
Hybrid Fault-Tolerant Consensus in Asynchronous
and Wireless Embedded Systems
Wenbo Xu
Technische Universität Braunschweig, Braunschweig, Germany
wxu@ibr.cs.tu-bs.de

Signe Rüsch
Technische Universität Braunschweig, Braunschweig, Germany
ruesch@ibr.cs.tu-bs.de

Bijun Li
Technische Universität Braunschweig, Braunschweig, Germany
bli@ibr.cs.tu-bs.de

Rüdiger Kapitza1

Technische Universität Braunschweig, Braunschweig, Germany
kapitza@ibr.cs.tu-bs.de

Abstract
Byzantine fault-tolerant (BFT) consensus in an asynchronous system can only tolerate up to
bn−1

3 c faulty processes in a group of n processes. This is quite a strict limit in certain application
scenarios, for example a group consisting of only 3 processes. In order to break through this limit,
we can leverage a hybrid fault model, in which a subset of the system is enhanced and cannot
be arbitrarily faulty except for crashing. Based on this model, we propose a randomized binary
consensus algorithm that executes in complete asynchrony, rather than in partial synchrony
required by deterministic algorithms. It can tolerate up to bn−1

2 c Byzantine faulty processes
as long as the trusted subsystem in each process is not compromised, and terminates with a
probability of one. The algorithm is resilient against a strong adversary, i. e. the adversary is
able to inspect the state of the whole system, manipulate the delay of every message and process,
and then adjust its faulty behaviour during execution.

From a practical point of view, the algorithm is lightweight and has little dependency on
lower level protocols or communication primitives. We evaluate the algorithm and the results
show that it performs promisingly in a testbed consisting of up to 10 embedded devices connected
via an ad hoc wireless network.

2012 ACM Subject Classification Software and its engineering → Software fault tolerance

Keywords and phrases Distributed system, consensus, fault tolerance

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.15

1 Introduction

Fault-tolerant consensus is one of the fundamental problems in distributed systems. It is an
essential component to build more sophisticated distributed applications. Especially with the
rapid growth of wireless embedded devices in recent years, systems tend to work cooperatively
to achieve a common goal [16, 11, 14]. This requires novel consensus algorithms to adapt to

1 This work is part of the DFG Research Unit Controlling Concurrent Change, funding no. FOR 1800
and grant no. KA 3171/5-1.

© Wenbo Xu, Signe Rüsch, Bijun Li, and Rüdiger Kapitza;
licensed under Creative Commons License CC-BY

22nd International Conference on Principles of Distributed Systems (OPODIS 2018).
Editors: Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wxu@ibr.cs.tu-bs.de
mailto:ruesch@ibr.cs.tu-bs.de
mailto:bli@ibr.cs.tu-bs.de
mailto:kapitza@ibr.cs.tu-bs.de
https://doi.org/10.4230/LIPIcs.OPODIS.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

the corresponding system features and application requirements that are inherently different
from the quite well-explored wired settings. Firstly, network connectivity is fragile and an
upper bound of communication delay may not be guaranteed. Thus an asynchronous system
model must be considered. Secondly, the system could be running in an open environment
in contrast to more or less static and well maintained environments such as data centers.
Furthermore processes might be exposed to extreme temperature, radiation, physical damage
and malicious attacks. All these factors lead to a higher demand for fault-resilience. In short,
the system has to tolerate as many faulty processes as possible – and not only crashes, but
also Byzantine faults. Thirdly, because of the limited resources, the consensus algorithm
should have low complexity and less assumptions about low-level network protocols.

In this work we present a novel binary consensus algorithm, Trusted Ben-Or, which is
tailored for embedded wireless systems. It is fault-tolerant and can work in a completely
asynchronous system. Due to the fact that no deterministic consensus algorithm exists in an
asynchronous system with faulty processes [13], Trusted Ben-Or uses randomization to
overcome this impossibility. In the end it ensures that all correct processes can terminate
with the probability of 1.

Moreover, in an asynchronous system a total of n processes can only tolerate up to bn−1
3 c

Byzantine processes in order to achieve consensus [8]. This is quite a strict constraint, and it
is impossible for a group of only 3 processes to reach BFT consensus. So another important
goal of our work is to increase the number of tolerable faulty processes utilizing a slightly
extended system model. Many modern processors, including the ones used in the context
of embedded systems [3], provide nowadays trusted execution environments, which can be
utilized to build a trusted subsystem protected by hardware. The trusted subsystem is
tamper-proof and cannot be compromised by a Byzantine host, except for crashing. This
technique can be leveraged to prevent equivocation, i. e. sending contradictory messages to
different recipients. As a result, the tolerable processes can be increased to bn−1

2 c. The idea
that a subsystem is more trustworthy than the remainder of the system can be categorized
as a hybrid fault model [21].

In summary, the contributions of this paper include:
We propose an asynchronous hybrid fault-tolerant consensus algorithm, Trusted Ben-
Or, which can tolerate up to bn−1

2 c faulty processes among n processes.
The algorithm is resilient against a strong adversary model, which means that the
adversary can inspect the state of every process and message, and can arbitrarily reorder
the message delivery of every process. We provide a correctness proof, which is the first
complete proof under this system model to our knowledge.
Trusted Ben-Or is tailored for wireless embedded systems for its simplicity and low
complexity. Every message is sent via broadcast to make full use of the transmission
medium. The communication does not require encryption, nor complex communication
primitives such as reliable broadcast, nor TCP-like protocols that could be unavailable in
certain application domains. Because of the trusted subsystem, the message authentication
can use symmetric encryption, which is more efficient than asymmetric digital signatures.
We implement Trusted Ben-Or and evaluate it in a real wireless ad hoc environment
instead of in a pure simulation. The results are promising and comparable to Turquois [19],
another well-known wireless ad hoc BFT consensus algorithm.
We discuss some common issues regarding the termination of randomized BFT consensus
algorithms, and point out that some algorithms might not be able to terminate in a
strong adversary model.

The rest of the paper is organized as follows: Section 2 defines the system model and
the problem statement. Section 3 explains the Trusted Ben-Or algorithm in details. The

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:3

correctness proof is given in Section 4. Section 5 discusses the optimization against omission
failures and common issues of randomized BFT consensus algorithms. Section 6 shows the
evaluation results. Section 7 discusses the related work, and Section 8 concludes the paper.

