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Abstract
We study several extensions of linear-time and computation-tree temporal logics with quantifiers
that allow for counting how often certain properties hold. For most of these extensions, the model-
checking problem is undecidable, but we show that decidability can be recovered by considering
flat Kripke structures where each state belongs to at most one simple loop. Most decision
procedures are based on results on (flat) counter systems where counters are used to implement
the evaluation of counting operators.
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1 Introduction

Model checking [8] is a method to verify automatically the correct behaviour of systems.
It takes as input a model of the system to be verified and a logical formula encoding the
specification and checks whether the behaviour of the model satisfies the formula. One key
aspect of this method is to find the appropriate balance between expressiveness of models
and logical formalisms and efficiency of the model-checking algorithms. If the model is too
expressive, e.g. Turing machines, then the model-checking problem, even with very simple
logical formalisms, becomes undecidable. On the other hand, some expressive logics have
been proposed in order to reason on the temporal executions of simple models such as Kripke
structures. This is the case for the linear temporal logic LTL [22] and the branching-time
temporal logics CTL [7] and CTL* [14], for which the model-checking problem has been shown
to be PSpace-complete, contained in P and PSpace-complete, respectively (see, e.g., [3]).
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Even though these logical formalisms allow for stating classical properties like safety or
liveness over executions of Kripke structures, their expressiveness is limited. In particular
they cannot describe quantitative aspects, as for instance the fact that a property has been
true twice as often as another along an execution. One approach to solve this issue is to
extend the logic with some ability to count positions of an execution satisfying some property
and to check constraints over such numbers at some positions. Such a counting extension is
proposed in [19] for CTL leading to a logic denoted here as cCTL. This formalism can state
properties such as an event p will eventually occur and before that, the number of events
q is larger than two. The authors propose further an extension called (here) cCTL± that
admits diagonal comparisons (i.e., negative and positive coefficients) to state, for instance
that the number of events b is greater than the number of events c. It is shown that the
model-checking problem for cCTL is decidable in polynomial time and that the satisfiability
problem for cCTL± is undecidable. A similar extension for LTL is considered in [18] where
it is proven that model checking of cLTL is ExpSpace-complete while that of cLTL± is
undecidable.

Following the same motivation, regular availability expressions (RAE) were introduced in
[16] extending regular expressions by a mechanism to express that on a (sub-)word matching
an expression specific letters occur with a given relative frequency. Unfortunately, emptiness
of the intersection of two such expressions was shown undecidable. Even for single expressions
only a non-elementary procedure is known for verification (inclusion in regular languages)
and deciding emptiness [1]. The case is similar for the logic fLTL [5], a variant of LTL that
features an until operator extended by a frequency constraint. The operator is intended
to relax the classical semantics where ϕ Uψ requires ϕ to hold at all positions before ψ.
For example, the fLTL formula p U

1
3 q states that q holds eventually and before that the

proportion of positions satisfying p should be at least one third. The concept of relative
frequencies embeds naturally into the context of counting logics as it can be understood as a
restricted form of counting. In fact, fLTL can be considered as a fragment of cLTL± and still
has an undecidable satisfiability problem [5] implying the same for model-checking Kripke
structures. Moreover, most techniques employed for obtaining results on RAE as well as fLTL
involve variants of counter systems.

Looking at the model-checking problem from the model point of view, recent work has
shown that restrictions can be imposed on Kripke structures to obtain better complexity
bounds. As a matter of fact if the structure is flat (or weak), which means every state belongs
to at most one simple cycle in the graph underlying the structure, then the model-checking
problem for LTL becomes NP-complete [17]. Such a restriction has as well been successfully
applied to more complex classes of models. It is well known that the reachability problem
for two-counter systems is undecidable [21] whereas for flat systems the problem is decidable
for any number of counters [15], even more, model checking of LTL is NP-complete [11]. Flat
structures are not only interesting because of their algorithmic properties, but also because
they can be used as a way to under-approximate the behaviour of non-flat systems. For
instance for counter systems one gets a semi-decision procedure for the reachability problem
which consists in enumerating flat sub-systems and testing for reachability. In simple words,
flat structures can be understood as an extension of paths typically used in bounded model
checking and we expect that bounded model checking using flat structures rather than paths
improves practical model checking approaches.

Contributions. We consider the model-checking problem for a counting logic that we call
CCTL* where we use variables to mark positions on a run from where we begin to count the
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Table 1 Complexity characterisation of the model-checking problems of fragments of CCTL*. PH
indicates polynomial reducibility to the (decidable) satisfiability problem of PH.

CTL LTL CTL* fLTL fCTL fCTL* CLTL CCTL CCTL*

KS P PSpace-c. PSpace-c. undec. [5] Exp undec. undec. undec. [19] undec.
FKS P NP-c. [17] PSpace NExp Exp ExpSpace PH PH PH

number of times a subformula is satisfied. Such a way of counting was also introduced in [19],
see Section 2.2 for a comparison. We study as well its fragments fCTL, fLTL and fCTL* where
the explicit counting mechanism is replaced by a generalized version of the until operator
capable of expressing frequency constraints.

First we prove that fCTL model checking is at most exponential in the formula size and
polynomial in the structure size by using an algorithm similar to the one for CTL model
checking. To deal with frequency constraints a counter is employed for tracking the number
of times a subformula is satisfied in a run of a Kripke structure. We then show that for flat
Kripke structures the model-checking problems of fLTL and CCTL* are decidable. For the
former, our method is a guess and check procedure based on the existence of a flat counter
system as witness of a run of the Kripke structure satisfying the fLTL formula. For the
latter, we use a technique which consists in encoding the run of a flat Kripke structure into
a Presburger arithmetic formula and then we show that model checking of CCTL* can be
translated into the satisfiability problem of a decidable extension of Presburger arithmetic,
called PH, featuring a counting quantifier known as Härtig quantifier. We hence provide new
decidability results for CCTL* which in practice could be used as an under-approximation
approach to the general model-checking problem. We furthermore relate an extension of
Presburger arithmetic, for which the complexity of the satisfiability problem is open, to a
concrete model-checking problem. In summary, for model checking different fragments of
CCTL* on Kripke structures (KS) or flat Kripke structures (FKS) we obtain the picture shown
in Table 1 where bold entries are our novel results.

