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Abstract
De, Trevisan and Tulsiani [CRYPTO 2010] show that every distribution over n-bit strings which
has constant statistical distance to uniform (e.g., the output of a pseudorandom generator map-
ping n− 1 to n bit strings), can be distinguished from the uniform distribution with advantage
ε by a circuit of size O(2nε2).

We generalize this result, showing that a distribution which has less than k bits of min-entropy,
can be distinguished from any distribution with k bits of δ-smooth min-entropy with advantage ε
by a circuit of size O(2kε2/δ2). As a special case, this implies that any distribution with support
at most 2k (e.g., the output of a pseudoentropy generator mapping k to n bit strings) can be
distinguished from any given distribution with min-entropy k + 1 with advantage ε by a circuit
of size O(2kε2).

Our result thus shows that pseudoentropy distributions face basically the same non-uniform
attacks as pseudorandom distributions.
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1 Introduction

De, Trevisan and Tulsiani [2] show a non-uniform attack against any pseudorandom gen-
erator (PRG) which maps {0, 1}n−1 → {0, 1}n. For any ε ≥ 2−n/2, their attack achieves
distinguishing advantage ε and can be realized by a circuit of size O

(
2nε2

)
. Their attack

doesn’t even need the PRG to be efficiently computable.
In this work we consider a more general question, where we ask for attacks distinguishing

a distribution from any distribution with slightly higher min-entropy. We generalize [2],
showing a non-uniform attack which, for any ε, δ > 0, distinguishes any distribution with
< k bits of min-entropy from any distribution with k bits of δ-smooth min-entropy with
advantage ε, and where the distinguisher is of size O(2kε2/δ2). As a corollary we recover
the [2] result, showing that the output of any pseudoentropy generator {0, 1}k → {0, 1}n can
be distinguished from any variable with min-entropy k + 1 with advantage ε by circuits of
size O(2kε2).

From a theoretical perspective, we prove where the separation between pseudoentropy
and smooth min-entropy lies, by classifying how powerful computationally bounded
adversaries can be so they can still be fooled to “see” more entropy than there really is.
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39:2 Non-Uniform Attacks Against Pseudoentropy

From a more practical perspective, our result shows that using pseudoentropy instead
of pseudorandomness (which for many applications is sufficient and allows for saving in
entropy quantity [3]), will not give improvements in terms of quality (i.e., the size and
advantage of distinguishers considered), at least not against generic non-uniform attacks.

1.1 Notation and Basic Definitions
Two variables X and Y are (s, ε) indistinguishable, denoted X ∼s,ε Y , if for all boolean
circuits D of size |D| ≤ s we have |Pr[D(X) = 1] − Pr[D(Y ) = 1]| ≤ ε. The statistical
distance of X and Y is d1(X;Y ) def=

∑
x |PX(x)− PY (x)| (where PX(x) def= Pr[X = x]), the

Euclidean distance of X and Y is d2(PX ;PY ) def=
√∑

x(PX(x)− PY (x))2. A variable X has
min-entropy k if it doesn’t take any particular outcome with probability greater 2−k, it has
δ-smooth min-entropy k [6], if it’s δ close to some distribution with min-entropy k. X has k
bits of HILL pseudoentoentry of quality (s, ε) if there exists a Y with min-entropy k that is
(s, ε) indistinguishable from X, we use the following standard notation for these notions:
min-entropy: H∞(X) def= − log maxx (Pr[X = x]) .

smooth min-entropy: Hδ∞(X) def= maxY,d1(X;Y )≤δ H∞(Y ) .
HILL pseudoentropy: HHILL

s,ε (X) def= maxY,Y∼(s,ε)X H∞(Y ) .