2 System Model and Problem Definition

In this section we give the system model and the correctness criteria of the consensus problem.

2.1 Processes and Asynchronous System
The system consists of n processes numbering from 1 to n. It is an asynchronous system in
which the delay of message transmission or process execution is unbounded. We firstly consider
a reliable communication so that every message transmitted between correct processes (defined
below) is eventually delivered. Later we will discuss the message omission issue.

For the purpose of presentation, we assume a global wall-clock, which is nevertheless
not available to the processes. We also model the algorithm execution as a discrete event
simulation and assume a virtual scheduler. At each time (clock tick) t, the scheduler chooses
a process to take a step, e. g. to deliver a message, or to execute a line of the algorithm, etc.
We call each step an event.

2.2 Strong Adversary Model and Trusted Subsystem
There exists an adversary working against the system. At any time t, the adversary can
compromise the current scheduled process to behave abnormally. Such faulty behaviours
include: skip some execution steps or stop working permanently (crash), update state or
send messages not according to the algorithm, send messages to only a subset of recipients,
etc. A process is marked as Byzantine at the time when he performs the faulty behaviours,
and will never be regarded as correct afterwards. All the processes not marked as Byzantine
are called correct at time t. In the remaining of this paper, the statements like “a correct
process does something” indicate that the process is still correct at the time when he does the
thing. The adversary can compromise at most f ≤ bn−1

2 c processes in total. For simplicity
we assume f = bn−1

2 c in the rest of the paper.
The adversary is a strong adversary, meaning that he knows all the previous events, and

is able to inspect the current state of every process and the content of every message in the
network at any time. He also has the full control over the scheduler to schedule the events
arbitrarily. In this way, the adversary can adapt his behaviour to the current system state,
leading to a maximum attack power.

However, each process is equipped with a trusted subsystem that cannot be compromised
by the adversary and will always operate honestly, unless it is crashed. Furthermore, the
adversary does not know the secret key(s) stored in the subsystem, neither can he break the
cryptographic mechanisms. As a result, the adversary cannot bypass the trusted subsystem
to forge any messages authenticated by the subsystem. As we will show later, the trusted
subsystem is used to implement a hybrid fault model [21] similar to identical Byzantine [4].

I Remark. A strong adversary seems impractical in real-life scenarios. However, for a
distributed algorithm, it is impossible to predict the execution order and message delivery
order because of race conditions. There could be corner cases that will hinder the algorithm.
In fact, a strong adversary model indicates that each of these corner cases is already tackled.
Otherwise, people need to explain why these cases cannot or can hardly happen.

OPODIS 2018

15:4 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

2.3 Problem Definition

Every process can propose a binary value 0 or 1. (A faulty process can propose both values, or
no value at all. Any abnormal value other than 0 and 1 will be ignored by correct processes.)
The randomized consensus algorithm is called correct, if it fulfils the following properties:

Agreement: if two correct processes decide, they decide the same value.
Validity: if a correct process decides v, v ∈ {0, 1} and is proposed by at least bn

4 c + 1
processes.
Termination: any process decides with the probability of 1, or he becomes Byzantine.

Note that the validity implies that the decision can be proposed merely by Byzantine processes.
This is different from the strong validity in most 3f + 1 consensus problems, which requires
that if all correct processes propose v, they must also decide v. However, strong validity is
impossible in an asynchronous system with n < 3f +1, so the requirement must be relaxed in
our case. Yet it is adequate to certain applications, in which both values are acceptable and
the processes only need to agree on a common one. Or some extra mechanisms can be applied
to detect and eliminate the faulty value (e. g. [10]). Since these can be application-dependent
and do not belong to the consensus, we omit the detailed discussion here.

3 Trusted Ben-Or Algorithm

Trusted Ben-Or is a randomized consensus algorithm consisting of several asynchronous
rounds and each round has two phases, as shown in Algorithm 1. In the first phase, every
process broadcasts a P-message to propose its current value, together with a flag indicating
whether this value is taken deterministically (D-GET) or from a coin flip (R-GET). Upon
receiving dn+1

2 e P-messages (including his own), a process enters the second phase by
broadcasting a V-message to vote. He votes for v ∈ {0, 1} if all received P-messages have the
same value v, otherwise he votes for a default value ⊥. The process then waits for dn+1

2 e
V-messages. If all of them vote for the same value v ∈ {0, 1}, the process can decide on v. If
at least one V-message votes for v ∈ {0, 1} while the others vote for ⊥, the process updates
his own value to v and sets the flag to D-GET. Otherwise, i. e. all received V-messages vote
for ⊥, the process flips a coin to get a random number, and sets the flag to R-GET.

There is an initialization round (line 4-9), in which each process broadcasts his initial
proposal and picks the majority from the received quorum to start round 1.

3.1 Message Authentication and Trusted Coin in the Subsystem

One critically harmful Byzantine fault is equivocation, i. e. sending inconsistent messages to
different recipients in a broadcast. Equivocation can be prevented by reliable broadcast [7],
which takes several communication rounds and requires n > 3f . It can also be avoided by
simply using a strict monotonic counter in the trusted subsystem of every process. Every
message must be authenticated together with a counter value, and each value can only be
used once. More technical details can be referred to works such as [17].

The algorithm also requires a random bit (line 15), so an unbiased trusted coin is placed
inside the trusted subsystem. This prevents a Byzantine process from arbitrarily manipulating
the result of the coin. Moreover, the message authentication and random number generation
should be integrated as an atomic operation. Otherwise, a Byzantine process can repeatedly
toss the trusted coin until it obtains the desired result.

