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Abstract
A recent series of breakthroughs initiated by Spielman and Teng culminated in the construction
of nearly linear time Laplacian solvers, approximating the solution of a linear system Lx = b,
where L is the normalized Laplacian of an undirected graph. In this paper we study the space
complexity of the problem. Surprisingly we are able to show a probabilistic, logspace algorithm
solving the problem. We further extend the algorithm to other families of graphs like Eulerian
graphs (and directed regular graphs) and graphs that mix in polynomial time.

Our approach is to pseudo-invert the Laplacian, by first “peeling-off” the problematic kernel
of the operator, and then to approximate the inverse of the remaining part by using a Taylor
series. We approximate the Taylor series using a previous work and the special structure of the
problem. For directed graphs we exploit in the analysis the Jordan normal form and results from
matrix functions.
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1 Introduction

Approximating the solution of a linear system Lx = b, where L is the normalized Laplacian of
a graph G, is an important algorithmic challenge with multitude of algorithmic applications
(see [39] and references therein). In the time-bounded setting this problem has drawn a lot
of attention over the past decade. A series of breakthroughs initiated by Spielman and Teng
culminated in the construction of almost linear-time algorithms [24, 29, 33, 34, 35, 36].

We are interested in studying the space complexity of this problem, and specifically
achieving a probabilistic logspace algorithm that approximates a solution to such a system.
We show that the class BPL is powerful enough to approximate the solution to a linear
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41:2 Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

system of equations for a wide and important variety of linear operators, and in particular
for Laplacians of undirected graph (which is the focus of the work of Spielman and Teng).
In fact we do more and approximate a generalized inverse of the Laplacian, i.e., a matrix L?
such that LL?L = L, which is sufficient for solving such a set of equations. In essence this
means that we invert the matrix on the subspace defined by its image, leaving the kernel
unchanged. We prove:

I Theorem 1. There exists a probabilistic algorithm that gets as input an n× n stochastic
matrix S that is the transition matrix of an undirected graph and desired accuracy and
confidence parameters ε, δ > 0, and outputs with probability at least 1− δ an approximation
of the generalized inverse L? = (I − S)? to within an ε-accuracy, using

O

(
log n

ε
+ log log 1

δ

)
space.

We are not aware of any previous space bounded algorithm approximating the solution
of Laplacian systems.

It is commonly believed that BPL = L.1 There are not too many natural, non-trivial
problems in L, with the exception of undirected st-connectivity (and the problems that reduce
to it [26, 2]) that was solved by Reingold with an intricate and beautiful algorithm [30]
(see also [38]). The situation is similar with BPL. Thus the fact that probabilistic logspace
algorithms are capable of approximating a solution to a large class of linear-algebra problems
comes as a surprise.2

We now proceed to discuss our technique. Our goal is to approximate f(S) where f is
the function corresponding to the generalized inverse of I − S. We begin by considering the
simpler case where f has a Taylor expansion.

Let G be a regular undirected graph with an associated transition matrix S. As G is
undirected and regular, S is normal and we can represent it as S = VΣV † where Σ is a
diagonal matrix with the eigenvalues of S lying on the diagonal. Consider a function f

with a Taylor expansion f(x) =
∑
i cix

i. We would like to approximate f(S) =
∑
i ciSi =

V f(Σ)V †.3 Using Taylor expansion in the space-bounded setting is appealing, as in BPL
we can approximate powers of stochastic matrices (in fact, even matrices with induced `∞
norm of at most 1 [17]). Hence, if the series expansion of f behaves “nicely”, we can also
approximate f(S) in BPL. Using this approach we can, e.g., approximate the matrix eS
using the Taylor expansion ex =

∑∞
i=0

xi

i! .
We now consider the real problem which is approximating a generalized inverse of the

Laplacian L = I − S. This means that we want to invert L = I − S on its image, leaving
the kernel unchanged. Thus, the function f we want to compute is 1

1−x when x 6= 1 and
1 otherwise (think of x here as an eigenvalue of S). The function f is not continuous and

1 Some support for this conjecture is given by the following results. Nisan [27] constructed a pseudorandom
generator against logspace-bounded non-uniform algorithms that uses seed length O(log2 n). Using that
he showed BPL is contained in the class having simultaneously polynomial time and O(log2 n) space
[28]. Saks and Zhou [31] showed that BPL is contained in DSPACE(log1.5 n). Reingold [30] showed
undirected st-connectivity can be solved in deterministic logspace. BPL = L is also implied by the
conjectured existence of certain circuit lower bounds [25].

2 Note that finding the exact inverse of a matrix, as well as many other important problems in linear
algebra, is complete for the class DET ⊆ NC2 – the class of languages that are NC1 Turing-reducible to
computing the determinant of an integer matrix [5, 7, 14].

3 The fact that
∑

i
ciSi = V f(Σ)V † is a theorem, see, e.g., [23].
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so does not have a Taylor series around 1. Also notice that the operator L always has a
non-trivial kernel (1 is always an eigenvalue of S). Thus, we cannot directly employ the
Taylor series approach.

Our solution to the problem is to first “peel-off” the 1-eigenspace using the stationary
distribution of the corresponding random walk on G. We are then left with an invertible
operator I − A whose eigenvalues are bounded away from 0. We now wish to use the Taylor
series approach and approximate (I − A)−1 by

∑∞
i=0Ai, which corresponds to the Taylor

series 1
1−x =

∑∞
i=0 x

i. There is yet one obstacle we need to overcome, which is that the
operator A that we get after peeling off the stationary distribution of G, is not stochastic,
and in fact has `∞ norm larger than 1. Thus, offhand, we do not necessarily know how to
simulate high powers of it in BPL. Nevertheless, we exploit its unique structure and show it
can be simulated in BPL. Finally, by recovering the peeled-off layer, we essentially recover
the required operator L?.

We now take a step further, and consider directed graphs. The directed case poses major
challenges, even if just for the mere fact that directed graphs are not necessarily diagonalizable.
In fact, even directed graphs with a favorable structure such as vertex-transitive graphs can
be non diagonalizable [20]. The directed Laplacian and its application were studied in, e.g.,
[6, 12, 3]. Recently, Cohen et al. [13] gave faster algorithms for computing fundamental
quantities associated with random walks on directed graphs by improving the running time
of solving directed Laplacian systems.