1.2 Our Contribution
In this work give generic non-uniform attacks on pseudoentropy distributions. A seemingly
natural goal is to consider a distribution X with H∞(X) ≤ k bits of min-entropy, strictly
larger HHILL

s,ε (X) ≥ k + 1 bits of HILL entropy, and then give an upper bound on s in
terms of ε. This does not work as there are X where H∞(X) � Hδ∞(X),1 and as by
definition Hδ∞(X) = HHILL

∞,δ (X), we can have a large entropy gap HHILL
∞,δ (X) − H∞(X) even

when considering unbounded adversaries against HILL entropy. For this reason, in our main
technical result 1 below, we must consider distributions with bounded smooth min-entropy.
This makes the statement of the lemma somewhat technical. In practice, the distributions
considered often have bounded support, for example because they were generated from a
short seed by a deterministic process (like a pseudorandom generator). In this case we can
drop the smoothness requirement as stated in Theorem 2 below.

I Lemma 1 (Nonuniform attacks against pseudoentropy). Suppose that X ∈ {0, 1}n does not
have k bits of δ-smooth min-entropy, i.e., Hδ∞(X) < k, then for any ε we have

HHILL
Õ(2kε2δ−2),ε(X) < k

where Õ(·) hides a factor linear in n.

I Theorem 2. Let f : {0, 1}k → {0, 1}n be a deterministic (not necessarily efficient) function.
Then we have

HHILL
Õ(2kε2),ε(f(Uk)) ≤ k + 1.

more generally, for any X over {0, 1}n with support of size ≤ 2k

HHILL
Õ(2kε2),ε(X) ≤ k + 1.

1 Consider an X which is basically uniform over {0, 1}n, but has mass δ on one particular point, then
log δ−1 = H∞(X)� Hδ∞(X) = n.
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I Remark (Concluding best attacks against PRGs). For the special case n = k + 1 we recover
the bound for pseudorandom generators from [2].

Proof of Theorem 2. The theorem follows from Lemma 1 when δ = 1/2; consider any X
with support of size ≤ 2k, then Hδ∞(X) ≤ k + 1, as no matter how we cut probability mass
of 1− δ = 1/2 over 2k elements, one element will have the weight at least 2−k−1. J

1.3 Proof Outline
1.3.1 A Weaker Result as a Ball-Bins Problem
We outline the proof of a somewhat weakened version of Theorem 2 in the language of
balls and bins. For every Y of min-entropy k′ = k + Ω(1) we want to distinguish Y from
X = f(Uk). Suppose for simplicity that Y is flat and f is injective, so that X is also flat.
Our strategy will be to hash the points randomly into two bins and take advantage of the fact
that the average maximum load is closer to 1

2 when we sample from Y than when drawing
from X. The reason is that Y has more balls, so by the law of large numbers, we expect the
load to be “more concentrated” around the mean.

Think of throwing balls (inputs x) into two bins (labeled by −1 and 1). If the balls come
from the support ofX, the expected maximum load (over two bins) equals≈ 2k−1+

√
2/π·2k/2.

Similarly, if the balls come from the support of Y , then maximum load is 2k′−1 +
√

2/π ·2k′/2.
In terms of the average load (the load normalized by the total number of balls):

AverageMaxLoad(X) ≈ 0.5 +
√

2/π · 2−k/2 w.h.p. when drawing from X ,

AverageMaxLoad(Y ) ≈ 0.5 +
√

2/π · 2−k
′/2 w.h.p. when drawing from Y .

As k′ = k + Ω(1) we obtain (with good probability):

AverageMaxLoad(X)− AverageMaxLoad(Y ) = Ω(2−k/2).

Letting D be one of these bins assignments we obtain a distinguisher with advantage
ε = Ω(2−k/2). To generate the assignments efficiently we relax the assumption about
choosing bins and assume only that the choices of bins are independent for any group of
` = 4 balls. The fourth moment method allows us to keep sufficiently good probabilistic
guarantees on the maximum load.

