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Abstract
Homomorphisms between relational structures play a central role in finite model theory, con-
straint satisfaction, and database theory. A central theme in quantum computation is to show
how quantum resources can be used to gain advantage in information processing tasks. In par-
ticular, non-local games have been used to exhibit quantum advantage in boolean constraint
satisfaction, and to obtain quantum versions of graph invariants such as the chromatic number.
We show how quantum strategies for homomorphism games between relational structures can
be viewed as Kleisli morphisms for a quantum monad on the (classical) category of relational
structures and homomorphisms. We use these results to exhibit a wide range of examples of
contextuality-powered quantum advantage, and to unify several apparently diverse strands of
previous work.
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1 Introduction

Finite relational structures and the homomorphisms between them form a mathematical
core common to finite model theory [25], constraint satisfaction [14], and relational database
theory [24]. Moreover, much of graph theory can be formulated in terms of the existence of
graph homomorphisms, as expounded e.g. in the influential text [17]. Thus, implicitly at least,
the mathematical setting for all these works is categories of σ-structures and homomorphisms,
for relational vocabularies σ.

What could it mean to quantize these structures? More precisely, with the advent of
quantum computing, we can now consider the consequences of using quantum resources for
carrying out various information-processing tasks. A major theme of current research is to
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35:2 The Quantum Monad on Relational Structures

delineate the scope of the quantum advantage which can be gained by the use of quantum
resources. How can this be related to these fundamental structures?

Our starting point is the notion of quantum graph homomorphism introduced in [27] as
a generalization of the notion of quantum chromatic number [11]. Consider the following
game, played by Alice and Bob cooperating against a Verifier. Their goal is to establish
the existence of a homomorphism G → H for given graphs G and H. Verifier provides
vertices v1, v2 ∈ V (G) to Alice and Bob respectively. They produce outputs w1, w2 ∈ V (H)
in response. No communication between Alice and Bob is permitted during the game. They
win if the following conditions hold: v1 = v2 ⇒ w1 = w2 and v1 ∼ v2 ⇒ w1 ∼ w2, where
we write ∼ for the adjacency relation.

If only classical resources are permitted, then the existence of a perfect strategy for Alice
and Bob — one in which they win with probability 1 — is equivalent to the existence of
a graph homomorphism in the standard sense. However, using quantum resources, in the
form of an entangled bipartite state where Alice and Bob can each perform measurements
on their part, there are perfect strategies in cases where no classical homomorphism exists,
thus exhibiting quantum advantage.

Alice–Bob games have also been studied for other tasks, notably for constraint systems.
Consider the following system of linear equations over Z2:

A ⊕ B ⊕ C = 0 D ⊕ E ⊕ F = 0 G ⊕ H ⊕ I = 0

A ⊕ D ⊕ G = 0 B ⊕ E ⊕ H = 0 C ⊕ F ⊕ I = 1

Of course, this system is not satisfiable in the standard sense, as we can see by summing
over the left- and right-hand sides. Now consider the following Alice–Bob game. The Verifier
sends Alice an equation, and Bob a variable. Alice returns an assignment to the variables in
the equation, and Bob returns an assignment for his variable. They win if Bob’s assignment
agrees with Alice’s, and moreover Alice’s assignment satisfies the given equation. Classically,
the existence of a perfect strategy is equivalent to the existence of a satisfying assignment for
the whole system. Using quantum resources, there is a perfect strategy for the above system,
which corresponds to Mermin’s “magic square” construction [29]. This can be generalized to
a notion of quantum perfect strategies for a broad class of constraint systems [13, 12], which
have strong connections both to the study of contextuality in quantum mechanics, and to a
number of challenging mathematical questions [36, 35]. Clearly, these games are analogous
to those for graph homomorphisms. What is the precise relationship?

In [27], generalizing results in [11], the existence of a quantum perfect strategy for
the homomorphism game from G to H is characterized in terms of the existence of a
family {Evw}v∈V (G),w∈V (H) of projectors in d-dimensional Hilbert space for some d, subject
to certain conditions. Analogous results for constraint systems are proved in [13]. This
characterization eliminates the two-person aspect of the game, and the shared state, leaving
a “projector-valued relation” as the witness for existence of a quantum perfect strategy.
We shall henceforth call these witnesses quantum graph homomorphisms. An important
further step is taken in [27]. A construction H 7→ MH on graphs is introduced, such that
the existence of a quantum graph homomorphism from G to H is equivalent to the existence
of a standard graph homomorphism G→ MH.

Our contribution begins at this point. We describe a general notion of non-local game for
witnessing homomorphisms between structures for any relational signature. We show that
the use of quantum resources in these games can be characterized by a notion of quantum
homomorphism. Moreover, quantum homomorphisms can in turn be characterized as the
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Kleisli morphisms for a quantum monad on the (classical) category of relational structures
and homomorphisms. This monad is graded [30] by the dimension of the Hilbert space.

Our account refines and generalizes the ideas from both [11, 27] and [13]. We characterize
quantum solutions for general constraint satisfaction problems, showing as a special case that
these subsume the binary constraint systems of [13]. We also show how quantum witnesses
for strong contextuality in the sense of [4] are characterized by quantum homomorphisms.

The precise relationship with the quantum graph homomorphisms of [27] turns out to be
more subtle. We show that their notion is characterized by a quantum solution in our sense
for a related boolean constraint system. Overall, we show that a wide range of notions of
quantum advantage is captured in a uniform way by the quantum monad, applied directly to
the standard classical structures.

For reasons of limited space, some background material on linear algebra and quantum
mechanics (e.g. the notions of POVM and PVM) and some proofs have been relegated to an
Appendix.

2 From quantum perfect strategies to quantum homomorphisms

We write [p] := {1, . . . , p}. We fix a finite relational vocabulary σ = {R1, . . . , Rp}, where
Ra has arity ka, a ∈ [p]. A σ-structure has the form A = (A,RA1 , . . . , RAp ), where A is a
non-empty set, and RAa ⊆ Aka , a ∈ [p]. A homomorphism of σ-structures f : A → B is a
function f : A → B such that, for all a ∈ [p] and x ∈ Aka , x ∈ RAa ⇒ f(x) ∈ RBa . Here
we use vector notation: x = (x1, . . . , xka

) and f(x) = (f(x1), . . . , f(xka
)). We denote the

category of σ-structures and homomorphisms by R(σ), and the full subcategory of finite
structures by Rf (σ).