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:5

Algorithm 1 Trusted Ben-Or algorithm.
1 vD ← vp /* Store last D-get value */
2 φ← 0 /* phase number */
3 flag ← D-GET
4 broadcast 〈INIT, φ, p, vD〉
5 wait for dn+1

2 e valid 〈INIT, φ, i, vi, f lagi〉 messages from different processes
6 if among them exist ≥ dn+1

2 e/2 messages with value 0
7 vD ← 0
8 else
9 vD ← 1

10 φ← 1
11 loop forever:
12 if flag = D-GET /* P-phase */
13 broadcast 〈PR, φ, p, vD, D-GET 〉 with certificate (see Section 3.2)
14 else
15 broadcast 〈PR, φ, p, coin(), R-GET 〉 with certificate
16 wait for dn+1

2 e valid 〈PR, φ, i, vi, f lagi〉 messages from different processes
17 if all messages of carry the same v: /* V-phase */
18 broadcast 〈V O, φ, i, v〉 with certificate
19 else:
20 broadcast 〈V O, φ, i,⊥〉 with certificate
21 wait for dn+1

2 e valid 〈V O, φ, i, ∗〉 messages from different processes
22 if all messages of above line have the same value v 6= ⊥:
23 decide v

24 if received at least one 〈V O, φ, i, vi〉 with vi 6= ⊥: /* Update */
25 vD ← vi

26 flag ← D-GET
27 else:
28 flag ← R-GET
29 φ← φ+ 1

The trusted subsystem maintains a unique identifier uid, a monotonically increasing
counter value u, and secrete key(s) to calculate message authentication codes. The keys
cannot be disclosed to the non-trusted part of the system. It provides the following APIs:

authenticate(m,u): Takes a message m and a counter value u; Requires u greater than
its last accepted value; Outputs an authentication code based on m||uid||u.
authenticate_with_coin(m, ptr, u): Takes an extra pointer pointing to a bit of m;
Requires u greater than its last accepted value; Firstly fills the bit where ptr points to
with the trusted coin toss result, then outputs an authentication code based on m||uid||u.
verify(m,uid, u,AC): Checks whether the authentication code AC is generated based
on m||uid||u by the trusted subsystem uid.

Now we define the corresponding counter value u that is uniquely bound to every message.
More specifically, INIT message must be authenticated with counter value u = 0. Every P-
message of round φ must have u = [φ|0], where “|” is the separation of the least significant bit
and higher bits. And every V-message must have u = [φ|1]. Note that at line 15 of Algorithm 1,
〈PR, φ, p, coin(), R-GET 〉 is authenticated by invoking authenticate_with_coin, and the
result of the a coin toss is filled into the place where coin() stands.

3.2 Message Certificate and Validation
Every message needs to be proved that it is congruent with the algorithm specification. To
achieve this, a process is required to provide a set of previously received messages, named

OPODIS 2018

15:6 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

certificate, when he broadcasts a new message. The certificate is piggybacked with the
newly sent message. A message is called valid only if it includes the correct certificate. The
certificate of every message is defined as follows:
1. 〈INIT, 1, ∗, v,D-GET 〉 is valid if v ∈ {0, 1} without any certificate.
2. 〈PR, 1, ∗, v,D-GET 〉 requires (bn

4 c + 1)〈INIT, 0, ∗, v〉 for v = 0, or (bn+2
4 c + 1)

〈INIT, 0, ∗, v〉 for v = 1.2

3. 〈PR, φ, ∗, v,D-GET 〉(φ > 1) requires dn+1
2 e〈PR, φ− 1, ∗, v, ∗〉.

4. 〈PR, φ, ∗, v, R-GET 〉(φ > 1) requires dn+1
2 e〈V O, φ− 1, ∗,⊥〉.

5. 〈V O, φ, ∗, v〉 with v ∈ {0, 1} requires dn+1
2 e〈PR, φ, ∗, v, ∗〉. Furthermore, if there is one

〈PR, φ, ∗, v,D-GET 〉 in the certificate, the certificate of this message, i. e. dn+1
2 e〈PR, φ−

1, ∗, v, ∗〉, must also be included.
6. 〈V O, 1, ∗,⊥〉 requires dn+1

2 e〈PR, 1, ∗, ∗, D-GET 〉 with both 0 and 1 are proposed.
7. 〈V O, φ, ∗,⊥〉(φ > 1) requires dn+1

2 e〈PR, φ, ∗, ∗〉 with both 0 and 1 are proposed, plus
dn+1

2 e〈V O, φ− 1, ∗,⊥〉.

The certificates are carefully designed to ensure the correctness of the algorithm. There
are two important properties. Firstly, a process can immediately validate a message based
on the certificate, and does not rely on previously received messages. Secondly, the messages
in the certificate do not require further certificate for themselves. Otherwise the message size
will grow infinitely. However, this gives a Byzantine process the chance to bypass the validity
check, because he can include some other invalid messages into the certificate, turning a
faulty message into valid. But this issue does not affect the correctness, as we will see later.

The cases 1, 2, 4 and 6 are trivial as they directly follow the algorithm execution. The
other three cases deserve some explanations.

In case 3, if a correct process i sends a 〈PR, φ, i, v,D-GET 〉(φ > 1), he must have received
at least one valid 〈V O, φ − 1, ∗, v〉 (line 24). It is pointless to use this single message
as a certificate, because this message itself can be invalid. But if i is correct, he must
have validated the 〈V O, φ− 1, ∗, v〉, which contains dn+1

2 e〈PR, φ− 1, ∗, v, ∗〉 according
to case 5. So he must include these dn+1

2 e messages into his own certificate.
In case 5, 〈V O, φ, i, v〉 implies that the process i has received dn+1

2 e〈PR, φ, ∗, v, ∗〉 (line 17),
which must be included in the certificate. The extra requirement is only necessary for
the termination as we will prove later. If i is correct, he must have checked the validity
of any 〈PR, φ, ∗, v,D-GET 〉 before putting it into certificate. So he is required to strip
the certificate of that message and put into his own certificate.
In case 7, the process sends 〈V O, φ, i,⊥〉(φ > 1) because he has received dn+1

2 e〈PR, φ, ∗, ∗〉
proposing different values (line 19). As we will see later, it is impossible to see both
valid 〈PR, φ, ∗, 0, D-GET 〉 and 〈PR, φ, ∗, 1, D-GET 〉 in the same round φ > 1, so one of
the different values must come from a 〈PR, φ, ∗, ∗, R-GET 〉 caused by a coin flip, whose
certificate is dn+1

2 e〈V O, φ − 1, ∗,⊥〉. So i must strip the certificate from this R-GET
message and include it into his own certificate.

According to the explanation above, we can conclude the following lemma:

I Lemma 1. If a correct process is about to broadcast a message, he is able to attach a
corresponding certificate to that message immediately.

2 Because bn
4 c+ 1 = dn+1

2 e/2, i. e. a majority of the quorum. And if a tie between 0 and 1 appears in the
quorum, we choose 0 here. This can be modified to 1, depending on the application.

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:7

4 Correctness Proof

In this section we prove the correctness of Trusted Ben-Or.

