
The Fully Hybrid µ-Calculus
Daniel Kernberger1 and Martin Lange2

1 School of Electrical Engineering and Computer Science, University of Kassel,
Kassel, Germany

2 School of Electrical Engineering and Computer Science, University of Kassel,
Kassel, Germany

Abstract
We consider the hybridisation of the µ-calculus through the addition of nominals, binder and
jump. Especially the use of the binder differentiates our approach from earlier hybridisations
of the µ-calculus and also results in a more involved formal semantics. We then investigate
the model checking problem and obtain ExpTime-completeness for the full logic and the same
complexity as the modal µ-calculus for a fixed number of variables. We also show that this logic is
invariant under hybrid bisimulation and use this result to show that – contrary to the non-hybrid
case – the hybrid extension of the full branching time logic CTL∗ is not a fragment of the fully
hybrid µ-calculus.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases µ-calculus, hybrid logics, model checking, bisimulation invariance

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.17

1 Introduction

Hybrid Extensions of Modal Logic

Hybrid logic [19, 4] has emerged from modal logic as an attempt to extend a well-behaved but
relatively weak (in terms of expressive power) fragment of first-order logic with additional
features whilst retaining good properties like decidability etc. This is achieved by extending
the syntax of modal logic with first-order variables and some very restricted form of first-order
quantification over these variables.

The availability of first-order variables in the language gives the logic the power to express
properties that are inherently non-modal. For instance, it is possible to express that a state
of a Kripke structure has an edge to itself; it is – even without the definition of a formal
semantics – not hard to guess that the formula x ∧ ♦x should be true at exactly the states
of that kind. The two other typical operators are the binder and the jump. Intuitively,
↓x.ϕ binds x to the current state for the evaluation of ϕ. It is sometimes also known as
the freeze modality [1]. The jump operator – also called the satisfaction operator [4] – is
written @x ϕ and, intuitively, continues the evaluation of ϕ at the state that is bound to x.
For both operators it is important to remember that modal formulas, as opposed to (e.g.
closed) first-order formulas are interpreted at states of a Kripke structure, not the structure
as a whole.

Sometimes, when defining hybrid logics, one distinguishes two kinds of variables, depending
on whether they can be bound or not, and calls those that do not get bound nominals.

The additional power induced by these hybrid features and operators comes at a cost
when compared to modal logic. Clearly, hybrid logics do not possess the tree model property
anymore, as the little example x ∧ ♦x above shows. Strongly related to that is the loss of

© Daniel Kernberger and Martin Lange;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 The Fully Hybrid µ-Calculus

bisimulation-invariance, an inherent feature of modal logic [5]. The notion of bisimulation
has been refined accordingly to hybrid bisimulation which relates two states when they can
mimick each others transitions locally in the presence of a fixed number of named states. It
has been shown that the hybrd extension of modal logic with binder and jump is invariant
under this equivalence relation [3].

The term hybrid logic suggests speaking about one particular logic but in fact denotes
a family of logics; its members are obtained by extending some modal logic with some of
the features mentioned above. This is of course not restricted to modal logics alone, any
logic that is not subsumed by first-order logic is a natural candidate for the basis of a hybrid
logic. For instance, temporal and dynamic logics have been extended in this way, namely the
EF-fragment of CTL with past operators [9], CTL and CTL+ [11], as well as CTL∗ [12]. In
[11] the hybrid extensions of CTL and CTL+ are only interpreted over computation trees to
retain decidability of the satisfiability problem. However, the semantics naturally extends to
Kripke structures. Hybrid CTL and CTL+ are then – as in the non-hybrid case – subsumed
by the hybrid extensions of CTL∗ in [12].

Hybrid Extensions of the µ-Calculus

In this paper we consider the extension of the well-known modal µ-calculus Lµ [13] with
hybrid operators. This is not the first attempt at doing so; Sattler and Vardi [16] have
considered a hybrid µ-calculus which extends Lµ with nominals only, i.e. with additional
first-order variables but no mechanism to change them during the course of the evaluation
of a formula. This is in some sense a smallest hybrid extension of Lµ, even though they
use the term hybrid full µ-calculus for this logic. “Full” in that context seems to refer to
the addition of converse modalities. They are, however, thrown away then in favour of a
universal modality with which one can jump to any state in an underlying Kripke structure.
It is easy to see that this subsumes the specialised jumps @x conventionally used in hybrid
logics.

Here we consider a different logic, namely the extension of the modal µ-calculus with all
hybrid features, in particular including binders. To subtly distinguish these logics, we refer
to the one used here as the fully hybrid µ-calculus. This then clearly subsumes full hybrid
modal logic for which satisfiability is undecidable [4]. The context of Sattler and Vardi’s
hybrid µ-calculus of course forbids this, as their primary interest is description logics for
which decidability of satisfiability is a must. The motivation for the extension of Lµ with all
hybrid features here is not driven by concrete applications; we study this logic in order to
understand the effect that extending temporal logics in various ways has on their logical and
computational properties.

Contribution and Organisation

The paper is organised as follows. Section 2 defines the fully hybrid µ-calculus formally. We
discuss that the semantics of hybrid temporal logics is inadequate for a logic with fixpoint
quantifiers as under this semantics the implicit recursion mechanism does not obey the
meaning one would intuitively expect the binder to have. This is fixed by letting second-order
variables stand for sets of pairs of states and first-order variable bindings, rather than sets of
states only.

Section 3 examines the complexity of model checking the fully hybrid µ-calculus. Using a
reduction to Lµ model checking we obtain (1) an EXPTIME upper bound in general, (2) that
for formulas with a fixed number of variables the complexity is only polynomially worse than

D. Kernberger and M. Lange 17:3

that for Lµ model checking, and (3) a game-theoretic characterisation similar to the one
for Lµ [17] which can be used to understand the properties expressed by formulas of the
fully hybrid µ-calculus. We also show that the EXPTIME upper bound is tight by giving a
matching lower bound.

In Section 4 we investigate questions of the logic’s expressiveness. We prove that, not
surprisingly, invariance under hybrid bisimulations carries over from hybrid modal logic
to the fully hybrid µ-calculus. To ease argumentation in this context, we also develop a
game-theoretic characterisation of hybrid bisimilarity similar to the well-known bisimulation
games [18]. We then use these games to show indistinguishability between two different
Kripke structures and deduce that, perhaps surprisingly, the fully hybrid µ-calculus does not
subsume the hybrid extensions of CTL∗, namely that it cannot express the property “there
is a path on which no state occurs twice”, even though this is easily possible in hybrid CTL∗.