We now consider the following game, played on finite structures A and B, in which Alice
and Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

Alice and Bob are separated, and not allowed to communicate (exchange classical inform-
ation) while the game is played.
In a play of the game, the Verifier sends Alice an index a, and a tuple x ∈ RAa ; and Bob
an element x ∈ A.
Alice returns a tuple y ∈ Bka , and Bob returns an element y ∈ B.
Alice and Bob win that play if
(i) y ∈ RBa
(ii) x = xi ⇒ y = yi, i ∈ [ka].

Alice and Bob may use probabilistic strategies. A perfect strategy is one in which they win
with probability 1.

It is clear that if only classical resources are allowed, the existence of a perfect strategy is
equivalent to the existence of a homomorphism from A to B. The actual strategy played by
Alice and Bob may be pure or mixed, in the latter case using some shared randomness.

We now consider the use of quantum resources in the homomorphism game. We shall
only consider the case of finite-dimensional resources in this paper. Such resources have the
following general form:

There are finite-dimensional Hilbert spaces H and K, and a pure state ψ on H⊗ K. This
state is shared between Alice and Bob. The separation between Alice and Bob is reflected
in the fact that Alice can only perform operations on H, while Bob can only perform
operations on K.
For each a ∈ [p] and tuple x ∈ RAa , Alice has a POVM Eax = {Eax,y}y∈Bka .
For each x ∈ A, Bob has a POVM Fx = {Fx,y}y∈B

MFCS 2017



35:4 The Quantum Monad on Relational Structures

These resources are used as follows:
Given a and x, Alice measures Eax on her part of ψ.
Given x, Bob measures Fx on his part of ψ.
They obtain the joint outcome (y, y) with probability ψ∗(Eax,y ⊗Fx,y)ψ.

If with probability 1 the outcome (y, y) satisfies the winning conditions, then this is a
quantum perfect strategy.

We can write the winning conditions explicitly in terms of the quantum operations:

(QS1) ψ∗(Eax,y ⊗Fx,y)ψ = 0 if x = xi and y 6= yi

(QS2) ψ∗(Eax,y ⊗ I)ψ = 0 if y 6∈ RBa .

A first remark is that our assumption of the bipartite structure of the state space does
not in fact lose any generality. We could have asked simply that Bob’s operators commute
with those of Alice. However, since we are considering the finite-dimensional case, a result of
Tsirelson [37, 35] implies that this is equivalent to the tensor product formulation we have
used. Furthermore, using a pure state also does not lose any generality. Indeed, if we had a
mixed state ρ =

∑
i piψiψ

∗
i , with the trace replacing the inner products in (QS1) and (QS2),

then the linearity of the trace implies that we could just as well have used any of the pure
states ψi with the same measurements, and still satisfy the conditions.

We shall now show that in fact a quantum perfect strategy can without loss of generality
be assumed to have a very special form, which will lead us to the equivalence with quantum
homomorphisms. These results combine ingredients from [13] and [27, 11]. The proofs are
closest to those in [34], but are considerably simpler as well as more general.

For notational convenience, we shall focus on the case where the relational signature has a
single k-ary relation R. Thus a quantum perfect strategy for the homomorphism game from
A to B has the form (ψ, {Ex}x∈RA , {Fx}x∈A), where Ex = {Ex,y}y∈Bk and Fx = {Fx,y}y∈B
are POVMs satisfying the conditions (QS1) and (QS2).

Our first step is to show that ψ can be taken to have full Schmidt rank.

I Lemma 1. Given a quantum perfect strategy (ψ′, {E ′x}x∈RA , {F ′x}x∈A), we can find a
strategy (ψ, {Ex}x∈RA , {Fx}x∈A) where ψ ∈ Cd⊗Cd has the form

∑d
i=1 λiei⊗ ei with λi > 0

for all i.

Proof. Our proof will follow closely the first part of the proof of Theorem 6.5.1 in [34], so we
omit detailed calculations. We write the Schmidt decomposition of ψ′ as

∑d
i=1 λiαi ⊗ βi ∈

CdA ⊗ CdB , where {αi}, {βi} are orthonormal families of vectors, and λi > 0.
We define PA :=

∑d
i=1 eiα

∗
i , PB :=

∑d
i=1 eiβ

∗
i . Thus PA : CdA → Cd, and PB : CdB → Cd.

It is straightforward to verify that PAP ∗A = Id = PBP
∗
B. We have ψ := (PA ⊗ PB)ψ′, and

ψ′ = (P ∗A ⊗ P ∗B)ψ.
Similarly, we define Ex,y := PAE ′x,yP ∗A, and Fx,y := PAF ′x,yP ∗B. Again, it is straightfor-

ward to verify that this yields well-defined POVMs, and moreover that the probabilities
are preserved: ψ∗(Ex,y ⊗ Fx,y)ψ = ψ′∗(E ′x,y ⊗ F ′x,y)ψ′. Thus (ψ, {Ex}x∈RA , {Fx}x∈A) is a
quantum perfect strategy. J

The following simple general result will be useful.

I Lemma 2. Let A be a ∗-algebra, and a, b, d be self-adjoint elements of A, where d is also
invertible. Suppose that ad = adb = db. Then a and b are projectors, and they both commute
with d2. If A is a C∗-algebra, then a = b.
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Proof. First, a2d = adb = ad. Since d is invertible, this implies that a2 = a, so a is a projector.
Similarly, b2 = b. Moreover, since a, b and d are self-adjoint, db = ad ⇐⇒ bd = da. Hence
ad2 = dbd = d2a.

If A is a C∗-algebra, then it is standard that d commutes with every element which
commutes with d2 [9, 32], so da = ad = db, and since d is invertible, this yields a = b. J

We shall now show that under the assumption of full Schmidt rank, the measurements
are already remarkably constrained. We define E ix,y :=

∑
yi=y Ex,y.

I Lemma 3. Let (ψ, {Ex}, {Fx}) be a quantum perfect strategy in which ψ has full Schmidt
rank. Then for all x, i, y, E ix,y and Fx,y are projectors, and E ix,y = FTx,y whenever x = xi.

Proof. We write ψ as
∑d
i=1 λiei ⊗ ei, where λi > 0. The corresponding d × d diagonal

matrix D = diag{λi} is full rank, and hence invertible, and D∗ = D. Note that ψ = vec(D),
the vectorization of D. Using the standard equations (A ⊗ B)vec(D) = vec(ADBT ) and
vec(A)∗vec(B) = Tr(AB), we have

ψ∗(Ex,y ⊗Fx,y)ψ = 0 ⇐⇒ Tr(DEx,yDFTx,y) = 0 ⇐⇒ Tr(Ex,yDFTx,yD) = 0.

