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Abstract
The centerpoint theorem is a well-known and widely used result in discrete geometry. It states
that for any point set P of n points in Rd, there is a point c, not necessarily from P , such
that each halfspace containing c contains at least n

d+1 points of P . Such a point c is called a
centerpoint, and it can be viewed as a generalization of a median to higher dimensions. In other
words, a centerpoint can be interpreted as a good representative for the point set P . But what if
we allow more than one representative? For example in one-dimensional data sets, often certain
quantiles are chosen as representatives instead of the median.

We present a possible extension of the concept of quantiles to higher dimensions. The idea
is to find a set Q of (few) points such that every halfspace that contains one point of Q contains
a large fraction of the points of P and every halfspace that contains more of Q contains an even
larger fraction of P . This setting is comparable to the well-studied concepts of weak ε-nets and
weak ε-approximations, where it is stronger than the former but weaker than the latter. We show
that for any point set of size n in Rd and for any positive α1, . . . , αk where α1 ≤ α2 ≤ . . . ≤ αk
and for every i, j with i + j ≤ k + 1 we have that (d − 1)αk + αi + αj ≤ 1, we can find Q of
size k such that each halfspace containing j points of Q contains least αjn points of P . For
two-dimensional point sets we further show that for every α and β with α ≤ β and α+β ≤ 2

3 we
can find Q with |Q| = 3 such that each halfplane containing one point of Q contains at least αn
of the points of P and each halfplane containing all of Q contains at least βn points of P . All
these results generalize to the setting where P is any mass distribution. For the case where P is
a point set in R2 and |Q| = 2, we provide algorithms to find such points in time O(n log3 n).
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53:2 Extending the Centerpoint Theorem to Multiple Points

1 Introduction

Medians and quantiles are ubiquitous in the statistical analysis and visualization of data.
These notions allow for quantifying how deep some point lies within a one-dimensional data
set by measuring how many elements of the data set appear before the point and how many
appear after it. In comparison to the mean, medians and quantiles have the advantage that
they only depend on the order of the data points, and not their exact positions, making them
robust against outliers. However, in many applications, data sets are multidimensional, and
there is no clear order of the data set. For this reason, various generalizations of medians to
higher dimensions have been introduced and studied. Many of these generalized medians rely
on a notion of depth of a query point within a data set, a median then being a query point
with the highest depth among all possible query points. Several such depth measures have
been introduced over time, most famously Tukey depth [18] (also called halfspace depth),
simplicial depth, or convex hull peeling depth (see, e.g., [1]). All of these depth measures lead
to generalized medians that are invariant under affine transformations. As for quantiles, only
a few generalizations have been introduced (see, e.g., [6]). We propose such a generalization
by extending a depth measure to sets with a fixed number of query points and defining a
quantile as a set with maximal depth. The depth measure we extend is Tukey depth: the
Tukey depth of a point q with respect to a point set P ⊂ Rd is the minimal number of points
of P in any closed halfspace containing q. More formally, if H denotes the set of closed
halfspaces, then the Tukey depth tdP (q) of q with respect to P is

tdP (q) = min
q∈h∈H

{|h ∩ P |} .

Similarly, the Tukey depth can also be defined for a mass distribution µ:

tdµ(q) = min
q∈h∈H

{µ(h)} .

Here, a mass distribution µ on Rd is a measure on Rd such that all open subsets of Rd
are measurable, 0 < µ(Rd) <∞ and µ(S) = 0 for every lower-dimensional subset S of Rd.

The centerpoint theorem states that there is always a point of high depth, i.e., a point q
such that for every closed halfspace h containing q we have |h ∩ P | ≥ |P |

d+1 (or µ(h) ≥ µ(Rd)
d+1

for masses). Note that, for d = 1, such a centerpoint is a median: a median has the property
that every halfline containing it contains at least half of the underlying data set. Quantiles
can be interpreted similarly: the 1

3 -quantile and the 2
3 -quantile form a set of two points such

that every halfline that contains one of them contains at least 1
3 of the data set. Furthermore,

a halfline containing both of the points contains at least 2
3 of the underlying data set. In

particular, halflines containing more points contain more of the data set. This idea leads to
the following generalization of Tukey depth for a set Q of multiple points:

gtdP (Q) := min
h∈H : Q∩h6=∅

{
|h ∩ P |
|h ∩Q|

}
.

Again, we can generalize this to mass distributions:

gtdµ(Q) := min
h∈H : Q∩h6=∅

{
µ(h)
|h ∩Q|

}
.