1.3.2 The General Case by Random Walk Techniques
1.3.2.1 A high-level outline and comparison to [2]

Below in Figure 1 we sketch the flow of our argument.
Our starting point is the proof from [2]. They use the fact that a random mapping

D : {0, 1}n → {−1, 1} likely distinguishes any two distributions X and Y over {0, 1}n with
advantage being the Euclidean distance d2(X;Y ) def=

√∑
x(PX(x)− PY (x))2.

For any X and Y with constant statistical distance
∑
x |PX(x)− PY (x)| = Θ(1) (which

is the case for the PRG setting where Y = Un and X = PRG(Un−1)) this yields a bound
Ω
(
2−n2

)
. This bound can be then amplified, at the cost of extra advice, by partitioning the

domain {0, 1}n and combining corresponding advantages (advice basically encodes if there
is a need for flipping the output). Finally one can show that 4-wise independence provides
enough randomness for this argument, which makes sampling D efficient. Our argument
deviates from this approach in two important aspects.

ICALP 2017
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X has no smooth-min entropy k

large bias between X and Y on only 2k elements

d2(X;Y ) = Ω(2− k2 ) (Euclidean distance)
advantage of random attack

ε ≈ d2(X;Y )
for any X,Y (Lemma 12)

a random distinguisheer D achieves ε = Ω
(

2− k2
)

ε = Ω
(
T−

1
2 2− k2

)
for a random D restricted to one slice

ε = T · Ω
(
T−

1
2 2− k2

)
by composing advantages from all slices
(needs O(T ) advice)

arbitrary ε in size 2 k2 ε (by manipulating T )

weak randomness for distinguishers and slices is enough
(4-wise independence works!)

domain partitioned randomly into T slices

for any fixed Y of min-entropy at least k

random walks moment inequalities
(see Sections 2.2, 2.1, and 2.3)

Corollary 17

Corollaries 15 and 16

Corollary 14

Lemma 8 and Corollary 9

Lemma 10 and Corollary 11

Corollary 13

Figure 1 The map of our proof.

The first difference is that in the pseudoentropy case we can improve the advantage from
Ω
(
2−n2

)
, where n is the logarithm of the support of the variables considered, to Ω

(
2− k2

)
,

where k is the min-entropy of the variable we want to distinguish from. The reason is
that being statistically far from any k-bit min-entropy distributions implies a large bias on
already 2k elements. This fact (see Lemma 8 and Corollary 9, and also Figure 3) is a new
characterization of smooth min-entropy of independent interest.

The second subtlety arises when it comes to amplify the advantage over the partition
slices. For the pseudorandomness case it is enough to split the domain in a deterministic
way, for example by fixing prefixes of n-bit strings, in our case this is not sufficient. For
us a “good” partition must shatter the 2k-element high-biased set, which can be arbitrary.
Our solution is to use random partitions, in fact, we show that using 4-universal hashing is
sufficient. Generating base distinguishers and partitions at the same time makes probability
calculations more involved.

Technical calculations are based on the fourth moment method, similarly as in [2]. The
basic idea is that for settings where the second and fourth moment are easy to compute
(e.g. sums of independent symmetric random variables) we can obtain good upper and lower
bounds on the first moment. In the context of algorithmic applications these techniques
are usually credited to [1]. Interestingly, exploiting natural relations to random walks, we
show that calculations immediately follow by adopting classical (almost one century old)
tools and results [5, 4]. Our technical novelty is an application of moment inequalities due to
Marcinkiewicz-Zygmund and Paley-Zygmund, which allow us to prove slightly more than
just the existence of an attack. Namely we generate it with constant success probability.
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d1(PX ; 2−k|�) > δ

PY (x) 6 2−k

δ

2−k

PX
PY

Figure 2 An intuition behind the attack. Random ±1-weights make the bias equal to the `2-
distance of PX and PY . This distance can be bounded in terms of the `1 distance, which concentrates
mass difference δ on less than 2k elements (the region in gray).

