and denote the sequence of nodes in this path by z1, z2, z3 . . . , zm (where z1 is the leaf and
zm is the root r). We use the following two assumptions that can be made without loss of
generality.

First, as the order of executions of Algorithm 1 at the nodes of T is irrelevant to the
outcome of Algorithm 2, as long as execution of Algorithm 1 at some node z of T is performed
after all executions of Algorithm 1 at all non-leaf nodes in the induced subtree of T that z is
its root. Hence, let us assume without loss of generality that all executions of Algorithm 1 at
nodes not in P are performed before any execution of Algorithm 1 at nodes z2, z3, . . . , zm.

Second, note that in every non-leaf node along P , i.e., z2, z3, . . . , zm, exactly one execution
of Algorithm 1 is performed for each of the nodes u and v. The execution of Algorithm 1
at some node zp, p = 2, . . . ,m, receives exactly two labels as input, one from the child zp−1
(along the path P ) and the other from the other child of zp which we denote by wp−1 (not
on the path P ). It is important to note that each of these two inputs might be random,
however, the input received from node wp−1 is always identical for both u and v. Therefore,
let us denote for simplicity of presentation and without loss of generality that the input
wp−1 sends to the execution of Algorithm 1 at node zp is label number p with its updated
marginal probability γp, i.e., (p, γp). Thus, we can focus only on the first m labels of K
since for labels m+ 1, . . . , k nodes u and v will always be identical and their contribution to
||x̃u − x̃v||1 will be always 0.

Denote by xtu ∈ [0, 1]m and xtv ∈ [0, 1]m the vector of marginal probabilities of the
first m labels after performing the execution of Algorithm 1 at node zt, for nodes u and v
respectively. Thus, for example, x1

u = (u1, γ2, γ3, . . . , γm) and x1
v = (u1 + ε, γ2, γ3, . . . , γm),

and xmu = (x̃u,1, x̃u,2, x̃u,3, . . . , x̃u,m) and xmv = (x̃v,1, x̃v,2, x̃v,3, . . . , x̃v,m). We prove that:

E
[
||xtu − xtv||1 − ||xt−1

u − xt−1
v ||1

]
≤ 2ε ∀t = 2, 3, . . . ,m. (2)

The proof of the lemma is completed by summing (2) over all relevant values of t, and
recalling that ||x1

u − x1
v||1 = ||xu − xv||1 = ε. Inequality (2) is proved by examining the joint

distribution of Algorithm 1 at node zt for both u and v. This computation is deferred to a
full version of the paper. J
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Algorithm 3 Single Threshold (ST).
draw a threshold θ ∼ Unif [0, 1].
for every v ∈ V do
fST (v)← {` : θ ≤ h(xv,`)}.

end for
output fST .

Algorithm 4 Kleinberg-Tardos (KT).
while V 6= ∅ do
independently draw a threshold θ ∼ Unif [0, 1] and a uniform label ` ∈ K.
for every v ∈ V do

if θ ≤ xv,` then
fKT (v)← {`} and V ← V \ {v}.

end if
end for

end while
output fKT .

Proof (of Theorem 1). Apply Algorithm 2 to the given points y1, . . . ,yn with a label tree
T whose depth is O(log k). Lemmas 7 and 8 conclude the proof. J

4 O(log k)-Approximation for MML

Proof (of Theorem 2). We apply Algorithm 2 to the fractional solution provided by the
linear programming relaxation. Starting with assignment costs, Property (3) of Lemma 7
implies that all assignment costs are preserved in expectation. Considering separation costs,
one can always choose a label tree T whose depth is O(log k), and thus Lemma 8 implies
a multiplicative loss of O(log k) in the separation costs. Finally, Property (2) of Lemma 7
guarantees that every node v ∈ V is assigned at most dBve labels, but since dBve ≤ bv
our algorithm never deviates from the bound on the number of labels. Additionally, it is
important to note that Property (2) of Lemma 7 also ensures that every node v ∈ V is
assigned at least one label since bBvc ≥ 1. J

5 A Tight Approximation for Unbounded MML

Let us now focus on the basic building blocks. We use the following two algorithms as basic
building blocks for our final algorithm. The first is a simple single threshold algorithm.
Let h : [0, 1] → [0, 1] be a monotone non-decreasing distortion function. The algorithm
applies the distortion function h to each fractional value xv,`, and then finds a multi-labeling
fST (v) : V → 2K by assigning to v all labels ` whose distorted fractional value is larger than
a uniformly random threshold θ ∈ [0, 1]. The choice of an appropriate distortion function h
plays a crucial role in obtaining the best possible approximation of 2 for (Unbounded-MML).