Any operator A can be represented by its singular value decomposition (SVD) A = UΣV ,
where U and V are unitary, and Σ is diagonal with the singular values on the diagonal.
Another representation of A is by its Jordan normal form, A = VAV −1, where V is a basis
and A is the matrix of Jordan blocks. The elements on the diagonals of the Jordan blocks
are the eigenvalues of A (with multiplicity as the multiplicity of the roots of its characteristic
polynomial). The SVD is the usual representation of choice as it is stable, whereas the Jordan
normal form is notoriously unstable to compute (see, e.g., [22, Chapter 7], [15, Chapter 4] and
[19]). However, the SVD representation is not convenient when considering BPL algorithms,
as A does not share the same singular vectors with powers of A. Thus, in this paper, we
choose to analyze our algorithm using the Jordan normal form. Admittedly, one should
expect severe stability problems using such an approach. Surprisingly, we show that under
mild conditions we manage to overcome these stability problems.

As before, we would like to approximate the generalized inverse L?. There are two main
issues to consider:
1. Peeling-off the 1-subspace. To do so, we need a good approximation of the stationary

distribution of the corresponding random walk. In the undirected case, it can be easily
inferred (i.e., in L) from the input. Here, we require it as an input to our algorithm.

2. Analyzing the convergence of the Taylor series of (I − A)−1 for a non diagonalizable A.
Recall that when a function f acts on a diagonalizable matrix A, it acts on its eigenvalues
in the natural way. In the non diagonalizable case, f acts on a Jordan block, which might
have a large dimension, and although an eigenvalue λ on the diagonal is still mapped to
an eigenvalue f(λ), the structure of the rest of the block is no longer maintained, so we
need to give this issue further consideration.

To address the second issue above, we use the theory of matrix functions that tells us
exactly what f(A) is. It turns out that there is a direct connection between f(A), the
dimension of the Jordan block, and the derivatives of f on the corresponding eigenvalue.
Exploiting this connection, we manage to bound the number of terms in the Taylor series
that is sufficient for convergence. The caveat here is that two “stability” parameters enter

APPROX/RANDOM’17
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the picture. First, the spectral gap (whose formal definition we defer), which for directed
graphs may no longer be at most polynomially-small and naturally affect the performance of
our algorithm. Second, we also need the Jordan basis matrix V of L to be well-conditioned.
We prove:

I Theorem 2 (Informal). There exists a probabilistic algorithm that gets as input an n× n
stochastic matrix S, desired accuracy and confidence parameters ε, δ > 0, γ > 0 which is a
lower-bound on the spectral gap of S, κ which is an upper bound on the condition number
of the Jordan basis of S, and outputs with probability at least 1 − δ an approximation of
L? = (I − S)? to within an ε-accuracy, using

O

(
log n

γε
+ log log κ

δ

)
space.

Remarkably, the dependency of the space complexity on the condition number of the
Jordan basis matrix is doubly-logarithmic. This also allows us to show our algorithm operates
well on operators for which the eigenvalues are polynomially far apart (see Theorem 29).

Having this theorem we show that in addition to undirected graphs, our approximation
algorithm works for well-conditioned regular and Eulerian directed graph (which we know
have a non-negligible spectral gap and their stationary distribution is fully-explicit) and
general well-conditioned rapidly-mixing directed graphs. We thus see that the algorithm
manages to approximate the solution of Laplacian systems over a large (and natural) class of
directed graphs.

We conclude with a more philosophical note. In recent years we have seen several
results showing that some natural linear-algebraic tasks capture the strength of various
space-bounded models of computation. Results along this line are:
1. Ta-Shma [37] showed that it is possible to approximate the SVD of any matrix, and in

particular to approximate its inverse, in BQL, with polynomially-small accuracy.4 As
no classical analogue is known, this result is one of the very few cases where a natural
problem is known to lie in BQL but is not known to be in BPL.

2. Doron et al. [16] gave a BPL algorithm that computes the eigenvalues of stochastic matrices
having real eigenvalues with constant accuracy. Moreover, they gave a linear-algebraic
problem which is complete for BPL – roughly speaking, approximating, to polynomially-
small accuracy, the second eigenvalue of a stochastic matrix (whose eigenvalues are not
necessarily real).

3. Fefferman and Lin [18] gave two complete problems for BQL – approximating the inverse
and the minimum eigenvalue of positive semi-definite matrices (both to polynomially-small
accuracy).

We hence see that the deterministic, probabilistic and quantum space-bounded com-
plexity classes can be roughly characterized by linear-algebraic promise problems, where
the difference between the classes lies in the family of operators they can handle, be-
ing Hermitian, stochastic or general operators. The exact computation can be done in
DET ⊆ NC2 ⊆ DSPACE(O(log2 n)). Our result is in line with the above, showing that
approximating with polynomially-small accuracy the generalized inverse of a large class of
stochastic matrices is in BPL.

4 Roughly, BQL stands for the class of languages for which there exists an L-uniform family of quantum
circuits solving it with only O(log n) qubits. It is known that BQL ⊆ NC2 [40].
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2 Preliminaries

2.1 Basic facts from linear algebra

For a matrix A ∈ Cn×n, A† is its conjugate transpose. When it might not be clear from the
context, for a vector v ∈ Cn, we denote |v〉 as the column vector and 〈v| as the row vector,
so 〈u| v〉 is a scalar and |v〉〈u| is a rank-one matrix.

Every matrix A has a singular value decomposition (SVD) A = UΣV †, where U and V
are unitary and Σ is a diagonal matrix with non-negative entries, known as the singular
values of A.

The spectrum of a matrix A, denoted Spec(A), is its set of (complex or real) eigenvalues.
The spectral radius ρ(A) ofA is the largest absolute value of its eigenvalues. The operator norm
‖A‖ is max‖x‖2=1 ‖Ax‖, which is also the largest singular value of A. Notice that it is possible
for ‖A‖ to be strictly larger than ρ(A). The operator norm is sub-multiplicative. When A is
invertible, κ(A) = ‖A‖

∥∥A−1
∥∥ is its condition number. Also, we denote ‖A‖∞ as the induced

`∞ norm, that is ‖A‖∞ = maxi∈[n]
∑
j∈[n] |A[i, j]|. It holds that ‖A‖∞ ≤

√
n ‖A‖.

For an eigenvalue λ of A, a λ-right-eigenvector (or simply an eigenvector with eigenvalue
λ) is a vector v such that Av = λv. A λ-left-eigenvector is a vector v such that v†A =
λv†. We define the spectral gap γ(A) = 1 − maxλ∈Spec(A),λ 6=1 |λ|. Note that γ(A) ≤
minλ∈Spec(A),λ6=1 |1− λ|.

