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Abstract
A Boolean k-monotone function defined over a finite poset domain D alternates between the
values 0 and 1 at most k times on any ascending chain in D. Therefore, k-monotone functions are
natural generalizations of the classical monotone functions, which are the 1-monotone functions.

Motivated by the recent interest in k-monotone functions in the context of circuit complexity
and learning theory, and by the central role that monotonicity testing plays in the context of
property testing, we initiate a systematic study of k-monotone functions, in the property testing
model. In this model, the goal is to distinguish functions that are k-monotone (or are close to
being k-monotone) from functions that are far from being k-monotone.

Our results include the following:
1. We demonstrate a separation between testing k-monotonicity and testing monotonicity, on

the hypercube domain {0, 1}d, for k ≥ 3;
2. We demonstrate a separation between testing and learning on {0, 1}d, for k = ω(log d): testing

k-monotonicity can be performed with 2O(
√
d·log d·log 1/ε) queries, while learning k-monotone

functions requires 2Ω(k·
√
d·1/ε) queries (Blais et al. (RANDOM 2015)).

3. We present a tolerant test for functions f : [n]d → {0, 1} with complexity independent of n,
which makes progress on a problem left open by Berman et al. (STOC 2014).

Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier
analysis on the grid [n]d, and draw connections to distribution testing techniques.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Boolean Functions, Learning, Monotonicity, Property Testing

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.29

1 Introduction

A function f : D → {0, 1}, defined over a finite partially ordered domain (D,�) is said to be
k-monotone, for some integer k ≥ 0, if there does not exist x1 � x2 � . . . � xk+1 in D such
that f(x1) = 1 and f(xi) 6= f(xi+1) for all i ∈ [k]. Note that 1-monotone functions are the
classical monotone functions, satisfying f(x1) ≤ f(x2), whenever x1 � x2.

Monotone functions have been well-studied on multiple fronts in computational complexity
due to their natural structure. They have been celebrated for decades in the property
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testing literature [25, 20, 24, 10, 15, 14, 16], where we have recently witnessed ultimate
results [33, 18, 6], in the circuit complexity literature, where we now have strong lower
bounds [43, 44], and in computational learning, where we now have learning algorithms in
numerous learning models [11, 3, 32, 46, 40, 41].

The generalized notion of k-monotonicity has also been studied in the context of circuit
lower bounds for more than 50 years. In particular, Markov [36] showed that any k-monotone
function (even with multiple outputs) can be computed using circuits containing only log k
negation gates. The presence of negation gates appears to be a challenge in proving circuit
lower bounds: “the effect of such gates on circuit size remains to a large extent a mystery”
[29]. The recent results of Blais et al. [9] on circuit lower bounds have prompted renewed
interest in understanding k-monotone functions from multiple angles, including cryptography,
circuit complexity, learning theory, and Fourier analysis ([45, 27, 26, 35]).

Motivated by the exponential lower bounds on PAC learning k-monotone functions due
to [9], we initiate the study of k-monotonicity in the closely related Property Testing model.
In this model, given query access to a function, one must decide if the function is k-monotone,
or is far from being k-monotone, by querying the input only in a small number of places.

1.1 Our results
We focus on testing k-monotonicity of Boolean functions defined over the d-dimensional
hypegrid [n]d, and the hypercube {0, 1}d. We begin our presentation with the results for the
hypercube, in order to build intuition into the difficulty of the problem, while comparing our
results with the current literature on testing monotonicity. Our stronger results concern the
hypegrid [n]d.

1.1.1 Testing k-monotonicity on the hypercube {0, 1}d

In light of the recent results of [33] that provide a O(
√
d)-query tester for monotonicity, we

first show that testing k-monotonicity is strictly harder than testing monotonicity on {0, 1}d,
for k ≥ 3.

I Theorem 1. For 1 ≤ k ≤ d1/4/2, any one-sided non-adaptive tester for k-monotonicity of
functions f : {0, 1}d → {0, 1} must make Ω

(
d/k2)k/4 queries.

Both Theorem 1 and its proof generalize the Ω(d1/2) lower bound for testing monotonicity,
due to Fischer et al. [24].

On the upper bounds side, while the monotonicity testing problem is providing numerous
potential techniques for approaching this new problem [25, 20, 14, 10, 19, 33], most common
techniques appear to resist generalizations to k-monotonicity. However, our upper bounds
demonstrate a separation between testing and PAC learning k-monotonicity, for large enough
values of k = ω(log d).

I Theorem 2. There exists a one-sided non-adaptive tester for k-monotonicity of functions
f : {0, 1}d → {0, 1} with query complexity q(d, ε, k) = 2O(√d·log d·log 1

ε ).

Indeed, in the related PAC learning model, [9] shows that learning k-monotone functions
on the hypercube requires 2Ω(k·

√
d·1/ε) many queries.

We further observe that the recent non-adaptive and adaptive 2-sided lower bounds of
[18, 6], imply the same bounds for k-monotonicity, using black box reductions. We summarize
the state of the art for testing k-monotonicity on the hypercube in Table 1.
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Table 1 Testing k-monotonicity of a function f : {0, 1}d → {0, 1}

upper bound 1.s.-n.a. lower bound 2.s.-n.a. lower bound 2.s.-a. lower bound

k = 1 O
(√

d
)
[33] Ω

(
d1/2) [24] Ω

(
d1/2−o(1)) [18] Ω̃

(
d1/4) [6]

k ≥ 2 dO(k√d) [9],
dO(√d) Thm 2

Ω
(
d/k2)k/4 Thm 1

(k = O(d1/4))
Ω
(
d1/2−o(1)) Ω̃

(
d1/4)

Table 2 Summary of our results: testing k-monotonicity of a function f : [n]d → {0, 1} (first two
columns). The last column contains known bounds on monotonicity testing and is provided for
comparison.

General k k = 2 k = 1 (monotonicity)

d = 1 Θ
(
k
ε

)
1.s.-n.a., Õ

( 1
ε7

)
2.s.-n.a. O

( 1
ε

)
1.s.-n.a. Θ

( 1
ε

)
1.s.-n.a.

d = 2 Õ
(
k2

ε3

)
2.s.-n.a. (from below) Θ

( 1
ε

)
2.s.-a. Θ

( 1
ε log 1

ε

)
1.s.-n.a., Θ

( 1
ε

)
1.s.-a.

d ≥ 3
Õ
(

1
ε2

( 5kd
ε

)d) 2.s.-n.a., Õ
(

1
ε2

( 10d
ε

)d) 2.s.-n.a.,
O
(
d
ε log d

ε

)
1.s.-n.a.

2Õ(k√d/ε2) 2.s.-n.a. 2Õ(√d/ε2) 2.s.-n.a.

1.1.2 Testing k-monotonicity on the hypergrid [n]d

The remainder of the paper focuses on functions defined over the d-dimensional hypergrid
domain [n]d, where we denote by (i1, i2, . . . , id) � (j1, j2, . . . , jd) the partial order in which
i1 ≤ j1, i2 ≤ j2, . . . , id ≤ jd. Testing monotonicity has received a lot of attention over
the d-dimensional hypergrids [25, 21, 23, 5, 1, 28, 8, 15, 14, 16, 7], where the problem is
well-understood, and we refer the reader the appendix of the full version for a detailed review
on the state of the art in the area. We summarize our results on testing k-monotonicity over
[n]d in Table 2.