The second building block we use is due to [25]. It is the 2-approximation they provide
for the uniform metric labeling problem.

Our algorithm is a simple “merge” of the two basic building blocks: Algorithms 3 and 4
are run independently and the union of their label assignments is returned.
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Algorithm 5 Union.
independently run Algorithms 3 and 4 to obtain fST and fKT .
for every v ∈ V do
f(v)← fST (v) ∪ fKT (v).

end for
output f .

Let us focus on the assignment costs. We denote by xv ∈ [0, 1]k the vector corresponding
to v, i.e., (xv)` = xv,`. First we start by stating two immediate observations regarding the
assignment probabilities of labels to vertices by the basic building blocks (a full proof is
deferred to a full version of the paper).

I Lemma 9. For any v ∈ V and ` ∈ K the following two claims hold:
1. Pr [` ∈ fST (v)] = h(xv,`).
2. Pr [fKT (v) = {`}] = xv,`

||xv||1 .

The following corollary states the probability that label ` is assigned to vertex v by the
Union Algorithm (Algorithm 5), and is used to bound the total labeling cost of Algorithm 5.
Its proof is deferred to a full version of the paper.

I Corollary 10. For any v ∈ V and ` ∈ K, Pr [` ∈ f(v)] = h(xv,`) + xv,`

||xv||1 − h(xv,`) · xv,`

||xv||1 .

We focus now on the separation cost of the Union Algorithm (Algorithm 5). Note that
the expected separation cost of the Union Algorithm (Algorithm 5) equals:∑

(u,v)∈E

s(u, v) · E
[∣∣∣∣1f(u) − 1f(v)

∣∣∣∣
1

]
. (3)

The next lemma provides all the ingredients required for bounding the expected separation
cost (3), its proof is deferred to a full version of the paper.

I Lemma 11. For any u, v ∈ V such that xu = (xu,1, xu,2, . . . , xu,k) and
xv = (xu,1 + ε, xu,2, . . . , xu,k), the following hold:
1. Pr [1 ∈ f(u), 1 /∈ f(v)] = 0.
2. Pr [1 /∈ f(u), 1 ∈ f(v)] = ε ·

(
1− xu,1

||xu||1

)
·
(
h(xu,1+ε)−h(xu,1)

ε + 1−h(xu,1+ε)
||xu||+ε

)
.

3. Pr [` ∈ f(u), ` /∈ f(v)] = ε · xu,`(1−h(xu,`))
||xu||1(||xu||1+ε) for every ` 6= 1.

4. Pr [` /∈ f(u), ` ∈ f(v)] = 0 for every ` 6= 1.

In order to bound the expected separation cost of an edge (u, v), as given by (3), we
employ a global charging argument. Typically, if local charging works it is the case that the
part of (3) that corresponds to a fixed label `, i.e., E

[
1{`∈f(u)∧`/∈f(v)} + 1{`/∈f(u)∧`∈f(v)}

]
could be upper bounded by α · zu,v,` for some constant α > 0. Unfortunately, this is not
the case as can be seen from Lemma 11. Edge (u, v) satisfies Observation 5, i.e., xu and xv
differ only coordinate 1, and thus without loss of generality zu,v,` = 0 for all ` 6= 1. However,
for example, case (3) of Lemma 11 implies that u and v have a non-zero probability of
disagreeing on any label ` 6= 1. Thus, a local charging argument as described above fails
and we must resort to a global argument that sums over all possible labels `. The following
corollary provides exactly such a global guarantee, and its proof is deferred to a full version
of the paper.
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I Corollary 12. Let xu = (xu,1, xu,2, . . . , xu,k) and xv = (xu,1 + ε, xu,2, . . . , xu,k) for an
edge (u, v) ∈ E. Then,

E
[∣∣∣∣1f(u) − 1f(v)

∣∣∣∣
1

]
≤
(
h(xu,1 + ε)− h(xu,1)

ε
+ 2− h(xu,1 + ε)

||xu||1 + ε

)
·
(

1− xu,1
||xu||1

)
· du,v .