2 Definitions

2.1 Preliminaries

We write N and Z to denote the sets of natural numbers (including zero) and integers,
respectively, and [i, j] for {k ∈ Z | i ≤ k ≤ j}. We consider integers encoded with a binary
representation. For a finite alphabet Σ, Σ∗ represents the set of finite words over Σ, Σ+ the
set of finite non-empty words over Σ and Σω the set of infinite words over Σ. For a finite
set E of elements, |E| represents its cardinality. For (finite or infinite) words and general
sequences u = a0a1. . . ak. . . of length at least k+1 > 0 we denote by u(k) = ak the (k+1)-th
element and refer to its indices 0, 1, . . . as positions on u. If u is finite then |u| denotes its
length. For arbitrary functions f : A→ B and elements a ∈ A, b ∈ B we denote by f [a 7→ b]
the function f ′ that is equal to f except that f ′(a) = b. We write 0 and 1 for the functions
f0 : A→ {0} and f1 : A→ {1}, respectively, if the domain A is understood. By BA for sets
A and B we denote the set of all functions from A to B.

CONCUR 2017
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Kripke structures. Let AP be a finite set of atomic propositions. A Kripke structure is
a tuple K = (S, sI , E, λ) where S is a finite set of control states, sI ∈ S the initial control
state, E ⊆ S × S the set of edges and λ : S 7→ 2AP the labelling function. A finite path in K
is a sequence u = s0s1 . . . sk ∈ S+ with (si, si+1) ∈ E for all i ∈ [0, k − 1]. Infinite paths are
defined analogously. A run ρ of K is an infinite path with ρ(0) = sI . We denote by Runs(K)
the set of runs of K. Due to the single initial state, we assume without loss of generality
that the graph of K is connected, i.e. all states are reachable. A simple loop in K is a finite
path u = s0s1 . . . sk such that i 6= j implies si 6= sj for all i, j ∈ [0, k] and (sk, s0) ∈ E. A
Kripke structure K is called flat if for each state s ∈ S there is at most one simple loop u in
K with u(0) = s. See Figure 1 for an example. The classes of all Kripke structures and all
flat Kripke structures are denoted KS and FKS, respectively.

Counter systems. Our proofs use systems with integer counters and simple guards. A
counter system is a tuple S = (S, sI , C,∆) where S is a finite set of control states, sI ∈ S is
the initial state, C is a finite set of counter names and ∆ ⊆ S×ZC×2G(C)×S is the transition
relation where G(C) = {(c < 0), (c ≥ 0) | c ∈ C}. An infinite sequence s0s1. . . ∈ Sω of states
starting in s0 = sI is called a run of S if there is a sequence θ0θ1. . . ∈ (ZC)ω of valuation
functions θi : C → Z with θ0 = 0 and a transition (si,ui, Gi, si+1) ∈ ∆ for every i ∈ N such
that θi+1 = θi + ui (defined point-wise as usual), θi+1(c) < 0 if (c < 0) ∈ Gi and θi+1(c) ≥ 0
if (c ≥ 0) ∈ Gi for all c ∈ C. Again, we denote by Runs(S) the set of all such runs and
assume the graph of control states underlying S is connected.

2.2 Temporal Logics with Counting

We now introduce the different formalisms we use in this work as specification language. The
most general one is the branching-time logic CCTL* which extends the branching-time logic
CTL* (see e.g. [3]) with the following features: it has operators that allow for counting along
a run the number of times a formula is satisfied and which stores the result into a variable.
The counting starts when the associated variable is “placed” on the run. These variables
may be shadowed by nested quantification, similar to the semantics of the freeze quantifier
in linear temporal logic [13].

Let V be a set of variables and AP a set of atomic propositions. The syntax of CCTL*

formulae ϕ over V and AP is given by the grammar rules

ϕ ::= p | ϕ∧ϕ | ¬ϕ | Xϕ | ϕ Uϕ | Eϕ | x.ϕ | τ ≤ τ τ ::= a | a ·#x(ϕ) | τ + τ

for p ∈ AP , x ∈ V and a ∈ Z. Common abbreviations such as > ≡ p ∨ ¬p, ⊥ ≡ ¬>,
Fϕ ≡ > Uϕ, Gϕ ≡ ¬ F¬ϕ and Aϕ ≡ ¬ E¬ϕ may also be used. The set of all subformulae of
a formula ϕ (including itself) is denoted sub(ϕ) and |ϕ| denotes the length of ϕ, with binary
encoding of numbers.

Semantics. Intuitively, a variable x is used to mark some position on the concerned run.
Within the scope of x a term #x(ϕ) refers to the number of times the formula ϕ holds
between the current position and that marked by x. The semantics of CCTL* is hence defined
with respect to a Kripke structure K = (S, sI , E, λ), a run ρ ∈ Runs(K), a position i ∈ N on
ρ and a valuation function θ : V → N assigning a position (index) on ρ to each variable. The
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satisfaction relation |= is defined inductively for p ∈ AP , formulae ϕ,ψ and terms τ1, τ2 by

(ρ, i, θ) |= p
def⇔ p ∈ λ(ρ(i)),

(ρ, i, θ) |= Xϕ def⇔ (ρ, i+ 1, θ) |= ϕ,

(ρ, i, θ) |= ϕ Uψ def⇔ ∃k ≥ i : (ρ, k, θ) |= ψ and ∀j ∈ [i, k − 1] : (ρ, j, θ) |= ϕ,

(ρ, i, θ) |= Eϕ def⇔ ∃ρ′ ∈ Runs(K) : ∀j ∈ [0, i] : ρ′(j) = ρ(j) and (ρ′, i, θ) |= ϕ,

(ρ, i, θ) |= x.ϕ
def⇔ (ρ, i, θ[x 7→ i]) |= ϕ,

(ρ, i, θ) |= τ1 ≤ τ2
def⇔ Jτ1K(ρ, i, θ) ≤ Jτ2K(ρ, i, θ),

where the Boolean cases are omitted and the semantics of terms is given, for a ∈ Z, by

JaK(ρ, i, θ) def= a,

Jτ1 + τ2K(ρ, i, θ)
def= Jτ1K(ρ, i, θ) + Jτ2K(ρ, i, θ),

Ja ·#x(ϕ)K(ρ, i, θ) def= a · |{j ∈ N | θ(x) ≤ j ≤ i, (ρ, j, θ) |= ϕ}|.

We abbreviate (ρ, i,0) |= ϕ by (ρ, i) |= ϕ and (ρ, 0) |= ϕ by ρ |= ϕ and say that ρ satisfies ϕ
(at position i) in these cases. Moreover, we say a state s ∈ S satisfies ϕ, denoted s |= ϕ if
there are ρs ∈ Runs(K) and i ∈ N such that ρs(i) = s and (ρs, i) |= ϕ. The Kripke structure
K satisfies ϕ, denoted by K |= ϕ, if sI |= ϕ. Note that we choose to define the model-checking
relation existentially but since the formalism is closed under negation, this does not have
major consequences on our results.