1.1.2.1 Testing k-monotonicity on the line and the 2-dimensional grid

We begin with a study of functions f : [n] → {0, 1}. As before, note that 1-sided tests
should always accept k-monotone functions, and so, they must accept unless they discover a
violation to k-monotonicity in the form of a sequence x1 � x2 � . . . � xk+1 in [n]d, such that
f(x1) = 1 and f(xi) 6= f(xi+1). Therefore, lower bounds for 1-sided k-monotonicity testing
must grow at least linearly with k. We show that this is indeed the case for both adaptive and
non-adaptive tests, and moreover, we give a tight non-adaptive algorithm. Consequently, our
results demonstrate that adaptivity does not help in testing k-monotonicity with one-sided
error on the line domain.

I Theorem 3. Any one-sided (possibly adaptive) tester for k-monotonicity of functions
f : [n]→ {0, 1} must have query complexity Ω

(
k
ε

)
.

The upper bound generalizes the O(1/ε) tester for monotonicity on the line.

I Theorem 4. There exists a one-sided non-adaptive tester for k-monotonicity of functions
f : [n]→ {0, 1} with query complexity q(n, ε, k) = O

(
k
ε

)
.

Testing with 2-sided error, however, does not require a dependence on k. In fact
the problem has been well-studied in the machine learning literature in the context of
testing/learning “union of intervals” [31, 4], and in testing geometric properties, in the
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context of testing surface area [34, 38],1 resulting in an O(1/ε7/2)-query algorithm. Namely,
the starting point of [4] (later improved by [34]) is a “Buffon Needle’s”-type argument, where
the crucial quantity to analyze is the noise sensitivity of the function, that is the probability
that a randomly chosen pair of nearby points cross a “boundary” – i.e., have different values.
(Moreover, the algorithm of [4] works in the active testing setting: it only requires a weaker
access model that the standard query model).

We provide an alternate proof of a poly(1/ε) bound (albeit with a worse exponent)
that reveals a surprising connection with distribution testing, namely with the problem of
estimating the support size of a distribution.

I Theorem 5. There exists a two-sided non-adaptive tester for k-monotonicity of functions
f : [n]→ {0, 1} with query complexity q(n, ε, k) = Õ

(
1/ε7), independent of k.

An immediate implication of Theorem 5 is that one can test even n1−α-monotonicity
of f : [n] → {0, 1}, for every α > 0, with a constant number of queries. Hence, there is a
separation between 1-sided and 2-sided testing, for k = ω(1).

Turning to the 2-dimensional grid, we show that 2-monotone functions can be tested with
the minimum number of queries one could hope for:

I Theorem 6. There exists a two-sided adaptive tester for 2-monotonicity of functions
f : [n]2 → {0, 1} with query complexity q(n, ε) = O

( 1
ε

)
.

We also discuss possible generalizations of Theorem 6 to general k or d in the full version.

1.1.2.2 Testing k-monotonicity on [n]d, tolerant testing, and distance
approximation

Moving to the general grid domain [n]d, we show that k-monotonicity is testable with
poly(1/ε, k) queries in constant-dimension grids.

I Theorem 7. There exists a non-adaptive tester for k-monotonicity of functions f : [n]d →
{0, 1} with query complexity q(n, d, ε, k) = min(Õ

(
1
ε2

( 5kd
ε

)d)
, 2Õ(k√d/ε2)).

In fact, we obtain more general testing algorithms than in Theorem 7, namely our results
hold for tolerant testers (as we define next).

The notion of tolerant testing was first introduced in [42] to account for the possibility
of noisy data. In this notion, a test should accept inputs that are ε1-close to the property,
and reject inputs that are ε2-far from the property, where ε1 and ε2 are given parameters.
Tolerant testing is intimately connected to the notion of distance approximation: given
tolerant testers for every (ε1, ε2), there exists an algorithm that estimates the distance to
the property within any (additive) ε, while incurring only a Õ

(
log 1

ε

)
factor blow up in

the number of queries. Furthermore, [42] shows that both tolerant testing and distance
approximation are no harder than agnostic learning. We prove the following general result.

I Theorem 8. There exist
a non-adaptive (fully) tolerant tester for k-monotonicity of functions f : [n]d → {0, 1}

with query complexity q(n, d, ε1, ε2, k) = Õ

(
1

(ε2−ε1)2

(
5kd
ε2−ε1

)d)
;

a non-adaptive tolerant tester for k-monotonicity of functions f : [n]d → {0, 1} with query
complexity q(n, d, ε1, ε2, k) = 2Õ(k√d/(ε2−3ε1)2), under the restriction that ε2 > 3ε1.

1 We thank Eric Blais for mentioning the connection, and pointing us to these works.
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To the best of our knowledge, the only previous results for tolerant testing for monotonicity
on [n]d are due to Fattal and Ron [22]. They give both additive and multiplicative distance
approximations algorithms, and obtain O(d)-multiplicative and ε-additive approximations
with query complexity poly( 1

ε ). While very efficient, there results only give fully tolerant
testers for dimensions d = 1 and d = 2. Our results generalize the work of [22] showing
existence of tolerant testers for k-monotonicity (and hence for monotonicity) for any dimension
d ≥ 1, and any k ≥ 1, but paying the price in the query complexity.

As a consequence to Theorem 8, we make progress on an open problem of Berman et
al. [7], as explained next.

1.1.2.3 Testing k-monotonicity under Lp distance

The property of being a monotone Boolean function has a natural extension to real-valued
functions. Indeed, a real-valued function defined over a finite domain D is monotone if
f(x) ≤ f(y) whenever x � y. For real-valued functions the more natural notion of distance is
Lp distance, rather than Hamming distance. The study of monotonicity has been extended
to real-valued functions in a recent work by Berman et al. [7]. They give tolerant testers for
grids of dimension d = 1 and d = 2, and leave open the problem of extending the results to
general d, as asked explicitly at the recent Sublinear Algorithms Workshop 2016 [47].

We make progress towards solving this open problem, by combining our Theorem 8 with
a reduction from Lp testing to Hamming testing inspired by [7]. This reduction relates L1-
distance of a function f : [n]d → [0, 1] to monotonicity to Hamming distance to monotonicity
of a “rounded” function f̃ : [n]d × [m] → {0, 1}, essentially trading the range for an extra
dimension (where m is a rounding parameter to be suitably chosen). Moreover, simulating
query access to f̃ can be performed efficiently given query access to f .

I Theorem 9. There exists a non-adaptive tolerant L1-tester for monotonicity of functions
f : [n]d → [0, 1] with query complexity

Õ

(
1

(ε2−ε1)2

(
5d

ε2−ε1

)d)
, for any 0 ≤ ε1 < ε2 ≤ 1;

2Õ(√d/(ε2−3ε1)2), for any 0 ≤ 3ε1 < ε2 ≤ 1.

1.2 Proofs overview and technical contribution
Structural properties and the separation between testing and learning on {0, 1}d

We first observe that basic structural properties, such as extendability (i.e. the feature that a
function that is monotone on a sub-poset of [n]d can be extended into a monotone function
on the entire poset domain), and properties of the violation graph (i.e., the graph whose
edges encode the violations to monotonicity), extend easily to k-monotonicity (see the full
version of the paper). These properties help us to argue the separation between testing and
learning (Theorem 2). However, unlike the case of monotonicity testing, these properties do
not seem to be enough for showing upper bounds that grow polynomially in d.

Grid coarsening and testing by implicit/explicit learning

One pervading technique, which underlies all the hypergrid upper bounds in this work, is
that of gridding: i.e., partitioning the domain into “blocks” whose size no longer depends
on the main parameter of the problem, n. This technique generalizes the approach of [22]
who performed a similar gridding for dimension d = 2. By simulating query access to the
“coarsened” version of the unknown function (with regard to these blocks), we are able to
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leverage methods such as testing-by-learning (either fully or partially learning the function),
or reduce our testing problem to a (related) question on these nicer “coarsenings.” (The main
challenge here lies in providing efficient and consistent oracle access to the said coarsenings.)