By Proposition 17, Tr(Ex,yDFTx,yD) = 0 ⇐⇒ Ex,yDFTx,yD = 0, and since D is invertible,
this is equivalent to Ex,yDFTx,y = 0. By condition (QS1), Ex,yDFTx,y = 0 when x = xi and
y 6= yi. This in turn implies that E ix,yDFTx,y′ = 0 when x = xi and y 6= y′.

Now fix x and x = xi. Let Ay := E ix,y, and By := FTx,y. We have
∑
y Ay = I =

∑
y By,

and AyDBy′ = 0 when y 6= y′. Hence AyD =
∑
y′ AyDBy′ = AyDBy =

∑
y′ Ay′DBy =

DBy. We can now apply Lemma 2, taking a = Ay, d = D, and b = By, to conclude that
E ix,y and Fx,y are projectors, and moreover that they commute with D2. We can use the last
part of Lemma 2 to conclude that E ix,y = FTx,y whenever x = xi. J

Finally, we show that the state can be chosen to be maximally entangled.

I Lemma 4. Let (ψ′, {Ex}, {Fx}) be a quantum perfect strategy where ψ′ =
∑d
i=1 λiei ⊗ ei

with λi > 0 for all i. Then (ψ, {Ex}, {Fx}) is a quantum perfect strategy, where ψ =
1/
√
d

∑d
i=1 ei ⊗ ei is the maximally entangled state.

Proof. Let D′ be the diagonal matrix associated with ψ′. Using Lemma 3,

ψ′∗(Ex,y ⊗Fx,y)ψ′ = 0 ⇐⇒ Ex,yD
′FTx,y = 0 ⇐⇒ Ex,yFTx,yD′ = 0 ⇐⇒ Ex,yFTx,y = 0,

since D′ commutes with FTx,y and is invertible. Similarly,

ψ′∗(Ex,y ⊗ I)ψ′ = 0 ⇐⇒ Ex,yD
′ = 0 ⇐⇒ Ex,y = 0.

These conditions will be preserved by any state ψ whose diagonal matrix is full rank and
commutes with the matrices Fx,y. This holds in particular for the maximally entangled state,
whose diagonal matrix has the form 1√

d
Id. J

We can now combine Lemmas 1, 3 and 4 to obtain the following result:

I Theorem 5. The existence of a quantum perfect strategy implies the existence of a strategy
(ψ, {Ex}, {Fx}) with the following properties:

The POVMs E ix and Fx are projective.
The state ψ is a maximally entangled state ψ = 1/

√
d

∑d
i=1 ei ⊗ ei.

If x = xi then E ix,y = FTx,y.
If x ∈ RA and y 6∈ RB, then Ex,y = 0.

MFCS 2017
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It is worth noting that the procedure for obtaining the strategy in this special form has
three steps:

In Step 1, the state and strategies are projected down to the subspace corresponding to
the support of the Schmidt decomposition of the state. This step reduces the dimension
of the Hilbert space, and preserves the probabilities for the strategy exactly.
Step 2 does not change the strategy at all, but shows that it must already have strong
properties.
Step 3 changes the state but not the measurements. In general, the probabilities for the
strategy will be changed, but the possibilities are preserved exactly.

Thus in passing to the special form, the dimension is reduced; the process by which we obtain
projective measurements is not at all akin to dilation.

This theorem shows that all the information determining the strategy is in Alice’s
operators. Moreover, Alice’s operators must be chosen non-contextually, so that E ix,y is
independent of the context x. This means that we can define projectors Px,y := E ix,y whenever
x = xi. If xi = x = x′j , then we have E ix,y = FTx,y = Ejx′,y, so Px,y is well-defined.

Now, recall the notion of joint measurability: a family of POVMs {A1
y}y∈Y1 , . . . , {Aky}y∈Yk

is said to be jointly measurable if there is a POVM {By}y∈Y1×···×Yk
such that for all i,

Aiy =
∑

yi=y By. The following result is standard [16].

I Proposition 6. A family of projective measurements is jointly measurable by a POVM if
and only if they pairwise commute, and in this case the POVM is the product of the family,
and hence projective.

For each x ∈ RA, the projective measurements Pxi
= {Pxi,y} defined above are jointly

measured by Ex. Thus Ex is the projective measurement Px = {Px,y}y given by Px,y :=
Px1,y1 · · ·Pxk,yk

.
We shall now introduce the notion of quantum homomorphism between relational struc-

tures A and B. A quantum homomorphism is a family of projectors {Px,y}x∈A,y∈B in Proj(d)
for some d, satisfying the following conditions:

(QH1) For all x ∈ A,
∑
y∈B Px,y = I.

(QH2) For all x ∈ RA, x = xi, x′ = xj , and y, y′ ∈ B, [Px,y, Px′,y′ ] = 0. Thus we can
define a projective measurement Px = {Px,y}y, where Px,y := Px1,y1 · · ·Pxk,yk

.
(QH3) If x ∈ RA and y 6∈ RB, then Px,y = 0.

Note that (QH1) implies that for any x, Px,yPx,y′ = 0 whenever y 6= y′.
We write A q→ B for the existence of a quantum homomorphism from A to B.

I Theorem 7. For finite structures A, B, the following are equivalent:
1. There is a quantum perfect strategy for the homomorphism game from A to B.
2. A q→ B.

Proof. The implication from (1) to (2) follows directly from Theorem 5 and the subsequent
discussion. For the converse, given a quantum homomorphism {Px,y}x∈A,y∈B , we can define
Ex,y := Px,y, Fx,y := PTx,y, and use the maximally entangled state to obtain a quantum perfect
strategy. It is straightforward to verify that the homomorphism conditions (QH1)–(QH3)
imply the strategy conditions (QS1) and (QS2). J

As a final remark, although we have focussed on a single relation to simplify the notation,
our results go through for arbitrary relational signatures. Note that the general form of
condition (QH2) is that Px,y and Px′,y′ must commute whenever x and x′ are adjacent in
the Gaifman graph of A – that is, they both occur in some tuple of some relation.
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3 From quantum homomorphisms to the quantum monad

We now show how to characterize quantum homomorphisms as the Kleisli morphisms of
a monad Qd on the category of relational structures. This monad is graded [30] by the
dimension of the Hilbert space used as the quantum resource.