We denote by 1 the column vector of all ones and similarly 0 the column vector of all
zeros.

2.2 The Perron-Frobenius theorem

The underlying graph of a matrix A has an edge (i, j) iff A[i, j] 6= 0. A matrix A is irreducible
if its underlying directed graph is strongly connected. When A is irreducible, its period is
the greatest common divisor of the lengths of the closed directed paths in the underlying
directed graph of A. We say that A is aperiodic if its period is 1. A matrix A is non-negative
if all its entries are non-negative, and it is stochastic if it is non-negative and every row sums
to 1. We will need the Perron-Frobenius theorem for irreducible non-negative matrices (see,
e.g., [21, Chapter 8]).

I Theorem 3. Let A be an irreducible non-negative n× n matrix with period h and spectral
radius ρ(A) = r. Then:
1. There exists an r-right-eigenvector v1 and an r-left-eigenvector u1 whose components are

all positive.
2. A has exactly h complex eigenvalues with absolute value r and each one of them is a

product of r with a different h-th root of unity. Consequently, if A is aperiodic then r is
a simple eigenvalue, and all other eigenvalues have absolute value strictly smaller than r.

3. It holds that limk→∞Ak/rk = |v1〉〈u1|, where v1 and u1 are normalized so that 〈v1|u1〉 =
1.

If A is stochastic then r = 1. Furthermore, if A is stochastic, irreducible and aperiodic then
v1 is the all-ones vector 1 and u1 = π is the stationary distribution of the corresponding
random walk (all up to normalizations).

APPROX/RANDOM’17
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2.3 Jordan normal form

I Fact 4. Every complex n × n matrix A can be expressed in a Jordan normal form
A = VAV −1 where A = diag(A1, . . . ,AB),

Ab = Ab(λb) =


λb 1

λb
. . .
. . . 1

λb

 ∈ Cdimb× dimb ,

and dim1 + . . .+ dimb = n. The Jordan matrix A has the eigenvalues of A on its diagonal,
and is unique up to the ordering of the blocks Ab. For an eigenvalue λb, its algebraic
multiplicity is the number of times it appears on the diagonal A and its geometric multiplicity
is the number of blocks having λb on their diagonal. We say an eigenvalue is simple if its
algebraic multiplicity is one.

I Claim 5 ([9], Chapter 3). Let A be an n × n complex matrix and let A = VAV −1 be
the Jordan normal form of A, where A = diag(A1, . . . ,AB). Then, every Jordan block Ab

corresponds to an A-invariant subspace Eb = Ker
(
(λbI − A)dimb

)
of dimension dimb. This

gives a decomposition Cn =
⊕B

b=1Eb.

For a Jordan decomposition A = VAV −1, we will often write A =
∑B
b=1 VbAbUb, where

Ab is the b-th Jordan block, Vb are the columns of V that correspond to this block and
similarly Ub are the rows of V −1 that correspond to this block.

When the operator is irreducible, aperiodic and stochastic, we can express the Perron-
Frobenius theorem in the Jordan terminology and get:

I Claim 6. Let S be an irreducible, aperiodic and stochastic matrix with a stationary
distribution π so that 〈1|π〉 = 1 and let S =

∑B
b=1 VbSbUb be a Jordan decomposition of S.

Then,
S1 = (1), the 1× 1 matrix with an entry 1.
For all b ≥ 2, UbV1 = Ub |1〉 = 0 and U1Vb = 〈π|Vb = 0†. Also,

∑B
b=1 VbUb = I.

V1S1U1 = |1〉 〈π| so S = |1〉 〈π|+
∑B
b=2 VbSbUb.

Proof. If v is a (right) eigenvector of S with eigenvalue λ then v ∈ Im(∪b:λb=λVb). Similarly,
if w is a left eigenvector of S, then its eigenvalue is an eigenvalue of S and w ∈ Im(∪b:λb=λUb)
(this is because A and A† have the same spectrum, see, e.g., [8, Chapter 9]).

Now, since S is stochastic, 1 is a 1-eigenvector. Also, there is a 1-left-eigenvector that we
denote by π, and we normalize π such that 〈π|1〉 = 1. Furthermore, by the Perron-Frobenius
theorem, the 1-eigenvalue is simple, so S1 = (1), U1 is a 1 × n matrix and V1 is a n × 1
matrix. Furthermore, by the above, π ∈ Im(U1), and since the dimension of the image is
1, we must have Im(U1) = Span({π}). Similarly, Im(V1) = Span({1}). This completes the
proof of the first item.

For the second item, let U = V −1 and observe that since UV = I, 〈ui| vj〉 = δi,j (where
ui is the i-th row of U and vj is the j-th column of V ). Now, consider b 6= b′ and the product
P = UbVb′ . Every entry of P is of the form 〈ub,i| vb′,j〉 where i ∈ [dimb] and j ∈ [dimb′ ]. By
the previous observation, they are all zeros. Also, I has a Jordan decomposition V IU , so
immediately it is clear that

∑B
b=1 VbUb = I.
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For the third item, Suppose V1 = α1 and U1 = β 〈π| for some nonzero α, β ∈ C. We see
that V1S1U1 = αβ |1〉〈π|. We want to determine αβ. Since 〈π| S = 〈π| we have that

〈π| = 〈π| S = β−1U1S = β−1U1

B∑
b=1

VbSbUb

= β−1U1V1I1U1 + β−1
B∑
b=2

U1VbSbUb = β−1βαβ 〈π|1〉 〈π| = αβ 〈π| ,

so αβ = 1. Hence, V1S1U1 = V1U1 = |1〉〈π|. J

2.4 Functions of matrices

This subsection follows the book of Higham [23]. In the Jordan basis, each Jordan block is a
matrix with some complex value λ over the main diagonal and 1 in the diagonal above it.
We want to distinguish upper triangular matrices in which elements on the same diagonal
have the same value. We note that this class D of matrices is closed under matrix addition
and multiplication. We denote:

I Definition 7. For 0 ≤ i ≤ n − 1 let Dn,i be the n × n matrix that has 1 over the i-th
diagonal and 0 elsewhere, where the 0-th diagonal is the main diagonal and the i-th diagonal
is the diagonal i elements above it.