At a high-level, the key aspect of k-monotonicity which makes this general approach
possible is reminiscent of the concept of heredity in property testing. Specifically, we rely
upon the fact that “gridding preserves k-monotonicity:” if f is k-monotone, then so will be
its coarsening g – but now g is much simpler to handle. This allows us to trade the domain
[n]d for what is effectively [m]d, with m� n. We point out that this differs from the usual
paradigm of dimension reduction: indeed, the latter would reduce the study of a property of
functions on [n]d to that of functions on [n]d′ for d′ � d (usually even d′ = 1) by projecting f
on a lower-dimensional domain. In contrast, we do not take the dimension down, but instead
reduce the size of the alphabet.Moreover, it is worth noting that this gridding technique
is also orthogonal to that of range reduction, as used e.g. in [20]. Indeed, the latter is a
reduction of the range of the function from [R] to {0, 1}, while gridding is only concerned
about the domain size.

Estimating the support of distributions

Our proof of the poly(1/ε) upper bound for testing k-monotonicity on the line (Theorem 5)
rests upon an unexpected connection to distribution testing, namely to the question of
support size estimation of a probability distribution. In more detail, we describe how to
reduce k-monotonicity testing to the support size estimation problem in (a slight modification
of) the Dual access model introduced by Canonne and Rubinfeld [13], where the tester is
granted samples from an unknown distribution as well as query access to its probability mass
function.

For our reduction to go through, we first describe how any function f : [n] → {0, 1}
determines a probability distribution Df (on [n]), whose effective support size is directly
related to the k-monotonicity of f . We then show how to implement dual access to this Df

from queries to f : in order to avoid any dependence on k and n in this step, we resort both
to the gridding approach outlined above (allowing us to remove n from the picture) and
to a careful argument to “cap” the values of Df returned by our simulated oracle. Indeed,
obtaining the exact value of Df (x) for arbitrary x may require Ω(k) queries to f , which we
cannot afford; instead, we argue that only returning Df (x) whenever this value is “small
enough” is sufficient. Finally, we show that implementing this “capped” dual access oracle
is possible with no dependence on k whatsoever, and we can now invoke the support size
estimation algorithm of [13] to conclude.

Fourier analysis on the hypergrid

We give an algorithm for fully tolerantly testing k-monotonicity whose query complexity
in exponential in d. We also describe an alternate tester (with a slightly worse tolerance
guarantee) whose query complexity is instead exponential in Õ(k

√
d) for constant distance

parameters. As mentioned above, we use our gridding approach combined with tools
from learning theory. Specifically, we employ an agnostic learning algorithm of [30] using
polynomial regression. Our coarsening methods allow us to treat the domain as if it were
[m]d for some m that is independent of n. To prove that this agnostic learning algorithm will
succeed, we turn to Fourier analysis over [m]d. We extend the bound on average sensitivity
of k-monotone functions over the Boolean hypercube from [9] to the hypergrid, and we show
that this result implies that the Fourier coefficients are concentrated on “simple” functions.
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1.3 Discussion and open problems
This is the first work to study k-monotonicity, a natural and well-motivated generalization
of monotonicity. Hence this work opens up many intriguing questions in the area of property
testing, with potential applications to learning theory, circuit complexity and cryptography.

As previously mentioned, the main open problem prompted by our work is the following:

Can k-monotonicity on the hypercube {0, 1}d be tested with poly(dk) queries?

A natural 1-sided tester for k-monotonicity is a chain tester: it queries points along a
random chain, and rejects only if it finds a violation to k-monotonicity, in the form of a
sequence x1 � x2 � . . . � xk+1 in {0, 1}d, such that f(x1) = 1 and f(xi) 6= f(xi+1). In
particular, the testers in [25, 14, 19, 33] all directly imply a chain tester. We conjecture that
there exists a chain tester for k-monotonicity that succeeds with probability d−O(k).

Another important open question concerns the hypergrid domain, and in particular it
pushes for a significant strengthening of Theorem 7 and Theorem 9:

Can k-monotonicity on the hypergrid [n]d be (tolerantly) tested with 2ok(
√
d) queries?

Answering this question would imply further progress on the L1-testing question for mono-
tonicity, left open in [7, 47].

There also remains the question of establishing two-sided lower bounds that would go
beyond those of monotonicity. Specifically:

Is there an dΩ(k)-query two-sided lower bound for k-monotonicity on the hypercube
{0, 1}d?

In this work we also show surprising connections to distribution testing (e.g. in the proof
of Theorem 5), and to testing union of intervals and testing surface area. An intriguing
direction is to generalize this connection to union of intervals and surface area in higher
dimensions, to leverage or gain insight on k-monotonicity on the d-dimensional hypergrid.

Finally, while we only stated here a few directions, we emphasize that every question that
is relevant to monotonicity is also relevant and interesting in the case of k-monotonicity.

1.4 Related work
As mentioned, k-monotonicity has deep connections with the notion of negation complexity
of functions, which is the minimum number of negation gates needed in a circuit to compute
a given function. The power of negation gates is intriguing and far from being understood
in the context of circuit lower bounds. Quoting from Jukna’s book [29], the main difficulty
in proving nontrivial lower bounds on the size of circuits using AND, OR, and NOT is the
presence of NOT gates: we already know how to prove even exponential lower bounds for
monotone functions if no NOT gates are allowed. The effect of such gates on circuit size
remains to a large extent a mystery.

This gap has motivated the study of circuits with few negations. Two notable works
successfully extend lower bounds in the monotone setting to negation-limited setting: in [2],
Amano and Maruoka show superpolynomial circuit lower bounds for (1/6) log logn negations
using the Clique function; and recently the breakthrough work of Rossman [45] establishes
circuit lower bounds for NC1 with roughly 1

2 logn negations by drawing upon his lower bound
for monotone NC1.

ITCS 2017
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The divide between the understanding of monotone and non-monotone computation
exists in general: while we usually have a fairly good understanding of the monotone case,
many things get murky or fail to hold even when a single negation gate is allowed. In
order to get a better grasp on negation-limited circuits, a body of recent work has been
considering this model in various contexts: Blais et al. [9] study negation-limited circuits from
a computational learning viewpoint, Guo et al. [27] study the possibility of implementing
cryptographic primitives using few negations, and Lin and Zhang [35] are interested in
verifying whether some classic Boolean function conjectures hold for the subset of functions
computed by negation-limited circuits.

Many of these results implicitly or explicitly rely on a simple but powerful tool: the
decomposition of negation-limited circuits into a composition of some “nice” function with
monotone components. Doing so enables one to apply results on separate monotone com-
ponents, and finally to carefully combine the outcomes (e.g., [26]). Though these techniques
can yield results for as many as O(logn) negations, they also leave open surprisingly basic
questions:

[9] Can we have an efficient weak learning algorithm for functions computed by circuits
with a single negation?

[27] Can we obtain pseudorandom generators when allowing only a single negation?

In contexts where the circuit size is not the quantity of interest, the equivalent notion
of 2-monotone functions is more natural than that of circuits allowing only one negation.
Albeit seemingly simple, even the class of 2-monotone functions remains largely a mystery:
as exemplified above, many basic yet non-trivial questions, ranging from the structure of
their Fourier spectrum to their expressive power of k-monotone functions, remain open.

1.5 Organization of the paper

After recalling some notations and definitions in section 2, we consider the case of functions
on the line in section 3, focusing on the proof of the two-sided upper bound of Theorem 3.