4.1 Agreement
We first show that if any correct process decides any value v, then from the next round, no
one can generate a valid P-message to propose another value.

I Lemma 2. If a correct process decides v in round φ, the only valid P-message of φ+ k is
〈PR, φ+ k, ∗, v,D-GET 〉 for any k > 0.

Proof. We start with k = 1. A correct process only decides v if there are
dn+1

2 e〈V O, φ, ∗, v〉. This excludes the existence of any valid 〈PR, φ+ 1, ∗, ∗, R-GET 〉 that re-
quires dn+1

2 e〈V O, φ, ∗,⊥〉 as certificate. Because 2 quorums or dn+1
2 e processes intersect with

at least one process, the equivocation mechanism ensures that a process cannot vote for v and
⊥ in the same round. And each 〈V O, φ, ∗, v〉 contains dn+1

2 e〈PR, φ, ∗, v, ∗〉 in its certificate.
So for the same reason, 〈PR, φ+1, ∗, 1−v,D-GET 〉, which requires dn+1

2 e〈PR, φ, ∗, 1−v, ∗〉,
cannot become valid, either. On the other hand, 〈PR, φ + 1, ∗, v,D-GET 〉 can be valid
because its certificate exists, making it to be the only valid P-message of φ+ 1.

Now assume that the only valid P-message of φ+ k is 〈PR, φ+ k, ∗, v,D-GET 〉 for some
k > 0. Then all correct processes only broadcast 〈PR, φ + k, ∗, v,D-GET 〉. This makes
〈PR, φ+k+ 1, ∗, 1− v,D-GET 〉 invalid. Since all correct processes do not accept any invalid
〈PR, φ+k, ∗, 1−v, ∗〉, they can only broadcast 〈V O, φ+k, ∗, v〉. So 〈PR, φ+k+1, ∗, ∗, R-GET 〉
cannot be valid because less than dn+1

2 e vote for ⊥. Thus 〈PR, φ+ k + 1, ∗, v,D-GET 〉 is
the only valid P-message. Using induction we can confirm this lemma. J

The agreement property directly ensues:

I Theorem 3. No two correct processes decide differently.

Proof. We prove it by contradiction. Suppose that two correct processes decide v in φ and 1−v
in φ′ respectively. Apparently φ 6= φ′, because dn+1

2 e〈V O, φ, ∗, v〉 and d
n+1

2 e〈V O, φ, ∗, 1− v〉
cannot exist at the same time. Assume φ < φ′, according to Lemma 2, the only valid
P-message of φ′ is 〈PR, φ′, ∗, v,D-GET 〉. But correct process decides 1− v in φ′ means that
he has received dn+1

2 e valid 〈V O, φ
′, i, 1−v〉 messages certified with dn+1

2 e〈PR, φ
′, ∗, 1−v, ∗〉.

This leads to a contradiction, because no correct process will propose 1−v in a P-message. J

4.2 Termination
The proof of termination is similar to the proof of [2], but is more complex due to the
Byzantine behaviours. We first show that every correct process is able to start any round,
then prove that there is some “lucky” round in which every correct process can decide.

I Lemma 4. Every correct process is able to start any round φ ≥ 1.

Proof. It clearly applies for φ = 0 and 1. Now assume that every correct process starts a
round φ ≥ 1. According to Lemma 1, each correct process is able to assemble a certificate
and broadcast a valid P-message. So eventually there are at least dn+1

2 e valid P-messages in
the system, enabling correct processes to terminate the wait of line 16 and then broadcast a
valid V-message. Again there are at least dn+1

2 e valid V-messages eventually, so every correct
process can terminate the wait of line 21 and start the next round φ+ 1. Using induction we
confirm that every correct process can start any round φ ≥ 1. J

OPODIS 2018

15:8 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

I Corollary 5. In every round φ, at least one of the three P-message forms is valid:
〈PR, φ, ∗, 0, D-GET 〉, 〈PR, φ, ∗, 1, D-GET 〉, 〈PR, φ, ∗, ∗, R-GET 〉. And at least one of the
three V-message forms is valid: 〈V O, φ, ∗, 0〉, 〈V O, φ, ∗, 1〉, 〈V O, φ, ∗,⊥〉

In order to show a lucky round will eventually happen, we adopt the similar definition
of [2], but with some modifications due to the presence of Byzantine faults:

I Definition 6. A value v ∈ {0, 1} is φ-major at time t0, if ≥ dn+1
2 e processes have created

the message 〈PR, φ, ∗, v, ∗〉 and authenticated with the monotonic counter at t0. A value
v ∈ {0, 1} is φ-locked at time t0, if 1) no valid 〈PR, φ, ∗, 1− v, ∗〉 with a certificate exists
before t0 and 2) from t0 on, no 〈PR, φ, ∗, 1 − v, ∗〉 can be created, or such a message can
never collect a certificate.

In other words, v is φ-locked at t0 means that we are sure that no valid 〈PR, φ, ∗, 1− v, ∗〉
can exist at any time. Obviously, if v is φ-major or φ-locked at t0, then v is also φ-major or
φ-locked at any time t ≥ t0.

I Lemma 7. If a value v is φ-locked at some time, then every correct process can decide v
by the end of round φ+ 1.

Proof. All correct processes will start round φ and they only propose v. They will not
accept any P-message with value 1− v, since it is invalid. So they only vote for v, leading
to less than dn+1

2 e〈V O, φ, ∗,⊥〉, therefore 〈V O, φ+ 1, ∗,⊥〉 can never become valid. Neither
〈V O, φ+ 1, ∗, 1− v〉 can be valid, because of the lack of certificate. According to Lemma 4
and Corollary 5, a correct process can complete collecting valid V-messages at line 21, and
the only valid form is 〈V O, φ+ 1, ∗, v〉. As a result, every correct process can decide v by
the end of φ+ 1. J

In the rest part we will show if the trusted random number generators of every process
happen to generate a sequence of lucky results, one value will become locked. We start with
the following lemma:

I Lemma 8. If v is φ-major at t0, and if the trusted random number generator happens to
output v for every process creating 〈PR, φ+ 1, ∗, v, R-GET 〉 at any time (can be before t0),
then v is (φ+ 1)-locked at t0.