We conclude the paper with a discussion on further work in this area.

2 Preliminaries

2.1 Syntax
Let k ∈ N, V = {x1, x2, . . . , xk} be a finite set of first-order variables, Prop = {p, q, . . .} be
a countable set of atomic propositions, V2 = {X,Y, . . .} be a countable set of second-order
variables and Nom = {m,n, . . .} be a countable set of first-order constants referred to as
nominals. All sets are assumed to be pairwise disjoint. Formulas of the k-variable fragment
of the fully hybrid µ-calculus Hk

µ are given by the grammar

ϕ := p | x | X | ¬ϕ | ϕ ∨ ϕ | �ϕ | @x ϕ | ↓x.ϕ | µX.ϕ(X)

where p ∈ Prop, x ∈ V ∪ Nom and X ∈ V2. The fully hybrid µ-calculus Hµ is the union
of all Hk

µ for k ≥ 1. The modal µ-calculus Lµ is obtained as Hµ in the special case when
V = Nom = ∅.

We are making use of tt, ff, ∧, ♦, νX.ϕ as abbreviations in the usual way. By Sub(ϕ) we
denote the set of all subformulas of ϕ. Further, we say that a formula ϕ ∈ Hµ is in negation
normal form if and only if negation only occurs directly in front of atomic formulas.

We assume the following standard sanity condition on formulas: every X ∈ V2 is bound
at most once by a fixpoint quantifier µ or ν and can only occur under an even number of
negations. The function mapping each X ∈ V2 to its unique binding formula is called fpϕ.
We say that a second-order variable X is of type µ or ν if its defining fixpoint formula fpϕ(X)
is a least, resp. greatest fixpoint formula. Formulas with no free first-order variables will be
referred to as sentences.

All results easily extend to a multi-modal version of Hµ; for the sake of simplicity we
only work with a uni-modal version here.

2.2 Considerations on the Semantics in the Presence of Fixpoints
A Kripke structure is a tuple K = 〈S,→, L〉 where S is a set of states, → ⊆ S × S is a
transition relation and L : Prop → 2S labels the states with the sets of propositions that
hold true in them.

Formulas of Lµ are usually interpreted over Kripke structures via a mapping J·KKρ , which
maps a formula together with a Kripke structure K as above and an assignment ρ : V2 → 2S
to the states that satisfy this formula. A formula ϕ(X) with a free second-order variable X

TIME 2017

17:4 The Fully Hybrid µ-Calculus

thus induces a monotonic operator V 7→ Jϕ(X)KKρ[X 7→V], mapping a set V of states to the set
of states that satisfy ϕ(X) under the assumption that X holds on the states in V .

The hybrid µ-calculus considered by Sattler and Vardi [16] can be given a semantics
in the same way, in particular with an interpretation of type V2 → 2S of the second-
order variables. First-order variables are nominals in the absence of a binder; hence, their
interpretation can be fixed in the Kripke structure by extending the labelling function to
the type L : Prop ∪ Nom → 2S with the requirement that L(m) is a singleton set for all
m ∈ Nom.

This, however, is not enough in the presence of the binder modality as it should change
the mapping of first-order variables to states dynamically during the evaluation of a formula.
The naïve approach is to extend the assignment ρ of all second-order variables to a function
V ∪V2 → 2S such that ρ(x) is a singleton set for each x ∈ V . This is essentially incorporating
their treatment in hybrid temporal logics, c.f. [12]. We could then just extend the usual
semantics for Lµ to Hµ via

JxKKρ = ρ(x)

J@x ϕKKρ =
{
S if ρ(x) ∈ JϕKKρ ,
∅ otherwise

as it was done in [16] and

J↓x.ϕKKρ = {s ∈ S | s ∈ JϕKKρ[x→s]}.

for the binder modality. However, this does not capture the intuition one would have about
the interaction between binders and fixpoint recursion; namely that bindings made in one
iteration have an effect on the following iterations.

I Example 1. Consider the formula (p∧¬x)∨↓x.♦X. Obviously the value of x is supposed
to change throughout the evaluation of this formula: the second disjunct is satisfied by a tuple
(K, s, ρ) if (K, s, ρ[x→ s]) satisfies ♦X. However, the update on ρ does not have any impact
on the valuation of ♦X because under the standard µ-calculus semantics extended as stated
above, ♦X is evaluated without involving x at all and thus (p∧¬x)∨↓x.♦X ≡ (p∧¬x)∨♦X.

Now consider the least fixpoint of the transformation defined by this formula, ψ :=
µX.(p ∧ ¬x) ∨ ↓x.♦X. This change in ρ(x) should have some impact on the fixpoint in
the sense that ♦X should be calculated relative to the new valuation of x. Moreover, the
unfolding principle for fixpoints postulates that X should just be a placeholder for ψ, but
the evaluation of ψ surely depends on the value of x. Nonetheless, we have

µX.(p ∧ ¬x) ∨ ↓x.♦X ≡ µX.(p ∧ ¬x) ∨ ♦X
6≡ (p ∧ ¬x) ∨ ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X) .

(1)

The equivalence is a simple consequence of the fact that – under the semantics proposed
above – we have ↓x.ϕ ≡ ϕ whenever x is not free in ϕ. The inequivalence is also easy to
grasp: the left-hand side is evaluated independently of the update of x. The right-hand side,
however, updates x once before the evaluation of the fixpoint formula is started, then with
the new value of x.

To illustrate this, we evaluate both formulas on the following simple Kripke structure:

s0

p

s1

D. Kernberger and M. Lange 17:5

It is quite obvious that s1, {x 7→ s0} 6|= µX.(p ∧ ¬x) ∨ ♦X because under this assignment for
the variable x no state satisfies p ∧ ¬x and thus the fixpoint is just the empty set.

However, s1, {x 7→ s0} |= ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X) because changing the assignment
of x to s1 and then calculating the fixpoint results in {s1, s0} and thus s1, {x 7→ s0} |=
(p ∧ ¬x) ∨ ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X). This is because after unfolding the fixpoint once, it
is calculated relative to the updated valuation of x rather than the old.

On the other hand, the last formula in (1) should be equivalent to the first one in there
because of the desirable equivalence µX.ϕ(X) ≡ ϕ(µX.ϕ) – the aforementioned unfolding
principle.

