
On Sampling Edges Almost Uniformly
Talya Eden1 and Will Rosenbaum2

1 Tel Aviv University, Tel Aviv, Israel
talyaa01@gmail.com

2 Tel Aviv University, Tel Aviv, Israel
will.rosenbaum@gmail.com

Abstract
We consider the problem of sampling an edge almost uniformly from an unknown graph, G =
(V,E). Access to the graph is provided via queries of the following types: (1) uniform vertex
queries, (2) degree queries, and (3) neighbor queries. We describe a new simple algorithm that
returns a random edge e ∈ E using Õ(n/

√
εm) queries in expectation, such that each edge e is

sampled with probability (1± ε)/m. Here, n = |V | is the number of vertices, and m = |E| is the
number of edges. Our algorithm is optimal in the sense that any algorithm that samples an edge
from an almost-uniform distribution must perform Ω(n/

√
m) queries.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.2.2
Nonnumerical Algorithms and Problems, G.2.2 Graph Theory

Keywords and phrases Sublinear Algorithms, Graph Algorithms, Sampling Edges, Query Com-
plexity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.7

1 Introduction

Suppose G = (V,E) is a very large graph—too large to store in our local memory. Access to
G is granted in accordance with the standard bounded degree graph query model of Goldreich
and Ron [5] via queries of the following types: (1) sample a uniformly random vertex (vertex
queries), (2) query for the ith neighbor of a vertex v (neighbor queries), and (3) query the
degree of a given vertex1 (degree queries).2 The query access model readily gives access to
uniformly random vertices, but what if we are interested in sampling a uniformly random
edge from E? How many queries are necessary and sufficient?

We describe an Õ(n/
√
εm) time algorithm for sampling an edge in a graph such that

each edge is sampled with almost equal probability. Our main result shows that it is possible
to sample edges from a distribution which has bias at most ε, a notion formalized in the
following definition.

I Definition 1. Let Q be a fixed probability distribution on a finite set Ω. We say that a
probability distribution P is pointwise ε-close to Q if for all x ∈ Ω,

|P (x)−Q(x)| ≤ εQ(x) , or equivalently 1− ε ≤ P (x)
Q(x) ≤ 1 + ε .

If Q = U , the uniform distribution on Ω, then we say that P has bias at most ε.

1 We note that degree queries can be implemented by performing O(log n) neighbor queries per degree
query.

2 One may also consider the more powerful “general graph model” of Parnas and Ron [8] that additionally
allows pair queries. Indeed, our lower bound holds in the general graph model. Interestingly, our tight
upper bound does not require the additional computational power afforded by pair queries.

© Talya Eden and William B.Rosenbaum;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 7; pp. 7:1–7:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 On Sampling Edges Almost Uniformly

I Theorem 2. Let G = (V,E) be an arbitrary graph with n vertices and m edges. There
exists an algorithm that given n, 0 < ε < 1

2 and access to vertex, degree, and neighbor queries
returns an edge with probability at least 2/3, such that each returned edge is sampled according
to a distribution P that has bias at most ε. The expected query complexity and running time
of the algorithm are Õ(n/

√
εm).

The strength of the approximation guarantee of the algorithm in Theorem 2 allows us to
obtain the following corollary for sampling weighted edges in graphs.

I Corollary 3. Let G = (V,E) and ε be as in Theorem 2, and let w : E → R be an arbitrary
function. Let P be the distributions on edges induced by the algorithm of Theorem 2. Then∣∣∣ E

e∼P
(w(e))− E

e∼U
(w(e))

∣∣∣ ≤ ε ∣∣∣ E
e∼U

(w(e))
∣∣∣ .

In Section 5, we show that the algorithm of Theorem 2 is essentially optimal, in the
sense that any algorithm which returns an edge from E almost uniformly must use Ω(n/

√
m)

queries. This lower bound applies in the strictly more powerful general graph query model
of Parnas and Ron [8], and even if the algorithm is only required to sample edges from a
distribution that is close to uniform in total variational distance.