1.3.2.2 Advantage Ω(2−k/2)

Consider any X with δ-smooth min-entropy smaller than k. This requirement can be seen as
a statement about the “shape” of the distribution. Namely, the mass of X that is above the
threshold 2−k equals at least δ, that is∑

x

max(PX(x)− 2−k, 0) > δ.

For an illustration see Figure 2.
We construct our attack based on this observation. Define the advantage of a function D

for distributions X and Y as

AdvD(X;Y ) =

∣∣∣∣∣∑
x

D(x)(PX(x)− PY (x))

∣∣∣∣∣
(writing also AdvD

S when the summation is restricted to a subset S). Consider a random
distinguisher D : {0, 1}n → {−1, 1}. Random variables D(x) for different x are independent,
have zero-mean and second moment equal to 1. Therefore the expected square of of the
advantage, over the choice of D, equals

E
[(

AdvD(X;Y )
)2
]

= E

∣∣∣∣∣∑
x

D(x)(PX(x)− PY (x))

∣∣∣∣∣
2

=
∑
x

(PX(x)− PY (x))2 .

Let S be the set of x such that PX(x) > 2−k. For any Y of min-entropy at least k we obtain

∑
x∈S

(PX(x)− PY (x))2 >
∑
x∈S

(PX(x)− 2−k)2 > |S|−1

(∑
x∈S

(
PX(x)− 2−k

))2

> 2−kδ2

where the first inequality follows because PY (x) 6 2−k < PX(x) for x ∈ S, the second
inequality is by the standard inequality between the first and second norm, and the third
inequality follows because we showed that Pr[X ∈ S] > |S| · 2−k + δ (illustrated in Figure 2)
which also implies |S|−1 > 2−k.

By the previous formula on the expected squared advantage this means that

E
[(

AdvD(X;Y )
)2
]
> 2−kδ2

ICALP 2017
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PX
PY
S1
S2

(a) An example of a “bad” partition.
Almost all advantage is captured by one
partition slice S1.

PX
PY
S1
S2

(b) An example of a “good“ parti-
tion. The advantage is evenly distributed
among slices S1, S2.

Figure 3 Illustration of good and bad partitions.

for at least one choice of D. This implies

AdvD(X;Y ) > 2− k2 δ.

A random D as defined would be of size exponential in n, but since we used only the
second moment in calculations, it suffices to generate D(x) as pairwise independent random
variables. By assuming 4-wise independence – which can be computed by O(n2) size circuits
– we can prove slightly more, namely that a constant fraction of generated D’s are good
distinguishers. This property will be important for the next step, where we amplify the
advantage assuming larger distinguishers.

1.3.2.3 Leveraging the advantage by slicing the domain

Consider a random and equitable partition {Si}Ti=1 of the set {0, 1}n. From the previous
analysis we know that a random distinguisher achieves advantage ε = d2(PX ;PY ) over the
whole domain. Note that (for any, not necessarily random partition {Si}i) we have

(d2(PX ;PY ))2 =
T∑
i=1

(d2(PX ;PY |Si))2

where d2(PX ;PY |Si) is the restriction of the distance to the set Si (by restricting the
summation to Si). From a random partition we expect the mass difference between PX and
PY to be distributed evenly among the partition slices (see Figure 3(b)). Based on the last
equation, we expect

d2(PX ;PY |Si) ≈
d2(PX ;PY )√

T

to hold with high probability over {Si}i.
In fact, if the mass difference is not well balanced amongst the slices (in the extreme case,

concentrated on one slice) our argument will not offer any gain over the previous construction
(see Figure 3(a)).

By applying the previous argument to individual slices, for every i we can obtain an
advantage AdvD

Si(X;Y ) = Ω
(

(T− 1
2 2− k2 )δ

)
when restricted to the set Si (with high probability
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over the choice of D and {Si}i). Now if the sets Si are efficiently recognizable, we can combine
them into a better distinguisher. Namely for every i we chose a value βi ∈ {−1, 1} such that
D’s advantage (before taking the absolute value) restricted to Si has sign βi, and set

D̂(x) = βiD(x), where i is such that x ∈ Si,

then the advantage equals (with high probability over D and the Si’s)

AdvD̂(X;Y ) =
T∑
i=1

AdvD
Si(X;Y ) = Ω

(
T

1
2 2− k2 δ

)
.