This example shows that the proposed semantics is inadequate for the fully hybrid
µ-calculus including the binder modality. Interestingly, the fixpoint principle still holds
semantically but not syntactically, i.e. in general we have

JµX.ϕ(X)KKρ = Jϕ(X)KKρ[X 7→JµX.ϕ(X)KKρ]

for any K,X,ϕ and ρ, but

JµX.ϕ(X)KKρ 6= Jϕ(µX.ϕ(X))KKρ

as the evaluation of the outer ϕ may change the variable assignment ρ that is used for the
evaluation of the inner fixpoint formula. In other words, this semantics is not compositional,
i.e. in general we have

Jϕ[ψ/X]KKρ 6= JϕKKρ[X 7→JψKKρ] .

2.3 A Compositional Semantics
To account for such phenomena we propose a new semantics for the fully hybrid µ-calculus.
Formulas are still interpreted over Kripke structures K = 〈S,→, L〉. However, the meaning
of a formula is now a set pairs consisting of a state and an assignment for the first-order
variables. Consequently the variable assignment has to map second-order variables to the
same type; it becomes an assignment ρ : V2 → 2S×(V→S).

Formally the semantics for Hk
µ for all k with respect to a Kripke structure K = 〈S,→, L〉

over Prop and Nom and an assignment ρ : V2 → 2S×(V→S) is the following:

JpKKρ = {(s, σ) ∈ S × (V → S) | s ∈ L(p)},
JxKKρ = {(s, σ) ∈ S × (V → S) | s = σ(x)},

JXKKρ = ρ(X),
J¬ϕKKρ = {(s, σ) ∈ S × (V → S) | (s, σ) 6∈ JϕKKρ },

Jϕ1 ∨ ϕ2KKρ = Jϕ1KKρ ∪ Jϕ2KKρ ,

J�ϕKKρ = {(s, σ) ∈ S × (V → S) | ∀t ∈ S : if s→ t, then (t, σ) ∈ JϕKKρ },
J@x ϕKKρ = {(s, σ) ∈ S × (V → S) | (σ(x), σ) ∈ JϕKKρ },
J↓x.ϕKKρ = {(s, σ) ∈ S × (V → S) | (s, σ[x 7→ s]) ∈ JϕKKρ },

JµX.ϕ(X)KKρ =
⋂
{T ⊆ S × (V → S) | JϕKKρ[X→T] ⊆ T}

with p ∈ Prop ∪Nom, x ∈ V and X ∈ V2.
We will write K, s, σ, ρ |= ϕ if (s, σ) ∈ JϕKKρ . If there are no free second-order variables

we also may drop ρ. Furthermore, we will also sometimes write (s1, . . . , sk) to indicate the

TIME 2017

17:6 The Fully Hybrid µ-Calculus

function σ : V → S with σ(xi) = si when an order on V is implictly given, for instance when
V = {x1, . . . , xk}. To shorten notation even further we sometimes write K, s |= ϕ to express
that K, s, (s, . . . , s) |= ϕ.

I Example 2. Reconsider the formula given in Example 1, now with the new semantics
proposed above. We claim

µX.(p ∧ ¬x) ∨ ↓x.♦X ≡ (p ∧ ¬x) ∨ ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X)

holds. We do not prove this formally here; see Proposition 3 below for a general statement.
Instead we just give a hint that now this equivalence holds by re-evaluating both formulas
on the Kripke structure given in Example 1.

Having two states and one variable, the domain for the semantics is the set of subsets of

{(s0, x 7→ s0), (s0, x 7→ s1), (s1, x 7→ s0), (s1, x 7→ s1)} .

Clearly, p∧¬x holds only at (s0, x 7→ s1). Moreover, the least fixpoint µX.(p∧¬x)∨↓x.♦X
evaluates to the set M := {(s0, x 7→ s1), (s1, x 7→ s0), (s1, x 7→ s1)}. The first element is
included because it satisfies (p ∧ ¬x) so every prefixpoint must contain it. The other two
elements then also have to be elements of all prefixpoints because for every prefixpoint T
with T ⊇ {(s0, x 7→ s1)} we have J↓x.♦XKKρ[X→T] ⊇ {(s1, x 7→ s0), (s1, x 7→ s1)}. Finally one
can easily check that M a fixpoint.

On the other hand,M ⊆ J(p∧¬x)∨↓x.♦(µX.(p∧¬x)∨↓x.♦X) because the first element of
M satisfies p∧¬x and the other two elements satisfy this formula because clearly when placing
x at s1 we get to (s1, x 7→ s1) and then we can make a transition to (s0, x 7→ s1) which is
already part of the least fixpoint. Lastly, (s0, x 7→ s0) 6|= (p∧¬x)∨↓x.♦(µX.(p∧¬x)∨↓x.♦X)
because it does not satisfy the first disjunct p∧¬x as seen and placing the x at s0 still leaves
us with (s0, x 7→ s0) from where we can only get back to itself with any transition available,
and (s0, x 7→ s0) is not an element of the least fixpoint M as seen. So it does not satisfy the
second disjunct either.

The semantics proposed here is indeed compositional, as one can routinely check by
induction over the formula structure.

I Proposition 3. Let ϕ(X), ψ ∈ Hµ, K be any Kripke structure and ρ assign values of
the variables in ϕ,ψ w.r.t. K. Let ϕ[ψ/X] denote the formula that is obtained from ϕ by
replacing every free occurrence of X with ψ. We have Jϕ[ψ/X]KKρ = Jϕ(X)KKρ[X 7→V] where
V = JψKKρ .

This means in particular, that we can use the fixpoint unfolding principle syntactically in
Hµ.

Our analysis will mostly focus on formulas in negation normal form. This is not a
restriction as the following Lemma shows.

I Lemma 4. For every formula ϕ ∈ Hk
µ there is an equivalent formula ϕ′ ∈ Hk

µ in negation
normal form and ϕ′ is only polynomially larger.

Proof. The proof is fairly standard. We simply push negation inwards with de Morgan’s
laws, the usual equivalences for fixpoints, like µX.ϕ ≡ ¬νX.¬ϕ[¬X/X] and the following
equivalences for hybrid operators: ¬↓x.ϕ ≡ ↓x.¬ϕ, ¬@x ϕ ≡ @x ¬ϕ. J

Hµ clearly subsumes hybrid modal logic which is known to be undecidable [4]. Thus, we
immediately get the following result concerning Hµ’s satisfiability problem.

I Theorem 5. Satisfiability for Hµ is undecidable.

D. Kernberger and M. Lange 17:7

3 Model Checking

In this section we investigate the model checking problem for Hµ. We provide a reduction
to Lµ model checking and derive upper complexity bounds for this, prove a matching
lower bound for the general case, and finally define model checking games for Hµ based on
this reduction and the well-known games for Lµ [17]. They can then be used to aid the
understanding of properties expressed by formula of Hµ.