The monad will be defined on the category R(σ) of all σ-structures, since QdA will
always be infinite, even if A is finite. For the underlying universes of the structures, the
construction can be seen as a quantum variant of the discrete distribution monad [20], widely
used in coalgebra and semantics. It is well known that the distribution monad can be defined
over any commutative semiring, with the non-negative reals being used for the standard
case of probabilities [20, 4]. Here we shall use the projectors Proj(d) with d ranging over the
positive integers. For each d, Proj(d) is a partial commutative semiring, since we can only
add projectors if they are orthogonal, and only multiply them if they commute. We also
have the graded multiplication given by the tensor product: if P ∈ Proj(d) and Q ∈ Proj(d′),
then P ⊗Q ∈ Proj(dd′).

We fix a relational signature σ. For each positive integer d and σ-structure A, we define a
σ-structure QdA. The universe of this structure QdA is the set of all functions p : A→ Proj(d)
satisfying the normalization condition:

∑
x∈A p(x) = I. Note that normalization implies that

the projectors {p(x)}x∈A are pairwise orthogonal. Since we are in finite dimension d, this in
turn implies that p has finite support: p(x) = 0 for all but finitely many x. We can think of
QdA as the projector-valued distributions on A in dimension d. For each relation R of arity
k in σ, we define RQdA to be the set of all tuples (p1, . . . , pk) such that:

(QR1) For all i, j ∈ [k], x, x′ ∈ A: [pi(x), pj(x′)] = 0.
(QR2) For all x ∈ Ak, if x 6∈ RA, then p(x) = 0, where p(x) := p1(x1) · · · pk(xk).

Note that the first condition implies that the product of projectors in the second is a
well-defined projector.

I Proposition 8. Let A and B be finite σ-structures. There is a bijective correspondence
between quantum homomorphisms {Px,y}x∈A,y∈B from A to B in dimension d and standard
homomorphisms h : A → QdB.

Proof. Given a quantum homomorphism {Px,y}, define h : A → QdB by h(x) = p, where
p(y) := Px,y. (QH1) implies normalization. Given x ∈ RA, we have to show that p = h(x) ∈
RQdA. (QH2) implies that (QR1) is satisfied for pi(y), pj(y′), where pi = h(xi), pj = h(xj).
Similarly, (QH3) implies (QR2).

For the converse, given h : A → QdB, define Px,y := h(x)(y). Again, normalization
implies (QH1), (QR1) implies (QH2), and (QR2) implies (QH3). J

This correspondence is analogous to the familiar one between relations and set-valued
functions, which shows that the category of relations is the Kleisli category of the powerset
monad on Set.

Now we show that Qd extends to a functor on R(σ). Given a homomorphism h : A → B,
we define Qdh : QdA → QdB by Qdh(p)(y) :=

∑
h(x)=y p(x).

I Proposition 9. Qdh is a well-defined homomorphism. Moreover, Qd is functorial: Qdg ◦
Qdh = Qd(g ◦ h) and QdidA = idQdA.

Proof. The finite support and normalization conditions ensure that Qdh is well-defined.
Functoriality is proved exactly as for the distribution monad. We verify that Qdh is a homo-
morphism. Suppose that (p1, . . . , pk) ∈ RQdA. By (QR1), this implies that [pi(x), pj(x′)] = 0

MFCS 2017



35:8 The Quantum Monad on Relational Structures

for all i, j ∈ [k], x, x′ ∈ A. This implies that

[Qdh(pi)(y),Qdh(pj)(y′)] = [
∑

h(x)=y

pi(x),
∑

h(x′)=y′

pj(x′)] = 0

so Qdh(p) satisfies (QR1). For (QR2), if y 6∈ RB,

Qdh(p)(y) =
k∏
j=1

∑
h(xj) = yj

pj(xj) =
∑

h(x) = y

p(x) = 0,

by (QR2) for p ∈ RQdA, since y 6∈ RB and h(x) = y implies x 6∈ RA. Thus Qdh(p) ∈
RQdB. J

The unit of the monad ηA : A → Q1A sends x ∈ A to the “delta distribution” δx ∈ Q1A,
where δx(x) = I1, δx(x′) = 0 if x 6= x′. Verification that this is well-defined and yields a
natural transformation is straightforward.

We also have the graded monad multiplication: µd,d
′

A : QdQd′A → Qdd′A. This is defined
as follows: µd,d

′

A (P )(x) :=
∑
p∈Qd′A P (p) ⊗ p(x). We prove that this gives a well-defined

natural transformation in the Appendix. Thinking of ⊗ as the graded semiring multiplication
on projectors, we can see the correspondence to the distribution monad.

We recall that given a category C, the endofunctor category [C, C] is monoidal; a monad
on C is a monoid in this category [26]. Now let (M, ·, 1) be a monoid, which we can view
as a discrete category with a strict monoidal structure. An M -graded monad [30] on C is a
lax monoidal functor from M into [C, C]. Such a functor is given by the following data: an
assignment m 7→ Tm of an endofunctor on C to each element of M ; a natural transformation
η : Id .- T1 (the graded unit); and a natural transformation µm,m′ : TmTm′

.- Tm·m′

for all m, m′ (the graded multiplication). These are subject to coherence conditions, which
generalize the usual monad equations. We refer to [30] for details.

In our case, we use the monoid N+ of positive integers under multiplication.

I Theorem 10. The triple ({Qd}d, η, {µd,d
′}d,d′) is a N+-graded monad on R(σ).

The proof of this result involves verifying a number of equations, and is fairly lengthy
but straightforward. We provide details in the Appendix.

We are particularly interested in the Kleisli category for this graded monad. The objects
of this category are the same as those of R(σ). A morphism from A to B is a homomorphism
h : A → QdB. By Proposition 8, we know that Kleisli morphisms correspond exactly to
quantum homomorphisms.

The graded composition of Kleisli arrows h : A → QdB and k : B → Qd′C is the arrow
k • h : A → Qdd′C given by k • h := µd,d

′

B ◦Qdk ◦ h. An explicit description can be calculated
from the graded monad structure given above: (k • h)(x)(z) =

∑
y∈B h(x)(y) ⊗ k(y)(z).

If we write this in terms of the corresponding quantum homomorphisms {Px,y}x∈A,y∈B,
{Qy,z}y∈B,z∈C , we obtain {Rx,z}x∈A,z∈C given by the formula Rx,z =

∑
y∈B Px,y ⊗ Qy,z.

This recovers the concrete definition given for quantum graph homomorphisms in [27].

4 Quantum advantage via the quantum monad

We shall now show how the quantum monad provides a unified framework for express-
ing quantum advantage in a wide range of information processing tasks. We shall show
equivalences between:
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state-independent strong contextuality arguments
quantum advantage in constraint satisfaction
existence of quantum (but not classical) homomorphisms between relational structures.