We need to specify a 4-wise independent hash for D, another 4-wise independent hash for
deciding in which of the T slices an element lies, and T bits to encode the βi’s. Thus for a
given T the size of D̂ will be T + Õ(n). Using the above equation, we then get a smooth
tradeoff s = O(2kε2δ−2) between the advantage ε and the circuit size s. This discussion
shows that to complete the argument we need the following two properties of the partition
(a) the mass difference between PX and PY is (roughly) equidistributed among slices and (b)
the membership in partition slices can be efficiently decided.

1.3.2.4 Slicing using 4-wise independence

To complete the argument, we assume that T is a power of 2, and generate the slicing by
using a 4-universal hash function h : {0, 1}n → {0, 1}logT . The i-th slice Si is defined as
{x ∈ {0, 1}n : h(x) = i}. These assumptions are enough to prove that

EAdvD̂
Si(X;Y ) = Ω

(
T−

1
2 d2(PX ;PY )

)
= Ω

(
T−

1
2 2− k2 δ

)
.

Interestingly, the expected advantage (left-hand side) cannot be computed directly. The trick
here is to bound it in terms of the second and fourth moment. The above inequality, coupled
with bounds on second moments of the advantage AdvD̂

Si (obtained directly), allows us to
prove that

Pr
[
T∑
i=1

AdvD̂
Si > Ω(1) · T 1

2 2− k2 δ
]
> Ω(1).

This shows that there exists the claimed distinguisher D̂. In fact, a constant fraction of
generated (over the choice of D and {§i}i) distinguishers D̂’s works.

1.3.2.5 Random walks

From a technical point of view, our method involves computing higher moments of the
advantages to obtain concentration and anti-concentration results. The key observation is
that the advantage written down as

AdvD
Si(X;Y ) =

∣∣∣∣∣∑
x

(PX(x)− PY (x))1Si(x)D(x)

∣∣∣∣∣
which can be then studied as a random walk

AdvD
Si(X;Y ) =

∣∣∣∣∣∑
x

ξi,x

∣∣∣∣∣
with zero-mean increments ξi,x = (PX(x)− PY (x))1Si(x)D(x). The difference with respect
to classical model is that the increments are only `-wise independent (for ` = 4). However,
that classical moment bounds still apply (see Sections 2.2 and 2.3 for more details).

ICALP 2017
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2 Preliminaries

2.1 Interpolation Inequalities
Interpolation inequalities show how to bound the p-th moment of a random variable if we
know bounds on one smaller and one higher moment. The following result is known also as
log-convexity of Lp norms, and can be proved by the Hölder Inequality.

I Lemma 3 (Moments interpolation). For any p1 < p < p2 and any bounded random variable
Z we have

‖Z‖p 6 (‖Z‖p1)θ (‖Z‖p2)1−θ

where θ is such that θ
p1

+ 1−θ
p2

= 1
p , and for any r we define ‖Z‖r = (E |Z|r)

1
r .

Alternatively, we can lower bound a moment given two higher moments. This is very
useful when higher moments are easier to compute. In this work will bound first moments
from below when we know the second and the fourth moment (which are easier to compute
as they are even-order moments)

I Corollary 4. For any bounded Z we have E |Z| > (E |Z|2)
3
2

(E |Z|4)
1
2
.