3.1 A Reduction to Lµ Model Checking
Let ϕ ∈ Hk

µ for some k ∈ N and K = 〈S,→, L〉 be a Kripke structure over Prop. From these,
we construct a Kripke structure K̂ and a formula ϕ̂ of the (multi-modal) µ-calculus over
the set of actions A = {•} ∪ {@x | x ∈ V} ∪ {↓x | x ∈ V} and atomic propositions from
Prop ∪Nom ∪ V as follows.

Let ϕ 7→ ϕ̂ be the homomorphism such that ♦̂ψ = 〈•〉ψ̂, @̂x ψ = 〈@x〉ψ̂ and ↓̂x.ψ = 〈↓x〉ψ̂.
Moreover, K̂ = 〈S×(V → S),∆, L̂〉 where the labeling is defined as L̂(p) = {(s, σ) | s ∈ L(p)}
for every p ∈ Prop ∪Nom and L̂(x) = {(s, σ) | s = σ(x)} for every x ∈ V.

The transition relation ∆ is defined as follows.

(s, σ) a−→ (t, σ) iff s→ t in K,
(s, σ) @x−−→ (σ(x), σ) for every x ∈ V, and
(s, σ) ↓x−→ (s, σ[x 7→ s]) for every x ∈ V.

The following can be proved by a straightforward induction over ϕ.

I Lemma 6. For all Kripke structures K = 〈S,→, L〉, s ∈ S and σ : V → S we have
K, s, σ |= ϕ iff K̂, (s, σ) |= ϕ̂.

This realises a reduction from Hµ model checking to Lµ model checking which is polyno-
mial for every fixed k. From this we can derive the following upper complexity bound on the
former in the general case.

I Theorem 7. The model checking problem for Hµ is in ExpTime.

Proof. It is known that Lµ model checking on a Kripke structure K ′ and a formula ψ can be
done in time O((|K ′| · |ψ|)ad(ψ)) [8] where ad(ψ) denotes the depth of fixpoint alternation in
ϕ. Moreover, |ψ| denotes the size of ψ as measured by the number of its distinct subformulas,
and |K ′| is the sum of the number of states and edges in K ′.

Now take an Hk
µ formula ϕ and a Kripke structure K and consider K̂ and ϕ̂ as defined

above. It is not hard to see that |ϕ̂| = O(|ϕ|) and |K̂| = O(|K|k+1). Hence, Lemma 6
facilitates an exponential reduction to Lµ model checking. Since this is not known to be
solvable in polynomial time, the ExpTime upper bound does not follow directly but requires
a slightly more detailed analysis: the reduction produces a Kripke structure K̂ and a formula
ϕ̂ such that ad(ϕ̂) = ad(ϕ) and, hence, model checking on these can be performed in time
O((|K|k+1 · |ϕ|)ad(ϕ)), i.e. in exponential time. J

Clearly, the number of first-order variables is the only source of exponentiation in this
reduction. Hence, if this number is fixed, we obtain a better bound.

I Corollary 8. For any fixed k ∈ N we have that the model checking problem for Hk
µ is at

most polynomially worse than that of Lµ.

This implies membership in NP∩coNP [8], UP∩coUP [10], PLS [20], etc. for model
checking each Hk

µ .

TIME 2017

17:8 The Fully Hybrid µ-Calculus

s, σ ` ψ1 ∧ ψ2
s, σ ` ψ1 s, σ ` ψ2

(1)

s, σ ` �ψ
t, σ ` ψ (1 : s→ t)

s, σ ` νX.ψ(X)
s, σ ` ψ(X) (1)

s, σ ` @x ϕ

σ(x), σ ` ϕ
s, σ ` ↓x.ϕ

s, σ[x 7→ s] ` ϕ
s, σ ` X

s, σ ` fpϕ(X)

(0) s, σ ` ψ1 ∨ ψ2
s, σ ` ψ1 s, σ ` ψ2

(0 : s→ t) s, σ ` ♦ψ
t, σ ` ψ

(0) s, σ ` µX.ψ(X)
s, σ ` ψ(X)

Figure 1 The game rules for Hµ model checking.

3.2 Model Checking Games
Next we give a game-theoretic characterisation of Hµ’s model checking problem. Such games
are particularly useful for reasoning about the (un-)satisfaction of a formula and therefore to
understand the properties expressed by Hµ formulas, for instance in the proof of the lower
bound in the next section.

I Definition 9. Let ϕ ∈ Hµ be in negation normal form, and K = 〈S,→, L〉 be a Kripke
structure. The model checking game G(K,ϕ) is played by 2 players – called 0 and 1. It is
Player 0’s task to show that the formula holds while Player 1 tries to refute this. The game’s
positions are S × (V → S)× Sub(ϕ). We usually write such a position as s, σ ` ψ.

The game can evolve using the rules in Figure 1. Those that are annotated with player i
induce a choice for this player. For example in a configuration (s, σ) ` ♦ψ it is player 0’s
task to choose a successor t of s in K and then the play continues in the position t, σ ` ψ.

A player wins a play if their opponent is stuck, i.e. cannot perform a prescribed choice
anymore. Furthermore, player 0 wins if she can reach a position s, σ ` p with s ∈ L(p) for
some p ∈ Prop ∪ Nom or s, σ ` x with σ(x) = s for some x ∈ V. On the other hand, if
s 6∈ L(p) resp. σ(x) 6= s player 1 wins. Likewise, player 0 wins in a position s, σ ` ¬p if
s 6∈ L(p), and a position s, σ ` ¬x if σ(x) 6= s.

Finally, let >ϕ be the smallest relation such that X >ϕ Y if X has a free occurrence in
fpϕ(Y) that is closed under transitivity. The winner of an infinite play is determined by the
type of the unique largest (with respect to >ϕ) fixpoint variable that occurs infinitely often.
Player 0 wins if its type is ν and player 1 wins if its type is µ.

Next we need to show that these games characterise the model checking problem for Hµ.
This is particularly easy with Lemma 6 at hand, which lets us lift the correctness property
of the Lµ model checking games – player 0 wins iff the formula holds – to the Hµ games.

Let K = 〈S,→, L〉 and ϕ ∈ Hk
µ for some k be given, and let Ĝ(K̂, ϕ̂) be the model

checking game in the multi-modal Lµ for K̂ and ϕ̂. Remember that Lµ = H0
µ and note that

model checking games for H0
µ can ignore the variable assignment in their positions.