Fragments. We define the following fragments of CCTL* in analogy to the classical logics
LTL and CTL. The linear time fragment CLTL consists of those CCTL* formulae that do not
use the path quantifiers E and A. The branching time logic CCTL restricts the use of temporal
operators X and U such that each occurrence must be preceded immediately by either E or A.
Similar branching-time logics have been considered in [19].

Frequency logics. A major subject of our investigation are frequency constraints. This
concept embeds naturally into the context of counting logics as it can be understood as a
restricted form of counting. We therefore define in the following the frequency temporal
logics fCTL*, fLTL and fCTL as fragments of CCTL*. Consider the following grammar defining
the syntax of formulae ϕ for natural numbers n,m ∈ N with n ≤ m > 0 and p ∈ AP .

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | α β ::= Xϕ | ϕ U
n
m ϕ

With the additional rule α ::= Eϕ | β it defines precisely the set of fCTL* formulae while it
defines fCTL for α ::= Eβ | Aβ and fLTL for α ::= β. The semantics is defined by interpreting
fCTL* formulae as CCTL* with the additional equivalence

ϕ U
n
m ψ

def≡ ψ ∨ x . F ((Xψ) ∧ m ·#x(ϕ) ≥ n ·#x(>)) (1)

for fCTL* formulae ϕ and ψ and a variable x ∈ V not being used in either ϕ or ψ.

I Example 1. Consider the Kripke structure given by Figure 1 and the CCTL formula
ϕ1 = z. A G (q → (#z(p) ≤ #z(E X r))). It basically states that on every path reaching s5 there
must be a position where the states s2 and s4 (satisfying E X r) together have been visited at
least as often as the state s0. A different, yet similar statement can be formulated using only
frequency constraints: ϕ′1 = A((E X r) U

1
2 q) states that s5 must always be reached while visiting

CONCUR 2017
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s0

p

s1 s2

s3

r

s4

r

s5

q

Figure 1 A flat Kripke over AP = {p, q, r}.

s2 and s4 together at least as often as s0, s1 and s3. Both ϕ1 and ϕ′1 are violated, e.g. by the
path s3

0s1s2s4s
ω
5 . The Kripke structure however satisfies ϕ2 = z. A G (¬q → E F #z(p) < #z(r))

because from every state except s5 the number of positions that satisfy r can be increased
arbitrary without increasing the number of those satisfying p. Notice that this would not be
the case, e.g., if s4 was labelled by p.

While the positional variables in CCTL* are a very flexible way of defining the scope
of a constraint, frequency constraints in fCTL* are always bound to the scope of an until
operator. The same applies to the counting constraints of cLTL as defined in [19]. For
example, the cLTL formula ϕ U[a1#(ϕ1)+···+an#(ϕn)≥k] ψ is equivalent to the CLTL formula
z.ϕ U(ψ ∧ a1#z(ϕ1) + · · ·+ an#z(ϕn) ≥ k). Admitting only natural coefficients, cLTL can be
encoded even in LTL making it thus strictly less expressive than fLTL. On the other hand,
cLTL± admits arbitrary integer coefficients, which is more general than the frequency until
operator of fLTL. For example, p U

a
b q can be expressed as > U[b#(p)−a#(>)≥0] q in cLTL±.

The relation between cCTL± and fCTL, as well as cCTL*
± and fCTL* is analogous.

Model-checking problem. We now present the problem on which we focus our attention.
The model-checking problem for a class K ⊆ KS of Kripke structures and a specification
language L (in our case all the specification languages are fragments of CCTL*) is denoted by
MC(K,L) and defined as the following decision problem.

Input: A Kripke structure K ∈ K and a formula ϕ ∈ L.
Decide: Does K |= ϕ hold?

For temporal logics without counting variables, the model-checking problem over Kripke
structure has been studied intensively and is known to be PSpace-complete for LTL and
CTL* and in P for CTL (see e.g. [3]). It has recently been shown that when restricting to
flat (or weak) structures the complexity of the model-checking problem for LTL is lower
than in the general case [17]: it drops from PSpace to NP. As we show later, in the case
of CCTL*, flatness of the structures allows us to regain decidability of the model-checking
problem which is in general undecidable. In this paper, we propose various ways to solve
the model-checking problem of fragments of CCTL* over flat structures. For some of them we
provide a direct algorithm, for others we reduce our problem to the satisfiability problem of
a decidable extension of Presburger arithmetic.

3 Model-checking Frequency CTL

Satisfiability of fLTL is undecidable [5] implying the same for model-checking fLTL, CLTL
and CCTL* over Kripke structures. This applies moreover to CCTL [19]. In contrast, we show
in the following that MC(KS, fCTL) is decidable using an extension of the well-known labelling
algorithm for CTL (see e.g. [3]).



N. Decker, P. Habermehl, M. Leucker, A. Sangnier, and D. Thoma 29:7

Let K = (S, sI , E, λ) be a Kripke structure and Φ an fCTL formula. We compute
recursively subsets Sϕ ⊆ S of the states of K for every subformula ϕ ∈ sub(Φ) of Φ such that
for all s ∈ S we have s ∈ Sϕ iff s |= ϕ. Checking whether the initial state sI is contained
in SΦ then solves the problem. Propositions (p ∈ AP ), negation (¬ϕ), conjunction (ϕ ∧ ψ)
and temporal next (E Xϕ, A Xϕ) are handled as usual, e.g. Sp = {q ∈ S | p ∈ λ(q)} and
SE Xϕ = {q ∈ S | ∃q′ ∈ Sϕ : (q, q′) ∈ δ}.

To compute if a state s ∈ S satisfies a formula of the form Eϕ Ur ψ or Aϕ Ur ψ, assume that
Sϕ and Sψ are given inductively. If s ∈ Sψ we immediately have s ∈ SEϕ Ur ψ and s ∈ SAϕ Ur ψ.
For the remaining cases, the problem of deciding whether s ∈ SEϕ Ur ψ or s ∈ SAϕ Ur ψ,
respectively, can be reduced in linear time to the repeated control-state reachability problem
in systems with one integer counter. The idea is to count the ratio along paths ρ ∈ Sω in
K as follows, in direct analogy to the semantics defined in Equation 1. Assume r = n

m for
n,m ∈ N and n ≤ m. For passing any position on ρ we pay a fee of n and for those positions
that satisfy ϕ we gain a reward of m. Thus, we obtain a non-negative balance of rewards
and gains at some position on ρ if, in average, among every m positions there are at least n
positions that satisfy ϕ, meaning the ratio constraint is satisfied. In K, this balance along
a path can be tracked using an integer counter that is increased by m − n when leaving
a state s′ ∈ Sϕ and decreased by adding −n whenever leaving a state s′ 6∈ Sϕ. Thus, let
K̂s = (S, s, {c},∆) be the counter system with

∆ = {(t,u, ∅, t′) | (t, t′) ∈ E, t 6∈ Sϕ ⇒ u(c) = −n, t ∈ Sϕ ⇒ u(c) = m− n}.