In section 4 we present our general algorithms for k-monotonicity on the hypergrid
[n]d, for arbitrary k and d. We prove Theorem 8 in two parts. We establish its first item
(general tolerant testing algorithm with exponential dependence in d) in subsection 4.1
(Proposition 22). The second item (with query complexity exponential in k

√
d) is proven

in subsection 4.2, where we analyze the Fourier-based tolerant tester of Proposition 31.

Our results on the Boolean hypercube, the two-dimensional grid, as well as some structural
results and applications to tolerant L1-testing of monotonicity have been left out of this
short version, and are deferred to the full version of the paper [12].

2 Preliminaries

We denote by log the binary logarithm, and use Õ(·) to hide polylogarithmic factors in the
argument (so that Õ(f) = O(f logc f) for some c ≥ 0).
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Given two functions f, g : X → Y on a finite domain X , we write dist(f, g) for the
(normalized) Hamming distance between them, i.e.

dist(f, g) = 1
|X |

∑
x∈X

1{f(x)6=g(x)} = Pr
x∼X

[ f(x) 6= g(x) ]

where x ∼ X refers to x being drawn from the uniform distribution on X . A property of
functions from X to Y is a subset P ⊆ XY of these functions; we define the distance of a
function f to P as the minimum distance of f to any g ∈ P:

dist(f,P) = inf
g∈P

dist(f, g) .

For some of our applications, we will also use another notion of distance specific to
real-valued functions, the L1 distance (as introduced in the context of property testing in [7]).
For f, g : X → [0, 1], we write

L1(f, g) = 1
|X |

∑
x∈X
|f(x)− g(x)| = Ex∼X [|f(x)− g(x)|] ∈ [0, 1]

and extend the definition to L1(f,P), for P ⊆ X [0,1], as before.

Property testing

We recall the standard definition of testing algorithms, as well as some terminology:

I Definition 10. Let P be a property of functions from X to Y . A q-query testing algorithm
for P is a randomized algorithm T which takes as input ε ∈ (0, 1] as well as query access to
a function f : X → Y. After making at most q(ε) queries to the function, T either outputs
ACCEPT or REJECT, such that the following holds:

if f ∈ P, then T outputs ACCEPT with probability at least 2/3; (Completeness)
if dist(f,P) ≥ ε, then T outputs REJECT with probability at least 2/3; (Soundness)

where the probability is taken over the algorithm’s randomness. If the algorithm only errs
in the second case but accepts any function f ∈ P with probability 1, it is said to be a
one-sided tester; otherwise, it is said to be two-sided. Moreover, if the queries made to the
function can only depend on the internal randomness of the algorithm, but not on the values
obtained during previous queries, it is said to be non-adaptive; otherwise, it is adaptive.

Additionally, we will also be interested in tolerant testers – roughly, algorithms robust to
a relaxation of the first item above:

I Definition 11. Let P, X , and Y be as above. A q-query tolerant testing algorithm for P
is a randomized algorithm T which takes as input 0 ≤ ε1 < ε2 ≤ 1, as well as query access
to a function f : X → Y . After making at most q(ε1, ε2) calls to the oracle, T outputs either
ACCEPT or REJECT, such that the following holds:

if dist(f,P) ≤ ε1, then T outputs ACCEPT with probability at least 2/3; (Completeness)
if dist(f,P) ≥ ε2, then T outputs REJECT with probability at least 2/3; (Soundness)

where the probability is taken over the algorithm’s randomness. The notions of one-sidedness
and adaptivity of Theorem 10 extend to tolerant testing algorithms as well.

Note that as stated, in both cases the algorithm “knows” X ,Y , and P ; so that the query
complexity q can be parameterized by these quantities. More specifically, when considering
X = [n]d and the property P of k-monotonicity, we will allow q to depend on n, d, and k.
Finally, we shall sometimes require a probability of success 1− δ instead of the (arbitrary)
constant 2/3; by standard techniques, this can be obtained at the cost of a multiplicative
O(log(1/δ)) in the query complexity.
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PAC and agnostic learning [48]

A learning algorithm A for a concept class C of functions f : X → Y (under the uniform
distribution) is given parameters ε, δ > 0 and sample access to some target function f ∈ C
via labeled samples 〈x, f(x)〉, where x is drawn uniformly at random from X . The algorithm
should output a hypothesis h : X → Y such that dist(h, f) ≤ ε with probability at least 1− δ.
The algorithm is efficient if it runs in time poly(n, 1/ε, 1/δ). If A must output h ∈ C we say
it is a proper learning algorithm, otherwise, we say it is an improper learning one.

Moreover, if A still succeeds when f does not actually belong to C, we say it is an
agnostic learning algorithm. Specifically, the hypothesis function h that it outputs must
satisfy dist(f, g) ≤ optf + ε with probability at least 1− δ, where optf = ming∈C dist(f, g).

3 On the line

In this section we focus on testing k-monotonicity on the line, that is of functions f : [n]→
{0, 1}. Our results include Theorem 4, which establishes that this can be done non-adaptively
with one-sided error, with only O(k/ε) queries; complemented by Theorem 3, which shows
that this is the best one can hope for if we insist on one-sidedness. Due to space constraints,
we only prove here Theorem 5 (restated below), which shows that – perhaps unexpectedly –
two-sided algorithms, even non-adaptive, can break this barrier and test k-mononicity with
no dependence on k. The proofs of Theorem 4 and Theorem 3 can be found in the full
version.

I Theorem 5. There exists a two-sided non-adaptive tester for k-monotonicity of functions
f : [n]→ {0, 1} with query complexity q(n, ε, k) = Õ

(
1/ε7), independent of k.

In what follows, we assume that k > 20/ε, as otherwise we can use for instance the
O(k/ε)-query (non-adaptive, one-sided) tester of Theorem 4 to obtain an O

(
1/ε2) query

complexity.

3.1 Testing k-monotonicity over [Ck]
In this section, we give a poly(C/ε)-query tester for k-monotonicity over the domain [Ck],
where C is a parameter to be chosen (for our applications, we will eventually set C =
poly(1/ε)).

I Lemma 12. There exists a two-sided non-adaptive tester for k-monotonicity of functions
f : [Ck]→ {0, 1} with query complexity O

(
C3

ε3

)
.

The tester proceeds by reducing to support size estimation and using (a slight variant
of) an algorithm of Canonne and Rubinfeld [13]. Let f : [Ck] → {0, 1}, and suppose f is
s-monotone but not (s− 1)-monotone. Then there is a unique partition of [Ck] into s+ 1
disjoint intervals I1, I2, . . . , Is+1 such that f is constant on each interval; note that this
constant value alternates in consecutive intervals. We can then define a distribution Df over
[s+ 1] such that Df (i) = |Ii| /(Ck).

Our next claims, Claim 13 and Claim 14, provide the basis for the reduction (from testing
k-monotonicity of f to support size estimation of Df ).

I Claim 13. If f is ε-far from k-monotone, then it is not (1 + ε
4 )k-monotone, and in

particular |supp(Df )| > (1 + ε
4 )k + 1.

I Claim 14. To ε-test k-monotonicity of f , it suffices to estimate |supp(Df )| to within εk
10 .
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The proofs of above claims are relatively straightforward. So we defer these proofs to the
end of this section and now proceed to use algorithm of [13] to do support size estimation.
The algorithm of [13] uses “dual access” to D; an oracle that provides a random sample from
D, and an oracle that given an element of D, returns the probability mass assigned to this
element by D.