I Lemma 10. Player 0 wins a position s, σ ` ϕ in G(K,ϕ) if and only if Player 0 wins a
position (s, σ) ` ϕ̂ in Ĝ(K̂, ϕ̂).

Proof. “⇐” Suppose player 0 has a winning strategy χ for Ĝ(K̂, ϕ̂). Because of positional
determinacy for Lµ model checking games [17] we can assume χ to prescribe a choice to
player 0 in each configuration that contains a disjunction or a diamond formula (regardless
of the play’s history). This strategy can easily be transferred into a positional strategy χ′
for player 0 in G(K,ϕ) via χ′((s, σ) ` ψ) = χ(s, σ ` ψ̂). Note that states in K are of the
form (s, σ) and, as said above, positions in the Lµ, resp. H0

µ model checking games are pairs
of states and subformulas only. Nominally, player 0 has more choices with χ than with χ′

D. Kernberger and M. Lange 17:9

because binder und jump modalities in ϕ have become diamond modalities in ϕ̂. However,
the underlying edge relations in K̂ are deterministic which means that player 0’s only choice
in such positions is to do what the semantics of binders and jumps require.

It is not hard to see that χ′ is winning if χ is because ϕ̂ has essentially the same structure
as ϕ. Hence, if player 0 can use χ to enforce a play in which the outermost fixpoint variable
occurring infinitely often is of type ν then so can she using χ′.

“⇒” This can be proved in the same way by transforming a winning strategy in G(K,ϕ)
into one in Ĝ(K̂, ϕ̂) now adding the deterministic choices for player 0 at additional diamond
subformulas. J

Putting Lemmas 6 and 10 together we obtain correctness of the Hµ model checking
games.

I Theorem 11. Player 0 has a winning strategy in a position s, σ ` ϕ in the model checking
game G(K,ϕ) if and only if K, s, σ |= ϕ.

3.3 A Lower Bound
It remains to be seen that the exponential time upper bound for Hµ is tight. For this we
reduce the n-corridor tiling game problem [6] to the model checking problem of Hµ.

A tiling system is a tuple T = 〈T,H, V, t1〉 consisting of a set of tiles T = {t1, . . . , tm}, a
horizontal matching relation H ⊆ T × T , a vertical matching relation V ⊆ T × T and an
initial tile t1.

Let n ≥ 1. The n-corridor tiling game is played between two players Adam and Eve on
such a T and the (N×{0, . . . , n− 1})-corridor as follows. At the beginning, the initial tile t1
is being placed at position (0, 0). Whenever the first tile of a row has been placed, Eve needs
to complete this row with tiles respecting the vertical and horizontal matching relations.
Whenever a row is finished, Adam’s places a tile onto the first position of the next row such
that this tile matches the one below w.r.t. V .

A play is won by a player if their opponent is unable to place a tile without violating the
matching relations. Additionally, Eve wins any play that goes on forever.

The n-corridor tiling game problem is the following: given a tiling system T and an
n ∈ N in unary encoding, decide whether Eve has a winning strategy for the n-corridor tiling
game on T . This problem is known to be ExpTime-hard [6].

I Theorem 12. The model checking problem for Hµ is ExpTime-hard.

Proof. Let T = 〈T,H, V, t1〉 with T = {t1, . . . , tm} and n ∈ N be given. To help with
notation define Hti := {t | (ti, t) ∈ H} as the possible horizontal successors of ti and
Vti := {t | (ti, t) ∈ V } as the possible vertical successors of ti for each i ∈ {1, . . . ,m}.

We build a Kripke structure Kn
T over Prop = T with a designated state s0 and an Hn

µ

formula ϕnT such that Kn
T , s0, σ |= ϕT for any σ if and only if Eve wins the n-corridor tiling

game on T .
Intuitively, a path through Kn

T corresponds to a particular play in the n-corridor tiling
game on T . Each state is labeled with exactly one atomic proposition from T representing
the tile placed at a particular position in the n-corridor. It is encoded row-wise as an
infinite path, i.e. the i-th state on this path represents the position (bi ÷ nc, i mod n) in
the n-corridor. It is possible to let Kn

T consist of the full clique of m states only – one for
each tile. However, it is more convenient to encode the horizontal matching relation into the
structure such that an edge from (a state labeled) t in some column to t′ in the next column
only exists if (t, t′) ∈ H and both represent positions in a common row in the n-corridor.

TIME 2017

17:10 The Fully Hybrid µ-Calculus

t1

...

tm

t1

...

tm

t1

...

tm

. . .

columns 0, . . . , n − 1

Figure 2 The Kripke structure Kn
T used in the reduction from the n-corridor tiling game problem.

Kn
T is depicted in Figure 2. The initial state is the one labeled with the initial tile t1 in

column 0. There is an edge from a state (identified by its unique label) t in column i to state
t′ in column i+ 1 iff (t, t′) ∈ H and i < n− 1. Additionally, there are edges from every state
in column n− 1 to every state in column 0.

The formula ϕnT then needs to describe the evolution of the n-corridor tiling game. The
fact that it potentially goes on forever is modeled by a greatest fixpoint recursion. Each
iteration corresponds to the construction of a row. For technical convenience, since the initial
tile in the n-corridor tiling game is fixed, it actually corresponds to the construction of the
n − 1 last tiles of a row plus the first tile of the next row. In order to check whether the
players only choose tiles that match vertically, we use n first-order variables x0, . . . , xn−1
which are placed during the construction of a row, and then can be used to remember those
tiles for the construction of the next row.

As a shorthand we use the formula

vmi(Z) := (
∨

(t,t′)∈V

t′ ∧@xit) ∧ ↓xi.Z

for i = 0, . . . , n − 1 which compares the tile at the current position with the tile at the
position stored in xi, and additionally binds the variable xi to the state that it is currently
evaluated in. Then let

ϕnT := ↓x0.♦ ↓x1.♦ ↓x2. . . .♦ ↓xn−1.�
(
νY.¬vm0(¬♦vm1(♦vm2(. . .♦vmn−1(�Y) . . .)))

)
.