The state s satisfies the formula Aϕ Ur ψ if there is no path starting in state s violating
the formula ϕ Ur ψ. The latter is the case if at every position where ψ holds, the balance
computed up to this position is negative. Therefore, consider an extension Rs of K̂s where
every edge leading into a state s′ ∈ Sψ is guarded by the constraint c < 0. Every (infinite) run
of Rs is now a counter example for the property holding at s. To decide whether s ∈ SAϕ Ur ψ

it suffices to check that in Rs no state is repeatedly reachable from s.
A formula Eϕ Ur ψ is satisfied by s if there is some state s′ ∈ Sψ reachable from s with a

non-negative balance. Hence, consider the counter system Us = (S ] {t}, s, {c},∆′) obtained
from K̂s featuring a new sink state t 6∈ S. The transition relation

∆′ = ∆ ∪ {(s′,0, {c ≥ 0}, t) | s′ ∈ Sψ} ∪ {(t,0, ∅, t)}

extends ∆ such that precisely the paths starting in s and reaching a state s′ ∈ Sψ with
non-negative counter value (i.e. sufficient ratio) can be extended to reach t. Checking if s
is supposed to be contained in SEϕ Ur ψ then amounts to decide whether t is (repeatedly)
reachable from s in Us.

Finally, repeated reachability is easily translated to the accepting run problem of Büchi
pushdown systems (BPDS) and the latter is in P [6]. A counter value n ≥ 0 can be encoded
into a stack of the form ⊕n while 	n encodes −n ≤ 0 and for evaluating the guards c ≥ 0
and c < 0 only the top symbol is relevant. Simulating an update of the counter by a number
a ∈ Z requires to perform |a| push or pop actions. The size of the system is therefore linear
in the largest absolute update value and hence exponential in its binary representation.
Since the updates of the constructed counter systems originate from the ratios in Φ, the
corresponding BPDS are of up to exponential size in |Φ|. During the labelling procedure this
step must be performed at most a polynomial number of times giving an exponential-time
algorithm.

I Theorem 2. MC(KS, fCTL) is in Exp.

CONCUR 2017
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It is worth noting that for a fixed formula (program complexity) or a unary encoding of
numbers in frequency constraints, the size of the constructed Büchi pushdown systems and
thus the runtime of the algorithm remains polynomial.

I Corollary 3. MC(KS, fCTL) with unary number encoding is in P.

4 Model-checking Frequency LTL over Flat Kripke Structures

We show in this section that model-checking fLTL is decidable over flat Kripke structures.
As decision procedure we employ a guess and check approach: given a flat Kripke structure
K and an fLTL formula Φ, we choose non-deterministically a set of satisfying runs to witness
K |= Φ. As representation for such sets we introduce augmented path schemas that extend the
concept of path schemas [20, 11] and provide for each of its runs a labelling by formulae. We
show that if an augmented path schema features a syntactic property that we call consistency
then the associated runs actually satisfy the formulae they are labelled with. Moreover, we
show that every run of K is in fact represented by some consistent schema of size at most
exponential in |K|+ |Φ|. This gives rise to the following non-deterministic procedure.
1. Read as input an FKS K and an fLTL formula Φ.
2. Guess an augmented path schema P in K of at most exponential size.
3. Terminate successfully if P is consistent and accepts a run that is initially labelled by Φ.

We fix for this section a flat Kripke structure K = (S, sI , E, λ) and an fLTL formula Φ.
For convenience we assume that AP ⊆ sub(Φ). Omitted technical details can be found in [9].

4.1 Augmented Path Schemas
The set of runs of K can be represented as a finite number of so-called path schemas that
consist of a sequence of paths and simple loops consecutive in K [20, 11]. A path schema
represents all runs that follow the given shape while repeating each loop arbitrarily often. For
our purposes we extend this idea with additional labellings and introduce integer counters,
updates and guards that can restrict the admitted runs.

I Definition 4 (Augmented Path Schema). An augmented state of K is a tuple a =
(s, L,G,u, t) ∈ S × 2sub(Φ) × 2G(C) × ZC × {L, R} comprised of a state s of K, a set of
formula labels L, guards G and an update u over a set of counter names C, and a type
indicating whether the state is part of a loop (L) or a not (R). We denote by st(a) = s,
lab(a) = L, g(a) = G, u(a) = u and t(a) = t the respective components of a. An augmented
path in K is a sequence u = a0. . . an of augmented states ai such that (st(ai), st(ai+1)) ∈ E
for i ∈ [0, n − 1]. If t(ai) = R for all i ∈ [0, n − 1] then u is called a row. It is called an
augmented simple loop (or simply loop) if it is non-empty and (st(an), st(a1)) ∈ E and
st(ai) 6= st(aj) for i 6= j and t(ai) = L for all i ∈ [0, n− 1].

An augmented path schema (APS) in K is a tuple P = (P0, . . . , Pn) where each component
Pk is a row or a loop, Pn is a loop and their concatenation P1P2. . . Pn is an augmented path.

Thanks to counters we can, for example, restrict to those runs satisfying a specific
frequency constraint at some positions tracking it as discussed in Section 3. Figure 2 shows
an example of an APS with edges indicating the possible state progressions. It features a
single counter that tracks the frequency constraint of a formula r U

2
3 q from state 1.