We prove that there is always a set Q of k points that has generalized Tukey depth 1
kd+1 .

In fact, we prove the following, more general statement:
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I Theorem 1. Let µ be a mass distribution in Rd with µ(Rd) = 1. Let α1, . . . , αk be non-
negative real numbers such that α1 ≤ α2 ≤ . . . ≤ αk and for every i, j with i+ j ≤ k + 1 we
have that (d − 1)αk + αi + αj ≤ 1. Then there are k points p1, . . . , pk in Rd such that for
each closed halfspace h containing j of the points p1, . . . , pk we have µ(h) ≥ αj.

Note that, for d = 1 and k = 2, the points p1 and p2 correspond to the α1-quantile and
the (1− α1)-quantile; for αj = j

kd+1 we get our bound on the generalized Tukey depth, and
for α1 = . . . = αk, the result implies the centerpoint theorem.

Our second result is motivated by interpreting the 1
3 -quantile and the 2

3 -quantile not as
two points, but as a one-dimensional simplex. We then have that every halfline that contains
a part of the simplex contains at least 1

3 of the underlying data set and every halfline that
contains the whole simplex contains at least 2

3 of the underlying data set. Also for this
interpretation we give a generalization to two dimensions:

I Theorem 2. Let µ be a mass distribution in R2 with µ(R2) = 1. Let α and β be real
numbers such that 0 < α ≤ β and α+ β = 2

3 . Then there is a triangle ∆ in R2 such that
(1) for each closed halfplane h containing one of the vertices of ∆ we have µ(h) ≥ α and
(2) for each closed halfplane h fully containing ∆ we have µ(h) ≥ β.

Note that this again generalizes centerpoints for α = β. However, this result does not
give bounds on the generalized Tukey depth of these sets, as, e.g., a halfspace containing two
points may still only contain an α-fraction of the mass.

Finally, we give algorithms to compute two points satisfying the two-dimensional case of
Theorem 1 and three points satisfying Theorem 2 in time O(n log3 n).

Related work. Another way to view our setting is the following: given a multidimensional
data set, we want to find a fixed number of representatives. The idea of small point sets
representing a larger point set has been studied in many different settings. One of the most
famous of those is the concept of ε-nets, introduced by Haussler and Welzl [7]. For a range
space (X,R), consisting of a set X and a set R of subsets of X, an ε-net on P ⊂ X is a
subset N of P with the property that every r ∈ R with |r ∩ P | ≥ ε|P | intersects N . In
our setting, where we consider halfspaces, we would choose X = Rd and R as the set of all
halfspaces. It is known that for this range space, for any point set P there exists an ε-net of
size O(dε log d

ε ). In particular, this bound does not depend on the size of P . Note that we
require the ε-net to be a subset of P . If this condition is dropped, we arrive at the concept
of weak ε-nets. The fact that the points for the weak ε-net can be chosen anywhere in Rd
allows for very small weak ε-nets for many range spaces. There has been some work on weak
ε-nets of small size. For halfplanes in R2 for example, Aronov et al. [3] have shown that there
is always a weak 1

2 -net of two points. These two points both lie outside of the convex hull of
P . They also consider many other range spaces, such as convex sets, disks and rectangles.
Similarly, Babazadeh and Zarrabi-Zadeh [4] construct weak 1

2 -nets of size 3 for halfspaces in
R3. For two-dimensional convex sets, Mustafa and Ray [15] have shown that there is always
a weak 4

7 -net of two points; Shabbir [17] shows how to find two such points in O(n log4 n)
time.

Another related concept is the concept of ε-approximations: For a range space (X,R)
an ε-approximation on P ⊂ X is a subset N of P with the property that for every r ∈ R
we have

∣∣∣ |r∩P ||P | −
|r∩N |
|N |

∣∣∣ ≤ ε. Again, the restriction that N has to be a subset of P can be
dropped to get the notion of weak ε-approximations. Just as for ε-nets, there has been a
lot of work on ε-approximations and weak ε-approximations, see [14] for a recent survey. In
particular it was shown that for halfspaces in Rd, there always is an ε-approximation of size
O( 1

ε2−2/(d+1) ) [12, 13].

ISAAC 2018
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While our setting can be considered to be related to weak ε-nets and weak ε-approxima-
tions for range spaces determined by halfspaces, the differences are significant. As we will
discuss here, a halfspace missing all the points of Q may still contain up to half of the points
of the initial set, and thus Q qualifies neither as a good weak ε-approximation nor ε-net.