2.2 Moments of random walks
For a random walk

∑
x ξ(x), where ξ(x) are independent with zero-mean, we have good

control over the moments, namely E |
∑
x ξ(x)|p = Θ(1) · (

∑
x Var(ξ(x)))

p
2 where constants

depend on p. This result is due to Marcinkiewicz and Zygmund [5] who extended the former
result of Khintchine [4]. Below we notice that for small moments p it suffices to assume only
p-wise independence (most often used versions assume fully independence)

I Lemma 5 (Strengthening of Marcinkiewicz-Zygmund’s Inequality for p = 4). Suppose that
{ξ(x)}x∈X are 4-wise independent, with zero mean. Then we have

1√
3

(∑
x∈X

Var(ξ(x))
) 1

2

6E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣ 6
(∑
x∈X

Var(ξ(x))
) 1

2

,

E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣
2

=
∑
x∈X

Var(ξ(x)) ,

(∑
x∈X

Var(ξ(x))
)2

6E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣
4

6 3
(∑
x∈X

Var(ξ(x))
)2

.

The proof appears in Section 4.1.

2.3 Anticontentration bounds
I Lemma 6 (Paley-Zygmund Inequality). For any positive random variable Z and a parameter
θ ∈ (0, 1) we have

Pr [Z > θEZ] > (1− θ)2 (EZ)2

EZ2 .

By applying Lemma 6 to the setting of Lemma 5, and choosing θ = 1√
3 we obtain:
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I Corollary 7 (Anticoncentration for walks with 4-wise independent increments). Suppose that
{ξ(x)}x∈X are 4-wise independent with zero-mean, then we have

Pr

∣∣∣∣∣∑ ξ(x)

∣∣∣∣∣ > 1
3

(∑
Var(ξ(x))

) 1
2
 > 1

17 .

where the summation is over x ∈ X .

3 Proof of Lemma 1

I Lemma 8 (Characterizing smooth min-entropy). For any random variable X with values in
a finite set X , any δ and k we have the following equivalence

Hδ
∞(X) > k ⇐⇒

∑
x∈X

max
(
PX(x)− 2−k, 0

)
6 δ.

The proof appears in Section 4.2. We will work with the following equivalent statement

I Corollary 9 (No smooth min-entropy k implies bias w.r.t. distributions of min-entropy k over
at most 2k elements). We have Hδ∞(X) < k if and only if there exists a set S of at most 2k
elements such that∑

x∈S
|PX(x)− PY (x)| > δ

for all Y of min-entropy at least k.

Proof of Corollary 9. The direction ⇐= trivially follows by the definition of smooth min-
entropy. Now assume Hδ∞(X) < k. Let S be the set of all x such that PX(x) > 2−k, then
|S| < 2k, and moreover by Lemma 8 we have

∑
x∈S

(
PX(x)− 2−k

)
> δ. In particular for

any Y of min-entropy k (i.e., PY (x) 6 2−k for all x)∑
x∈S

(PX(x)− PY (x)) > δ . J

I Lemma 10 (Bias implies Euclidean distance). For any distributions PX , PY on X and any
subset S of X we have(∑

x∈S
(PX(x)− PY (x))2

) 1
2

> |S|−1/2
∑
x∈S
|PX(x)− PY (x)| .

Proof. By the Jensen Inequality we have

|S|−1

(∑
x∈S

(PX(x)− PY (x))2

)
>

(
|S|−1

∑
x∈S
|PX(x)− PY (x)|

)2

which is equivalent to the statement. J

I Corollary 11 (No smooth min-entropy implies Euclidean distance to min-entropy distribu-
tions). Suppose that Hδ∞(X) < k. Then for any Y of min-entropy at least k we have(∑

x |PX(x)− PY (x)|2
) 1

2 > 2− k2 δ.

Proof of Corollary 11. It suffices to combine Lemma 10 and Corollary 9. J

ICALP 2017
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By Corollary 7 we conclude that the advantage of a random distinguisher for any two
measures (in our case PX and PY ) equals the Euclidean distance.

I Lemma 12 (The advantage of a random distinguisher equals the Euclidean distance). Let
{D(x)}x∈{0,1}n be 4-wise independent as indexed by x and such that D(x) outputs a random
element from {−1, 1}. Then for any set S we have∣∣∣∣∣∑

x∈S
D(x)(PX(x)− PY (x))

∣∣∣∣∣ > 1
3 · d2(PX ;PY )

with probability 1
17 over the choice of D (the result actually holds for any measures in place

of PX , PY ).