We denote by |P| = |P0. . . Pn| the size of P and use global indices ` ∈ [0, |P| − 1] to
address the (`+ 1)-th augmented state in P0. . . Pn, denoted P [`]. To distinguish these global
indices from positions in arbitrary sequences, we refer to them as locations of P. Moreover,
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0 1 2 3 4 5 6 7 8
st s0 s0 s0 s2 s3 s2 s4 s5 s5

lab p p p r r q q

t L R R L L R L R L

−2 −2 −2 +1 −2
+1

c<0
−2

c<0

+1 +1 −2
c<0

P0 P1 P2 P3 P4 P5 P6 P7

Figure 2 An APS P = (P0, . . . , P7) of the flat Kripke structure in Figure 1.

locP(k) = {` | |P0P1. . . Pk−1| ≤ ` < |P0P1. . . Pk|} denotes for 0 ≤ k ≤ n the set of locations
belonging to component Pk and for all locations ` ∈ locP(k) we denote the corresponding
component index in P by compP(`) = k. For example, in Figure 2 we have locP(3) = {3, 4}
and compP(6) = 5 because the seventh state of P belongs to P5. We extend the component
projections for augmented states to (sequences of) locations of P and write, e.g., stP(`1`2)
for st(P[`1])st(P[`2]) and uP(`) for u(P[`]).

An APS P gives rise to a counter system CS(P) = (Q, 0, C,∆) where Q = {0, . . . , |P |−1},
C are the counters used in the augmented states of P and ∆ consists of those transitions
(`, uP(`), gP(`′), `′) such that 0 ≤ `′ = `+ 1 < |P| or `′ < ` and {`′, `′ + 1, . . . , `} = locP(k)
for some loop Pk. Notice that the APS in Figure 2 is presented as its corresponding counter
system. Let succP(`) denote the set {`′ ∈ Q | ∃u, G : (`,u, G, `′) ∈ ∆} of successors of ` in
CS(P). A run of P is a run of CS(P) that visits each location ` ∈ S at least once. The set
of all runs of P is denoted Runs(P). As a consequence, a run visits the last loop infinitely
often. We say that an APS P is non-empty iff Runs(P) 6= ∅. Since every run σ ∈ Runs(P)
corresponds, by construction of P, to a path stP(ρ) ∈ Qω in K we define the satisfaction of
an fLTL formula ϕ at position i by (σ, i) |=P ϕ iff (stP(σ), i) |= ϕ.

Finally, notice that CS(P) is in fact a flat counter system. It is shown in [11] that LTL
properties can be verified over flat counter systems in non-deterministic polynomial time.
Since LTL can express that each location of CS(P) is visited we obtain the following result.

I Lemma 5 ([11]). Deciding non-emptiness of APS is in NP.

4.2 Labellings of Consistent APS are Correct
An APS P assigns to every position i on each of its runs σ the labelling Li = labP(σ(i)).
We are interested in this labelling being correct with respect to some fLTL formula Φ in
the sense that Φ ∈ Li if and only if (σ, i) |= Φ. The notion of consistency introduced in the
following provides a sufficient criterion for correctness of the labelling of all runs of an APS.

An augmented path u = a0. . . an is said to be good, neutral or bad for an fLTL formula
Ψ = ϕ U

x
y ψ if the number d = |{0 ≤ i < |u| | ϕ ∈ lab(u(i))}| of positions labelled with ϕ is

larger than (d > x
y · |u|), equal to (d = x

y · |u|) or smaller than (d < x
y · |u|), respectively, the

fraction x
y of all positions of u. A tuple (P0, . . . , Pn) of rows and loops (not necessarily an

APS) is called L-periodic for a set L ⊆ sub(Φ) of labels if all augmented paths Pk share the
same labelling with respect to L, that is for all 0 ≤ k < n − 1 we have |Pk| = |Pk+1| and
lab(Pk(i)) ∩ L = lab(Pk+1(i)) ∩ L for all 0 ≤ i < |Pk|.

I Definition 6 (Consistency). Let P = (P0, . . . , Pn) be an APS in K, k ∈ [0, n] and ` ∈
locP(k) a location on component Pk. The location ` is consistent with respect to an fLTL
formula Ψ if all locations of P are consistent with respect to all strict subformulae of Ψ and
one of the following conditions applies.
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1. Ψ ∈ AP and Ψ ∈ labP(`) ⇔ Ψ ∈ λ(stP(`)), or Ψ = ϕ ∧ ψ and Ψ ∈ labP(`) ⇔ ϕ,ψ ∈
labP(`), or Ψ = ¬ϕ and Ψ ∈ labP(`)⇔ ϕ 6∈ labP(`).

2. Ψ = Xϕ and ∀`′ ∈ succP(`) : Ψ ∈ labP(`)⇔ ϕ ∈ labP(`′).
3. Ψ = ϕ U

x
y ψ and one of the following holds:

a. Ψ, ψ ∈ labP(`)
b. Ψ ∈ labP(`) and Pn is good for Ψ and ∃`′ ∈ locP(n) : ψ ∈ labP(`′)
c. tP(`) = R and there is a counter c ∈ C such that ∀`′ < ` : uP(`′)(c) = 0 and ∀`′ ≥ ` :
ϕ ∈ labP(`′)⇒ uP(`′)(c) = y − x and ∀`′ ≥ ` : ϕ 6∈ labP(`′)⇒ uP(`′)(c) = −x and

if Ψ 6∈ labP(`) then ψ 6∈ labP(`) and ∀`′ > ` : ψ ∈ labP(`′) ⇒ (c < 0) ∈ gP(`′)
and
if Ψ ∈ labP(`) then ∃`′ > ` : ψ ∈ labP(`′) ∧ (c ≥ 0) ∈ gP(`′).

d. There is k′ ∈ [0, n] such that all locations `′ ∈ locP(k′) are consistent wrt. Ψ and
if k = n then k′ < k and (Pk′ , Pk′+1, . . . , Pk) is {ϕ,ψ,Ψ}-periodic,
if k < n and Pk is good or neutral for Ψ and Ψ 6∈ labP(`), or Pk is bad for Ψ and
Ψ ∈ labP(`) then k′ < k < n and (Pk′ , Pk′+1, . . . , Pk+1) is {ϕ,ψ,Ψ}-periodic, and
if k < n and Pk is good or neutral for Ψ and Ψ ∈ labP(`), or Pk is bad for Ψ and
Ψ 6∈ labP(`) then k < k′ < n and (Pk, Pk+1, . . . , Pk′+1) is {ϕ,ψ,Ψ}-periodic.

The APS P is consistent with respect to Ψ if it is the case for all its locations.

The cases 1 and 2 reflect the semantics syntactically. For instance, location 0 in Figure 2
can be labelled consistently with X p since all its sucessor (0 and 1) are labelled with p.
Case 3, concerning the (frequency) until operator, is more involved.