Note that for |Q| = 2, the condition of Theorem 1 that any halfspace containing all of
the points of Q contains at least α2n points of P is equivalent to the statement that every
halfspace containing more than (1− α2)n of the points of P contains at least one point of Q.
So, Q is a weak (1− α2)-net of P . Furthermore, the condition that any halfspace containing
one of the points of Q contains at least α1n points of P translates to the statement that every
halfspace containing more than (1− α1)n of the points of P must contain all of Q. Thus, Q
is not only a weak (1−α2)-net of P but also has the additional property that all points of Q
are somewhat deep within P . (For two points in the plane, this comes at the cost of having
ε larger than 1

2 .) On the other hand, while we require halfspaces containing all points of Q
to also contain many points of P , we also allow halfspaces containing only one point of Q to
contain many points of P . This separates our concept from weak ε-approximations. Note
that when dealing with halfspaces and ε-nets of size 2, the weak 1

2 -net of Aronov et al. [3]
is actually also a weak 1

2 -approximation. Similarly, Theorem 1 gives us a weak (1 − α2)-
approximation of P , with the optimal value being reached when α1 tends to zero (which
actually corresponds to the result in [3]). Adding more points to Q does not give us a better
approximation. For d = 2, requiring that for i+ j ≤ k + 1 we have (d− 1)αi + αj + αk < 1
implies α1 + 2αk < 1, so a halfspace containing no points of Q may contain half of the points
of P ; we therefore cannot get anything better than a weak 1

2 -approximation. Also, we do
not get anything better than a weak 1

2 -net.
In fact, our setting is very much related to the concept of one-sided ε-approximants,

recently introduced by Bukh and Nivasch [5]: For a range space (X,R), a one-sided ε-
approximant on P ⊂ X is a subset N of P with the property that for every r ∈ R we have
|r∩P |
|P | −

|r∩N |
|N | ≤ ε. Once again, the restriction that N has to be a subset of P can be dropped

to get the notion of weak one-sided ε-approximations. Note that the only difference to the
definition of ε-approximations is that one does not take the absolute value of the difference.
In particular, if |r∩N ||N | > |r∩P |

|P | , i.e., if r contains many points of N despite containing only
few points of P , the difference is negative, and thus smaller than ε.

In their paper, Bukh and Nivasch [5] consider the range space of convex sets. They show
that any point set in Rd allows a one-sided ε-approximant for convex ranges of size g(ε, d),
where g(ε, d) only depends on ε and d, but not on the size of P .

In a similar reasoning, it makes sense to define an approximation by a set N such that
for every r ∈ R we have |r∩N ||N | −

|r∩P |
|P | ≤ ε. Intuitively, if a range r contains a large fraction

of the points of N , then it is guaranteed to contain a large fraction of the set P we want to
approximate. But here again, our approximation ratio is 1

2 at best.

2 Two points

We first consider the case where the underlying data is a point set. Motivated by the definition
of generalized Tukey depth, we consider α1 = 1

5 and α2 = 2
5 . Even though this result is

a special case of Theorem 1, we still show its proof for two reasons: first, the Algorithm
presented in Section 5 relies heavily on the presented proof and, secondly, the proof already
illustrates the main ideas for the proof of Theorem 1.
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I Theorem 3. Let P be a set of n points in general position in the plane. Then there are
two points p1 and p2 in R2 such that
(1) each closed halfplane containing one of the points p1 and p2 contains at least n

5 of the
points of P and

(2) each closed halfplane containing both p1 and p2 contains at least 2n
5 of the points of P .

Proof. Note that condition (1) is equivalent to the condition that every open halfplane
containing more than 4n

5 of the points of P must contain both p1 and p2. Similarly,
condition (2) is equivalent to the condition that every open halfplane containing more than
3n
5 of the points of P must contain one of p1 and p2. We will now construct two points p1
and p2 satisfying both these conditions.

Let C be the intersection of all open halfplanes containing more than 4n
5 of the points

of P . Clearly C is convex. Also, note that C is closed. The centerpoint region is a strict
subset of C and thus C has a non-empty interior. In order to satisfy condition (1), both p1
and p2 have to be placed in C.

Let now H be the set of all open halfplanes containing more than 3n
5 of the points of P .

For any hi in H let ci be the intersection of hi and C. In order to also satisfy condition (2),
we need to find two points p1 and p2 such that every ci contains at least one of them. To
this end, we partition H into two subsets L and R. The set L contains all halfplanes that lie
on the left side of their respective boundary lines. Analogously, R contains all halfplanes
that lie on the right side of their respective boundary lines. For a halfplane hi that has a
horizontal boundary line, we put hi in L if and only if it lies above its boundary line.