Clearly D = Span {Dn,0, . . . ,Dn,n−1} is closed under matrix addition. Also, since

Dn,i · Dn,j = Dn,i+j ,

D is also closed under matrix multiplication.
Suppose p ∈ C[x] is a polynomial p(x) =

∑d
i=0 cix

i. We can evaluate the polynomial over
the ring Mn(C), i.e., given an n× n matrix A we let

p(A) =
d∑
i=0

ciAi.

Note that if A = VAV −1 then p(A) = V p(A)V −1. Also, if A = diag(A1, . . . ,AB) then
p(A) = diag(p(A1), . . . , p(AB)). In the extreme case where A is diagonalizable and all
Jordan blocks have dimension 1, we see that p acts on the eigenvalues of A. In the general
case, we need to understand how p acts on a Jordan block Ab = λbI +Ddimb,1. The answer
is quite surprising and holds for arbitrary differentiable functions.

I Lemma 8 ([23], Chapter 1). Let f : C → C and suppose it is differentiable n times on
Spec(A). Let A ∈ Cn×n be a Jordan block A = λI +Dn,1. Then,

f(A) =


f(λ) f ′(λ) . . . f(n−1)(λ)

(n−1)!

f(λ)
. . .

...
. . . f ′(λ)

f(λ)

 =
n−1∑
t=0

f (t)(λ)
t! Dn,t.

APPROX/RANDOM’17
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2.5 The generalized inverse

Let A be any complex linear operator. A generalized (reflexive) inverse A+ of A is a matrix
that satisfies both AA+A = A and A+AA+ = A+. A generalized inverse is not unique,
however if we further demand that both AA+ and A+A are Hermitian, then such an operator
is unique, and is called the Moore-Penrose pseudo-inverse and can be computed using the
singular values decomposition (SVD). If A = UΣV † is the SVD of A then the pseudo-inverse
is A+ = VΣ+U† where Σ+ = inv(Σ) and inv(x) is the univariate function that is 1/x when
x 6= 0 and 0 otherwise.

We will not work with the SVD but rather with the Jordan canonical form. Let A =
VAV −1 be a Jordan decomposition of a singular matrix A. When the algebraic multiplicity
of the eigenvalue 0 is one, the matrix A? = inv(A), according to Subsection 2.4, is well
defined. Namely, inv(A) = VAinvV −1 where Ainv is obtained by inverting every Jordan block
that does not correspond to the zero eigenvalue. It is immediate that A? is a generalized
inverse, although it does not generally coincide with the pseudo-inverse. From here onward,
we denote A? as the generalized inverse inv(A).

Any generalized inverse A? can be used to determine if a system of linear equations has
any solution (and if so, to give them all). More concretely, if the system Ax = b has a
solution then all its solution are given by x = A?b+ (I −A?A)w for an arbitrary w. All of
the above claims can be found, e.g., in [4].

It will later be evident that when A = L = I − S is a Laplacian corresponding to an
irreducible, aperiodic and stochastic matrix S with a stationary distribution π, the expression
I − A?A is simply |1〉〈π|. Thus, if we find L? we can solve any set of equations Lx = b that
has a solution. In fact, this also works when we try to solve the system Lx = b for b that
does not admit any perfect solution, but is close to a vector in Im(L). To see that, say b
is arbitrary, and on input b and L we output z = L?b. Then ‖Lz − b‖ = ‖(LL? − I)b‖ =
‖|1〉〈π| b‖ =

√
n · |〈π, b〉|, and so if b is δ close to being perpendicular to π (and so close to

being in Im(L)) then the solution z = L?b is such that Lz is
√
nδ close to the desired value b.

2.6 Space-bounded probabilistic computation

2.6.1 The model of computation

A space-bounded probabilistic Turing machine has four semi-infinite tapes: a read-only
input tape, a work tape, a read-only uni-directional random-coins tape and a write-only
uni-directional output tape. We say a language is accepted by a probabilistic TM if for every
input in the language the acceptance probability is at least 2/3 and for every input not in the
language it is at most 1/3. As usual, the acceptance probability can be amplified as long as
there is some non-negligible gap between the acceptance probability of yes and no instances.

The complexity class BPL comprises all languages accepted by a space-bounded proba-
bilistic TM with space complexity O(logn) and polynomial time.

2.6.2 Simulatable matrices

We are often interested in approximating a value (e.g., a matrix entry) with probabilistic
machines. Assume that for an input x ∈ {0, 1}n there exists a value u = u(x) ∈ C. We say a
probabilistic TM (ε, δ)-approximates u(x) if

∀x∈{0,1}n Pr
y

[|M(x, y)− u(x)| ≥ ε] ≤ δ.
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If u is multi-valued (say, a vector) we say a TM (ε, δ)-approximates u if given an index i it
(ε, δ)-approximates u[i].

I Definition 9. We say that a family of matrices A is simulatable if there exists a probabilistic
algorithm that on input A ∈ A of dimension n, k ∈ N, s, t ∈ [n], ε, δ > 0 runs in space
O(log nk

ε + log log 1
δ ) and (ε, δ)-approximates Ak[s, t].

Probabilistic logspace machines can approximate random walks well. In [17], it is shown
that:

I Lemma 10. The family of stochastic matrices is simulatable.

We can also conclude:

I Lemma 11 ([17]). Let A ∈ Cn×n be a stochastic matrix and let p =
∑d
i=0 cix

i be a complex
polynomial such that:

For every i, |ci| ≤M , and,
The coefficients ci are explicit in the sense that there exists an algorithm that given
k ≤ d, ε, δ outputs an (ε, δ)-approximation of ck using O(log nMd log 1

δ

ε ) space.
Then, the entries of p(A) can be (ε, δ)-approximated using O(log nMd log 1

δ

ε ) space.

3 Approximating (I − A)−1 by the Taylor series

We start with the simple case of normal matrices, and consider general functions.

I Theorem 12. Let f, p : C → C and ε > 0. Suppose A is a normal matrix such that for
every λ ∈ Spec(A), |f(λ)− p(λ)| ≤ ε. Then, ‖f(A)− p(A)‖ ≤ ε.