Proof. There is no 〈PR, φ + 1, ∗, 1 − v,R-GET 〉 because of the trusted random number
generator. And a 〈PR, φ+1, ∗, 1−v,D-GET 〉 cannot be valid any more, because v is already
φ-major and no certificate containing dn+1

2 e〈PR, φ, ∗, 1− v, ∗〉 can exist. J

Starting from φ = 2, we group every 3 rounds into an epoch. So the r-th epoch (r ≥ 1)
consists of rounds 3r−1, 3r and 3r+1. And we define two oracle functions. The oracles know
the state of the whole system, but are not available to the processes. The first_toss(r, t)
oracle returns the time ta ≤ t, when the first correct process executes line 15 to flip a coin to
create 〈PR, 3r, ∗, v, R-GET 〉 in round 3r. If no correct processes ever did that, the oracle
returns NaN . Note that the correct process i needs only to be correct until ta. Also note that
the function can return ta = t, i. e. a correct process is executing line 15 exactly at time t.

The lucky_coin(r, φ, t)→ {0, 1} oracle assesses whether a random bit obtained in round
φ, at time t is lucky or not. The return value of lucky_coin(r, φ, t) is defined as following:
(i) lucky_coin(r, 3r + 1, t) returns 1 for any t;
(ii) lucky_coin(r, 3r − 1, t) and lucky_coin(r, 3r, t) return 1, if first_toss(r, t) returns

ta, and 0 is not (3r − 1)-major at time ta;
(iii) lucky_coin(r, 3r − 1, t) and lucky_coin(r, 3r, t) return 0 in cases other than (ii).

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:9

Obviously, as soon as a process (correct or Byzantine) has executed line 15 to flip the
coin, we can immediately know whether the result is lucky or not. The reason is that the
return values of both first_toss(r, t) and lucky_coin(r, φ, t) are determined merely by the
events happened before or at t, and are independent of any future events.

We say an epoch is lucky, if every coin toss at time t of line 15 gets the consistent result
of lucky_coin(r, φ, t). Let tb be the time when every correct process has completed round
3r + 1. Such a tb must exist (Lemma 4), and the system state has only three possibilities:
1. first_toss(r, tb) returns NaN , meaning that no correct process ever tossed a coin;
2. first_toss(r, tb) returns ta and 0 is (3r − 1)-major at time ta;
3. first_toss(r, tb) returns ta and 0 is not (3r − 1)-major at time ta.

For the three cases, there are the following lemmas:

I Lemma 9. (Case 1) If first_toss(r, tb) returns NaN , then some value v is (3r+1)-locked
at tb.

Proof. All correct processes have completed phase 3r and no one created
〈PR, 3r, ∗, ∗, R-GET 〉, so they all must have created 〈PR, 3r, ∗, v,D-GET 〉 with the same v.

If v = 0: because lucky_coin(r, 3r, t) must return 0 due to its definition (case (iii)), so all
〈PR, 3r, ∗, v′, R-GET 〉 messages (must be created by Byzantine processes) have v′ = 0. And
there are no valid 〈PR, 3r, ∗, 1, D-GET 〉 messages, so 0 is 3r-locked, thus also (3r+ 1)-locked.

If v = 1: since all correct processes propose 1 in round 3r, 1 is 3r-major at time tb.
According to case (i) of the definition of lucky_coin, in round 3r + 1, the lucky coin always
returns 1. So 1 is (3r + 1)-locked because of Lemma 8. J

I Lemma 10. (Case 2) If first_toss(r, tb) returns ta and 0 is (3r − 1)-major at time ta,
then 0 is 3r-locked at tb.

Proof. Because 0 is (3r − 1)-major at time ta, it is also (3r − 1)-major at time tb. For any
time t < ta, lucky_coin(r, 3r, t) must return 0; for any time t ≥ ta, lucky_coin(r, 3r, t)
must return 0 as well. So every 〈PR, 3r, ∗, v, R-GET 〉, whenever it is created, must have
v = 0. According to Lemma 8, 0 must be 3r-locked. J

I Lemma 11. (Case 3) If first_toss(r, tb) returns ta and 0 is not (3r − 1)-major at time
ta, then 1 is (3r + 1)-locked at tb.

Proof. A correct process creates a 〈PR, 3r, ∗, v, R-GET 〉 at time ta (here v = 1). This
indicates that he must have received dn+1

2 e〈V O, 3r − 1, ∗,⊥〉, among which at least one is
from a correct process. That process must have received at least one valid 〈PR, 3r−1, ∗, 1, ∗〉.
This P-message cannot have the flag R-GET , because any coin tossed before ta must get 0
(case (iii) of lucky_coin(r, 3r − 1, t)). So there is one valid 〈PR, 3r − 1, ∗, 1, D-GET 〉, but
there is never valid 〈PR, 3r − 1, ∗, 0, D-GET 〉. From time ta on, the lucky coin only returns
1 for phase 3r − 1 according to case (ii), so there is no more 〈PR, 3r − 1, ∗, 0, R-GET 〉 after
ta. Thus the total number of 〈PR, 3r − 1, ∗, 0, R-GET 〉 is less than dn+1

2 e forever. So we
can confirm that there is never a valid 〈V O, 3r − 1, ∗, 0〉, because 1) it cannot include an
invalid 〈PR, 3r − 1, ∗, 0, D-GET 〉 into the certificate (recall the definition of the certificate),
and 2) the number of 〈PR, 3r − 1, ∗, 0, R-GET 〉 can never reach dn+1

2 e.
Now that there are no valid 〈V O, 3r− 1, ∗, 0〉, and the lucky coin only returns 1 for phase

3r after ta, so no correct process will create 〈PR, 3r, ∗, 0, ∗〉. Eventually 1 will be 3r-major.
And because the lucky coin always returns 1 in round 3r + 1, 1 must be (3r + 1)-locked
because of Lemma 8. J

OPODIS 2018

15:10 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

I Lemma 12. If epoch r is lucky, all correct processes can decide no later than round 3r+ 2.

Proof. According to Lemmas 9, 10 and 11, some value v must be 3r-locked or (3r+ 1)-locked
at some time. So all correct processes can decide in round 3r + 1 or 3r + 2 (Lemma 7). J

I Theorem 13. The probability that all correct processes decide is 1.