4.1 Classical correspondences
We begin with the standard classical correspondence between constraint satisfaction problems
and the existence of homomorphisms. A CSP instance has the form K = (V,D,C) where
V is a set of variables, D is a domain of values1, and C is a set of constraints of the form
(x, r), where for some k, x ∈ V k, and r ⊆ Dk. We say that c = (x, r) is a k-ary constraint.
A solution of the CSP is a function s : V → D such that, for all (x, r) ∈ C, s(x) ∈ r, where
s(x) := (s(x1), . . . , s(xk)).

Given K = (V,D,C) we define two structures over the signature with a k-ary relation
symbol Rc for each k-ary constraint c. First, BK has as universeD, and for each c = (x, r) ∈ C,
RBK
c = r. Secondly, AK has universe V , and for each c = (x, r) ∈ C, RAK

c = {x}. The
following is immediate:

I Proposition 11. There is a one-to-one correspondence between solutions for K and homo-
morphisms AK → BK.

There is also a converse to this result. Given σ-structures A and B, we can define the
CSP KAB = (V,D,C), where V = A, D = B, and C = {(a, RB) | R ∈ σ, a ∈ RA}.

I Proposition 12. There is a one-to-one correspondence between homomorphisms A → B
and solutions for KAB .

We will now look at empirical models over measurement scenarios, introduced in [4]
as a general setting for studying contextuality, in quantum mechanics and beyond, with
non-locality as a special case.

A measurement scenario is a triple (X,M, O), where X is a set of measurement labels;M
is a family of subsets of X, where we think of C ∈M as a set of compatible measurements,
or a context; and O is a set of measurement outcomes. An empirical model e : (X,M, O) for
a scenario is a family e = {eC}C∈M of probability distributions eC ∈ Prob(OC) on the joint
outcomes of measuring all the variables in a context C. Such empirical models can arise
from observational data (hence the name), or be generated by measuring a quantum state in
contexts comprising jointly measurable observables. A hierarchy of notions of contextuality
can be defined in this general setting [4, 2]. We shall be concerned with strong contextuality.
We say that e : (X,M, O) is strongly contextual if there is no global assignment g : X → O

such that, for all C ∈M, eC(g|C) > 0. That is, there is no global assignment consistent with
the model in the sense of yielding possible outcomes (non-zero probability) in all contexts.
This form of contextuality is witnessed by the GHZ construction [15, 28], as well as by
Kochen–Specker paradoxes [22], and post-quantum devices such as the PR box [33].

Given e : (X,M, O), we fix an ordering on X, and define a CSP Ke = (X,O,C), where
C is the set of constraints ((x1, . . . , xk), r) such that x1 < · · · < xk, {x1, . . . , xk} ∈ C and
r = {s(x) | eC(s) > 0}.

I Proposition 13. There is a one-to-one correspondence between consistent global assignments
for e and solutions of Ke. Thus e is strongly contextual iff Ke has no (classical) solution.

1 One could have different domains associated with different variables. However, this is an inessential
generalization, which we omit to keep notation simple.
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We thus have a three-way correspondence between CSPs, empirical models, and homo-
morphisms between relational structures.

4.2 Quantum solutions
We now consider how quantum resources enter the picture. Since we already have a notion
of quantum homomorphism for general relational structures, the correspondences established
in the previous subsection give us ready-made notions of quantum solutions for CSPs and
empirical models. We define a quantum solution for a CSP K = (V,D,C) to be a quantum
homomorphism AK

q→ BK, i.e. a Kleisli morphism AK → QdBK for some d. Similarly,
we define a quantum solution for an empirical model e : (X,M, O) to be a quantum
homomorphism AKe

q→ BKe
.

We shall now compare these notions to existing ones for empirical models and constraints.
These will turn out to be special cases.

Note first that given an empirical model e, the corresponding CSP Ke is determined
purely by the supports of the probability distributions eC , i.e. the possibilistic content of the
model. It is only this information which is relevant to strong contextuality. We can consider
a fine-grained notion of realization of a probabilistic empirical model, as in [4]. However,
if our focus is strong contextuality, it is natural to consider the notion of quantum witness
for an empirical model e : (X,M, O), given by a state ψ, and a PVM Px = {Px,o}o∈O for
each x ∈ X, such that [Px,o, Px′,o′ ] = 0 whenever x and x′ both occur in some C ∈ M.
These must then satisfy, for all C ∈ M and s ∈ OC , eC(s) = 0 ⇒ ψ∗Px,s(x)ψ = 0, where
Px,s(x) = Px1,s(x1) · · ·Pxk,s(xk). This provides a quantum witness for strong contextuality
if e is a strongly contextual empirical model. An example is provided by the GHZ state,
using X and Y measurements for each party [4]. An infinite family of such examples using
three-qubit states is described in [1].

We can also consider a stronger notion. A state-independent quantum witness for
e : (X,M, O) is given by a family of PVMs {Px}x∈X which, for any state ψ, yield a
quantum witness for e. The Mermin magic square and pentagram [29], and Kochen–Specker
constructions [22, 10], provide examples of state-independent quantum realizations of strong
contextuality. Note that in the state-independent case, we have the condition: eC(s) =
0 ⇒ Px,o = 0. Comparison with the definition of quantum homomorphism AKe

q→ BKe

immediately yields the following result:

I Proposition 14. For an empirical model e : (X,M, O) there is a one-to-one correspondence
between state-independent quantum witnesses for e and quantum solutions for Ke.

An interesting point arising from this result, taken together with the results from
Section 2, is that state-independent strong contextuality proofs can always be underwritten
by non-locality arguments. This can be seen as a general form of constructions for turning
Kochen–Specker contextuality proofs into Bell non-locality arguments [19]. Indeed, the role
of the entangled state and of Bob in the non-local game is to provide an operational or
physical underpinning for the compatibility or generalized no-signalling assumption which is
made for empirical models [4]. Can we find a similar underpinning in the state-dependent
case? We shall return to this point in the final section.