1.1 Related work
An algorithm for sampling an edge in a graph almost uniformly was first suggested by [7].
In [7], Kaufman et al. use random edge samples in order to test if a graph is bipartite. In
particular, they devise a subroutine that guarantees that all but a small fraction of the edges
are each sampled with probability Ω(1/m). More recently, in [1], Eden et al. use random
edge sampling as a subroutine in their algorithm for approximating the number of triangles
in a graph. A similar subroutine for random edge sampling is employed in [2], where the
authors use edge sampling to approximate moments of the degree distribution of a graph. In
all of the works [7, 1, 2], the authors avoid the “difficult task of selecting random edges from
the entire graph,” [1] by instead sampling edges from a smaller subgraph.

Our algorithm improves upon and simplifies the edge sampling procedures in the works
cited above. Our approximation guarantee in terms of pointwise distance to uniformity is
strictly stronger than the guarantees of any of these papers. In particular, the previous
subroutines do not return edges with two high degree endpoints in the case of highly irregular
graphs. However, such edges may be of significant interest in practice. Further, the subgraph
sampling strategy used in these subroutines is memory intensive—a fairly large set of vertices
must be sampled (and stored), and a random edge incident to the set is sampled. In contrast,
each query made by our algorithm depends only on a constant number of previous queries.
Thus our algorithm can be implemented using poly-logarithmic space, and can easily be
parallelized.

1.2 Overview of the algorithm
We treat each undirected edge {u, v} as a pair of directed edges, (u, v) and (v, u). For each
vertex u, let d(u) denote its (undirected) degree, and let m =

∑
u∈V d(u) = 2|E| be the

number of directed edges. Consider the following two process for sampling edges:
Process 1 Choose a vertex u uniformly at random, and choose v uniformly from u’s neighbors.

Return (u, v).
Process 2 Choose a vertex u uniformly at random and i uniformly from {1, . . . , n− 1}. If

i ≤ d(u), return (u, v) where v is u’s ith neighbor. Otherwise, fail.

T. Eden and W.Rosenbaum 7:3

In Process 1, each (directed) edge (u, v) is sampled with probability 1/(nd(u)), thus biasing
the sample towards edges originating from vertices with low degrees. Process 2 eliminates
this bias, as each edge is sampled with probability 1/n(n − 1). However, Process 2 only
succeeds with probability m/n(n− 1). We can improve the success probability of Process 2
by sampling i ∈ [θ] for θ < n− 1, with the caveat that some edges incident with high-degree
nodes will never be sampled. The idea of our algorithm is to choose θ =

√
m/ε and sample

edges emanating from high and low degree vertices separately.
We call a vertex v light if d(v) ≤

√
m/ε, and heavy otherwise. Similarly a directed edge

(u, v) is light (resp. heavy) if u is light (resp. heavy). We attempt to sample a light edge by
using the modified Process 2 above with θ =

√
m/ε, and failing if the sampled vertex u is

heavy. Thus, each light edge (u, v) is sampled with probability 1/(n
√
m/ε).

In order to sample a heavy edge we use the following procedure. We first sample a light
edge (u, v) as described above. If v is heavy, we then query for a random neighbor w of v. The
probability of hitting some specific heavy edge (v, w) is dL(v)

n
√

m/ε
· 1

d(v) , where d
L(v) denotes

the number of light neighbors of v. The threshold
√
m/ε is set as to ensure that for every

heavy vertex, at most an ε-fraction of its neighbors are heavy. It follows that dL(v) ≈ d(v),
and thus each heavy edge (v, w) is chosen with probability roughly 1/(n

√
m/ε).

Our algorithm invokes the procedures for sampling light and heavy edges, each with equal
probability, sufficiently many times to ensure that an edge is returned with large constant
probability. In our analysis, we show that the induced distribution on edges has bias at
most ε.