Assume that Φ = ϕ U
x
y ψ is an until formula and that the labelling of K by ϕ and ψ

is consistent. In some cases, it is obvious that Φ holds, namely at positions labelled by ψ
(case 3a) or if the final loop already guarantees that Φ always holds (case 3b). If neither is
the case we can apply the idea discussed in Section 3 and use a counter to check explicitly
if at some point the formula Φ holds (case 3c). Recall that to validate (or invalidate) the
labelling of a location by the formula Φ a specific counter tracks the frequency constraint
in terms of the balance between fees and rewards along a run. For the starting point to be
unique this case only applies to locations that are not part of a loop. For those labelled
with Φ there should exist a location in the future where ψ holds and the balance counter is
non-negative. For those not labelled with Φ all locations in the future where ψ holds must
be entered with negative balance. Finally, case 3d can apply (not only) to loops and is based
on the following reasoning: if a loop is good (bad) and Φ is supposed to hold at some of
its locations then it suffices to verify that this is the case during any of its future (past)
iterations, e.g. the last (first) and vice versa if Φ is supposed not to hold. This is the reason
why this case allows for delegating consistency along a periodic pattern.

For instance, consider the formula Ψ = r U
2
3 q and the APS shown in Figure 2. It is

consistent to not label location 1 by Ψ because the counter c tracks the balance and locations
7 and 8 are guarded as required. If a run takes, e.g., the loop P5 seven times, it has to
take P3 at least twice to satisfy all guards. This ensures that the ratio for the proposition
r is strictly less than 2

3 upon reaching the first (and thus any) occurrence of q. Note that
to also make location 2 consistent, an additional counter needs to be added. Consistency
with respect to Ψ is then inherited by location 0 from location 1 according to case 3d of the
definition. Intuitively, additional iterations of the bad loop P0 can only diminish the ratio.

The definition of consistency guarantees that if an APS is consistent with respect to Φ
then for every run of the APS, each time the formula Φ is encountered, it holds at the current
position (see [9] for further details). Hence we obtain the following lemma that guarantees
correctness of our decision procedure.
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I Lemma 7 (Correctness). If there is an APS P in K such that P is consistent wrt. Φ and
Φ ∈ labP(0) and Runs(P) 6= ∅ then K |= Φ.

4.3 Constructing Consistent APS
Assuming that our flat Kripke structure K admits a run ρ such that ρ |= Φ, we show how to
construct a non-empty APS that is initially labelled by and consistent with respect to Φ. It
will be of at most exponential size in |K|+ |Φ| and is built recursively over the structure of Φ.

Concerning the base case where Φ ∈ AP , all paths in a flat structure can be repres-
ented by a path schema of linear size [20, 11]. Intuitively, since K is flat, every subpath
sisi+1. . . si′ . . . si′′ of ρ where a state si = si′ = si′′ occurs more than twice is equal to
(sisi+1. . . si′−1)ksi′′ for some k ∈ N. Hence, there are simple subpaths u0, . . . , um ∈ S+ of
ρ and positive numbers of iterations n0, . . . , nm−1 ∈ N such that ρ = un0

0 un1
1 . . . u

nm−1
m−1 u

ω
m

and |u0u1. . . um| ≤ 2|S|. From this decomposition, we build an APS being consistent with
respect to all propositions. Henceforth, we assume by induction an APS P being consistent
with respect to all strict subformulae of Φ and a run σ ∈ Runs(P) with stP(σ) = ρ. If
Φ = ϕ ∧ ψ or Φ = ¬ϕ, Definition 6 determines for each augmented state of P whether it is
supposed to be labelled by Φ or not. It remains hence to deal with the next and frequency
until operators.

Labelling P by Xϕ. If Φ = Xϕ the labelling at some location ` is extended according to
the labelling of its successors. These may disagree upon ϕ (only) if ` has more than one
successor, i.e., being the last location on a loop Pk of P = (P0, . . . , Pm). In that case we
consult the run σ: if it takes Pk only once, this loop can be cut and replaced by P ′k that
we define to be an exact copy except that all augmented states have type R instead of L. If
otherwise σ takes Pk at least twice, the loop can be unfolded by inserting P ′k between Pk and
Pk+1, i.e. letting P ′ = (P0, . . . , Pk, P

′
k, Pk+1, . . . , Pm). Either way, σ remains a run of the

obtained APS, up to shifting the locations `′ > ` if the extra component was inserted (recall
that locations are indices). Importantly, cutting or unfolding any loop, even any number of
times, in P preserves consistency.

Labelling P by ϕ Ur ψ. The most involved case is to label a location ` by Φ = ϕ Ur ψ. First,
assume that ` is part of a row. Whether it must be labelled by Φ is uniquely determined by
σ. This is consistent if case 3a or 3b of Definition 6 applies. The conditions of case 3c are
also realised easily in most situations. Only, if Φ holds at ` but every location `′ witnessing
this (by being reachable with sufficient frequency and labelled by ψ) is part of some loop
P ′. Adding the required guard directly to `′ may be too strict if σ traverses P ′ more than
once. However, the first iteration (if P ′ is bad for Φ) or the last iteration (if P ′ is good)
on σ contains a position (labelled with ψ) witnessing that Φ holds if any iteration does.
Thus it suffices to unfold the loop once in the respective direction. For example, consider in
Figure 2 location 5 and a formula ϕ = r U

2
5 q. Location 8 could witness that ϕ holds but a

corresponding guard would be violated eventually since P7 is bad for ϕ. The first iteration is
thus the optimal choice. The unfolding P6 separates it such that location 7 can be guarded
instead without imposing unnecessary constraints.

Now assume that location `, to be labelled or not with Φ, is part of a loop P which is
stable in the sense that Φ holds either at all positions i with σ(i) = ` or at none of them.
With two unfoldings of P , made consistent as above, case 3d applies. However, σ may go
through ` several, say n > 1, times where Φ holds at some but not all of the corresponding
positions. If n is small we can replace P by precisely n unfoldings, thus reducing to the
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. . . . . .
s2 s3 s2 s3 s2 s3 s2 s3

r r, ϕ r, ϕ ϕ r, ϕ

−2 +1 −2 +1 −2 +1 −2

+1 +1

P3 P ′
3 P ′

3 P3

Figure 3 A decomposition of loop P3 from Figure 2 allowing for a correct labelling wrt. ϕ = r U
2
3 q.

previous case without increasing the size of the structure too much. We can moreover show
that if n is not small then it is possible to decompose such a problematic loop into a constant
number of unfoldings and two stable copies based on the following observation.