Note that any three halfplanes in L have a non-empty intersection: Consider the inclusion-
minimal halfplane h ∈ L with horizontal boundary line and its intersection r with the
boundary of the convex hull of P . As h is open, r is not in h. However, we claim that
any point r′ in h on the convex hull boundary of P in an ε-neighborhood of r is in any
halfplane of L. Indeed, if there was a halfplane in L not containing r′, it would contain a
strict subset of the intersection of the convex hull of P with h; however, this would contradict
the minimality of h. The analogous holds for R.

We will now show that for any two halfplanes h1 and h2 in L, their corresponding regions
c1 and c2 have a non-empty intersection. The same arguments hold for any two halfplanes in
R. Assume for the sake of contradiction that c1 and c2 do not intersect. As C and h1∩h2 are
convex, this means that there is an open halfplane g containing more than 4n

5 of the points
of P such that the intersection of the boundary lines of h1 and h2 lies in g, the complement
of g (see Figure 1). In particular, g ∩ h1 is a strict subset of h2. As g contains strictly fewer
than n

5 of the points of P and h1 contains strictly fewer than 2n
5 of the points of P , g ∩ h1

must contain strictly more than 2n
5 of the points of P . However, being a subset of h2, which

also contains strictly fewer than 2n
5 of the points of P , this is a contradiction. Thus, by

contradiction, c1 and c2 intersect.
As neither three halfplanes in L nor two halfplanes in L and C have an empty intersection,

Helly’s Theorem entails that there exists a point in both C and all halfplanes in L, i.e., all
cis associated to L have a non-empty intersection DL. Again, the same holds for R, with a
non-empty intersection DR. Placing p1 in DL and p2 in DR, we have thus constructed two
points such that the conditions (1) and (2) hold. J

This result is tight in the following sense: There is a point set for which it is not possible
to improve both conditions at the same time, that is, it is not possible to find two points
such that any halfplane containing one of them contains strictly more than n

5 of the points
and any halfplane containing both of them contains strictly more than 2n

5 of the points. For

ISAAC 2018
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g

h2

h1

<n
5

<2n
5

<2n
5

>2n
5

h2

h1

g

Figure 1 Two cis associated to L must intersect (left). The intersection is non-empty in other
variants (right).

P1

P2

P3

P4P5

`
A1,3

B1,3

S1,3

Figure 2 A construction for which the bounds of Theorem 3 cannot be improved.

this consider a set of n = 5k point arranged in the following way. Partition the points into 5
sets P1, . . . , P5 of k points each. Place P1, . . . , P5 in such a way that the convex hull of each
Pi is disjoint from the convex hull of the union of the other four sets (see Figure 2).

Denote by Si,j the convex hull CH(Pi ∪ Pj) of Pi ∪ Pj . Let ` be a line through CH(Pi)
and CH(Pj). Note that any other set Pm is not separated by ` (i.e., lies entirely on one side).
Let Ai,j be the side of ` containing fewer of the other sets and let Bi,j be the other side. For
any point q in CH(P1 ∪ . . .∪P5) we say that q is above Si,j if it is not in Si,j but it is in Ai,j .
Similarly, for any point q in CH(P1 ∪ . . . ∪ P5) we say that q is below Si,j if it is not in Si,j
but it is in Bi,j . Suppose, for the sake of contradiction, that there exist two points p1 and p2
such that any halfplane containing one of them contains strictly more than k of the points
of P1 ∪ . . . ∪ P5 and any halfplane containing both of them contains strictly more than 2k
of the points of P1 ∪ . . . ∪ P5. Consider two sets Pi and Pj such that Ai,j contains exactly
one other set. First we note that neither p1 nor p2 can lie above Si,j as otherwise we can
find a halfplane containing that point and only one of the sets, i.e., only k points. Similarly,
we cannot place both p1 and p2 below Si.j , as otherwise we can find a halfplane containing
both points and only two of the sets, i.e., only 2k points. Also, we must clearly place both
p1 and p2 in CH(P1 ∪ . . . ∪ P5). Thus, for any two sets Pi and Pj such that Ai,j contains
exactly one other set, Si,j must contain at least one of p1 and p2. However, there are five
such Si,j and P1, . . . , P5 can be placed in such a way that no three of them have a common
intersection. So no matter how we place p1 and p2, one of the Si,j will be empty.