1.3 Overview of the lower bound

The construction of the lower bound is similar to the lower bound construction of [4]. For an
arbitrary graph G′ on n′ vertices with m′ edges, let G be the graph obtained by adding a
clique on Θ(

√
m′) vertices to G′. Since the clique contains a constant fraction of G’s edges,

any almost-uniform edge sampler must return a clique edge with constant probability. The
probability of sampling a clique vertex is O(

√
m/n), so any algorithm that returns an edge

according to an almost uniform distribution must perform Ω(n/
√
m) queries.

2 Preliminaries

Let G = (V,E) be an undirected graph with n = |V | vertices. We treat each undirected edge
{u, v} in E as pair of directed edges (u, v), (v, u) from u to v and from v to u, respectively.
We denote the (undirected) degree of a vertex v ∈ V by d(v). Thus, the number of (directed)
edges in G is m =

∑
v∈V d(v) = 2|E|. For v ∈ V , we denote the set of neighbors of v by

Γ(v). We assume that each v has an arbitrary but fixed order on Γ(v) so that we may refer
unambiguously to v’s ith neighbor for i = 1, 2, . . . , d(v).

We partition V and E into sets of light and heavy elements depending on their degrees.

I Definition 4. We say that a vertex u is a light vertex if d(u) ≤
√
m/ε and otherwise we

say that it is a heavy vertex. We say that an edge is a light edge if it originates from a
light vertex. A heavy edge is defined analogously. Finally, we denote the sets of light and
heavy vertices by L and H respectively, and the sets of light and heavy edges by EL and EH
respectively.

SOSA 2018

7:4 On Sampling Edges Almost Uniformly

Note that for a fixed undirected edge {u, v}, it may be the case that one of the corre-
sponding directed edges, say (u, v), is light while the other, (v, u), is heavy. Specifically, this
will occur if u is a light vertex and v is a heavy vertex.

The algorithms we consider access a graph G via queries. Our algorithm uses the following
queries:
1. Vertex query: returns a uniformly random vertex v ∈ V .
2. Degree query: given a vertex v ∈ V , returns d(v).
3. Neighbor query: given v ∈ V and i ∈ N, return v’s ith neighbor; if i > d(v), this operation

returns fail.
Our lower bounds apply additionally to a computational model that allows pair queries.
4. Pair query: given v, w ∈ V , returns true if (v, w) ∈ E; otherwise returns false.

The (expected) query cost of an algorithm A is the (expected) number of queries that A
makes before terminating. We make no restrictions on the computational power of A except
for the number of queries A makes to G. The query complexity of a task is the minimum
query cost of any algorithm which performs the task.

We will require the following lemma, which gives sufficient conditions for a probability
distribution P to have bias at most ε (recall Definition 1).

I Lemma 5. Let P be a probability distribution over a finite set Ω which satisfies

1− ε ≤ P (x)
P (y) ≤ 1 + ε for all x, y ∈ Ω .

Then P has bias at most ε.

Proof. Suppose P satisfies the hypothesis of the lemma. Then

1− ε ≤ P (x)
P (y) ≤ 1 + ε =⇒ (1− ε)P (y)

U(x) ≤
P (x)
U(x) ≤ (1 + ε)P (y)

U(x) .

Summing the second expression over all y ∈ Ω gives

(1− ε) 1
U(x) ≤

P (x)
U(x) ·

1
U(x) ≤ (1 + ε) 1

U(x) .

The factor of 1/U(x) appears in the middle term because we sum over |Ω| = 1/U(x) terms.
Hence P has bias at most ε. J

3 The Basic Algorithm

We start by presenting our main algorithm – Sample-edge-almost-uniformly– that samples a
random edge in E almost uniformly with high probability. The algorithm is given query
access to G and takes n,m and ε as parameters. For simplicity of presentation, we assume
that m is known precisely. In Section 4, we show that this assumption is unnecessary.

We defer the statement of the lemma and proof regarding the correctness of the algorithm
to the end of the section, and first present the two subroutines used in the algorithm
Sample-light-edge and Sample-heavy-edge, for sampling a uniform light edge and an almost
uniform heavy edge, respectively.