I Theorem 15 ([13, Theorem 14 (rephrased)]). In the access model described above, there
exists an algorithm that, on input a threshold n ∈ N∗ and a parameter ε > 0, and given
access to a distribution D (over an arbitrary set) satisfying minx∈supp(D)D(x) ≥ 1

n estimates
the support size |supp(D)| up to an additive εn, with query complexity O

( 1
ε2

)
.

Note however that we only have access to Df through query access to f , and thus have to
manage to simulate (efficiently) access to the former. One difficulty is that, to access Df (i),
we need to determine where Ii lies in f . For example, finding Df (k/2) requires finding Ik/2,
which might require a large number of queries to f . We circumvent this by weakening the
“dual access” model in two ways, arguing for each of these two relaxations that the algorithm
of [13] can still be applied:

we rewrite the support size as in [13], as | supp(Df ) | = Ex∼Df
[1/Df (x)]. We want to

estimate it to within ±O(εk) which we can do by random sampling;
the quantity inside the expectation depends on Df (x) but not x itself, so “labels” are
unnecessary for our random sampling. Thus, it will be sufficient to be able to compute
Df (x) (and thus 1/Df (x)) for a random x ∼ Df , even if not actually knowing x itself;
actually, even calculating Df (x) may possibly too expensive, so instead we will estimate
Ex∼Df

[1/D̃f (x)] where D̃f (x) = min( 20
εk , Df (x)). Note that D̃f might no longer define a

probability distribution; but this expectation is only off by at most εk
20 , since 1/D′f (x) =

max(εk/20, 1/Df (x)) and 1/Df (x) is positive.
More details follow.

First, we note as discussed above that the algorithm does not require knowing the “label”
of any element in the support of the distribution: the only access required is being able
to randomly sample elements according to Df , and evaluate the probability mass on the
sampled points. This, in turn, can be done, as the following two lemmas explain:

I Lemma 16 (Sampling from Df ). Let i ∈ [n] be chosen uniformly at random, and let j be
such that i ∈ Ij. Then, the distribution of j is exactly Df .

I Lemma 17 (Evaluating Df (j)). Suppose Ij = {a, a+ 1, . . . , b}. Given i such that i ∈ Ij,
we can find Ij by querying f(i + 1) = f(i + 2) = · · · = f(b) and f(b + 1) 6= f(b), as well
as f(i − 1) = f(i − 2) = . . . = f(a) and f(a − 1) 6= f(a). The number of queries to f is
b− a+ 3 = |Ij |+ 3.

Here comes the second difficulty: if we straightforwardly use these approaches to emulate
the required oracles to estimate the support size of Df , the number of queries is potentially
very large. For instance, if we attempt to query Df (j) where |Ij | = Ω(k), we will need Ω(k)
queries to f . This is where comes the second relaxation: specifically, we shall argue that it
will be enough for us to “cap” the size of the interval (as per our next lemma).

I Lemma 18 (Evaluating Df (j) with a cap). Given i such that i ∈ Ij, we will query f on
every point in [i− 20C/ε, i+ 20C/ε]. If |Ij | ≤ 20C/ε, then Ij will be determined by these
queries. If these queries do not determine Ij , we know |Ij | > 20C/ε. Beyond querying i, this
requires 40C/ε (nonadaptive) queries.
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We now can put all the above pieces together and give the proof for Lemma 12:

Proof of Theorem 12: As previously discussed, we use the algorithm of [13] for estimating
support size. Inspecting their algorithm, we see that our cap of 20C/ε for interval length
(and therefore 20/(εk) for maximum probability reported) might result in further error
of the estimate. The algorithm interacts with the unknown function by estimating the
expected value of 1/Df (j) over random choices of j with respect to Df . Our cap can only
decrease this expectation by at most (εk)/20. Indeed, the algorithm works by estimating
the quantity Ex∼Df

[ 1
Df (x)1{Df (x)>τ}], for some suitable parameter τ > 0. By capping the

value of 1/Df (x) to 20/(εk), we can therefore only decrease the estimate, and by at most
20/(εk) ·Df ({ x : Df (x) > (εk)/20 }) ≤ 20/(εk).

The condition for their algorithm to estimate support size to within ±εm is that all
elements in the support have a probability mass of at least 1/m. Since each nonempty
interval has length at least 1, we have minj Df (j) ≥ (1/Ck). In order for their algorithm to
report an estimate within ±εk/20 of support size, we set ε′ = (ε/20C) in their algorithm.

The total error in support size is at most εk/20 + εk/20 = εk/10. By Claim 14, this
suffices to test ε-test k-monotonicity of f .

Using the algorithm of [13], we need O(1/ε′2) = O
(
(C/ε)2) queries to Df . For every

query to Df , we need to make O(C/ε) queries to f , so the overall query complexity is
O
(
C3/ε3). J

Proof of Claim 13. The last part of the statement is immediate from the first, so it suffices
to prove the first implication. We show the contrapositive: assuming f is (1 + ε

4 )k-monotone,
we will “fix” it into a k-monotone function by changing at most εn points. In what follows,
we assume εk

4 ≥ 1, as otherwise the statement is trivial (any function that is ε-far from
k-monotone is a fortiori not k-monotone).

Let as before `∗ be the minimum integer ` for which f is `-monotone: we can assume
k < `∗ ≤ (1 + ε

4 )k (as if `∗ ≤ k we are done.) Consider as above the maximal consecutive
monochromatic intervals I1, . . . , I`∗ , and let i be the index of the shortest one. In particular,
it must be the case that |Ii| ≤ n

`∗+1 . Flipping the value of f on Ii therefore has “cost” at
most n

`∗+1 , and the resulting function f ′ is now exactly (`∗ − 2)-monotone if 1 < i < `∗, and
(`∗ − 1)-monotone if i ∈ {1, `∗}. This means in particular that repeating the above ε

4k times
is enough to obtain a k-monotone function, and the total cost is upperbounded by

εk/4∑
j=0

n

`∗ + 1− 2j ≤
εk/4∑
j=0

n

k + 1− 2j =
k+1∑

j=k(1− ε
2 )+1

n

j
≤ n

ε
2k + 1

(1− ε
4 )k + 1 ≤ n

3ε
4 k

(1− ε
4 )k

where for the last inequality (for the numerator) we used that 1 ≤ εk
4 . But this last RHS is

upperbounded by εn (as 3
4x ≤ x(1− 1

4x) for x ∈ [0, 1]), showing that therefore, f was ε-close
to k-monotone to begin with, which is a contradiction. J

Proof of Claim 14. If f is ε-far from k-monotone, then |supp(Df )| > (1 + ε
4 )k = k + ε

4k,
and if f is k-monotone, then |supp(Df )| ≤ k + 1. The fact that k > 20/ε then allows us to
conclude. J

3.2 Reducing [n]→ {0, 1} to [Ck]→ {0, 1}.
Now we show how to reduce ε-testing k-monotonicity of f : [n] → {0, 1} to ε′-testing k-
monotonicity of a function g : [Ck]→ {0, 1} for C = poly(1/ε) and ε′ = poly(ε), resulting in
a poly(1/ε)-query algorithm for ε-testing k-monotonicity.
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The first step is (as before) to divide [n] into blocks (disjoint intervals) of size εn
4k if

ε > 8k
n (again assuming without loss of generality that εn

4k is an integer), and blocks of size
1 otherwise (in which case n ≤ 8k

ε and we can directly apply the result of Theorem 12,
with C = n/k ≤ 8/ε). Let m = 4k/ε be the number of resulting blocks, and define
fm : [n]→ {0, 1} as the m-block-coarsening of f : namely, for any j ∈ Bi, we set

fm(j) = argmaxb∈{0,1} Pr
k∈Bi

[fm(k) = b] (majority vote)

Ordering the blocks B1, B2, . . . , Bm, we also define g : [m] → {0, 1} such that g(i) =
mina∈Bi

fm(a).
It is easy to see that if f is k-monotone, then f has at most k non-constant blocks, and

fm is k-monotone. Because the function f only changes values k times; for a block to be
non-constant, the block must contain a pair of points with a value change. We call a block
variable if the minority points comprise at least an ε/100-fraction of the block; formally, B is
variable if minb∈{0,1} Prj∈B [f(j) = b] ≥ ε/100.