We now consider binary constraint systems (BCS), which have been extensively studied
[13, 12, 36, 21]. We shall follow the account in [13]. A BCS (V,C) is simply a boolean
CSP (V, {0, 1}, C). In this case, constraints can be written in the form c = (x, bc), where
bc : {0, 1}k → {0, 1} is a boolean function. Our general notion of quantum solution yields
in this case a family of PVMs Px = {Px,o}o∈{0,1} for x ∈ V , such that [Px,o, Px′,o′ ] = 0
whenever x and x′ both occur in some constraint, and Px,o = 0 for c = (x, bc) with bc(o) = 0.
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In [13], a notion of operator solution for a BCS is defined. This is an assignment of
a self-adjoint operator (aka observable) Ax to each variable x, such that: (1) each Ax is
binary, i.e. A2

x = I; (2) [Ax, Ax′ ] = 0 when x and x′ both occur in the same constraint. To
express constraints, the representation of boolean values b 7→ (−1)b, b ∈ {0, 1}, is used. It
is standard that each boolean function {−1,+1}k → {−1,+1} can be uniquely represented
by a real multilinear polynomial p(X1, . . . , Xk) [31]. Moreover, if the corresponding boolean
function in the {0, 1}-representation is b : {0, 1}k → {0, 1}, then for o ∈ {0, 1}k: (−1)b(o) =
p((−1)o1 , . . . , (−1)ok ). It is also standard that if we substitute pairwise commuting self-
adjoint operators A1, . . . , Ak for the variables X1, . . . , Xk, we obtain a self-adjoint operator
p(A1, . . . , Ak). The condition for an operator solution to satisfy the constraints is then
expressed as follows: for each constraint c = (x, bc), where bc is represented by the polynomial
pc(X1, . . . , Xk), we must have pc(A1, . . . , Ak) = −I.

To relate this notion of operator solution to our quantum solution, note that a binary
observable Ax with A2

x = I has a spectral decomposition Ax = Px,0 − Px,1, where Px,0,
Px,1 are projectors. Commutation of the observables for variables occurring in the same
context is equivalent to commutation of the corresponding projectors. Given a constraint
c = ((x1, . . . , xk), pc), since the observables Ax1 , . . . , Axk

pairwise commute, we obtain a
resolution of the identity

∑
o∈{0,1}k Px,o = I. Multiplying pc(A1, . . . , Ak) by this expression

yields

pc(A1, . . . , Ak) =
∑

o∈{0,1}k

pc((−1)o1 , . . . , (−1)ok )Px,o.

It follows that pc(A1, . . . , Ak) = −I iff for all o with bc(o) = 0, Px,o = 0. As an immediate
consequence, we have:
I Proposition 15. Given a BCS (V,C), there is a one-to-one correspondence between operator
solutions of the BCS and quantum solutions of the corresponding CSP.

4.3 Graphs
The results we have seen thus far show that our notion of quantum homomorphism subsumes
a number of existing notions in contextuality and non-local games. However, as we shall now
see, the situation in the setting which provided the original motivation for our approach,
namely graph homomorphisms, is somewhat more subtle.

Graphs arise as structures for the signature with a single binary relation. Simple graphs
are those where the relation is symmetric and irreflexive. If we specialize our definition of
quantum homomorphism to the case G q→ H between graphs G and H, this gives a family
{Px,y}x∈V (G),y∈V (H) of projectors satisfying the following conditions:

for all x, x′ ∈ V (G) and y, y′ ∈ V (H) with x ∼ x′, [Px,y, Px′,y′ ] = 0;
for all x, x′ ∈ V (G) and y, y′ ∈ V (H) with x ∼ x′ and y 6∼ y′, Px,yPx′,y′ = 0.

This definition differs from that introduced by Mančinska and Roberson [27] as a general-
ization of quantum graph colouring [11], in that the latter does not impose the first condition
forcing commutativity between the PVMs corresponding to adjacent vertices of G. We refer
to that as an MR quantum graph homomorphism in order to distinguish it from our notion.2

This reflects a difference in the Alice–Bob game used to motivate each definition. In the
game we consider, Alice receives an ordered edge of G as an input and Bob a vertex of G,

2 See also the locally commuting graph homomorphisms from [18], which require the commutativity
condition, but differ from ours by not restricting to finite-dimensional quantum resources.
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and we require that Alice answers with an edge of H and Bob with a vertex of H in a fashion
consistent with Alice’s choice. By contrast, Mančinska and Roberson consider a symmetric
Alice–Bob game, where each player receives a vertex of G as input and outputs a vertex of
H, and their outputs are required to be the same when they receive the same vertex, and
required to form an edge of H whenever their inputs form an edge of G.

It is clear that a quantum homomorphism between graphs in the sense of this paper is
also an MR quantum graph homomorphism. But the precise relationship between the two
notions is yet to be understood in general: in particular, whether the existence of an MR
quantum graph homomorphism implies the existence of a quantum homomorphism in our
sense. However, by adapting a construction due to Ji [21], we can capture the existence
of MR quantum graph homomorphisms in terms of quantum homomorphisms of relational
structures, via a BCS.

Given graphs G and H, we define V = {rxy | x ∈ V (G), y ∈ V (H)}. For each x ∈ V (G),
we have a boolean constraint

∨
y rxy; a constraint ¬(rxy ∧ rxy′) when y 6= y′; and a constraint

¬(rxy ∧ rx′y′) whenever x ∼ x′ and y 6∼ y′. This defines a BCS (V,C).

I Theorem 16. Given graphs G and H, there is a one-to-one correspondence between MR
quantum graph homomorphisms from G to H and quantum homomorphisms AK

q→ BK for
the associated CSP K = (V, {0, 1}, C).

Proof. We recall that an MR quantum graph homomorphism is given by a family of
projectors {Px,y}x∈V (G),y∈V (H) such that (MR1)

∑
y Px,y = I, and (MR2) Px,yPx′,y′ = 0

whenever x ∼ x′ and y 6∼ y′. A quantum homomorphism AK
q→ BK is given by a family

of projectors {Qxy,o}, x ∈ V (G), y ∈ V (H), o ∈ {0, 1}, such that the following conditions
hold: (QH1) Qxy,0 +Qxy,1 = I; (QH2) Qxy,1Qxy′,1 = 0, (y 6= y′); (QH3) Qxy,1Qx′y′,1 = 0,
(x ∼ x′ ∧ y 6∼ y′); (QH4) Qxy1,0 · · ·Qxyk,0 = 0, V (H) = {y1, . . . , yk}. The commutativity
conditions which are additionally required are implied by the orthogonality conditions (QH2)
and (QH3).

Given an MR homomorphism {Px,y}, we define Qxy,1 := Px,y, Qxy,0 := I − Px,y. Clearly
(QH1) is satisfied. (MR1) implies (QH2), while (MR2) implies (QH3). Finally, using (QH2),
(I − Px,y1) · · · (I − Px,yk

) = I −
∑
y Px,y, and by (MR1), (QH4) holds.