3 An arbitrary number of points

We now strengthen Theorem 3 in four ways: we allow for arbitrarily many query points, we
extend it to higher dimensions, we consider mass distributions instead of point sets, and we
give a range of possible bounds:
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I Theorem 1. Let µ be a mass distribution in Rd with µ(Rd) = 1. Let α1, . . . , αk be non-
negative real numbers such that α1 ≤ α2 ≤ . . . ≤ αk and for every i, j with i+ j ≤ k + 1 we
have that (d − 1)αk + αi + αj ≤ 1. Then there are k points p1, . . . , pk in Rd such that for
each closed halfspace h containing j of the points p1, . . . , pk we have µ(h) ≥ αj.

We use the following observation, which follows from the fact that for an empty intersection
of d+ 1 halfspaces, any point with non-zero mass is in at most d such halfspaces.

I Observation 4. Let µ be a mass distribution in Rd with µ(Rd) = 1. Let h1, . . . , hd+1 be
d+ 1 open halfspaces with h1 ∩ . . . ∩ hd+1 = ∅. Then µ(h1) + . . .+ µ(hd+1) ≤ d.

Proof of Theorem 1. The result is straightforward for d = 1, so assume d ≥ 2. Again the
condition that for each closed halfspace h′ containing j of the points p1, . . . , pk we have
µ(h′) ≥ αj is equivalent to the condition that every open halfspace h with µ(h) > 1 − αj
must contain at least k − j of the points p1, . . . , pk. Let α0 = 0. For 1 ≤ j ≤ k, we call an
open halfspace h a j-halfspace if 1− αk−j+1 < µ(h) ≤ 1− αk−j . Consider the x1-x2-plane,
denoted by X, and for each vector v = (v1, v2, . . . , vd) in Rd let π(v) = (v1, v2, 0, . . . , 0) be
the projection of v to X. Let v1, . . . , vk be k unit vectors in X with the property that the
angle between any vi and vi+1 is 2π

k . Note that this implies that also the angle between
vk and v1 is 2π

k . For each vi we construct a principal set Vi of halfspaces as follows: For
each j, consider all j-halfspaces. For any such halfspace h, let n(h) be the normal vector
to its bounding hyperplane that points into h. Let h be in Vi if the angle between π(n(h))
and vi is at most jπ

k . If π(n(h)) = 0, place h arbitrarily in j of the Vi’s. Note that with
this construction each j-halfspace is contained in exactly j principal sets. Thus, if, for each
principal set, we can pick a point in all its halfplanes, then each j-halfplane contains j points.

It remains to show that the halfspaces in each principal set have a common intersection.
Let h1, . . . , hd+1 be d + 1 halfspaces in Vi and assume for the sake of contradiction that
they have no common intersection. Then the positive hull (conical hull) of their projected
normal vectors must be X, and in particular there are three of them, w.l.o.g. h1, h2 and
h3, whose projected normal vectors already have X as their positive hull. Further, among
those three halfspaces, there are two of them, w.l.o.g. h1 and h2, such that the angles
between their projected normal vectors and vi sum up to more than π. If h1 is a j1-halfspace,
then by construction of Vi we have that the angle between π(n(h1)) and vi is at most j1π

k .
Analogously, if h2 is a j2-halfspace, the angle between π(n(h2)) and vi is at most j2π

k . By
the choice of h1 and h2 we thus have (j1+j2)π

k > π, which is equivalent to j1 + j2 > k, and to
j1 + j2 ≥ k + 1, as j1 and j2 are integers. By definition of a j-halfspace we have

µ(h1) + µ(h2) > 1− αk+1−j1 + 1− αk+1−j2 .

Furthermore we have µ(hi) > 1− αk for every i ∈ {1, . . . , d+ 1}, and thus

µ(h1) + µ(h2) + µ(h3) + . . .+ µ(hd+1) > 1− αk+1−j1 + 1− αk+1−j2 + (d− 1)(1− αk) ,

which is equivalent to

(d− 1)αk + αk+1−j1 + αk+1−j2 > d+ 1− (µ(h1) + . . .+ µ(hd+1)) .

As k+1−j1+k+1−j2 = 2k+2−(j1+j2) ≤ k+1, we have that (d−1)αk+αk+1−j1 +αk+1−j2 ≤ 1
and thus µ(h1) + . . .+ µ(hd+1) > d, which is a contradiction to Observation 4. J

Setting αj = j
kd+1 , we get a bound for the generalized Tukey depth:

I Corollary 5. Let µ be a mass distribution in Rd with µ(Rd) = 1. Then there exist k points
p1, . . . , pk in Rd with generalized Tukey depth gtdµ({p1, . . . , pk}) = 1

kd+1 .