For our case, that is the setting in Lemma 10, we obtain

I Corollary 13 (A random attack achieves Ω
(
2−kδ

)
with significant probability). For X,Y as

in Corollary 11, and D as in Lemma 12 we have AdvD(X;Y ) ≥ 1
3 · 2

− k2 δ w.p. 1
17 over D.

3.1 Partitioning the domain into T slices
Let h : {0, 1}n → [1 . . . 2t], where t = dlog T e, be a 4-universal hash function. Define
Si = {x : h(x) = i}, ∆(x) = PX(x)− PY (x) and consider advantages on slices Si

AdvD
Si (X;Y ) =

∣∣∣∣∣∑
x

∆(x)D(x)1Si(x)

∣∣∣∣∣ .
The following corollary shows that on each of our T slices, we get the advantage T− 1

2 2− k2 δ.
The proof appears in Section 4.3.

I Corollary 14 ((Mixed) moments of slice advantages). For D, {Su}u as above and every i, j

ED,{Su}u AdvD
Si(X;Y ) > 3− 1

2T−
1
2 · d2 (PX ;PY ) ,

ED,{Su}u

(
AdvD

Si (X;Y ) AdvD
Sj (X;Y )

)
6 T−1 · d2(PX ;PY )2 ,

(the statement is valid for arbitrary measures in place of PX , PY ).

Denote Z =
∑
i AdvD

Si (X;Y ). Using Lemma 6 with θ = 1√
3 where we compute EZ2 and

EZ according to Corollary 14 we obtain Pr
[
|Z| > 1√

3 · E |Z|
]
> 1

17 . Bounding once again
E |Z| as in Corollary 14 we get

I Corollary 15 (Total advantage on all partition slices). For X,Y as in Corollary 11, D and
Si defined above we have

Pr
D,{Su}u

[
T∑
i=1

AdvD
Si(X;Y ) > 1

3 · T
1
2 2− k2 δ

]
>

1
17

(for general X,Y the lower bound is Ω(1) · T 1
2 · d2(PX ;PY )).

The corollary shows that the total absolute advantage over all partition slices, is as expected.
Since {Si}i is a partition we have

T∑
i=1

AdvD
Si(X;Y ) =

T∑
i=1

∣∣∣∣∣∑
x∈Si

(PX(x)− PY (x)) D(x)

∣∣∣∣∣ =
∑
x

(PX(x)− PY (x)) D(x)β(x)
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where for βi
def= sgn

(∑
x∈Si (PX(x′)− PY (x)) D(x)

)
(the sign of the advantage on the i-th

slice) we define β(x) = βi where Si contains x. This shows that by ”flipping“ the distinguisher
output on the slices we achieve the sum of individual advantages. Since the bit β(x) can
be computed with O(T ) + Õ(n) advice (the complexity of the function i → βi plus the
complexity of finding i for a given x) we obtain

I Corollary 16 (Computing total advantage by one distinguisher). For X,Y as in Corollary 11,
D and {Si}i defined above there exists a modification to D which in time Õ(n) and advice
O(T ) achieves advantage 1

3 · T
1
2 2− k2 δ with probability 1

17 .

Finally by setting ε = T
1
2 2− k2 δ and manipulating T we arrive at

I Corollary 17 (Continue tradeoff). For any ε there exists T such that the distinguisher in
Corollary 16 has advantage ε and circuit complexity s = O

(
2kε2δ−2).