I Lemma 6. The procedure Sample-light-edge performs a constant number of queries and
succeeds with probability |EL| /(n

√
m/ε). In the case where Sample-light-edge succeeds, the

edge returned is uniformly distributed in EL.

T. Eden and W.Rosenbaum 7:5

Algorithm 1 Sample-edge-almost-uniformly(n,m, ε)
1. For i = 1 to q = 10n

(1−ε)
√

εm
do:

a. With probability 1/2 invoke Sample-light-edge(m) and with probability 1/2
invoke Sample-heavy-edge(m).

b. If an edge (u, v) was returned, then return (u, v).
2. Return fail.

Algorithm 2 Sample-light-edge(m)
1. Sample a vertex u ∈ V uniformly at random and query for its degree.
2. If d(u) >

√
m/ε return fail.

3. Choose a number j ∈
[√

m/ε
]
uniformly at random.

4. Query for the jth neighbor of u.
5. If no vertex was returned then return fail. Otherwise, let v be the returned

vertex.
6. Return (u, v).

Algorithm 3 Sample-heavy-edge(m)
1. Sample a vertex u ∈ V uniformly at random and query for its degree.
2. If d(u) >

√
m/ε return fail.

3. Choose a number j ∈
[√

m/ε
]
uniformly at random.

4. Query for the jth neighbor of u.
5. If no vertex was returned or if the returned vertex is light then return fail.

Otherwise, let v be the returned vertex.
6. Sample w a random neighbor of v.
7. Return (v, w).

Proof. Suppose a light vertex u is sampled in Step 1 of the procedure. Then the probability
that we obtain a neighbor of u in Step 4 is d(u)/

√
m/ε. Hence,

Pr[Success] =
∑
u∈L

1
n
· d(u)√

m/ε
= |EL|
n
√
m/ε

.

In any invocation of the algorithm, the probability that a particular (directed) edge e is
returned is 1/(n

√
m/ε) if e is light, and 0 otherwise. Thus, each light edge is returned with

equal probability. J

I Lemma 7. The procedure Sample-heavy-edge performs a constant number of queries and

succeeds with probability in
[
(1− ε) |EH|

n
√

m/ε
, |EH|

n
√

m/ε

]
. In the case where Sample-heavy-edge

succeeds, the edge returned is distributed according to a distribution P that has bias at most
ε.

Proof. Since each v ∈ H satisfies d(v) >
√
m/ε, we have |H| < m/

√
m/ε =

√
εm. For every

vertex v ∈ H, let dL(v) denote the cardinality of Γ(v) ∩ L, the set of light neighbors of v.
Similarly, let dH(v) denote |Γ(v) ∩H|. Thus, dH(v) ≤ |H| <

√
εm < εd(v).

Since dL(v) + dH(v) = d(v) for every v, we have

dL(v) > (1− ε) d(v) . (1)

SOSA 2018

7:6 On Sampling Edges Almost Uniformly

Each vertex v ∈ H is chosen in Step 5 with probability dL(v)/(n
√
m/ε). Therefore, the

probability that e = (v, w) is chosen in Step 6 satisfies

Pr[e is returned] = dL(v)
n
√
m/ε

· 1
d(v) >

(1− ε)
n
√
m/ε

, (2)

where the inequality follows from Equation (1). On the other hand, dL(v) ≤ d(v) implies
that Pr[e is returned] ≤ 1/

(
n
√
m/ε

)
. Finally, we bound the success probability by

Pr[Success] = Pr
[⋃

e∈EH

{e is returned}
]

=
∑

e∈EH

Pr[e is returned] > (1− ε) |EH|
n
√
m/ε

.

The second equality holds because the events {e is returned} are disjoint, while the inequality
holds by Equation (2). J

Assuming that m is known to the algorithm Sample-edge-almost-uniformly, Theorem 2 is
an immediate consequence of the following lemma. In Section 4, we consider the case where
m is not initially known to the algorithm and prove Theorem 2 in its full generality.