ISAAC 2018
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4 Triangles

As mentioned before, the 1
3 -quantile and the 2

3 -quantile can also be interpreted as a one-
dimensional simplex with the property that every halfline that contains a part of the simplex
contains at least 1

3 of the underlying data set and every halfline that contains the whole
simplex contains at least 2

3 of the underlying data set. For this interpretation, we give a
generalization to two dimensions. For ease of presentation, we only give a proof for point
sets instead of mass distributions and for fixed values of α and β.

I Theorem 6. Let P be a set of n points in general position in the plane. Then there are
three points p1, p2 and p3 in R2 such that
(1) each closed halfplane containing one of the points p1, p2 and p3 contains at least n

6 of
the points of P and

(2) each closed halfplane containing all of p1, p2 and p3 contains at least n
2 points of P .

Note that this can also be interpreted as an instance of Theorem 1 with α1 = α2 = 1
6

and α3 = 1
2 . However, as α3 + α3 + α1 > 1, the precondition of Theorem 1 does not apply.

As the proof of this result uses similar ideas as the above proofs, we only sketch the main
ideas and refer the interested reader to the full version.

Sketch of proof. Let C be the intersection of all open halfplanes containing more than 5n
6

of the points of P . Just as in the proof of Theorem 3, condition (1) is equivalent to p1, p2
and p3 lying in C. Similarly, condition (2) is equivalent to the following statement: for every
halfplane h containing more than n

2 of the points of P , h contains at least one of p1, p2 and
p3. For each such h, let ch be the intersection of h and C and let H be the set of all ch’s
that are minimal with respect to inclusion. It can be shown that among any three elements
of H, two of them intersect. Using this property, we can then place 3 points on the boundary
of C such that each element of H contains at least one of them: Place p1 at a topmost point
of the boundary of C. Let h1 be the first element of H in counterclockwise direction whose
defining halfplane does not contain p1. Place p2 at the intersection of the defining line of h1
with the boundary of C that is furthest in counterclockwise direction from p1. Since h1 is
minimal, any element of H intersecting h1 contains either p1 or p2. Further, all elements of
H that do not intersect h1 have a common intersection, in which we place p3. J

The general statement can be proved analogously:

I Theorem 2. Let µ be a mass distribution in R2 with µ(R2) = 1. Let α and β be real
numbers such that 0 < α ≤ β and α+ β = 2

3 . Then there is a triangle ∆ in R2 such that
(1) for each closed halfplane h containing one of the vertices of ∆ we have µ(h) ≥ α and
(2) for each closed halfplane h fully containing ∆ we have µ(h) ≥ β.

5 Construction in the plane

In this section, we describe algorithms for constructing the points described in Theorems 3
and 6. We first observe that the convex regions defined by the intersections of the half-
planes in sets like L and R in the proof of Theorem 3 correspond to levels in the dual line
arrangement. We use the duality p∗ = (y = kx + d) ⇐⇒ p = (k, d) that maps a point p
to a line p∗. The k-level of a line arrangement is the set of points with exactly k − 1 lines
below it and not more than n − k lines above it. (It thus consists of segments of the line
arrangement.) Suppose we are given α1 and α2, s.t. 0 < α1 ≤ α2 and α1 + 2α2 = 1. Let U
be the set of open halfplanes that are above their boundary lines and contain more than
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(1 − α2)n points of P , and let DU be their intersection. A point p is in DU if there is no
line through it having at least b(1− α2)n+ 1c points of P above it. If the dual line p∗ of p
contains a point `∗ below the dα2ne-level of the dual line arrangement of P , then p has a
supporting line ` with more than (1− α2)n points of P above it. Since a line has a point
below that level if and only if it intersects the interior of its convex hull, the interior of the
convex hull of the dα2ne-level thus excludes exactly those lines whose primal points are not
in DU . The supporting lines of the segments of the convex hull of the dα2ne-level give the
primal points that bound DU . Matoušek [10] describes an algorithm for constructing the
k-level of a line arrangement in O(n log4 n) time. The k-hull of a set P of n points in the
plane is the set of points p in R2 such that any closed halfplane defined by a line through p
contains at least k points of P . The set C in the proof of Theorem 3 is the intersection of all
open halfplanes containing more than 4n

5 points. C is thus the
⌈
n
5

⌉
-hull of P . The k-hull

of P is obtained by computing the convex hulls of the k-level and the (n− k)-level of the
dual line arrangement of P , which give the upper and lower envelope of the k-hull [10]. To
construct the points from Theorems 3 and 6 (without explicitly constructing the levels), we
use Matoušek’s algorithmic tools from [10]. (Alternatively, a general optimization technique
by Langerman and Steiger [9] can be used, as detailed in the full version.)