We need following claims (their proofs are at the end of the section) to prove Theorem 5.

I Claim 19. Suppose f has s variable blocks. Then dist(f, fm) ≤ s/m+ ε/100.

I Claim 20. Suppose f is promised to be either (i) k-monotone or (ii) such that fm has
more than 5

4k variable blocks. Then we can determine which with O
( 1
ε2 log 1

ε

)
queries, and

probability 9/10.

Proof of Theorem 5. We use the estimation/test from the previous claim as the first part
of our tester. Assuming f passes, we can assume that fm has less than 5

4k variable blocks.
By Claim 19, dist(f, fm) ≤ 5k

4 /m+ ε
100 = 5ε

32 + ε
100 ≤

ε
3 . This part takes O

( 1
ε2 log 1

ε

)
queries.

Now, we apply the tester of Theorem 12 (with probability of success amplified to 9/10
by standard arguments) to (ε/6)-test k-monotonicity of g : [m]→ {0, 1}, where g(i) is the
constant value of fm on Bi, and m = (4k)/ε. Let q be the query complexity of the tester,
and set δ = 1/(10q); to query g(i), we randomly query f on O

( 1
ε log 1

δ

)
points in Bi and take

the majority vote. With probability at least 1− δ, we get the correct value of g(i), and by a
union bound all q simulated queries have the correct value with probability at least 9/10.

Therefore, to get a single query to g, we use O((log q)/ε) queries. In the context of
our previous section, we have C = 4/ε, so q = O(C3/ε3) = O

(
1/ε6) and the overall query

complexity of this part is O((q log q)/ε) = O
( 1
ε7 log 1

ε

)
. This dominates the query complexity

of the other part of the tester, from Claim 20, which is O
( 1
ε2 log 1

ε

)
. By a union bound over

the part from Claim 20, the simulation of g, and the call to the tester of Theorem 12, the
algorithm is correct with probability at least 1− 3/10 > 2/3. J

Proof of Claim 19. We will estimate the error of fm in computing f on variable blocks and
non-variable blocks separately. Each non-variable block B can contribute error on at most
ε |B| /100 points. Each variable block B can contribute error on at most |B| = n/m points.
The total number of errors is at most εn/100 + s(n/m) = n(ε/100 + s/m), yielding the upper
bound on dist(f, fm). J

Proof of Claim 20. We first note that given any fixed block B, it is easy to detect whether it
is variable (with probability of failure at most δ) by making O

( 1
ε log 1

δ

)
uniformly distributed

queries in B. Doing so, a variable block will be labelled as such with probability at least
1− δ, while a constant block will never be marked as variable. (If a block is neither constant
nor variable, then any answer will do.)
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Letting s denote the number of variable blocks, we then want to non-adaptively distinguish
between s ≥ 5

4k = 5ε
16m and s ≤ k = ε

4m (since if f were k-monotone, then fm had at
most k variable blocks). Doing so with probability at least 19/20 can be done by checking
only q = O

( 1
ε

)
blocks chosen uniformly at random: by the above, setting δ = 1

20q all of
the q checks will also yield the correct answer with probability no less than 9/10, so by a
union bound we will distinguish (i) and (ii) with probability at least 9/10. We conclude by
observing that all O

(
q · 1

ε log 1
q

)
= O

( 1
ε2 log 1

ε

)
queries are indeed non-adaptive. J

4 On the high-dimensional grid

In this section, we give two algorithms for tolerant testing, that is testing whether a function
f : [n]d → {0, 1} is ε1-close to k-monotone vs. ε2-far from k-monotone, establishing Theorem 8.
The first has query complexity exponential in the dimension d and is fully tolerant, that
is works for any setting of 0 ≤ ε1 < ε2 ≤ 1. The second applies whenever ε2 > 3ε1, and
has (incomparable) query complexity exponential in Õ(k

√
d/(ε2 − 3ε1)2). Both of these

algorithms can be used for non-tolerant (“regular”) testing by setting ε1 = 0 and ε2 = ε,
which implies Theorem 7.

I Theorem 8. There exist
a non-adaptive (fully) tolerant tester for k-monotonicity of functions f : [n]d → {0, 1}

with query complexity q(n, d, ε1, ε2, k) = Õ

(
1

(ε2−ε1)2

(
5kd
ε2−ε1

)d)
;

a non-adaptive tolerant tester for k-monotonicity of functions f : [n]d → {0, 1} with query
complexity q(n, d, ε1, ε2, k) = 2Õ(k√d/(ε2−3ε1)2), under the restriction that ε2 > 3ε1.
As a corollary, this implies Theorem 7, restated below:

I Theorem 7. There exists a non-adaptive tester for k-monotonicity of functions f : [n]d →
{0, 1} with query complexity q(n, d, ε, k) = min(Õ

(
1
ε2

( 5kd
ε

)d)
, 2Õ(k√d/ε2)).

For convenience, we will view in this part of the paper the set [n] as [n] = {0, 1, . . . , n−1}.
Assuming that m divides n, we let Bm,n : [n]d → [m]d be the mapping such that Bm,n(y)i =
byi/mc for 1 ≤ i ≤ m. For x ∈ [m]d, we define the set B−1

m,n(x) to be the inverse image
of x. Specifically, B−1

m,n(x) is the set of points of the form m · x + [n/m]d, with standard
definitions for scalar multiplication and coordinate-wise addition. That is, B−1

m,n(x) is a
“coset” of [n/m]d points in [n]d. To keep on with the notations of the other sections, we will
call these cosets blocks, and will say a function h : [n]d → {0, 1} is an m-block function if it is
constant on each block. Moreover, for clarity of presentation, we will omit the subscripts on
B and B−1 whenever they are not necessary.

We first establish a lemma that will be useful for the proofs of correctness of both
algorithms.

I Lemma 21. Suppose f : [n]d → {0, 1} is k-monotone. Then there is an m-block function
h : [n]d → {0, 1} such that dist(f, h) < kd/m.

Proof. Fix any k-monotone function f : [n]d → {0, 1}. We partition [m]d into chains of the
form

Cx =
{
x+ ` · 1d : ` ∈ N, x ∈ [m]d and xi = 0 for some i

}
.

There aremd−(m−1)d ≤ dmd−1 of these chains: we will show that f can only be nonconstant
on at most k blocks of each chain.
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Algorithm 1 Fully tolerant testing with O(kd/(ε2 − ε1)))d queries.