Let us not focus on how to choose the distortion h. Given a specific choice of a distortion
function h : [0, 1] → [0, 1], Corollaries 10 and 12 determine the approximation guarantee.
Specifically, Corollary 10 determines the loss with respect to the labeling cost, and Corollary 12
determines the loss with respect to the separation cost.

The most natural distortion function is the identity, i.e., h(x) = x. The next theorem
shows that this choice of h yields a 3-approximation for (Unbounded-MML).

I Theorem 13. The Union Algorithm provides an approximation of 3 when h(x) = x.

Proof. First, consider the labeling costs. Corollary 10, along with the fact that ||xv||1 ≥ 1,
imply:Pr [` ∈ f(v)] = xv,` + xv,`

||xv||1 −
x2

v,`

||xv||1 ≤ 2xv,`
Pr [` /∈ f(v)] = (1− xv,`) ·

(
1− xv,`

||xv||1

)
≤ 1− xv,`

Hence, the labeling costs incur a loss of at most a factor of 2. Second, consider the separation
costs. Let (u, v) ∈ E and assume without loss of generality that xu = (xu,1, xu,2, . . . , xu,k)
and xv = (xu,1 + ε, xu,2, . . . , xu,k). Corollary 12, along with the fact that ||xv||1 ≥ 1, imply:

E
[∣∣∣∣1f(u) − 1f(v)

∣∣∣∣
1

]
≤
(
ε

ε
+ 2− xu,1 − ε
||xu||1 + ε

)(
1− xu,1
||xu||1

)
du,v ≤ 3du,v .

Thus, the separation costs incur a loss of at most a factor of 3, concluding the proof. J

We prove that choosing a quadratic distortion, i.e., h(x) = x2, provides a tight approxim-
ation of 2 for (Unbounded-MML). We are now ready to prove Theorem 3.

Proof (of Theorem 3). For simplicity we prove the theorem in two phases. In the first
phase we show that the quadratic distortion provides an approximation of (2 + ε). In the
second phase we show that, assuming ε ≤ (8k4)−1, the approximation is in fact 2. This
concludes the proof since ε can be chosen to be arbitrarily small.

Let us focus on the first phase. When considering the labeling costs, Corollary 10, along
with the facts that ||xv||1 ≥ 1 and 0 ≤ xv,` ≤ 1, imply:Pr [` ∈ f(v)] = x2

v,` + xv,`

||xv||1 −
x3

v,`

||xv||1 ≤ xv,` · (1− xv,`) ≤ 2xv,`
Pr [` /∈ f(v)] =

(
1− x2

v,`

)
·
(

1− xv,`

||xv||1

)
≤ (1− x2

v,`) ≤ 2(1− xv,`)

Hence, the labeling costs incur a loss of at most 2 in the approximation.
When considering the separation costs, let (u, v) ∈ E and assume without loss of generality

that xu = (xu,1, xu,2, . . . , xu,k) and xv = (xu,1 + ε, xu,2, . . . , xu,k). Corollary (12) implies:

E

[∑
`∈K

(
1{`∈f(u)∧`/∈f(v)} + 1{`/∈f(u)∧`∈f(v)}

)]
≤

≤

(
(xu,1 + ε)2 − x2

u,1

ε
+ 2− (xu,1 + ε)2

||xu||1 + ε

)(
1− xu,1
||xu||1

)
du,v

=
[(

2xu,1 +
2− x2

u,1

||xu||1 + ε

)(
1− xu,1
||xu||1

)
+ ε

(
||xu||1 − 2xu,1
|xu||1 + ε

)(
1− xu,1
||xu||1

)]
du,v . (4)
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Define the following function L(z, t) : [0, 1]× [1,∞)→ R+, L(z, t) ,
(

2z + 2−z2

t

)
·
(
1− z

t

)
.

Clearly the maximum value of L upper bounds the left term of (4), when plugging z = xu,1
and t = ||xu||1. One can verify that max0≤z≤1 maxt≥1 {L(z, t)} ≤ 2 (details are deferred to
a full version of the paper). Note that the right term of (4) is at most ε, hence the expected
separation cost is at most (2 + ε)du,v. This concludes the first phase. The proof of the second
phase is deferred to a full version of the paper. J

The proof of Theorem 4 is deferred to a full version of the paper.
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