Proof. A is normal, so it is diagonalizable by a unitary matrix, A = UDU†. Also, f(A) =
Uf(D)U† and p(A) = Up(D)U†. Thus, we have that

‖f(A)− p(A)‖ ≤ ‖U‖ ‖U†‖ ‖f(D)− p(D)‖ = ‖f(D)− p(D)‖ ,

and ‖f(D)− p(D)‖ is simply maxλ∈Spec(A) |f(λ)− p(λ)| ≤ ε. J

With that we can easily see that when A is normal,
∑T
i=0Ai approximates (I − A)−1

pretty well. Formally,

I Corollary 13. Let A be a normal matrix and suppose Spec(A) ⊆ [0, 1) and in particular
I − A is invertible. Then,∥∥∥∥∥(I − A)−1 −

T∑
i=0
Ai
∥∥∥∥∥ ≤ e−Tλ(A)

λ(A)
.

Proof. For λ ∈ [0, 1), it holds that∣∣∣∣∣ 1
1− λ −

T∑
i=0

λi

∣∣∣∣∣ ≤
∞∑
T+1

λi = λT+1

1− λ.

The above expression is maximized where λ = 1− γ(A), so we have:∣∣∣∣∣ 1
1− λ −

T∑
i=0

λi

∣∣∣∣∣ ≤ (1− γ(A))T

γ(A) ≤ e−Tγ(A)

γ(A) ,

and the corollary follows. J
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We would like to extend this result to arbitrary operators A. As a first attempt we begin
with generalizing Theorem 12 to arbitrary operators. For that we need the representation
of A in its Jordan normal form, and we also need the function p and its derivatives to
approximate the target function f and its derivatives well. We prove:

I Theorem 14. Let f, p : C → C. Suppose A is an n × n matrix such that for every
λ ∈ Spec(A) and every k ≤ n, |f (k)(λ) − p(k)(λ)| ≤ k! · εk. Furthermore, assume A has a
Jordan decomposition A = VAV −1, and the largest Jordan block has dimension D. Then,
‖f(A)− p(A)‖ ≤ κ(V ) ·

∑D−1
k=0 εk.

Proof. Let A = A1 ⊕ . . .⊕Ab, corresponding to the different Jordan blocks. By Lemma 8,
f(A) = V f(A)V −1 where f(A) = f(A1)⊕ . . .⊕ f(Ab),

f(Ai) =


f(λi) f ′(λi) . . . f(dimi −1)(λi)

(dimi−1)!

f(λi)
. . .

...
. . . f ′(λi)

f(λi)

 =
dimi−1∑
k=0

f (k)(λi)
k! Ddimi,k,

and λi is the eigenvalue corresponding to the block Ai of dimension dimi. The same of
course holds for p. Thus,

‖f(A)− p(A)‖ =
∥∥V (f(A)− p(A))V −1∥∥ ≤ κ(V ) · ‖f(A)− p(A)‖ .

To bound the latter expression, note that

‖f(A)− p(A)‖ = max
i∈[b]
‖f(Ai)− p(Ai)‖

≤ max
i∈[b]

dimi−1∑
k=0

∣∣∣∣f (k)(λi)− p(k)(λi)
k!

∣∣∣∣ ‖Ddimi,k‖ ≤
D−1∑
k=0

εk. J

When A is normal, κ(V ) = 1 and the maximal block length is 1, so we recover Theorem 12.
We now check what we get for (I − A)−1 and an arbitrary operator A:

I Corollary 15. Suppose A is an n×n matrix that has a Jordan decomposition A = VAV −1.
Suppose every eigenvalue λ of A satisfies |λ| < 1 and in particular I − A is invertible. Let
T ∈ N such that T ≥ 8n2

γ(A)2 , let f(A) = (I − A)−1 and p(A) =
∑T
i=0Ai. Then,

‖f(A)− p(A)‖ ≤ 2nκ(V )e
−Tγ(A)/4

γ(A) .

Proof. Let A be an n × n matrix and suppose every eigenvalue λ of A satisfies |λ| < 1.
We consider, again, inverting I − A by considering the function f(λ) = 1

1−λ and its power-
series expansion p(λ) =

∑T
i=0 λ

i. For k ≤ n, one can verify that 1
k!f

(k)(λ) = 1
(1−λ)k+1 and

1
k!p

(k)(λ) =
∑T−k
i=0

(
k+i
k

)
λi. Also, 1

k!f
(k)(λ) =

∑∞
i=0
(
k+i
k

)
λi so we see that

εk =

∣∣∣∣∣
∞∑

i=T−k+1

(
k + i

k

)
λi

∣∣∣∣∣ .
As T ≥ 4n, T − k + 1 ≥ T/2. Also,

(
k+i
k

)
≤ (k + i)k ≤ (2i)k, so εk ≤

∑∞
i=T/2(2i)kλi. Now,
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we have that (2i)k ≤ |λ|−i/2, since

(2i)k|λ|i/2 = ek ln(2i)−(i/2) ln 1
|λ| = e

1
2

(
2k ln(2i)−i ln 1

|λ|

)
≤ e

1
2

(
n
√
i−i ln 1

|λ|

)
≤ e

√
i

2

(
n−
√
i ln 1
|λ|

)
≤ e

√
i

2

(
n−
√
T/2·ln 1

1−γ(A)

)
≤ e

√
i

2

(
n−
√
T/2·γ(A)

)
≤ e

√
i

2 (n−2n) ≤ 1.

Plugging it to the above bound for εk, we obtain:

εk ≤

∣∣∣∣∣∣
∞∑

i=T/2

λi/2

∣∣∣∣∣∣ =
∣∣∣∣ λT/4

1−
√
λ

∣∣∣∣ .
To bound

∣∣∣ 1
1−
√
λ

∣∣∣, we use the fact that:

∣∣∣∣ 1
1−
√
λ

∣∣∣∣ = |1 +
√
λ|

|1− λ| ≤
2

γ(A) .

Altogether,

εk ≤
2

γ(A) (1− γ(A))T/4 ≤ 2e−Tγ(A)/4

γ(A) .

The Corollary follows by applying Theorem 14 and using the fact that D ≤ n. J

4 Computing the generalized inverse of the Laplacian

In this section we approximate the generalized inverse of the Laplacian of directed graphs as
long as we have a good approximation of its stationary distribution. Formally,

I Theorem 16. There exists a probabilistic algorithm that gets as input:
An n× n irreducible, aperiodic stochastic matrix S,
Two parameters, κ and γ, which describe how stable the input S is:

Suppose κ ≥ κ(V ), where S = V SV −1 is any Jordan decomposition of S, and,
γ(S) ≥ γ.

Desired accuracy and confidence parameters ε, δ > 0.
An approximation π̃ of the stationary distribution π of S, where ‖π̃ − π‖ ≤ τ and
τ ≤ ε

(T+1)
√
n
for T = 8n2

γ2

(
1 + log nκ

εγ

)
.