I Lemma 8. For any ε satisfying 0 < ε < 1/2, Sample-edge-almost-uniformly returns an
edge with probability at least 2/3. If an edge is returned, then it is distributed according to a
distribution P that has bias at most 2ε.

Proof. We first prove that the induced distribution on edges has bias at most 2ε. By
Lemmas 6 and 7, the probability of successfully returning an edge in Step 1a satisfies

Pr[Success] = 1
2 Pr[Sample-light-edge succeeds] + 1

2 Pr[Sample-heavy-edge succeeds]

>
1
2 ·

|EL|
n
√
m/ε

+ 1
2 ·

(1− ε) |EH|
n
√
m/ε

≥ (1− ε) m

2n
√
m/ε

.

The second inequality holds because |EL| + |EH| = m. Also by Lemmas 6 and 7, the
probability, pe, that a specific edge e is returned satisfies

1− ε
2n
√
m/ε

≤ pe ≤
1

2n
√
m/ε

.

Thus, the distribution on sampled edges satisfies

1− ε ≤ P (e)
P (e′) ≤

1
1− ε ≤ 1 + 2ε , for all e, e′ ∈ E.

Therefore, P has bias at most 2ε by Lemma 5.
We now prove that the algorithm returns an edge with probability at least 2/3. Let χi

be the indicator variable for the event that an edge (u, v) was returned in the ith step of the
for loop of the algorithm. By Lemmas 6 and 7,

Pr[χi = 0 for all i] ≤
(

1− (1− ε)
√
εm

2n

) 10n
(1−ε)

√
εm

< 1/3.

Finally, since every invocation of Sample-light-edge and Sample-heavy-edge takes a constant
number of queries, the query complexity and running time of the algorithm are O(n/

√
εm).

J

T. Eden and W.Rosenbaum 7:7

4 Sampling Edges with Unknown m

In the previous section, we assumed that the value of m (or more specifically,
√
m/ε) was

known to the algorithm. In this section, we argue that such an assumption is unnecessary.
In particular, it is sufficient to have any estimate m̂ ∈ [m, cm] for a fixed constant c. Such
an estimate can be obtained with high probability using Õ(n/

√
m) expected queries by

employing an algorithm of Goldreich and Ron [6].3

I Theorem 9 (Goldreich & Ron [6]). Let G = (V,E) be a graph with n vertices and m

edges. There exists an algorithm that uses Õ(n/
√
m) vertex, degree, and neighbor queries

in expectation and outputs an estimate m̂ of m that with probability at least 2/3 satisfies
m ≤ m̂ ≤ 2m.

Analogues of Lemmas 6 and 7 hold for any estimate m̂ of m, with the threshold between
light and heavy vertices redefined to be

√
m̂/ε. In particular, if m̂ is an overestimate—i.e.,

m̂ > m—then the approximation guarantees of both lemmas are still satisfied. However,
an overestimate results in a smaller success probability (by a factor of

√
m/m̂). It is

straightforward to verify that so long as m ≤ m̂ ≤ 2m, the conclusion of Lemma 8 still
holds (for complete details please see the full version of the paper [3]). Using Lemma 8 and
Theorem 9, we can prove Theorem 2 in its full generality.

Proof of Theorem 2. Let m̂ be an estimate of m. We call m̂ a good estimate if it satisfies
m ≤ m̂ ≤ 2m. By repeating the algorithm of Goldreich & Ron (Theorem 9) O(log(n/ε))
times, then taking m̂ to be the median value reported, a straightforward application of
Chernoff bounds guarantees that m̂ is good with probability at least 1 − ε/2n2. If m̂ is
good, by Lemma 8, calling Sample-edge-almost-uniformly(n, m̂, ε/4) will successfully return
an edge e with probability at least 2/3, and the returned edge is distributed according to a
distribution P which has bias at most ε/2.