Using the previously introduced model checking games for Hµ one can check that a winning
strategy for Eve in the n-corridor tiling game induces a winning strategy for player 0 in
the model checking game on Kn

T and ϕnT : her choices of tiles in the tiling game correspond
directly to choices she can do at ♦-formulas. With Theorem 11 we then get correctness of
this reduction. Moreover, it is easy to see that both Kn

T and ϕnT can be constructed in time
polynomial in |T | and the value of n. J

4 Expressiveness

This section studies the expressive power of Hµ with a particular focus on principle bounds
imposed in the sense of bisimulation invariance. It is well known that Lµ is bisimulation-
invariant, i.e. formulas of Lµ cannot distinguish bisimilar models, but that hybrid operators
break this invariance. For example with just one variable one can distinguish a single self-loop
from its tree-unraveling using the formula x ∧ ♦x.

D. Kernberger and M. Lange 17:11

4.1 A Game-Theoretic Characterisation of k-Bisimulation
In [3] it is shown that hybrid modal logic is invariant under a refined form of bisimulation,
called k-bisimulation; its formal definition is recalled below. To better suit our framework of
games we present the definition in terms of k-bisimulation games extending the well known
(ordinary) bisimulation games [18].

I Definition 13 (k-Bisimulation Game). Given two Kripke structures K0 = 〈S0,→0, L0〉 and
K1 = 〈S1,→1, L1〉 over a set of atomic propositions Prop and a set of nominals Nom, the
k-bisimulation game Gk(K0,K1) is played between two players – Spoiler and Duplicator –
on the configuration space Sk+1

1 × Sk+1
2 .

We can imagine that on each structure we have one active pebble that gets moved across
the structure and k inactive pebbles that just mark certain states as well as some fixed
pebbles that mark the positions of the nominals.

The game is strictly turn-based. First, in a configuration (s, s1, . . . , sk, t, t1, . . . , tk) Spoiler
starts by choosing one of the structures Ki for some i ∈ {0, 1} and then chooses to either

take a transition s→0 s
′, resulting in a configuration (s′, s1, . . . , sk, t, t1, . . . , tk), or

move pebble i from si to the current state s, resulting in a configuration (s, s1, . . . , si−1, s,

si+1, . . . , sk, t, t1, . . . , tk), or
jump from the current state s to some pebble si, resulting in a configuration (si, s1, . . . , sk,

t, t1, . . . , tk) or to some nominal n resulting in a configuration (n, s1, . . . , sk, t, t1, . . . , tk).

After that Duplicator makes the same kind of move on the other structure K1−i.
Spoiler wins the game if after Duplicator’s move the game is in a configuration (s, s1, . . . ,

sk, t, t1, . . . , tk) such that the atomic propositions or nominals on s and t do not match or
for some i = 1, . . . , k, s = si but not t = ti or vice versa. On the other hand Duplicator wins
the game if he can always successfully mimic Spoiler’s move which means that on s and t the
atomic propositions and nominals match and s = si if and only if t = ti for all i = 1, . . . , k
and thus the game goes on forever.

We say that (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) if Duplicator wins Gk(K0,K1) from the
configuration (s, s1, . . . , sk, t, t1, . . . , tk). We say that s ∼k t if Duplicator wins Gk(K0,K1)
from configuration (s, s, . . . , s, t, t, . . . , t).

It is easy to see that for k = 0 and no nominals we get the well-known bisimulation games.
Furthermore, as also remarked in [3], these games can be restricted to the hybrid operators in
use. For example, the restricted games with k = 0 variables and only nominals characterise
the expressiveness of the hybrid µ-calculus with only nominals and jumps investigated in
[16].

The following lemma states some easy observations that will be of use later on.

I Lemma 14. Let K0,K1 be as in Definition 13. If (s, s1, . . . , sk) ∼k (t, t1, . . . , tk), then
(a) for every s→0 s

′ there is a transition t→1 t
′ such that (s′, s1, . . . , sk) ∼k (t′, t1, . . . , tk),

(b) (s, s1, . . . , si−1, s, si+1, . . . , sk) ∼k (t, t1, . . . , ti−1, t, ti+1, . . . , tk) for every i = 1, . . . , k,
and

(c) (si, s1, . . . , sk) ∼k (ti, t1, . . . , tk) for every i = 1, . . . , k.

4.2 The Hybrid µ-Calculus and k-Bisimulation
We will now show that the expressive power of Hk

µ is limited by k-bisimulations.

TIME 2017

17:12 The Fully Hybrid µ-Calculus

I Theorem 15. Let ϕ ∈ Hk
µ be closed and K0 = 〈S0,→0, L0〉,K1 = 〈S1,→1, L1〉 be two

Kripke structures. If (s, s1, . . . , sk) ∈ Sk+1
0 and (t, t1, . . . , tk) ∈ Sk+1

1 such that (s, s1, . . . , sk)
∼k (t, t1, . . . , tk), then K0, s, (s1, . . . , sk) |= ϕ if and only if K1, t, (t1, . . . , tk) |= ϕ.

Proof. To prove this by induction we have to strengthen the hypothesis in order to ac-
count for formulas ϕ(X1, . . . , Xm) with free second-order variables X1, . . . , Xm. Let ρ
and ρ′ be interpretations for these that respect k-bisimilarity in the sense that for all
(s, s1, . . . , sk) ∈ Sk+1

0 and (t, t1, . . . , tk) ∈ Sk+1
1 it holds that if (s, s1, . . . , sk) ∼k (t, t1, . . . , tk)

then (s, s1, . . . , sk) ∈ ρ(Xi) if and only if (t, t1, . . . , tk) ∈ ρ′(Xi) for any i.
We will prove the following by induction on the structure of ϕ: (s, s1, . . . , sk) ∼k

(t, t1, . . . , tk) implies that K0, s, (s1, . . . , sk), ρ |= ϕ if and only if K1, t, (t1, . . . , tk), ρ′ |= ϕ.
For technical convenience, the variable assignments have been split into the parts interpreting
the first- resp. second-order variables.

So, assume that (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) and ρ, ρ′ are as stated above. For the base
case let ϕ = p for some p ∈ Prop. Then from (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) we immediately
get that s ∈ L0(p)⇔ t ∈ L1(p). The case ϕ = x is similar. For the case ϕ = Xi we can use
the assumption for free second-order variables as stated above.

The cases for Boolean operators follow immediately from the hypothesis and the case
ϕ = ♦ψ follows immediately with Lemma 14 a).

For the hybrid operators suppose that ϕ = ↓xi.ψ for some i ∈ {1, . . . , k}. We get that

K0, s, (s1, . . . , sk), ρ |= ϕ ⇔ K0, s, (s1, . . . , si−1, s, si+1, . . . , sk), ρ |= ψ

⇔ K1, t, (t1, . . . , ti−1, t, ti+1, . . . , tk), ρ′ |= ψ

⇔ K1, t, (t1, . . . , tk), ρ′ |= ϕ

where the first and last equivalence are simply the semantics of Hk
µ and the second equivalence

is Lemma 14 b) and the induction hypothesis. The case for ϕ = @xi ψ then follows with
Lemma 14 c).