Let L denote the Laplacian, L = I − S. Then, the algorithm outputs a (3ε, δ)-approximation
of L? using

O

(
log n

γε
+ log log κ

δ

)
space.

Intuitively, we would like to employ the following approach. Given a stochastic operator
S with a unique stationary distribution π, we would like to “peel off” the 1× 1 Jordan block
with eigenvalue 1, so that we are left with an operator A such that I −A is invertible. Then,
we would like to use Corollary 15 to approximate (I −A)−1 by

∑T
i=0Ai, using the fact that

we can approximate Ai well with a BPL algorithm.
There are two obstacles that we need to overcome:

APPROX/RANDOM’17
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First, when S in not normal, we do not have an orthonormal basis, so we need to explain
what “peeling off” the stationary distribution means. It turns out that A = S − |1〉〈π|.
Second, while S is stochastic, A = S − |1〉〈π| is not, and furthermore, its `∞ norm
is usually greater than 1. In particular, we cannot immediately assume that we can
approximate high powers of it in BPL. We will show that A is still simulatable because
|1〉〈π| commutes with both S and A.

We also need to check that the fact that π̃ is only close to π and not exactly it, does not
affect the parameters by too much.

We start the formal exposition with a precise description of the algorithm.

4.1 The Algorithm
The algorithm first computes the parameter

T =
⌈

8n2

γ2

(
1 + log nκ

εγ

)⌉
.

The algorithm then computes an (ε, δ)-approximation of the matrix

Q̃T (S) =
(

T∑
i=0
Si
)
− (T + 1) |1〉〈π̃|

using Lemma 11 (note that since π̃ is given, we approximate the power series and compute
(T + 1) |1〉〈π̃| exactly).

We first argue that the algorithm runs in small space and then analyze correctness.

4.2 Efficiency
We observe:

I Lemma 17. For every ε, δ > 0 and integer T , and any n × n stochastic matrix S, the
entries of Q̃T (S) can be (ε, δ)-approximated using O

(
log nT log 1

δ

ε

)
space.

Proof. The claim follows directly from Lemma 11 since S is stochastic. J

4.3 Correctness
We first do the analysis in the ideal situation that π̃ = π and see that in this case the
algorithm (2ε, δ)-approximates L?. We then show that when ‖π − π̃‖ ≤ τ the algorithm
(3ε, δ)-approximates L?.

4.3.1 Peeling off the 1-eigenspace
Throughout the proof we use the representation of S guaranteed by Claim 6. Namely, S can
be written as S =

∑B
b=1 VbSbUb where

S1 is a 1× 1 matrix and S1 = (1). Also, V1U1 = |1〉 〈π| and 〈1|π〉 = 1,
For all b ≥ 2, Ub |1〉 = 0 and 〈π|Vb = 0†, and∑B
b=1 VbUb = I.
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Our goal is to find the generalized inverse of L = I − S. As explained before, our first
step is to “peel-off” from S the 1-eigenspace, and the correct way to do that is by annihilating
the 1× 1 Jordan block with eigenvalue 1. We therefore define:

A = S − |1〉 〈π| .

We notice that S, A, L and L? share the same Jordan basis, therefore, if we express
S =

∑B
b=1 UbSbVb then

L =
B∑
b=2

Vb(Ib − Sb)Ub,

and,

A =
B∑
b=2

VbSbUb.

We denote Lb = Ib − Sb for b ≥ 2 (and L1 is the zero matrix). The big advantage of A
over S is that in A all eigenvalues have magnitude smaller than 1, as A =

∑B
b=2 VbSbUb, and

therefore I − A is invertible. We still need, however, to relate L? to (I − A)−1. We prove:

I Lemma 18. L? = (I − A)−1 − |1〉 〈π|.

Proof. Recall that S = |1〉 〈π| +
∑B
b=2 VbSbUb, A =

∑B
b=2 VbSbUb and I =

∑B
b=1 VbUb.

Hence,

I − A =
B∑
b=1

VbUb −
B∑
b=2

VbSbUb = V1U1 +
B∑
b=2

Vb(Ib − Sb)Ub = |1〉〈π|+
B∑
b=2

VbLbUb.

The inverse is thus given by

(I − A)−1 = |1〉 〈π|+
B∑
b=2

VbL−1
b Ub = |1〉 〈π|+ L?,

as desired. J

Intuitively, this means that approximating (I − A)−1 suffices for approximating L?, and
we next consider approximating (I − A)−1.

4.3.2 Approximating (I − A)−1

Since all eigenvalues of A have magnitude smaller than 1, we can apply Corollary 15 and get:

I Lemma 19.∥∥∥∥∥(I − A)−1 −
T∑
k=0
Ak
∥∥∥∥∥ ≤ ε.

Proof. We saw that A =
∑B
b=2 VbSbUb, and by the Perron-Frobenius theorem the eigenvalues

that are written on Sb for b ≥ 2, are at most 1−γ < 1 in absolute value. Thus, all eigenvalues
of A have absolute value at most γ(S). By Corollary 15, for T ≥ 8n2

γ(S)2 ,∥∥∥∥∥(I − A)−1 −
T∑
k=0
Ak
∥∥∥∥∥ ≤ 2nκ(V )e

−Tγ(S)/4

γ(S) .

Substituting T =
⌈

8n2

γ(S)2 ln 2nκ(V )
εγ(S)

⌉
, the desired bound holds. J

APPROX/RANDOM’17
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Thus, the problem now reduces to simulating Ai in small space. As mentioned before, A
is not stochastic and its `∞ norm is often larger than 1. However A = S − |1〉〈π| has a very
special form that conforms with the Jordan basis structure, which we now employ:

I Claim 20. The matrices S and |1〉 〈π| commute, and furthermore S · |1〉 〈π| = |1〉 〈π| · S =
|1〉 〈π|.

Proof.

S · |1〉 〈π| = |1〉 〈π|+
B∑
b=2

VbSbUb · |1〉 〈π| = |1〉 〈π| ,

and,

|1〉 〈π| · S = |1〉 〈π|+
B∑
b=2
|1〉 〈π| · VbSbUb = |1〉 〈π| . J

I Claim 21. For every k ≥ 1, Ak = Sk − |1〉 〈π|.