4 Omitted Proofs

4.1 Proof of Lemma 5 (Strengthening of Marcinkiewicz-Zygmund’s
Inequality for p = 4)

Let Z =
∑
x ξ(x). Since ξ(x) are (in particular) 2-wise independent with zero mean, we get

E

(∑
x

ξ(x)
)2

=
∑
x,y

E (ξ(x)ξ(y)) =
∑
x=y

E (ξ(x)ξ(y)) =
∑
x

Var(ξ(x)) ,

(the summation taken over x, y ∈ X ). The fourth moment is somewhat more complicated

E

(∑
x

ξ(x)
)4

=
∑

x1,x2,x3,x4

E (ξ(x1)ξ(x2)ξ(x3)ξ(x4))

=
∑

x1=x2=x3=x4

E (ξ(x1)ξ(x2)ξ(x3)ξ(x4)) +

+ 3
∑

x1=x2 6=x3=x4

E (ξ(x1)ξ(x2)ξ(x3)ξ(x4))

=
∑
x

E ξ(x)4 + 3
∑
x 6=y

E ξ(x)2 E ξ(y)2

= 3
(∑

x

E ξ(x)2

)2

− 2
∑
x

E ξ(x)4 .

The second equality follows because whenever ξ(x) occurs in an odd power, for example
x = x1 6= x2 = x3 = x4, the expectation is zero (this way one can simplify and bound also
higher moments, see [7]). It remains to estimate the first moment. By Corollary 4 and
bounds on the second and fourth moment we have just computed we obtain

1√
3
·

(∑
x∈X

Var(ξ(x))
) 1

2

6 E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣
and the upper bound follows by Jensen’s Inequality (with constant 1).

ICALP 2017
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4.2 Proof of Lemma 8 (Characterizing smooth min-entropy)

Suppose that Hδ∞(X) > k. then, by definition, there is Y such that H∞(Y ) > k and∑
x:PX(x)>PY (x) PX(x)− PY (x) 6 δ. Since all the summands are positive and since PY (x) 6

2−k, ignoring those x for which PY (x) < 2−k yields∑
x:PX(x)>2−k

PX(x)− PY (x) 6 δ.

Again, since PY (x) 6 2−k we obtain∑
x:PX(x)>2−k

PX(x)− 2−k 6 δ,

which finishes the proof of the ”=⇒“ part.
Assume now that δ′ =

∑
x∈X max

(
PX(x)− 2−k, 0

)
6 δ. Note that

∑
x∈X

max
(
PX(x)− 1

2k , 0
)

+
∑
x∈X

max
(

1
2k − PX(x), 0

)
=

= 2
∑
x∈X

∣∣∣∣PX(x)− 1
2k

∣∣∣∣ > 2
∑
x∈X

max
(
PX(x)− 1

2k , 0
)

and therefore we have
∑
x∈X max

(
2−k − PX(x), 0

)
> δ′. By this observation we can con-

struct a distribution Y by shifting δ′ of the mass of PX from the set S− = {x : PX(x) > 2−k}
to the set {x : 2−k > PX(x)} in such a way that we have PY (x) 6 2−k for all x. Thus
H∞(Y ) > k and since a δ′ fraction of the mass is shifted and redistributed we have
d1(X;Y ) 6 δ′. This finishes the proof of the ”⇐=“ part.

4.3 Proof of Corollary 14 ((Mixed) moments of slice advantages)

For shortness denote ∆(x) = PX(x)− PY (x) and AdvD
Si = AdvD

Si (X;Y ).
Note that by Lemma 5, applied to the family fx = ∆(x)D(x)1Si(x) (which is 4-wise

independent) we have

EAdvD
Si > 3− 1

2

(∑
x

∆(x)2

) 1
2

which is the first inequality claimed in the corollary. In turn, again by Lemma 5, we have

E
(

AdvD
Si

)2
= T−1 ·

∑
x

∆(x)2.

Since this holds for any i, by Cauchy-Schwarz we get for any i, j

EAdvD
SiAdvD

Sj 6

√
E
(

AdvD
Si

)2
· E
(

AdvD
Sj

)2
6 T−1 ·

∑
x

∆(x)2

which proves the second inequality in the corollary.
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