Require: Query access to f : [n]d → {0, 1}, ε2 > ε1 ≥ 0, a positive integer k
1: α← (ε2 − ε1),m← d5kd/αe, t← d25 ln(6md)/(2α2)e
2: . Define a distribution D over [m]d × {0, 1}.
3: for x ∈ [m]d do
4: Query f on t random points Tx ⊆ B−1(x).
5: D(x, 0)← Pry∈Tx

[ f(y) = 0 ] /md

6: D(x, 1)← Pry∈Tx
[ f(y) = 1 ] /md

7: end for
8: . Define a distribution D′ over [n]d × {0, 1} such that D′(y, b) = D(B(y), b) ·md/nd.
9: if there exists a k-monotone m-block function h such that Pr(y,b)∼D′ [h(y) 6= b ] ≤ ε1 + α

2
then return ACCEPT

10: end if
11: return REJECT

By contradiction, suppose there exists x ∈ [m]d such that f is nonconstant on k + 1
different blocks B−1(z(i)), where z(1) ≺ z(2) ≺ . . . ≺ z(k) ≺ z(k+1), and each z(i) ∈ Cx. By
construction, we have B−1(z(i)) ≺ B−1(z(j)) for i < j. For each 1 ≤ i ≤ k + 1, there are
two points v(i)

∗ , v
(i)
∗∗ ∈ B−1(zi) such that v(i)

∗ ≺ v
(i)
∗∗ and f(v(i)

∗ ) 6= f(v(i)
∗∗ ). By construction

v
(1)
∗ ≺ v

(1)
∗∗ ≺ v

(2)
∗ ≺ v

(2)
∗∗ ≺ v

(3)
∗ ≺ v

(3)
∗∗ ≺ . . . ≺ v

(k+1)
∗ ≺ v

(k+1)
∗∗ , and there must be at least

k + 1 pairs of consecutive points with differing function values. Out of these 2k + 2 many
points, there is a chain of points v̄(1) ≺ v̄(2) ≺ . . . ≺ v̄(k+1) where f(v̄(i)) 6= f(v̄(i+1)) for
1 ≤ i ≤ k, which is a violation of the k-monotonicity of f .

Thus, in each of the dmd−1 many chains of blocks, there can only be k nonconstant
blocks. It follows that there are at most kdmd−1 nonconstant blocks in total. We now define
h(y) to be equal to f(y) if f is constant on B(y), and arbitrarily set h(y) = 0 otherwise.
Each set B−1(y) contains (n/m)d = nd ·m−d many points, and f is not constant on at most
kdmd−1 of these. It follows that dist(f, h) ≤ kdmd−1 ·m−d = kd/m. J

4.1 Fully tolerant testing with O(kd/(ε2 − ε1)))d queries
Our first algorithm (Algorithm 1) then proceeds by essentially brute-force learning anm-block
function close to the unknown function, and establishes the first item of Theorem 8.

I Proposition 22. Algorithm 1 accepts all functions ε1-close to k-monotone functions,
and rejects all functions ε2-far from k-monotone (with probability at least 2/3). Its query

complexity is O
(

d
(ε2−ε1)2

(
5kd
ε2−ε1

+ 1
)d

log kd
ε2−ε1

)
.

Proof. The algorithm first estimates Pry∈B−1(x) [ f(y) = b ] for every x ∈ [m]d and b ∈
{0, 1} to within ±α5 . We use t = 25 ln(6md)/2α2 points in each block to ensure (by an
additive Chernoff bound) that each estimate is correct except with probability at most
m−d/3. By a union bound, the probability that all estimates are correct is at least 2/3,
and we hereafter condition on this. By construction, E(x,b)∼D[Pry∈B−1(x) [ f(y) 6= b ]] =
Pr(y,b)∼D′ [ f(y) 6= b ] ≤ α

5 . In this probability experiment, the marginal distribution of D′
on y is uniform over [n]d.

Let f∗ : [n]d → {0, 1} be a k-monotone function minimizing Pr[ f(y) 6= f∗(y) ]. The-
orem 21 ensures that there is a k-monotone m-block function h : [n]d → {0, 1} such that
dist(f∗, h) < kd/m ≤ α/5. Let h∗ : [n]d → {0, 1} be a k-monotone m-block function
minimizing dist(f∗, h∗).
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Completeness

Suppose dist(f, f∗) ≤ ε1. Then by the triangle inequality,

Pr
(y,b)∼D′

[h∗(y) 6= b ] ≤ Pr
(y,b)∼D′

[h∗(y) 6= f∗(y) ] + Pr
(y,b)∼D′

[ f∗(y) 6= f(y) ]

+ Pr
(y,b)∼D′

[ f(y) 6= b ]

≤ ε1 + 2α
5 .

where to bound the first term Pr(y,b)∼D′ [h∗(y) 6= f∗(y) ] by dist(f∗, h∗) ≤ α/5 we used the
fact that the marginal distribution of y is uniform when (y, b) ∼ D′. Thus, the algorithm will
find a k-monotone m-block function close to D (without using any queries to f) and accept.

Soundness

Suppose dist(f, f∗) ≥ ε2. Then by the triangle inequality

Pr
(y,b)∼D′

[h(y) 6= b] ≥ Pr
(y,b)∼D′

[h(y) 6= f(y)]− Pr
(y,b)∼D′

[f(y) 6= b]

≥ Pr
(y,b)∼D′

[f∗(y) 6= f(y)]− Pr
(y,b)∼D′

[f(y) 6= b]

≥ ε2 −
α

5

for every k-monotone m-block function h. Since ε2 − 2α/5 ≥ ε1 + 3α/5, the algorithm never
find a k-monotone m-block function h with low error with respect to D, and the algorithm
will reject.

Query complexity

The algorithm only makes queries in constructing D; the number of queries required is
md · t = O

(
d
α2

( 5kd
α + 1

)d log kd
α

)
. J

4.2 Tolerant testing via agnostic learning
We now present our second algorithm, Algorithm 2, proving the second item of Theorem 8.
At its core is the use of an agnostic learning algorithm for k-monotone functions, which we
first describe.2

I Proposition 23. There exists an agnostic learning algorithm for k-monotone functions
over [r]d → {0, 1} with excess error τ with sample complexity exp(Õ(k

√
d/τ2).

We will rely on tools from Fourier analysis to prove Proposition 23. For this reason, it
will be convenient in this section to view the range as {−1, 1} instead of {0, 1}.

2 Recall that an agnostic learner with excess error τ for some class of functions C is an algorithm
that, given an unknown distribution D, an unknown arbitrary function f , and access to ran-
dom labelled samples 〈x, f(x)〉 where x ∼ D, satisfies the following. It outputs a hypothesis
function ĥ such that Prx∼D

[
f(x) 6= ĥ(x)

]
≤ optD + τ with probability at least 2/3, where

optD = minh∈C Prx∼D [ f(x) 6= h(x) ] (i.e., it performs “almost as well as the best function in C”).
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Algorithm 2 Multiplicative approximation with exp(Õ(k
√
d/((ε2 − 3ε1)2)) queries.

Require: Query access to f : [n]d → {0, 1}, ε2 > 3ε1 ≥ 0, a positive integer k
1: α← (ε2 − 3ε1), m← d6kd/εe , t← d3d(k + 1)/ε lnm+ ln 100e
2: Define D to be the distribution over [m]d × {0, 1} such that D(x, b) =

Pry∈B−1(x) [ f(y) = b ].
3: . AD(τ, f) denotes the output of an agnostic learner of k-monotone functions with respect

to D, with excess error τ and probability of failure 1/10
4: h : [m]d → R← AD(α/12, f).
5: Estimate Pr(x,b)∼D [h(x) 6= b ] to within ±α/7 with probability of failure 1/10, using
O(1/α2) queries.

6: if the estimate is more than ε1 + 5α
12 then return REJECT

7: end if
8: if dist(h, `) = Prx∈[m]d [h(x) 6= `(x) ] ≤ 2ε1 + 5α

12 for some k-monotone m-block function
` then return ACCEPT

9: else return REJECT
10: end if

I Definition 24. For a Boolean function f : [r]d → {−1, 1}, we define

Inf i[f ] = 2 Pr
[

[f(x) 6= f(x(i))
]

where x = (x1, x2, . . . , xd) is a uniformly random string over [r]d, and

x(i) = (x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xd)

for x′ drawn independently and uniformly from [r]. We also define Inf [f ] =
∑d
i=1 Inf i[f ].