Proof. The proof is by induction on k. For k = 1 the claim follows by the definition. Assume
the statement holds for k ∈ N, and consider Ak+1, so By Claim 20:

Ak+1 = (S − |1〉 〈π|) · (Sk − |1〉 〈π|)
= Sk+1 − S · |1〉 〈π| − |1〉 〈π| · Sk + |1〉 〈π|1〉 〈π|
= Sk+1 − |1〉 〈π| − |1〉 〈π|+ |1〉 〈π| = Sk+1 − |1〉 〈π| . J

Thus, A is simulatable and we can approximate (I − A)−1 in small space.

4.3.3 Putting everything together
Define the ideal polynomial QT by:

QT (S) =
(

T∑
i=0
Si
)
− (T + 1) |1〉〈π| .

I Lemma 22. ‖L? −QT (S)‖ ≤ ε.

Proof.

‖L? −QT (S)‖ =
∥∥(I − A)−1 − |1〉〈π| −QT (S)

∥∥
≤

∥∥∥∥∥
(

T∑
i=0
Ai
)
− |1〉〈π| −QT (S)

∥∥∥∥∥+ ε

=

∥∥∥∥∥A0 +
T∑
i=1

(
Si − |1〉〈π|

)
− |1〉〈π| −QT (S)

∥∥∥∥∥+ ε

=

∥∥∥∥∥
(

T∑
i=0
Si
)
− (T + 1) |1〉〈π| −QT (S)

∥∥∥∥∥+ ε = ε. J

Finally, we check how the fact that π̃ is only close to π, affects our accuracy. We see that:

I Claim 23.
∥∥∥Q̃T (S)−QT (S)

∥∥∥ ≤ ε.
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Proof. Notice that Q̃T (S)−QT (S) = (T + 1) |1〉〈π̃ − π|. Therefore,
∥∥∥Q̃T (S)−QT (S)

∥∥∥ ≤
(T + 1) · ‖1‖ · ‖π̃ − π‖. The proof follows because ‖1‖ =

√
n and ‖π̃ − π‖ ≤ τ ≤ ε√

n(T+1) . J

Now, since we (ε, δ)-approximate Q̃T (S), then except for probability δ what we output is
ε-close to Q̃T (S), and therefore it is 2ε-close to QT (S) and 3ε-close to L?, which completes
the proof of Theorem 16.

5 Some specific families of graphs

Ultimately, we would like to solve in BPL any set of equations Lx = b, where b is close to
Im(L), and where L is the Laplacian of a stochastic matrix S. Theorem 16 is a step towards
this goal, but it works only when:
S is irreducible, namely, its underlying graph is strongly connected,
S is aperiodic,
We can approximate well the unique stationary distribution π,
γ(S) ≥ 1

na for some constant a, i.e., all eigenvalues except the largest one, are at most
1− γ in absolute value, and,
κ(V ) ≤ 2nb for some constant b, where S = V SV −1 is a Jordan decomposition and
κ(V ) = ‖V ‖ ·

∥∥V −1
∥∥. Notice that here we may tolerate exponential κ(V ) as the space

complexity dependency on κ is doubly-logarithmic.

In this section we want to examine which requirements can be relaxed. The section is
organized as follows. First, we note that we can get rid of the aperiodicity requirement and
we can somewhat relax the spectral gap requirement. Then we show that in some cases
we can get rid of the κ(V ) requirement (when the eigenvalues are polynomially separated).
Finally, we give specific results for:

Undirected graphs,
Directed Eulerian graphs (which generalize directed regular graphs), and,
Directed rapidly-mixing graphs.

5.1 Omitting the aperiodicity requirement using lazy walks
Given a stochastic matrix S we can convert it to the corresponding lazy walk S ′ = 1

2 (I + S),
that stays in place with probability half. Define:

γ′(S) = max
λ∈Spec(S′),λ6=1

(1−<(λ)).

The conversion has two benefits. First, the walk is clearly aperiodic. Also, we will be able to
replace the condition γ ≤ γ(S), with the milder condition γ ≤ γ′(S). We will also show that
we can recover the generalized inverse of the Laplacian of a graph G from that of the lazy
walk variant of G. We prove:

I Theorem 24. There exists a probabilistic algorithm that gets as input:
An n× n irreducible, stochastic matrix S.
Two parameters, κ and γ, which describe how stable the input S is:

Suppose κ ≥ κ(V ), where S = V SV −1 is any Jordan decomposition of S, and,
γ′(S) ≥ γ.

Desired accuracy and confidence parameters ε, δ > 0.
An approximation π̃ of the stationary distribution π of S, where ‖π̃ − π‖ ≤ τ and
τ ≤ ε

(T+1)
√
n
for T = 8n2

γ2

(
1 + log nκ

εγ

)
.
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Let L denote the Laplacian, L = I − S. Then, the algorithm outputs a (3ε, δ)-approximation
of L? using

O

(
log n

γε
+ log log κ

δ

)
space.

Proof. We run the algorithm of Theorem 16 over S ′ = 1
2 (I + S). It is clear that S ′ is

stochastic and aperiodic. By assumption, S ′ is irreducible (since S is). Also, S and S ′ have
the same V and by assumption κ(V ) ≤ κ. They also share the same stationary distribution
π, and we are given π′ which is close to π.

We will soon prove that γ(S ′) ≥ γ′(S)
4 . Therefore, by Theorem 16, we get a (3ε, δ)-

approximation of (I − S ′)?. Finally, we will see that (I − S ′)? = 2(I − S)? and so we easily
get an approximation for (I − S)?.

To see that indeed (I − S ′)? = 2(I − S)?, notice that I and S share the same Jordan
basis V . The first block in S ′ and S is the same, and for b ≥ 2, if the b-th block in S is Sb,
then the b-th block in (I − S ′)? is (I − 1

2 (I + Sb))−1 = 2(I − Sb)−1 and the b-th block of
(I − S)? is (I− Sb)−1.

Thus, all that is left is to prove:

I Claim 25. It holds that γ(S ′) ≥ γ′(S)
4 .

Proof. Fix λ ∈ Spec(S), |λ| ≤ 1, and write λ = a+ bi for a, b ∈ R. Also, let λ′ = 1
2 + 1

2λ =
1+a

2 + b
2 i, which is the corresponding eigenvalue in S ′. Thus:

|λ′|2 = a2 + b2 + 2a+ 1
4 ≤ 1 + 2a+ 1

4 = 1 + <(λ)
2 ,

so 1−|λ′| ≤ 1−
√

1+<(λ)
2 . The claim follows since for every R such that |R| ≤ 1, 1−

√
1+R

2 ≥
1
4 (1−R). J

J

5.2 Undirected graphs
Given an undirected graph we can easily partition it to its connected components using the
fact that st-connectivity of undirected graphs is in BPL [1] (in fact, Reingold showed it is
in L [30]). Therefore, we can solve the system of equations on each connected component
separately.