I Lemma 7 (Matoušek [10, Lemma 3.2]). In an arrangement of n lines, let γ be the boundary
of the convex hull of the lines on or below the k-level. Given the arrangement, k, and a
point p, one can find the tangent to γ passing through p and touching γ to the right of p (if
it exists) in time O(n log2 n).

I Lemma 8. Given an arrangement of n lines and two numbers k < l ≤ n, as well as a
halfplane h, a line separating the k-level from the intersection of h with the l-level can be
found in O(n log3 n) time, if it exists. The separating line is tangent to both level parts and,
from left to right, first intersects the k-level and then the relevant part of the l-level.

Proof. Let γ be the boundary of the convex hull of all points below the k-level, and let ν
be the intersection of h with the l-level. Note that ν might not be connected. Suppose we
want our line to be the counterclockwise bitangent of γ and ν (i.e., from left to right, it first
intersects γ, which has no point above it, and then ν). Our algorithm works by obtaining
tangents to ν through points on γ. Matoušek’s O(n log2 n) algorithm for determining the
tangent to a level through a given point that is to the right of that point [10, Lemma 3.2]
(our Lemma 7) also directly works for parts of a level such as ν: It requires a sub-algorithm
that decides in O(n logn) time whether a given line ` intersects the level (or, in our case, the
partial level ν). This can be done by sorting the intersection of the lines of the arrangements
along ` (see also [10, Lemma 3.1]) as well as along the line bounding h; ` either intersects
the relevant part of ν, or we can compare the intersection of h with ` to the intersections of
h with ν to determine whether there is a point of ν below `.

Suppose first we are given γ. (It requires O(n log4 n) time though to obtain it, so we
eventually get rid of this assumption.) The convex hull of a level is known to have at most n
vertices [10, Lemma 2.1]. For a point p on γ, we can find in O(n log2 n) time the point q on
ν such that the line pq has no point on ν below it. We can thus find, by binary search on
the O(n) vertices of γ, a vertex p with q on ν such that pq separates γ and ν. This gives an
O(n log4 n) time algorithm for obtaining the bitangent. To improve on that bound, we need
to get rid of the explicit construction of γ to find the tangents to ν.

To this end, we consider Matoušek’s algorithm for constructing the convex hull boundary γ
of a level and compute only the relevant part (see [10, Section 4]). In particular, the algorithm
works by finding, for a constant c and two vertical lines, (c− 1) further vertical lines between
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Figure 3 A counterclockwise bitangent (brown, dash-dotted) between the
⌈

2n
5

⌉
-level (blue) and

the
⌊

4n
5

⌋
-level (red) of an arrangement of seven lines (left). The primal point configuration is shown

to the right; there, the orange region corresponds to the
⌈

n
5

⌉
-hull C, and the hatched green region

corresponds to DU . Observe that there can be vertices of DU outside of C.

the given ones such that there are at most n2/c crossings of the arrangement between two
of these verticals. This can be done in O(n) time (as described in [11]). The tangents on γ
at the intersection points with the vertical lines can be computed in O(n log3 n) time [10,
Lemma 3.3]. It is shown in [10] that, when choosing c = 64, there are at most n/2 lines
of the arrangement relevant for the construction of γ between two such vertical lines, and
these lines can be found in O(n) time. The original algorithm proceeds recursively within
each interval defined by two neighboring vertical lines after removing the non-relevant lines.
In our adaption, however, we find the interval that contains the point p on γ such that a
tangent to γ through the vertex p with q on ν such that pq separates γ and ν. (We do this
by considering the tangent to γ at each of the constant number of intersection of a vertical
line with γ.) When we have found this interval, we can prune n/2 of the lines and recurse
inside this interval. Note, however, that we cannot prune the set of lines when looking for
a tangent to ν. Thus, in each recursive call, we need O(n log2 n) time for computing the
tangent. As the recursion depth is O(logn), this amounts to O(n log3 n) in total. Also, for
ni lines during the ith recursion, we need O(ni log3 ni) ⊆ O(ni log3 n) time for determining
the intervals. As ni decreases geometrically, this also amounts to O(n log3 n). This is the
total running time for finding the bitangent, as claimed. J

We call such a line the counterclockwise bitangent of the two subsets of the plane (i.e.,
the intersection with the region not above it has smaller x-coordinate than the intersection
with the region not below it). Note that by mirroring the plane horizontally or vertically,
the lemma also provides other types of bitangents. Figure 3 shows an example.