For the last case suppose that ϕ = µX.ψ(X,X1, . . . , Xm) with free variables in ψ as
depicted.

Let ψ0 := ψ[ff/X] and ψα+1 := ψ[ψα/X]. With Proposition 3 and the characterisation
of least fixpoints via approximations we have that JµX.ψ(X)KK% =

⋃
α<ωJψαKK% for some

Kripke structure K and assignment %.
We show by a separate induction over α that K0, s, (s1, . . . , sk), ρ |= ψα if and only if

K1, t, (t1, . . . , tk), ρ′ |= ψα. The case for least fixpoints then follows immediately.
For the base case α = 0 observe that Jψ[ff/X]KK% = Jψ(X)KK%[X 7→∅]. Thus,

K0, s, (s1, . . . , sk), ρ |= ψ0 ⇔ K0, s, (s1, . . . , sk), ρ[X 7→ ∅] |= ψ(X)
⇔ K1, t, (t1, . . . , tk), ρ′[X 7→ ∅] |= ψ(X)
⇔ K1, t, (t1, . . . , tk), ρ′ |= ψ0

where the second equivalence is by the fact that for all (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) it
holds that (s, s1, . . . , sk) ∈ ∅ ⇔ (t, t1, . . . , tk) ∈ ∅ so we can use the induction hypothesis of
the outer induction for ψ. For the induction step we then get

K0, s, (s1, . . . , sk), ρ |= ψα+1 ⇔ K0, s, (s1, . . . , sk), ρ[X 7→ JψαKK0
ρ] |= ψ(X)

⇔ K1, t, (t1, . . . , tk), ρ′[X 7→ JψαKK1
ρ′] |= ψ(X)

⇔ K1, t, (t1, . . . , tk), ρ′ |= ψα+1.

D. Kernberger and M. Lange 17:13

Here, the induction hypothesis for ψα makes sure that the conditions for the induction
hypothesis for ψ are met which is why the second equivalence holds. This finishes both
inductions. J

I Corollary 16. Let ϕ ∈ Hk
µ be a sentence and K0 = 〈S0,→0, L0〉,K1 = 〈S1,→1, L1〉 be two

Kripke structures. If s ∈ S0 and t ∈ S1 such that s ∼k t, then K0, s |= ϕ if and only if
K1, t |= ϕ.

There is another interesting connection between Hµ and bisimulations: H2
µ can express

bisimilarity in the sense that there is a fixed formula ϕ∼ (relative to a fixed Prop) which is
true in a Kripke structure with a valuation of two variables if and only if these two variables
point at bisimilar states. For technical convenience we assume Nom = ∅ here, since the usual
and simple reduction from bisimilarity between two Kripke structures to bisimilarity within a
single structure does not work in the presence of nominals. Instead, one has to rename them
uniquely in one of them to allow the disjoint union of two Kripke structures with nominals
to be seen as one Kripke structure with nominals again.

I Example 17. The formula

ϕ∼ := νX.
((∧

p∈Prop
@x p↔ @y p

)
∧ (@x� ↓x.@y ♦ ↓ y.X) ∧ (@y � ↓ y.@x ♦ ↓x.X)

)
states that x and y are bisimilar. This can be seen using the model checking games of
Section 3.2 for instance.

It is even possible to express k-bisimilarity; however this requires 2k + 2 variables.

I Example 18. The formula

ϕk∼ := νX.
(∧
p∈Prop

(@x p↔ @y p) ∧ (@x� ↓x.@y ♦ ↓ y.X) ∧ (@y � ↓ y.@x ♦ ↓x.X)

k∧
i=1

(
(@x xi ↔ @y yi) ∧ (@x ↓xi.@y ↓ yi.X) ∧ (@xi ↓x.@yi ↓ y.X)

))
over the variables {x, x1, . . . , xk, y, y1, . . . , yk} ordered in this way is true on (s, s1, . . . , sk, t, t1,

. . . , tk) in K if and only if (s, s1, . . . , sk) ∼k (t, t1, . . . , tk).

I Theorem 19. H2k+2
µ can express k-bisimilarity for any k ≥ 0.

4.3 Comparing Hµ with Hybrid Branching Time Logics
A natural question that arises when studying the expressiveness of Hµ is its relationship to
other hybrid logics. It is easy to see that Hµ is more expressive than hybrid modal logic using
the same example which shows that Lµ is more expressive than modal logic. Candidates
for an interesting comparison are hybrid extensions of branching time logics. There are
three hybrid extensions of CTL∗ [12] defined by constraints on how hybrid operators can be
used on path formulas which are not state formulas, giving rise to the syntactical hierarchy
HCTL∗ss ≤ HCTL∗ps ≤ HCTL∗pp. The smallest already subsumes the previously studied hybrid
extensions of CTL and CTL+ [11]. We will show that HCTL∗ps already is not subsumed by
Hµ. This is somewhat surprising given that Lµ is known to subsume CTL∗ [7].

Let Ck = 〈Sk,→, L〉 be the complete clique over k states and C∞ = 〈S∞,→, L〉 be
the complete clique over N, as depicted for k = 8 in Figure 3, as Kripke structures over
Prop = Nom = ∅.

TIME 2017

17:14 The Fully Hybrid µ-Calculus

· · ·
· · ·

· · ·

Figure 3 C8 and C∞.

I Lemma 20. Let (s, s1, . . . , sk, t, t1, . . . , tk) be a configuration in the k-bisimulation game
Gk(Ck+1, C∞) such that s = si if and only if t = ti for all i = 1, . . . , k. Then Duplicator has
a winning strategy for this game starting in this configuration.

Proof. We call a configuration (s, s1, . . . , sk, t, t1, . . . , tk) consistent if for all i we have s = si
if and only if t = ti. By assumption, the game starts in a consistent configuration. There are
two observations to be made:

1. Regardless of Spoiler’s choices in a consistent configuration, Duplicator can always answer
such that the next configuration is also consistent. This is particularly easy for moves in
C∞, and in Ck+1 it is possible because every state is reachable from every other in one
step, and there is always at least one state which is not inhabited by an inactive pebble.