Let Q be the distribution of returned edges. If m̂ is not good, we have no guarantee of
the success probability of returning an edge, nor of the distribution from which the edge is
drawn. However, since m̂ is bad with probability at most ε/2n2, for each e we can bound

|Q(e)− U(e)| ≤ |Q(e)− P (e)|+ |P (e)− U(e)| ≤ ε

2n2 + ε

2m ≤
ε

m
= εU(e).

Thus Q has bias at most ε.
We now turn to analyze the expected query cost of the algorithm. By Theorem 9, the

expected query cost of Goldreich and Ron’s algorithm is Õ(n/
√
m). By Lemmas 6 and 7,

the procedures Sample-light-edge and Sample-heavy-edge each perform a constant number of
queries per invocation. Hence, the query cost of the algorithm is O(q) = Õ

(
n/
√
εm̂
)
. If

m̂ is good then q is at most Õ (n/
√
εm), and otherwise it is at most O(n). Since m is good

with probability at least 1− ε/2n2, it follows that the expected query cost is Õ(n/
√
εm). J

5 A Lower Bound

In this section we prove a lower bound on the number of queries necessary to sample an
edge from an almost-uniform distribution over E. Specifically we show that any algorithm

3 An earlier result of Feige [4] would also suffice, but we found the result of Goldreich and Ron simpler to
apply.

SOSA 2018

7:8 On Sampling Edges Almost Uniformly

A that samples an edge almost uniformly must perform Ω (n/
√
m) queries, even if A is

given m. Thus, the algorithm we present is asymptotically optimal (up to poly-logarithmic
factors). Further our lower bound applies to (1) strictly weaker approximation to the uniform
distribution (by total variational distance), and (2) to algorithms which are additionally
allowed “pair queries” at unit cost.

We first recall the definition of the total variational distance between two distributions.

I Definition 10. Let P and Q be probability distributions over a finite set Ω. We denote
the total variational distance or statistical distance between P and Q by

distTV(P,Q) = 1
2 ‖P −Q‖1 = 1

2
∑
x∈Ω
|P (x)−Q(x)| .

Observe that if P and Q are pointwise ε-close, then distTV(P,Q) ≤ ε, but the converse is
not true in general.

I Theorem 11. Let ε < 1/2 be fixed and suppose A is an algorithm that performs q = q(n,m)
vertex, degree, neighbor, or pair queries and with probability at least 2/3 returns an edge
e ∈ E sampled according to a distribution P over E. If for all G = (V,E), P satisfies
distTV(P,U) < ε, then q = Ω(n/

√
m).

Proof. The result is trivial if m = Ω(n2), so we assume that m = o(n2). Suppose there
exists an algorithm A that performs t queries and with probability at least 2/3 returns an
edge sampled from a distribution P satisfying distTV(P,U) ≤ ε. Let G′ be an arbitrary
graph, and let n′ and m′ denote the number of vertices and edges, respectively, in G′. Let K
be a clique on k =

√
2m′ nodes. Let G = G′ ∪K be the disjoint union of G′ and K, and

let VK and EK denote the vertices and edges of K in G. Thus G has n = n′ + k nodes,
m > 2m′ edges, and EK contains at least m/2 edges. The remainder of the proof formalizes
the intuition that since A makes relatively few queries, it is unlikely to sample vertices in
VK . Thus A must sample edges from EK with probability significantly less than 1/2.

Assume that the vertices are assigned distinct labels from [n] uniformly at random,
independently of any decisions made by the algorithm A. Let q1, . . . , qt denote the set of
queries that the algorithm performs, and let a1, . . . , at denote the corresponding answers.
We say that a query-answer pair (qi, ai) is a witness pair if (1) qi is a degree query of v ∈ VK ,
or (2) qi is a neighbor query for some v ∈ Vk, or (3) qi is a pair query for some (v, w) ∈ EK .
For i ∈ [t] let NWi denote that event that (q1, a1), . . . , (qi, ai) are not witness pairs, and let
NW = NWt. Let AK be the event that A returns some edge e ∈ EK . Since distTV(P,U) < ε,
we must have |PrP [AK]− PrU [AK]| ≤ ε. Since |EK | ≥ m/2, we have PrU [AK] ≥ 1/2, hence