Proof. An epoch is lucky if and only if all results from the random number generator coincide
with the definition of lucky_coin. Each of these coincidences has the probability of 0.5, and
is independent with each other. Every epoch may contain at most 3n random numbers, so
the probability that an epoch is lucky is at least (0.5)3n. So the probability that a lucky
epoch eventually occurs is 1− (1− p3n)∞ = 1. Lemma 12 ensures that all correct processes
must decide immediately after such a lucky epoch. J

4.3 Validity
I Theorem 14. If a correct process decides v, v ∈ {0, 1} and is proposed by at least bn

4 c+ 1
processes.

Proof. All messages are required to carry a value v ∈ {0, 1}, so correct processes cannot
decide other values. Assume v is proposed by less than bn

4 c+ 1 processes. Then there is no
valid 〈PR, 1, ∗, v, ∗〉 in the first round because of the lack of INIT messages, which means v
is 1-locked. Every correct process will decide 1− v by the end of round 2 (Lemma 7), so no
correct one will decide v. J

5 Optimization and Discussion

Now we discuss some common issues in the proof of randomized consensus algorithms, as
well as the optimization against omission failures, given that the reliable communication
without message omissions is sometimes impractical in certain applications.

5.1 Randomization and Strong Adversary
Like most randomized and round-based algorithms, the termination of Trusted Ben-Or
relies on a set of processes to luckily obtain the preferred coin values in certain rounds. The
definition of a lucky coin value is not trivial, but we argue that this is necessary in a strong
adversary model. As mentioned, the luckiness of a coin only depends on the current system
state, but not on any future events. Otherwise, suppose that a coin is only lucky if something
in the future happens, the adversary could take actions to prevent this from occurring. If an
algorithm design violates this principle, it can hardly withstand a strong adversary.

We have considered several other algorithms (e. g. [10, 19]). Similar to Trusted Ben-Or,
by the end of each round every process gets an updated value, either deterministically or
randomly, and any two correct processes can only deterministically get the same value (0 or
1) in this round. So they conclude that, if all correct processes deterministically or randomly
get the same v, they can decide. However, there is a corner case: if the correct processes start
with different values, a strong adversary can hinder the termination indefinitely. Because
by manipulating the message delivery order, the adversary can firstly let a correct node
randomly obtain a value v, then lets another correct node deterministically update to 1− v
in the same round. As a result, all the correct processes again have different values at the
beginning of a new round.

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:11

5.2 Handling Omission Failures
In real-world networks, especially in wireless ad hoc networks, links are not always reliable and
messages could get lost. In this case, we can consider a fair-loss link model, meaning that if a
process p sends a message infinitely many times to q, q will then deliver the message infinitely
many times. Trusted Ben-Or cannot directly work under a fair-loss link model, so we
modify the algorithm by introducing another two tasks running in parallel to Algorithm 1.
Task 1 is to periodically broadcast the last sent message. Task 2 is to let a process “jump” to
a future round or phase, if it has received a valid message from that round or phase. More
specifically, if a process receives a valid 〈PR, φ′, ∗, v,D-GET 〉 or 〈V O, φ′, ∗, v〉 that is more
advanced than its current state, it will send a message with the same content, and update
its state correspondingly. If a 〈PR, φ′, ∗, ∗, R-GET 〉 is received, besides updating the state,
the process has to toss its own coin to create the 〈PR, φ, i, coin(), R-GET 〉.

With this modification, the agreement of the algorithm still holds, because the correctness
of Lemma 2 and Theorem 3 only relies on the equivocation prevention and certificate
mechanism. However, the termination becomes problematic. Assume the corner case where
a correct process receives all P-messages but misses all V-messages in each round. Then it
can never decide. But we can guarantee that no correct process gets blocked at any round:

I Lemma 15. At any time t1, for any correct process in round φ1, there is a time t2 > t1
when the process is in a new round φ2 > φ1, or it becomes Byzantine.

Proof. Suppose there is a correct process p that stays forever in round φ1 after time t1.
Then apparently there is no correct process entering any round φ2 > φ1 while also staying
correct forever, otherwise it will periodically broadcast messages of round φ2 or later rounds.
Eventually p can receive at least one of them and can jump to a new round. So all other correct
processes keep staying in rounds ≤ φ1 after time t1. Because p is infinitely broadcasting its
message of φ1, all correct processes will eventually receive it and will enter and stay in φ1.
Eventually at least one correct process can receive the messages from all correct processes,
and can then enter φ1 + 1. This leads to a contradiction. J

Therefore, we have to assume a more relaxed model than fair-loss link, for instance every
message gets an independent probability of omission (similar to [20]). The probability can
vary from time to time but cannot always be 0. Then if there is a lucky epoch and all messages
in this epoch as well as the following round are delivered, all the correct processes can decide.
(They still have to handle the outdated V-messages for decision.) This assumption is close to
the real network conditions. As we will see later, during our experiments we have observed
regular packet losses (24%), but the algorithm can still terminate with relatively low latency.

6 Evaluation

Trusted Ben-Or is evaluated on a testbed consisting of 10 nodes of Raspberry Pi 3 (model
B). Each node has a Quad-Core ARM Cortex-A53 1.2 GHz CPU, 1 GB RAM and a 2.4 GHz
802.11n wireless module. The trusted subsystem is built on top of the Open Portable Trusted
Execution Environment (OP-TEE) [18] based on ARM TrustZone [3].3 The algorithm is
implemented in C++, except that the trusted functions (counter authentication and random
number generation) are implemented in C because of lacking of C++ support in OP-TEE.
For comparison, we implement Turquois on the same system as well.

3 According to this disclaimer (https://github.com/OP-TEE/build/blob/master/docs/rpi3.md), Rasp-
berry Pi does not provide an enough trust level. It is only used for demonstration purpose.

OPODIS 2018

https://github.com/OP- TEE/build/blob/master/docs/rpi3.md

15:12 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

The 10 nodes are distributed in different rooms and the farthest distance is about 20 meters.
They are connected with a wireless ad hoc network, and all messages of Trusted Ben-Or
are sent via UDP multicast. The minimal, median and maximum of the round trip time of
an ICMP ping message is 5.6 ms, 12.5 ms and 1356.7 ms respectively. With the iperf3 tool
we also test the UDP link, and the result between two nodes reports the jitter as 139.9 ms,
which stands for a high variance of the communication delay, and 24% packet loss rate. So
compared to a simulated network, this testbed can reflect a real network environment more
closely. Because of the packet loss, we implemented the optimization of Section 5.2.