2. Spoiler wins the k-bisimulation game only when an inconsistent configuration has been
reached.

Hence, the simple strategy of preserving consistency is a winning strategy for Duplicator in
Gk(Ck+1, C∞). J

Duplicator especially wins the game starting in configurations of the form (s, s, . . . , s, t, t,
. . . , t), since they are obviously consistent, which means that s ∼k t for any s ∈ Ck+1 and
t ∈ C∞.

I Theorem 21. There is a formula ϕ ∈ HCTL∗ps that cannot be expressed by any formula in
Hµ.

Proof. The formula ϕ := EG(↓x.XG¬x) ∈ HCTL∗ps states that there is an infinite path
such that no state on this path is seen twice. Clearly, we have C∞, t |= ϕ for any state t
and Ck, s 6|= ϕ for any state s and any k ∈ N. Now suppose there was a formula ψ ∈ Hµ

expressing this property. Then we would have ψ ∈ Hk
µ for some k. By equivalence we

would get C∞, t |= ψ and Ck+1, s 6|= ψ for any states s, t. On the other hand, according to
Lemma 20 we have Ck+1, s ∼k C∞, t, and by Theorem 15, no Hµ formula – in particular not
ψ – can distinguish these two structures. Hence, no such ψ can exist. J

5 Conclusion and Further Work

We have introduced a hybrid extension of the µ-calculus with nominals, binders and jumps
and have shown that the model checking problem for this logic is ExpTime-complete for
the general case and only polynomially worse than model checking the modal µ-calculus

D. Kernberger and M. Lange 17:15

for a fixed number of variables. We have investigated the expressiveness of the fully hybrid
µ-calculus and have shown that it is invariant under hybrid k-bisimulations introduced in [3]
when restricted to k variables. We used this result to show that – contrary to the pure modal
case – the hybrid extension of the full branching time logic CTL∗ is not a fragment of Hµ.

Future work will investigate the relationship between hybrid branching time logics and
the µ-calculus in more detail. We have shown here that the second level of the syntactic
hierarchy of hybrid branching time logics introduced in [12] cannot be translated to the fully
hybrid µ-calculus. We believe that the variant which allows binders and jumps over state
formulas only could be a fragment of Hµ and will investigate this further.

Another interesting connection that needs to be explored is that between Hµ and the
polyadic µ-calculus [2, 15], another extension of Lµ which can express bisimilarity in the
sense of Example 17. Its formulas are interpreted in tuples of states of fixed arity, rather than
single states as in the case of Lµ. This is reminiscent of the mechanisms in Hµ, especially
under the semantics developed here, where a formula with k first-order variables is essentially
interpreted by a (k + 1)-tuple of states. We believe that the polyadic µ-calculus can be
embedded into Hµ. The opposite direction cannot hold because the polyadic µ-calculus is
known to be bisimulation-invariant. However, this obviously breaks when it is equipped with
an equality predicate [14], and we believe that then it becomes strong enough to embed Hµ.

References

1 R. Alur and T.A. Henzinger. A really temporal logic. J. of the ACM, 41(1):181–204, 1994.
2 H.R. Andersen. A polyadic modal µ-calculus. Technical Report ID-TR: 1994-195, Dept.

of Computer Science, Technical University of Denmark, Copenhagen, 1994.
3 C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpolation and

complexity. J. of Symb. Log., 66:2001, 1999.
4 C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter, and J. van Benthem,

editors, Handbook of Modal Logics, pages 821–868. Elsevier, 2006.
5 J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Hand-

book of Philosophical Logic, Volume II: Extensions of Classical Logic, pages 167–247. D.
Reidel, 1984.

6 B. S. Chlebus. Domino-tiling games. J. of Comp. and Sys. Sc., 32:374–392, 1986.
7 M. Dam. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. TCS, 126(1):77–96,

1994.
8 E.A. Emerson, C. S. Jutla, and A.P. Sistla. On model-checking for fragments of µ-calculus.

In Proc. 5th Conf. on Computer Aided Verification, CAV’93, volume 697 of LNCS, pages
385–396. Springer, 1993.

9 M. Franceschet and M. de Rijke. Model checking hybrid logics (with an application to
semistructured data). J. of Applied Logic, 4(3):279–304, 2006.

10 M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP . Inf. Process. Lett.,
68(3):119–124, 1998.

11 A. Kara, V. Weber, M. Lange, and T. Schwentick. On the hybrid extension of CTL
and CTL+. In Proc. 34th Int. Symp. on Mathematical Foundations of Computer Science,
MFCS’09, volume 5734 of LNCS, pages 427–438. Springer, 2009.

12 D. Kernberger and M. Lange. Model checking for the full hybrid computation tree logic. In
Proc. 23rd Int. Symp. on Temporal Representation and Reasoning, TIME’16, pages 31–40.
IEEE Computer Society, 2016.

13 D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.

TIME 2017

17:16 The Fully Hybrid µ-Calculus

14 M. Lange and E. Lozes. Model checking the higher-dimensional modal µ-calculus. In Proc.
8th Workshop on Fixpoints in Computer Science, FICS’12, volume 77 of Electr. Proc. in
Theor. Comp. Sc., pages 39–46, 2012.

15 M. Otto. Bisimulation-invariant PTIME and higher-dimensional µ-calculus. Theor. Com-
put. Sci., 224(1–2):237–265, 1999.

16 U. Sattler and M.Y. Vardi. The hybrid µ-calculus. In Proc. 1st Int. Joint Conf. on
Automated Reasoning, IJCAR’01, volume 2083 of LNCS, pages 76–91. Springer, 2001.

17 C. Stirling. Local model checking games. In Proc. 6th Conf. on Concurrency Theory,
CONCUR’95, volume 962 of LNCS, pages 1–11. Springer, 1995.

18 C. Stirling. Bisimulation, modal logic and model checking games. Logic J. of the IGPL,
7(1):103–124, 1999.

19 B. ten Cate. Model theory for extended modal languages. PhD thesis, Institute for Lo-
gic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands,
2005.

20 J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity
games. In Proc. 12th Int. Conf. on Computer Aided Verification, CAV’00, volume 1855 of
LNCS, pages 202–215. Springer, 2000.

	Introduction
	Preliminaries
	Syntax
	Considerations on the Semantics in the Presence of Fixpoints
	A Compositional Semantics

	Model Checking
	A Reduction to Lmu Model Checking
	Model Checking Games
	A Lower Bound

	Expressiveness
	A Game-Theoretic Characterisation of k-Bisimulation
	The Hybrid mu-Calculus and k-Bisimulation
	Comparing Hmu with Hybrid Branching Time Logics

	Conclusion and Further Work