Pr
P

[Ak] ≥ 1
2 − ε. (3)

The law of total probability gives

Pr
P

[AK] = Pr
P

[NW] · Pr
P

[AK | NW] + Pr
P

[NWc] · Pr
P

[AK | NWc] , (4)

where NWc denotes the complement of the event NW.
Claim. PrP [AK | NW] = o(1).
Proof of Claim. Suppose the event NW occurs, i.e., A does not observe a witness pair after

t queries. Thus, if A returns an edge e = (u, v) ∈ EK , it cannot have made queries
involving u or v. We can therefore bound

Pr
P

[AK | NW] ≤ |EK |
1

(n− 2t)2 ≤
m

2(n− 2t)2 ≤
2m
n2 .

T. Eden and W.Rosenbaum 7:9

The first inequality holds because the identities of any u, v ∈ VK are uniformly distributed
among the (at least) n − 2t vertices not queried by A. The second inequality holds
assuming t < n/4. The claim follows from the assumption that m = o(n2).

Combining the result of the claim with equations (3) and (4) gives

1
2 − ε ≤ Pr

P
[Ak] = Pr

P
[NW] ·Pr

P
[AK | NW] + Pr

P
[NWc] ·Pr

P
[AK | NWc] ≤ Pr

P
[NWc] + o(1) . (5)

We bound PrP [NWc] by

Pr[NWc] = Pr

⋃
i≤t

{(qi, ai) is the first witness pair}

=
∑
i≤t

Pr[(qi, ai) is a witness pair | NWi−1]

≤
∑
i≤t

2k
n− 2i ≤

4kt
n
≤ t4

√
2m
n

.

Combining this bound with (5) and solving for t gives 2
3
(1

2 − ε− o(1)
)

n
4
√

2m
< t . The factor

of 2/3 is because A returns an edge with probability at least 2/3. Thus, t = Ω(n/
√
m), as

desired. J

Acknowledgments. We are very grateful to Dana Ron and Oded Goldreich for valuable
discussions and comments.

References
1 Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting triangles in

sublinear time. SIAM J. Comput., 46(5):1603–1646, 2017. doi:10.1137/15M1054389.
2 Talya Eden, Dana Ron, and C. Seshadhri. Sublinear time estimation of degree distribution

moments: The degeneracy connection. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs,
pages 7:1–7:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/
LIPIcs.ICALP.2017.7.

3 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. CoRR,
abs/1706.09748, 2017. arXiv:1706.09748.

4 Uriel Feige. On sums of independent random variables with unbounded variance and
estimating the average degree in a graph. SIAM J. Comput., 35(4):964–984, 2006.
doi:10.1137/S0097539704447304.

5 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Frank Thom-
son Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
406–415. ACM, 1997. doi:10.1145/258533.258627.

6 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Struct. Algorithms, 32(4):473–493, 2008. doi:10.1002/rsa.20203.

7 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipar-
titeness in general graphs. SIAM J. Comput., 33(6):1441–1483, 2004. doi:10.1137/
S0097539703436424.

8 Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Struct. Algorithms,
20(2):165–183, 2002. doi:10.1002/rsa.10013.

SOSA 2018

http://dx.doi.org/10.1137/15M1054389
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.7
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.7
http://arxiv.org/abs/1706.09748
http://dx.doi.org/10.1137/S0097539704447304
http://dx.doi.org/10.1145/258533.258627
http://dx.doi.org/10.1002/rsa.20203
http://dx.doi.org/10.1137/S0097539703436424
http://dx.doi.org/10.1137/S0097539703436424
http://dx.doi.org/10.1002/rsa.10013

	Introduction
	Related work
	Overview of the algorithm
	Overview of the lower bound

	Preliminaries
	The Basic Algorithm
	Sampling Edges with Unknown m
	A Lower Bound