I Theorem 9. Given a set P of n points in the plane, two points satisfying the conditions
of Theorem 3 can be constructed in time O(n log3 n).

Proof. To find a point p1 in the intersection of C and DU , observe first that we can restrict
our attention in the dual to the convex hull of the points above the b(1− α1)nc-level of the
dual line arrangement. This is because any primal line with more than (1 − α1)n points
above it (which corresponds to a dual point below the dα1ne-level) also defines a halfplane
in U . A point in the intersection of DU and C thus corresponds to a line on or above the
dα2ne-level and on or below the b(1− α1)nc-level. We find a bitangent to these two levels in
O(n log3 n) time using Lemma 8 (with h = R2). The primal point of this line is p1; see the
point indicated by the brown box in Figure 3 (right). We obtain p2 analogously. J
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Figure 4 An arrangement of seven lines with the
⌈

n
6

⌉
-level and

⌊
5n
6

⌋
-level (blue) and the clockwise

bitangent p∗
1 (red dashed) between them. The green boxes indicate the two points defining the

counterclockwise bitangent between the
⌈

n
6

⌉
-level and µ1 (brown).

I Theorem 10. Three points as described in Theorem 6 can be computed in time O(n log3 n).

Proof. Consider the dual line arrangement of the point set. The points p1, p2, p3 dualize to
three lines p∗1, p∗2, p∗3 that are between the

⌈
n
6

⌉
-level and the

⌊ 5n
6

⌋
-level of the arrangement

s.t. every point on the middle level has at least one of these lines above it and one of these
lines below it. (We assume for simplicity that n is odd and the middle level is the

⌊
n
2

⌋
-level

of the arrangement; if n is even, one has to consider the points between the n
2 -level and the

(n2 + 1)-level.) Theorem 6 asserts that such lines exist, and its proof tells us that we can
choose one of these lines to be an arbitrary tangent of one of the levels not intersecting the
interior of the other one. We denote by γb and γt the convex hull boundaries of the points
on or below the

⌈
n
6

⌉
-level and of the points on or above the

⌊ 5n
6

⌋
-level, respectively.

We let p∗1 be the clockwise bitangent of γb and γt, which we can obtain in O(n log3 n)
time using Lemma 8. For simplicity of explanation, we also compute the counterclockwise
bitangent `. (This step may be omitted in an actual implementation, but assuming it to be
given facilitates the explanation and does not change the asymptotic running time.)

The line p∗1 intersects the middle level of the arrangement. Let µ1 be the parts of the
middle level below p∗1, and µ2 be the part above it. Note that each of these parts may be
disconnected. Using Lemma 8, we search for the counterclockwise bitangent between γb
(or, equivalently, the

⌈
n
6

⌉
-level) and µ1 (which is the intersection of the middle level with a

halfspace defined by p∗1) in O(n log3 n) time. If it exists, and its intersection point with γb is
between the intersections of γb with p∗1 and `, we choose this line to be p∗2. Otherwise, we
continue our search on γt) in the same way (i.e., we look for the counterclockwise bitangent
between γt and µ1). The line p∗3 can be found in an analogous manner. J

6 Conclusion

We proposed a generalization of quantiles in higher dimensions based on a generalization of
Tukey depth to multiple points. Our bounds and algorithms seem merely being a first step
in this direction and we can identify several interesting open problems. Except for special
cases of Theorem 1, we do not believe that our bounds are tight and particularly expect
significantly better bounds in higher dimensions. Naturally, there are many other range
spaces for which this problem could be considered, e.g., convex sets, like in [5].
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From an algorithmic point of view, the bottleneck for the running time of our approach
is Lemma 8. The current methods result in O(n log3 n) time. While solutions to such kinds
of problems can usually only be verified in Θ(n logn) time (see, e.g., [2, 16]), a linear-time
algorithm, like for centerpoints [8], is conceivable. For arbitrarily many points, it seems
tedious but doable to apply similar approaches as in the proof of Theorem 9. Is there a good
bound on the running time independent of the size of |Q|?
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