For the experiment, all nodes are connected to a signal machine via Ethernet, and wait
for the start signal to start the consensus algorithm almost simultaneously. The nodes are
equally divided to be assigned with 0 and 1 as their initial proposals. The performance is
evaluated as the delay from the time when nodes start the algorithm until the non-faulty
ones decide. For each system setting, we repeat the experiment 100 times.

Firstly the fault-free case is evaluated, and the results are presented in Figure 1. The
curve of Turquois starts with 4 because it cannot work with 3 nodes. Figure 1a shows that the
median of latency of Trusted Ben-Or has no significant difference compared to Turquois,
especially when we take the high jitter value into account. With an increasing of group
size, both algorithms tend to take longer time to terminate. The highest median latency
of Trusted Ben-Or is 247.4 ms observed in a group with 10 nodes. Besides the median
value, we also evaluate the variance of the latency as presented in Figure 1b. It shows that
from n = 8, the variance increases notably in Trusted Ben-Or. Occasionally (with ≤ 10%
probability) it takes 2-3 seconds to terminate. In contrast, the variance of Turquois increases
only slowly with n.

In the second experiment, we inject Byzantine faults into the system to evaluate the
fault resilience of Trusted Ben-Or. More specifically, we let bn−1

2 c nodes act as Byzantine
processes. Whenever they are about to send a value of 0 or 1 (if not from the trusted coin),
they flip the value to the opposite and then send it; and if they are sending a ⊥, they do
not change it. Furthermore, we let Byzantine nodes not perform the validation at all, so an
invalid message could still be included in the certificate of a message voting for ⊥. As a result,
there are fewer valid messages with value 0 or 1, while more valid messages voting for ⊥.
This will hinder the correct nodes achieving consensus. We inject faults into Turquois as well,
but only bn−1

3 c nodes are Byzantine. Since there is no equivocation prevention mechanism
in Turquois, we let faulty nodes always send two opposite values if their values are 0 or 1.

We compare the two algorithms with the existence of Byzantine faults and the results
are shown in Figure 2. The difference between the median values of latency again is not
significant, but both algorithms take longer to terminate. For example with n = 10, they
need twice as much time as in the fault-free case. Regarding the variance, Turquois is not
much affected by the Byzantine faults. But in Trusted Ben-Or the variance becomes
higher. In the worst case, the latency could exceed 5 s with n ≥ 8. This is partly because
there are more Byzantine processes in Trusted Ben-Or.

We can conclude that for the most cases, Trusted Ben-Or does not introduce extra
overhead when tolerating more faulty processes compared to Turquois. But the variance
of Trusted Ben-Or is higher, and more sensitive to the Byzantine faults. Besides the
different number of Byzantine processes, another reason is that Turquois has one more phase
of message exchange in each round. At a first glance, this is counter-intuitive since one more
phase means more communication delay. But in Turquois, in the second phase every process
broadcasts its proposal and picks the majority as its vote in the third phase. So if a node is
faster in progress, it is more likely to disseminate his proposal to the others because they

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:13

4 6 8 10

100

200

300

Number of nodes

M
ed
ia
n
la
te
nc
y
(m

s)

Trusted Ben-Or
Turquois

(a) Median of latency.

3 4 5 6 7 8 9 10

0

1,000

2,000

3,000

Trusted Ben-Or

Turquois

Number of nodes

La
te
nc
y
(m

s)

(b) Box plot of latency. The three horizontal bars of the box represent the first, second (median)
and third quantiles respectively; the whiskers correspond to the 9th and 91st percentiles
respectively.

Figure 1 Latency of consensus in fault-free case.

communicate via multicast broadcast. As a result, the nodes are more likely to receive the
same vector of proposals, then pick the common value for the third phase. On the other
hand, Trusted Ben-Or has only two phases in each round. If they propose different values,
very likely they have to toss the coin to start the next round. In fact, we have seen more
than 50 rounds until they all decide in a group with 10 nodes.

7 Related Work

The impossibility result by Fischer, Lynch and Paterson [13] precludes any deterministic
consensus algorithm in asynchronous systems with even a single faulty process. There
are two approaches to bypass this impossibility. Firstly we can resort to a weakened
system model, e. g. a partially synchronous model [12]. The other option is to use a
randomized algorithm (although the correctness criterion is correspondingly weakened from
“must terminate” to “terminates with a probability of 1”).

OPODIS 2018

15:14 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

4 6 8 10
100
200
300
400
500
600
700
800

Number of nodes

M
ed
ia
n
la
te
nc
y
(m

s)

Trusted Ben-Or
Turquois

(a) Median of latency.

3 4 5 6 7 8 9 10

0

1,000

2,000

3,000

4,000

5,000

6,000

Trusted Ben-Or

Turquois

Number of nodes

La
te
nc
y
(m

s)

(b) Box plot of latency. The meaning of the boxes is the same as Figure 1b.

Figure 2 Latency of consensus when Byzantine processes exist.

Ben-Or’s algorithm [6] is a randomized fault tolerant consensus algorithm for a completely
asynchronous system and can withstand a strong adversary. It has a crash fault tolerant
variant and a BFT variant. The former can tolerate f ≤ bn−1

2 c crashed processes, which has
inspired this work. The BFT version requires n > 5f , which is less attractive in practice.
Bracha’s algorithm [7] improves the maximum tolerable faults to f ≤ bn−1

3 c at the cost of
using reliable broadcast, which can introduce considerable overhead. Turquois [19] has a novel
message validation mechanism to get rid of the reliable broadcast primitive. Meanwhile, it
utilizes an efficient message authentication approach and UDP broadcast, making it tailored
for wireless embedded systems. The authors did not mention the strong/weak adversary
model, but it turns out that Turquois cannot withstand a strong adversary, as discussed
in Section 5.1. Several works have explicitly addressed the weak adversary model [9, 1], in
which the adversary does not know everything about the whole system state. They achieve
high efficiency at the cost of having this weakened adversary model. Vavala and Neves
also propose a speculative randomized consensus algorithm in a so-called normal condition
where the adversary model is further relaxed compared to the worst case [20]. It is worth
mentioning the correctness proof of the crash fault tolerant Ben-Or’s algorithm [2]. It gives

W. Xu, S. Rüsch, B. Li, and R. Kapitza 15:15

a good example of how to proof termination under a strong adversary model. But if we take
Byzantine faults into account, the proof becomes more complex as we show in this work.