Conversely, given a quantum homomorphism {Qxy,o}, we define Px,y := Qxy,1. (MR2)
follows from (QH3), while using (QH1), we can reverse the reasoning in the previous paragraph
to show that (QH4) implies (MR1). These passages are clearly mutually inverse, so the result
follows. J

It is noteworthy that our approach allows us to avoid ad hoc coding of constraints by
polynomials, as in [13, 21]. Instead, we quantize the standard classical notions in a uniform
way, using the quantum monad.

5 Outlook

This work suggests a number of directions for further study. We list a few:
A notion of quantum graph isomorphism, with an equivalent characterization via an
Alice–Bob game, has been studied in [8]. This can be generalized to relational structures.
How does this fit in our quantum monad framework?
Our approach captures quantum advantage provided by state-independent strong contex-
tuality. Does state-dependent contextuality admit a similar treatment?
Any strategy for an Alice–Bob game has a winning probability, which is related to the
contextual fraction [3]. Can our approach be adapted to deal with quantitative aspects?
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Homomorphisms are intimately related with the existential positive fragment. Can this
be extended to provide a notion of quantum validity for first-order formulae?
Can other concepts from finite model theory, such as pebble games, which admit a
comonadic formulation [7], be similarly quantized?
The algebras of the quantum monad can be described as convex structures with mixing
weighted by projectors rather than just numbers in [0, 1]. Is this viewpoint useful?
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A Review of linear algebra and quantum mechanics background

Since we are working in finite dimensions, we will use standard matrix notation. Thus we
are dealing with d × d′ complex matrices. We write matrix transpose as AT . Apart from
the usual operations of matrix addition and multiplication, there is the adjoint A∗, which
is the conjugate transpose of A. Thus [ai,j ]∗ = [aj,i]. The zero matrix is 0, the identity
matrix in dimension d is I = Id.3 We view d′ × d complex matrices interchangably as linear
maps Cd → Cd′ , acting on “column vectors”, i.e. d× 1 matrices. We identify 1× 1 matrices
with scalars, i.e. complex numbers. The inner product of vectors x,y ∈ Cd is given by the
matrix product x∗y. The norm of a vector x is ‖x‖ :=

√
x∗x. The standard basis vectors in

dimension d are e1, . . . , ed, where ei has i’th component 1, and all other components 0.
A square matrix A is self-adjoint (aka Hermitian) if A∗ = A. It is positive semidefinite if

it self-adjoint, and x∗Ax ≥ 0 for all vectors x. If A is positive semidefinite, so is C∗AC for
any C. We have the order A ≤ B if B − A is positive semidefinite. The condition A ≥ 0
says exactly that A is positive semidefinite. The matrices A ≥ 0 form a convex cone. A is a
projector if A∗ = A = A2. We write Proj(d) for the set of d× d projectors. A fact we shall
use frequently is that for any family of projectors {Pi} in Proj(d),

∑
i Pi ≤ I iff PiPj = 0

whenever i 6= j.
If A = [ai,j ] is a m × n matrix and B a p × q matrix, then the Kronecker product

A⊗B := [ai,jB] is anmp×nq matrix, which represents the tensor product of the corresponding
linear maps. This operation is strictly associative, with unit 1 := [1]. The key equation
is the interchange law with matrix multiplication: (A ⊗ B)(C ⊗D) = AC ⊗ BD. This is
functoriality. The category of complex matrices is a strict monoidal category with respect
to this operation. Indeed, the category of complex matrices is equivalent to the category
of finite-dimensional Hilbert spaces at the level of dagger compact closed categories, the
basic setting for categorical quantum mechanics [5, 6]. The final operation we consider
is vectorization of a matrix: vec(A) turns a d × d′ matrix into a dd′-vector by stacking
the columns of A on top of each other. In terms of the closed structure on the category
of matrices, it is the name of the morphism A. The “cup” or unit of the compact closed

3 We will omit dimensional subscripts whenever we can get away with it.
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structure is vec(I). We have the equation vec(A) = (I ⊗ A)vec(I), and the “sliding rule”:
(A⊗ I)vec(I) = (I ⊗AT )vec(I), from which we can derive the key equation for vectorization:
(A⊗B)vec(C) = vec(BCAT ). Diagrammatically, this is

A B

C = AT

C

B

A vector ψ ∈ CdA ⊗ CdB has a Schmidt decomposition ψ =
∑d
i=1 λiαi ⊗ βi, where d ≤

min(da, db), {αi} and {βi} are orthonormal sets of vectors in CdA and CdB respectively, and
λi > 0 for all i. This follows directly from Singular Value Decomposition. We refer to d as
the Schmidt rank of ψ.

The following result is standard, but we did not find an explicit reference so we include a
proof.
I Proposition 17. Let A and B be positive semidefinite matrices. Then Tr(AB) = 0 ⇐⇒
AB = 0.

Proof. Since A and B are positive semidefinite, they have positive semidefinite square
roots

√
A,
√
B, and Tr(AB) = Tr(

√
A
√
A
√
B
√
B) = Tr(

√
B
√
A
√
A
√
B) = Tr(C∗C), where

C :=
√
A
√
B. Since C∗C is positive semidefinite, Tr(C∗C) = 0 ⇐⇒ C∗C = 0 ⇐⇒ C = 0.

But C = 0 implies AB =
√
AC
√
B = 0. J

Now we briefly review the needed notions from quantum mechanics. A (pure) state in
dimension d is a vector of unit norm in Cd. A POVM (positive operator-valued measure) is
a family {Ai}i with Ai ≥ 0 for all i, and

∑
iAi = I. The indices i label the measurement

outcomes. Measuring a POVM {Ai}i on a state ψ yields outcome i with probability ψ∗Aiψ.
A POVM is projective (or a PVM) if Ai is a projector for all i. This implies that AiAj = 0 for
all i 6= j, i.e. the projectors are mutually orthogonal. The product of projectors is a projector
if and only if they commute, which is usually written as [P,Q] = 0, where [P,Q] := PQ−QP .

B Quantum monad

I Proposition 18. For each A, µd,d
′

A is a well-defined homomorphism, and yields a natural
transformation.