I Lemma 8 (Decomposition). Let P = P[`0]. . .P[`|P |−1] be a non-terminal loop in P with
corresponding location sequence v = `0. . . `|P |−1 and n̂ = |P | · y for some y > 0. For every
run σ = uvnw ∈ Runs(P) where n ≥ n̂+ 2 there are n1 and n2 such that σ = uvn1vn̂vn2w

and for all positions i on σ with |u| ≤ i < |uvn1−1| or |uvn1vn̂| ≤ i < |uvn1vn̂vn2−2| we have
(σ, i) |=P Φ iff (σ, i+ |P |) |=P Φ.

I Example 9. Consider again the APS P in Figure 2, a run σ ∈ Runs(P) and the location
3. Whether or not ϕ = r U

2
3 q holds at some position i with σ(i) = 3 depends on how often σ

traverses the good loop P5 (the more the better) and how often it repeats P3 after position i
(the more the worse). Assume σ traverses P5 exactly five times and P3 sufficiently often, say
10 times. Then, during the last three iterations of P3, ϕ holds when visiting location 3, and
also location 4. In the two iterations before, the formula holds exclusively at location 4 and
in any preceding iteration, it does not hold at all. Thus any labelling of P3 would necessarily
be incorrect. However, we can replace P3 by four copies of it that are labelled as indicated in
Figure 3 and σ can easily be mapped onto this modified structure.

The presented procedure for constructing an APS from the run ρ in K performs only
linearly many steps in |Φ|, namely one step for each subformula. It starts with a structure
of size at most 2|K| and all modifications required to label an APS increase its size by a
constant factor. Hence, we obtain an APS PΦ of size at most exponential in the length of
Φ and polynomial in the number of states of K. This consistent APS still contains a run
corresponding to ρ and hence its first location must be labelled by Φ because (ρ, 0) |= Φ and
we have seen that consistency implies correctness.

I Lemma 10 (Completeness). If K |= Φ then there is a consistent APS P in K of at most
exponential size in K and Φ where Φ ∈ lab(P(0)) and P is non-empty.

We have seen in this section that the decision procedure presented in the beginning is
sound and complete due to Lemma 7 and 10, respectively. The guessed APS is of exponential
size in |Φ| and of polynomial size in |K|. Since both checking consistency and non-emptiness
(cf. Lemma 5) require polynomial time (in the size of the APS) the procedure requires at
most exponential time.

I Theorem 11. MC(FKS, fLTL) is in NExp.

This result immediately extends to fCTL*. For a state q of a flat Kripke structure K and
an arbitrary fLTL formula ϕ, the procedure allows us to decide in NExp whether q |= Eϕ
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holds. It allows us further to decide if q |= Aϕ holds in ExpSpace by the dual formulation
q 6|= E¬ϕ and Savitch’s theorem. Following otherwise the standard labeling procedure for CTL
(cf. Section 3) requires to invoke the procedure a polynomial number of times in |K|+ |Φ|.

I Theorem 12. MC(FKS, fCTL*) is in ExpSpace.

5 On model-checking CCTL* over flat Kripke structures

In this section, we prove decidability of MC(FKS, CCTL*). We provide a polynomial encoding
into the satisfiability problem of a decidable extension of Presburger arithmetic featuring a
quantifier for counting the solutions of a formula. For the reverse direction an exponential
reduction provides a corresponding hardness result for CLTL, CCTL and CCTL*.

Presburger arithmetic with Härtig quantifier. First-order logic over the natural numbers
with addition was shown to be decidable by M. Presburger [23]. It has been extended with
the so-called Härtig quantifier [2, 24, 25] that allows for referring to the number of values for
a specific variable that satisfy a formula. We denote this extension by PH. The syntax of PH
formulae ϕ and PH terms τ over a set of variables V is defined by the grammar

ϕ ::= τ ≤ τ | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃=xy.ϕ τ ::= a | a · x | τ + τ

for natural constants a ∈ N and variables x, y ∈ V . Since the structure (N,+) is fixed, the
semantics is defined over valuations η : V → N that are extended to terms t as expected, e.g.,
η(3 · x + 1) = 3 · η(x) + 1. We define the satisfaction relation |=PH as usual for first-order
logics and by η |=PH ∃=xy.ϕ

def⇔ N 3 |{b ∈ N | η[y 7→ b] |=PH ϕ}| = η(x) for the Härtig
quantifier. Notice that the solution set has to be finite.

The satisfiability problem of PH consists in determining whether for a PH formula ϕ there
exists a valuation η such that η |=PH ϕ. It is decidable [2, 24, 25] via eliminating the Härtig
quantifier, but its complexity is not known. For what concerns classic Presburger arithmetic,
the complexity of its satisfiability problem lies between 2Exp and 2ExpSpace [4].

Lower bound for MC(FKS, CCTL*). Let K be the flat Kripke structure over AP = ∅ that
consists of a single loop of length one. We can encode satisfiability of a PH formula Φ into the
question whether the (unique) run ρ of K satisfies a CLTL formula Φ̂. Assume without loss of
generality that Φ has no free variables. Let VΦ be the variables used in Φ and z1, z2, . . . 6∈ VΦ
additional variables. Recall that ρ |= Φ̂ if (ρ, θ, 0) |= Φ̂ for some valuation θ of the positional
variables in Φ̂.

The idea is essentially to encode the value given to a variable x ∈ VΦ of Φ into the
distance between the positions assigned to two variables of Φ̂. Technically, a mapping
Z ∈ NVΦ associates with each variable x ∈ VΦ an index j = Z(x) and the constraints that Φ
imposes on x are translated to constraints on positional variables zj and zj−1 (more precisely,
the distance θ(zj)− θ(zj−1) between the assigned positions). The following transformation
t : PH×NVΦ×N→ CLTL constructs the CLTL formula from Φ. When a variable is encountered,
the mapping Z is updated by assigning to it the next free index (third parameter). Let

t(ϕ1 � ϕ2, Z, i) = t(ϕ1, Z, i)� t(ϕ2, Z, i) t(¬ϕ, Z, i) = ¬t(ϕ, Z, i)
t(a · x, Z, i) = a ·#zZ(x)−1(>)− a ·#zZ(x)(>) t(a, Z, i) = a

t(∃x.ϕ, Z, i) = F zi.t(ϕ, Z[x 7→ i], i + 1)
t(∃=xy.ϕ, Z, i) = F G

(
t(x, Z, i) = #zi−1(zi.t(ϕ, Z[y 7→ i], i + 1))

)
for x, y ∈ VΦ, a, i ∈ N and � ∈ {∧,≤,+}. Then, we obtain Φ̂ = z0.t(Φ,1, 1), initialising Z
and the first free index with 1. Notice that the translation of the Härtig quantifier instantiates
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the scope effectively twice when substituting the equality and thus the size of Φ̂ may at worst
double with each nesting. Finally, we can equivalently add path quantifiers to all temporal
operators in Φ̂ and obtain, syntactically, a CCTL formula.