The hybrid fault model [21] is a common approach to increase the maximum tolerable
faulty processes and to decrease the complexity of consensus. In this model, a small subset
of the system is trusted and cannot be arbitrarily faulty, but can only fail by crashing. One
common usage of this subsystem is to prevent equivocation by using one or more monotonic
counters for message authentication [17, 22, 15, 5, 23], so that a Byzantine process cannot
send contradictory messages to different recipients — similar to the identical Byzantine fault
model [4]. Among them, Ratcheta [23] is also tailored for wireless embedded systems. But
all the above mentioned works are deterministic algorithms and assume partial synchrony.
Correia et al. [10] discuss the transformation from a crash consensus to Byzantine consensus
in asynchronous systems by means of using the hybrid fault model. Although they provide an
idea to transform the original Ben-Or’s algorithm, above all they require the reliable broadcast
primitive. Besides that, the algorithm relies on a failure detector that can eventually find
out all Byzantine processes, but the design of this failure detector is unclear. Moreover, they
do not mention a trusted random number generator, so the termination seems problematic.

8 Conclusion

In this work, we present Trusted Ben-Or, a randomized hybrid fault-tolerant consensus
algorithm. It is operational in an asynchronous system and is resilient against a strong
adversary, as long as the adversary cannot compromise the trusted subsystem of each process.
Trusted Ben-Or increases the maximum tolerable Byzantine processes to bn−1

2 c. The algo-
rithm is tailored for wireless embedded systems because it does not rely on connection-oriented
communication protocols, e. g. TCP, or any complex communication primitives. Neither does
it require expensive asymmetric digital signatures. We evaluate Trusted Ben-Or on a
testbed consisting of 10 Raspberry Pis connected via an ad hoc wireless network. The results
show that the median latency is below 250 ms, and for most of the time Trusted Ben-Or
achieves almost the same performance as Turquois – another well-known asynchronous BFT
consensus algorithm tolerating only up to bn−1

3 c Byzantine processes.

References
1 Ittai Abraham, Danny Dolev, and Joseph Y Halpern. An almost-surely terminating polyno-

mial protocol for asynchronous byzantine agreement with optimal resilience. In Proceedings
of the twenty-seventh ACM symposium on Principles of distributed computing, pages 405–
414. ACM, 2008.

2 Marcos K Aguilera and Sam Toueg. The correctness proof of Ben-Or’s randomized consen-
sus algorithm. Distributed Computing, 25(5):371–381, 2012.

3 ARM. ARM Security Technology - Building a Secure System using TrustZone Technology,
ARM Technical White Paper, 2009.

4 H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, pages 255–256. Wiley Series on Parallel and Distributed Computing. Wiley, 2004.

5 Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hybrids on Steroids: SGX-Based
High Performance BFT. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 222–237. ACM, 2017.

6 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 27–30. ACM, 1983.

OPODIS 2018

15:16 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

7 Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings of
the third annual ACM symposium on Principles of distributed computing, pages 154–162.
ACM, 1984.

8 Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the second
annual ACM symposium on Principles of distributed computing, pages 12–26. ACM, 1983.

9 Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with optimal resilience.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
42–51. ACM, 1993.

10 Miguel Correia, Giuliana S Veronese, and Lau Cheuk Lung. Asynchronous Byzantine
consensus with 2f+ 1 processes. In Proceedings of the 2010 ACM symposium on applied
computing, pages 475–480. ACM, 2010.

11 J. Q. Cui, S. K. Phang, K. Z. Y. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, F. Lin,
J. Lin, P. Liu, T. Pang, B. Wang, K. Wang, Z. Yang, and B. M. Chen. Drones for cooperative
search and rescue in post-disaster situation. In 2015 IEEE 7th International Conference on
Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation
and Mechatronics (RAM), pages 167–174, 2015. doi:10.1109/ICCIS.2015.7274615.

12 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

13 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

14 Zafar Iqbal, Kiseon Kim, and Heung-No Lee. A cooperative wireless sensor network for
indoor industrial monitoring. IEEE Transactions on Industrial Informatics, 13(2):482–491,
2017.

15 Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. CheapBFT:
Resource-efficient Byzantine Fault Tolerance. In European Chapter of ACM SIGOPS, edi-
tor, Proceedings of the EuroSys 2012 Conference, pages 295–308, 2012.

16 Yasuhiro Kuriki and Toru Namerikawa. Consensus-based cooperative formation control
with collision avoidance for a multi-UAV system. In American Control Conference (ACC),
2014, pages 2077–2082. IEEE, 2014.

17 Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. TrInc: Small
Trusted Hardware for Large Distributed Systems. In NSDI, volume 9, pages 1–14, 2009.

18 Linaro. Open Portable Trusted Execution Environment. https://www.op-tee.org, visited
in September, 2018.

19 Henrique Moniz, Nuno Ferreira Neves, and Miguel Correia. Turquois: Byzantine consensus
in wireless ad hoc networks. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP
International Conference on, pages 537–546. IEEE, 2010.

20 Bruno Vavala and Nuno Neves. Robust and speculative Byzantine randomized consen-
sus with constant time complexity in normal conditions. In Reliable Distributed Systems
(SRDS), 2012 IEEE 31st Symposium on, pages 161–170. IEEE, 2012.

21 Paulo E Veríssimo. Travelling through wormholes: a new look at distributed systems
models. ACM SIGACT News, 37(1):66–81, 2006.

22 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Verissimo. Efficient byzantine fault-tolerance. Computers, IEEE Transactions on,
62(1):16–30, 2013.

23 Wenbo Xu and Rüdiger Kapitza. RATCHETA: Memory-bounded Hybrid Byzantine Con-
sensus for Cooperative Embedded Systems. In Reliable Distributed Systems (SRDS), 2018
IEEE thirty-seventh Symposium on. IEEE, 2018.

http://dx.doi.org/10.1109/ICCIS.2015.7274615

	Introduction
	System Model and Problem Definition
	Processes and Asynchronous System
	Strong Adversary Model and Trusted Subsystem
	Problem Definition

	Trusted Ben-Or Algorithm
	Message Authentication and Trusted Coin in the Subsystem
	Message Certificate and Validation

	Correctness Proof
	Agreement
	Termination
	Validity

	Optimization and Discussion
	Randomization and Strong Adversary
	Handling Omission Failures

	Evaluation
	Related Work
	Conclusion