Proof. First, µd,d
′

A is a well-defined function, by finiteness of support. To show that it is a
homomorphism, consider (P1, ..., Pk) ∈ RQdQd′A. We must first show that for all z, z′ ∈ C,
and i, j, [pi(z), pj(z′)] = 0, where pi := µd,d

′

A (Pi), pj := µd,d
′

A (Pj). Using linearity, this
reduces to showing that Pi(p) ⊗ p(z) commutes with Pj(p′) ⊗ p′(z′) for all p, p′ ∈ Qd′ .
Applying (QR1) to Pi and Pj , we have that Pi(p) commutes with Pj(p′). If p(z) commutes
with p′(z′), we are done. If not, then we know that p cannot be adjacent to p′ in the
Gaifman graph of Qd′ . Hence for any expansion p = (p1, . . . , pk) with pi = p, pj = p′,
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p 6∈ RQd′A, so by (QR2) we must have P1(p1) · · ·Pk(pk) = 0. Using normalization, we have
Pi(p)Pj(p′) =

∑
pi=p,pj=p′ P1(p1) · · ·Pk(pk) = 0, and so

(Pi(p)⊗ p(z))(Pj(p′)⊗ p′(z′)) = 0 = (Pj(p′)⊗ p(z′))(Pi(p)⊗ p(z)).

Now let qi = µd,d
′

A (Pi), i = 1, . . . , k. To show that (QR2) holds for (q1, . . . , qk) reduces
similarly to showing that, if x 6∈ RA, then P1(p1) · · ·Pk(pk) ⊗ p1(x1) · · · pk(xk) = 0 for all
p1, . . . , pk. If p1(x1) · · · pk(xk) = 0 we are done; otherwise, since x 6∈ RA, we must have
p 6∈ RQd′A, and applying (QR2) to (P1, ..., Pk), we must have P1(p1) · · ·Pk(pk) = 0.

Naturality is commutativity of the following square.

QdQd′A
µd,d

′

A - Qdd′A

QdQd′B

QdQd′f

?

µd,d
′

B

- Qdd′B

Qdd′f

?

This is the following calculation:

Qdd′f ◦ µd,d
′

A (P )(y) =
∑

f(x)=y

∑
p

P (p)⊗ p(x)

=
∑
q

∑
Qd′f(p)=q

P (p)⊗ q(y)

=
∑
q

QdQd′(f)(P )(q)⊗ q(y)

= µd,d
′

B ◦ QdQd′f(P )(y).

The second step uses the fact that Qd′f(p) = q ⇐⇒ q(y) =
∑
f(x)=y p(x). J

The unit η : Id .- T1 and graded multiplication µm,m′ : TmTm′
.- Tm·m′ of a graded

M -monad are required to satisfy the following coherence conditions:

TmX
ηTmX - T1TmX TmTm′Tm′′X

Tmµ
m′,m′′

X - TmTm′·m′′X

TmT1X

TmηX

?

µm,1X

- TmX

µ1,m
X

?

===================
Tm·m′Tm′′X

µm,m
′

Tm′′X

?

µm·m
′,m′′

X

- Tm·m′·m′′X.

µm,m
′·m′′

X

?

We verify these for the quantum monad.

I Lemma 19. Let A be a structure and d ∈ N+. Then, the following diagram commutes:

QdA
ηQdA - Q1QdA

QdQ1A

QdηA

?

µd,1A

- QdA

µ1,d
A

?

=======================
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Proof. Let p ∈ QdA and x ∈ A. The claim is that (µ1,d
A ◦ ηQdA)(p)(x) = p(x) = (µd,1A ◦

QdηA)(p)(x). The left-hand side of this equation expands to

µ1,d
A (ηQdA(p))(x) =

∑
p′∈QdA

ηQdA(p)(p′)⊗ p′(x) = p(x),

and the right-hand side to

µd,1A (QdηA(p))(x) =
∑

p′∈Q1A
QdηA(p)(p′)⊗ p′(x)

= QdηA(p)(δx)

=
∑

ηA(x′)=δx

ηA(p)(x′)

= p(x),

where δx : A→ {0, 1} is defined by δx(x′) := δx,x′ for all x′ ∈ A. J

I Lemma 20. Let A be a structure and a, b, c ∈ N+. Then, the following diagram commutes:

QaQbQcA
Qaµb,cA - QaQbcA

QabQcA

µa,bQcA

?

µab,cA

- QabcA

µa,bcA

?

Proof. Let P ∈ QaQbQcA and x ∈ A. The claim is that (µa,bcA ◦ Qaµb,cA )(P )(x) = (µab,cA ◦
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µa,bQcA)(P )(x). We have:

µa,bcA (Qaµb,cA (P ))(x)

=
∑

q∈QbcA
Qaµb,cA (P )(q)⊗ q(x)

=
∑

q∈QbcA

 ∑
µb,c

A (p′)=q

P (p′)

⊗ q(x)

=
∑

q∈QbcA

∑
µb,c

A (p′)=q

P (p′)⊗ µb,cA (p′)(x)

=
∑

q∈QbcA

∑
µb,c

A (p′)=q

P (p′)⊗

 ∑
p∈QcA

p′(p)⊗ p(x)


=

∑
q∈QbcA

∑
µb,c

A (p′)=q

∑
p∈QcA

P (p′)⊗ p′(p)⊗ p(x)

=
∑

p′∈Qb(QcA)

∑
p∈QcA

P (p′)⊗ p′(p)⊗ p(x)

=
∑

p∈QcA

 ∑
p′∈Qb(QcA)

P (p′)⊗ p′(p)

⊗ p(x)

=
∑

p∈QcA
µa,bQcA(P )(p)⊗ p(x)

= µab,cA (µa,bQcA(P ))(x)

J

Additional material on the quantum monad
We shall now show that the quantum monad is monoidal (or commutative) and affine [23].
This continues the analogy with the distribution monad, which is well known to have these
properties [20].

The category R(σ) has finite products, given by the usual cartesian product of structures.
The terminal object > is the one-element structure, with each relation interpreted as the
universal relation. Because of normalization, the following is immediate:
I Proposition 21. For all d, Qd> ∼= >. Thus the quantum monad is affine.

Now given structures A and B, we define a map md,d′

A,B : QdA×Qd′B → Qdd′(A×B) by
md,d′

A,B(p, q)(x, y) := p(x)⊗ q(y).

I Proposition 22. This is a well-defined homomorphism, and the family {md,d′

A,B} defines a
graded natural transformation satisfying the monoidal coherence conditions, thus witnessing
a commutative strength.

MFCS 2017


	Introduction
	From quantum perfect strategies to quantum homomorphisms
	From quantum homomorphisms to the quantum monad
	Quantum advantage via the quantum monad
	Classical correspondences
	Quantum solutions
	Graphs

	Outlook
	Review of linear algebra and quantum mechanics background
	Quantum monad