We first generalize the following result, due to Blais et al., for more general domains:

I Proposition 25 ([9]). Let f : {0, 1}d → {−1, 1} be a k-monotone function. Then Inf [f ] ≤
k
√
d.

I Lemma 26 (Generalization). Let f : [r]d → {−1, 1} be a k-monotone function. Then
Inf [f ] ≤ k

√
d.

Proof. For any two strings y0, y1 ∈ [r]d, let fy0,y1 : {0, 1}d → {−1, 1} be the function
obtained by setting fy0,y1(x) = f(yx), where yx ∈ [r]d is defined as

yxi =
{

min{y0
i , y

1
i } if xi = 0

max{y0
i , y

1
i } if xi = 1

Since f was a k-monotone function, so is fy0,y1 . Thus Inf [fy0,y1 ] ≤ k
√
d for every choice

of y0 and y1. It is not hard to see that for any fixed i ∈ [d] the following two processes yield
the same distribution over [r]d × [r]d:

Draw z ∈ [r]d, z′i ∈ [r] independently and uniformly at random, set

z′
def= (z1, . . . , zi−1, z

′
i, zi+1, . . . , zd),

and output (z, z′);
Draw y0, y1 ∈ [r]d, x ∈ {0, 1}d independently and uniformly at random, and output
(yx, yx(i)).
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This implies that

Inf [f ] =
d∑
i=1

Inf i[f ] =
d∑
i=1

2 Pr
z∈[r]d

[f(z) 6= f(z(i))]

=
d∑
i=1

2Ey0,y1∈[r]d

[
Pr

x∈{0,1}d

[
f(yx) 6= f(yx

(i)
)
]]

= Ey0,y1∈[r]d

[
d∑
i=1

2 Pr
x∈{0,1}d

[
f(yx) 6= f(yx

(i)
)
]]

= Ey0,y1∈[r]d

[
d∑
i=1

2 Pr
x∈{0,1}d

[
fy0,y1(x) 6= fy0,y1(x(i))

]]
= Ey0,y1 [Inf [fy0,y1 ]] ≤ Ey0,y1 [k

√
d] = k

√
d. J

For two functions f, g : [r]d → R, we define the inner product 〈f, g〉 = Ex[f(x)g(x)],
where the expectation is taken with respect to the uniform distribution. It is known that for
functions f : [r]d → R, there is a “Fourier basis” of orthonormal functions f . To construct
such a basis, we can take any orthonormal basis {φ0 ≡ 1, φ1, . . . , φ|r|−1} for functions
f : [r] → R. Given such a basis, a Fourier basis is the collection of functions φα, where
α ∈ [r]d, and φα(x) =

∏d
i=1 φαi(xi). Then every f : [r]d → R has a unique representation

f =
∑
α∈[r]d f̂(α)φα, where f̂(α) = 〈f, φα〉 ∈ R.

Many Fourier formulæ hold in arbitrary Fourier bases, an important example being
Parseval’s Identity:

∑
α∈[r]d f̂(α)2 = 1. We will use the following property:

I Lemma 27 ([39, Proposition 8.23]). For α ∈ [r]d, let |α| denote the number of nonzero
coordinates in α. Then we have

Inf [f ] =
∑
α∈[r]d

|α| f̂(α)2.

I Lemma 28. If Inf [f ] ≤ k, then
∑

α:|α|>k/ε

f̂(α)2 ≤ ε.

Proof. If not, then Inf [f ] =
∑
α |α| f̂(α)2 ≥

∑
α:|α|>k/ε |α| f̂(α)2 ≥ k

ε

∑
α:|α|>k/ε f̂(α)2 >

k
ε · ε = k, a contradiction. J

I Lemma 29. Let p be the function
∑
α:|α|≤t f̂(α)φα. Then

(i) ‖p− f‖22 = Ex∈[r]d [(p(x)− f(x))2] =
∑
α:|α|>t f̂(α)2;

(ii) p is expressible as a linear combination of real-valued functions over [r]d, each of which
only depends on at most t coordinates;

(iii) p is expressible as a degree-t polynomial over the rd indicator functions 1{xi=j} for
1 ≤ i ≤ d and j ∈ [r].

I Theorem 30 ([30, Theorem 5]). Let C be a class of Boolean functions over X and S a
collection of real-valued functions over X such that for every f : X → {−1, 1} in C, there
exists a function p : X → R such that p is expressible as a linear combination of functions
from S and ‖p− f‖22 ≤ τ2. Then there is an agnostic learning algorithm for C achieving
excess error τ which has sample complexity poly(|S| , 1/τ).

Importantly, this algorithm is still successful with inconsistent labelled samples (examples),
as long as they come from a distribution on X × {−1, 1}, where the marginal distribution on
X is uniform.
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Now we put all the pieces together. To agnostically learn a k-monotone function, we simply
perform the agnostic learning algorithm of [30] on the distribution D over [m]d × {−1, 1}
defined by

D(x, b) = Pr
y∈B−1(x)

[ f(y) = b ] .

To generate a sample (x, b) from D, we draw a uniformly random string in x ∈ [m]d,
and b is the result of a query for the value of f(y) for a uniformly random y ∈ B−1(x).
From Theorem 29, we can take S to be the set of (k

√
d/τ2)-way products of rd indicator

functions. It follows that |S| =
(

rd
k
√
d/τ2

)
= exp(Õ(k

√
d/τ2)).

I Proposition 31. Algorithm 2 accepts all functions ε1-close to k-monotone functions, and
rejects all functions ε2-far from k-monotone, when ε2 > 3ε1 (with probability at least 2/3).
Its query complexity is exp(Õ(k

√
d/(ε2 − 3ε1)2)).

Proof. By a union bound, we have that with probability at least 8/10 both Step 5 and
Step 4 succeed. We hereafter condition on this.

Completeness

Suppose f is ε1-close to k-monotone. Theorem 21 and the triangle inequality imply that
there is a k-monotone m-block function g∗ such that dist(f, g∗) ≤ ε1 + α/6. The agnostic
learning algorithm thus returns a hypothesis h such that dist(f, h) ≤ ε1 + α/4. The
algorithm estimates this closeness to within α/7, so the estimate obtained in Step 5 is at
most ε1 + ε/4 + ε/7 < ε1 + 5α/12 and the algorithm does not reject in this step. By the
triangle inequality, h is (2ε1 + 5α/12)-close to k-monotone, and the algorithm will accept.
There is no estimation error here, since no queries to f are required.

Soundness

Now suppose f is ε2-far from k-monotone, where ε2 = 3ε1 + α for some α > 0. Suppose
the algorithm does not reject when estimating dist(f, h), where h is the hypothesis returned
by the agnostic learning algorithm. Then dist(f, h) ≤ ε1 + 5α/12 + α/7 < ε1 + 7α/12. By
the triangle inequality, if t is a k-monotone function, dist(h, t) ≥ dist(f, t) − dist(f, h) >
ε2 − (ε1 + 7α/12) = 2ε1 + 5α/12. The algorithm will thus reject in the final step.

Query complexity

The query complexity of the algorithm is dominated by the query complexity of the agnostic
learning algorithm, which is exp(Õ(k

√
d/α2)) = exp(Õ

(
k
√
d/(ε2 − 3ε1)2

)
). J
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