Now, say we are given an undirected graph G and A is its adjacency matrix. The
stochastic matrix S associated with G is D−1A, where D is a diagonal matrix with the
degree degi of the i-th vertex on the i-th element of the diagonal. While A is Hermitian,
S is usually not. Still, S is similar to a Hermitian matrix in the following form: Express
D−1/2AD−1/2 = VAV −1 where V is unitary and A diagonal with real entries (because
D−1/2AD−1/2 is Hermitian), then S = (D−1/2V )A(D−1/2V )−1. Thus, S has Jordan normal
form WAW−1 with W = D−1/2V . We see that

κ(W ) =
∥∥∥D−1/2V

∥∥∥ · ∥∥∥V D1/2
∥∥∥ ≤ ∥∥∥D−1/2

∥∥∥∥∥∥D1/2
∥∥∥ ‖V ‖ ∥∥V −1∥∥

≤

√
λmax(D)
λmin(D) ≤

√
n

1 =
√
n.
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We can therefore always take κ =
√
n in Theorem 24 when we deal with undirected graphs,

even when the graph is irregular.
The above discussion shows that S is similar to the diagonal matrix A which has a set of

real eigenvalues, and therefore so does S. Chung proved that:

I Lemma 26 ([11], Lemma 1.9). Let S be a transition matrix of an undirected connected
graph with diameter Γ. Then γ′(S) ≥ 1

Γ·
∑

i
degi

.

Finally, we need the stationary distribution π. However, for an undirected graph G =
(V,E) the stationary distribution π is fully explicit and gives weight 2 degi

|E| to the vertex i.
Altogether, we get the theorem for undirected graphs that was stated in the introduction:

I Theorem 27. There exists a probabilistic algorithm that gets as input an n× n stochastic
matrix S that is the transition matrix of an undirected graph and desired accuracy and
confidence parameters ε, δ > 0, outputs a (ε, δ)-approximation of L? = (I − S)? using

O

(
log n

ε
+ log log 1

δ

)
space.

We note that the above theorem also holds for weighted undirected graphs. To see this,
view degi as the sum of weights of the i-th vertex, degi =

∑
j A[i, j], which is also λi(D).

Then, we can take κ =
√
λmax(D)/λmin(D) in Theorem 24. The stationary distribution is

again fully explicit. Finally, analogues of Lemma 26 for weighted undirected graph show that
γ′(S) is at least inverse-polynomially large in the weights of the graph (e.g., Section 5 in
[10]).

When G is undirected we can also approximate in BPL the often used symmetric normal-
ized Laplacian , which is

Lsym = I −D−1/2AD−1/2,

where A is the graph’s adjacency matrix and D is the diagonal degrees matrix. We have
seen that we can approximate L? = (I −D−1A)? in BPL, and

(Lsym)? =
(
D1/2LD−1/2

)?
= D1/2L?D−1/2.

5.3 On the parameter κ(V )
Our algorithm’s space complexity has a doubly-logarithmic dependency on κ(V ) – the minimal
condition number of all Jordan bases. When the matrix S has well-separated eigenvalues
(namely, the minimal distance between every two eigenvalues is at least polynomially-small),
the dependency can be omitted. This is implied by the following theorem:

I Theorem 28 ([32]). Let A be an n × n matrix with eigenvalues λ1, . . . , λn and suppose
∆ > 0 is such that mini 6=j |λi − λj | ≥ ∆. Also, let κA be the minimal value of κ(V ) over all
V such that A = VAV −1 is a Jordan decomposition of A. Then, κA ≤ n · e

‖A‖2

2∆2 .

We can thus conclude:

I Theorem 29. There exists a probabilistic algorithm that gets as input:
An n × n irreducible, stochastic matrix S and a real parameter ∆ > 0 so that it is
guaranteed that all the eigenvalues of S are ∆-separated (that is, |λi − λj | ≥ ∆ for every
distinct λi, λj ∈ Spec(S)).

APPROX/RANDOM’17
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A parameter γ such that γ′(S) ≥ γ.
An approximation π̃ of the stationary distribution π of S, where ‖π̃ − π‖ ≤ τ and
τ ≤ ε

(T+1)
√
n
for T = 8n2

γ2

(
1 + log nκ

εγ

)
.

Let L denote the Laplacian, L = I − S. Then, the algorithm outputs a (3ε, δ)-approximation
of L? using

O

(
log n

∆γε + log log 1
δ

)
space.

5.4 Eulerian directed graphs
Eulerian graphs are directed graphs where the in-degree and out-degree of each vertex are
the same, and so they generalize both regular directed graphs, and general undirected graphs.
The stationary distribution is fully explicit (as in undirected graphs that we mentioned
before). In this section we note that for Eulerian graphs γ′ is always non-negligible.

I Claim 30. Let S be a transition matrix of a strongly connected Eulerian directed graph
with m edges. Then, γ′(S) ≥ 4

m2 .

Proof. Chung [12] proved that γ′(S) is at least the second smallest eigenvalue µn−1 (the
smallest eigenvalue is 0) of

LC
G = I − Π1/2SΠ−1/2 + Π−1/2S†Π1/2

2 ,

where Π is a diagonal matrix with the stationary distribution π on the diagonal. Also, in the
same paper it is proven that µn−1 ≥ 4

m2 , which completes the proof. J

5.5 Rapidly-mixing graphs
Finally, one way to approximate the stationary distribution is by taking a random walk on G
until it converges. This follows directly from Lemma 11 and the fact that limk→∞ P kG = |1〉〈π|
(see Theorem 3). For undirected graphs (and also Eulerian directed graphs) the walk converges
in polynomial time, hence, we can approximate the stationary distribution in logarithmic
space, except that there is no need to do that because we have an explicit formula for the
stationary distribution anyway.

For general directed graphs (even with bounded degree) the convergence rate can be
exponentially small and the approach does not work. Nevertheless, there is a whole class of
directed graphs, called rapidly-mixing graphs, that converge rapidly even though, usually,
there is no explicit formula for the stationary distribution. Clearly, for graphs where the walk
converges in polynomial time we can approximate the stationary distribution π in logarithmic
space.
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