I Theorem 13. The satisfiability problem of PH is reducible in exponential time to both
MC(FKS, CLTL) and MC(FKS, CCTL).

Deciding MC(FKS, CCTL*). We provide a polynomial reduction to the satisfiability problem
of PH. Given a flat Kripke structure K we can represent each run ρ by a fixed number
of naturals. We use a predicate Conf that allows for accessing the i-th state on ρ given
its encoding and a predicate Run characterising all (encodings of) runs in Runs(K). Such
predicates were shown to be definable by Presburger arithmetic formulae of polynomial
size and used to encode MC(FKS,CTL*) [12, 10]. We adopt this idea for MC(FKS, CCTL*) and
PH. Let K = (S, sI , E, λ) and assume S ⊆ N without loss of generality. For N ∈ N let
VN = {r1, . . . , rN , i, s} be a set of variables that we use to encode a run, a position and a
state, respectively.

I Lemma 14 ([10]). There is a number N ∈ N, a mapping enc : NN → Sω and predicates
Conf(r1, . . . , rN , i, s) and Run(r1, . . . , rN ) such that for all valuations η : VN → N we
have
1. η |=PH Run(r1, . . . , rN ) ⇔ enc(η(r1), . . . , η(rN )) ∈ Runs(K) and
2. if η |=PH Run(r1, . . . , rN ) then

η |=PH Conf(r1, . . . , rN , i, s) ⇔ enc(η(r1), . . . , η(rN ))(η(i)) = η(s).
Both predicates are definable by PH formulae over variables V ⊇ VN of polynomial size in |K|.

Now, let Φ be a CCTL* formula to be verified on K. Without loss of generality we
assume that all comparisons ϕ≤ ∈ sub(Φ) of the form τ1 ≤ τ2 have the shape ϕ≤ =∑k
`=1 a` ·#x`

(ϕ`) + b ≤
∑m
`=k+1 a` ·#x`

(ϕ`) + c for some k,m, b, c ∈ N, coefficients a` ∈ N
and subformulae ϕ`. As it is done in [10] for CTL, using the predicates Conf and Run,
we construct a PH formula that is satisfiable if and only if K |= Φ. Given the encoding of
relevant runs into natural numbers we can express path quantifiers with quantification over
the variables r1, . . . , rN . Temporal operators can be expressed by using Conf to access
specific positions. Storing of positions is done explicitly by assigning them as value to specific
variables x. Variables z are introduced to hold the number of positions satisfying a formula
and can then be used in constraints. For example, to translate a term #x(ϕ) we specify a
variable, e.g., z1 holding this value by ∃z1.∃=z1i′.x ≤ i′ ≤ i ∧ ϕ̂ where i holds the current
position and ϕ̂ expresses that ϕ holds at position i′ of the current run. Constraints like
#x(ϕ) + 1 ≤ #x(ψ) can now directly be translated to, e.g., z1 + 1 ≤ z2. We use a syntactic
translation function chk that takes the formula ϕ to be translated, the names of N variables
encoding the current run and the name of the variable holding the current position. Let

chk(p, r1, . . . , rN , i) = ∃s.Conf(r1, . . . , rN , i, s) ∧
∨
a|p∈λ(a) s = a

chk(ϕ ∧ ψ, r1, . . . , rN , i) = chk(ϕ, r1, . . . , rN , i) ∧ chk(ψ, r1, . . . , rN , i)
chk(¬ϕ, r1, . . . , rN , i) =¬chk(ϕ, r1, . . . , rN , i)
chk(Xϕ, r1, . . . , rN , i) = ∃i′.i′ = i+ 1 ∧ chk(ϕ, r1, . . . , rN , i

′)
chk(ϕ Uψ, r1, . . . , rN , i) = ∃i′′.i ≤ i′′ ∧ chk(ψ, r1, . . . , rN , i

′′) ∧
∀i′.(i ≤ i′ ∧ i′ < i′′)→ chk(ψ, r1, . . . , rN , i

′)
chk(Eϕ, r1, . . . , rN , i) = ∃r′1. . . ∃r′N .Run(r′1, . . . , r′N ) ∧ chk(ϕ, r′1, . . . , r′N , i) ∧ ∀i′.

(i′ ≤ i)→ ∃s.Conf(r1, . . . , rN , i
′, s) ∧ Conf(r′1, . . . , r′N , i′, s)

chk(x.ϕ, r1, . . . , rN , i) =∃x.x = i ∧ chk(ϕ, r1, . . . , rN , i)
chk(ϕ≤, r1, . . . , rN , i) = ∃z1. . . ∃zm. (

∧m
`=1 ∃=z`i′.x` ≤ i′ ≤ i ∧ chk(ϕ`, r1, . . . , rN , i

′))
∧ a1 · z1 + . . . + ak · zk + b ≤ ak+1 · zk+1 + . . . + am · zm + c
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for ϕ≤ =
∑k
`=1 a` ·#x`

(ϕ`) + b ≤
∑m
`=k+1 a` ·#x`

(ϕ`) + c. Primed variables denote fresh
copies of the corresponding input variables, e.g. i′ becomes (i′)′ = i′′ and i′′ becomes i′′′.
Now, Φ |= K if and only if ∃r1. . . ∃rN .∃i.Run(r1, . . . , rN ) ∧ i = 0 ∧ chk(Φ, r1, . . . , rN , i) is
satisfiable.

I Theorem 15. MC(FKS, CCTL*) is reducible to PH satisfiability in polynomial time.

6 Conclusion

In this paper, we have seen that model checking flat Kripke structures with some expressive
counting temporal logics is possible whereas this is not the case for general, finite Kripke
structures. However, our results provide an under-approximation approach to this latter
problem that consists in constructing flat sub-systems of the considered Kripke structure.
We furthermore believe our method works as well for flat counter systems. We left as open
problem the precise complexity for model checking fCTL, fLTL and fCTL* over flat Kripke
structures. It follows from [17] that the latter two problems are NP-hard while we obtain
exponential upper bounds. However, we believe that if we fix the nesting depth of the
frequency until operator in the logic, the complexity could be improved.

This work has shown, as one could have expected, a strong connection between CLTL and
counter systems and as future work we plan to study automata-based formalisms inspired by
fLTL where we will equip our automata with some counters whose role will be to evaluate
the relative frequency of particular events.
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