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Abstract
The algorithmic task of computing the Hamming distance between a given pattern of lengthm and
each location in a text of length n, both over a general alphabet Σ, is one of the most fundamental
algorithmic tasks in string algorithms. The fastest known runtime for exact computation is
Õ(n
√
m). We recently introduced a complicated randomized algorithm for obtaining a 1 ± ε

approximation for each location in the text in O(nε log 1
ε logn logm log |Σ|) total time, breaking a

barrier that stood for 22 years. In this paper, we introduce an elementary and simple randomized
algorithm that takes O(nε logn logm) time.
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1 Introduction

One of the most fundamental family of problems in string algorithms is to compute the
distance between a given pattern P of length m and each location in a given larger text T
of length n, both over alphabet Σ, under some string distance metric (See [24, 20, 2, 25, 8,
6, 3, 7, 29, 12, 28, 26, 9, 11, 31, 27, 19, 10, 15, 18, 17, 16, 5, 4, 30]). One of the most useful
distance metrics in this setting is the Hamming Distance of two strings, which is the number
of aligned character mismatches between the strings. Let HAM(X,Y ) denote the Hamming
distance of two strings X and Y . Abrahamson [1] showed an algorithm whose runtime is
O(n
√
m logm). The task of obtaining a faster upper bound seems to be very challenging,

and indeed there is a folklore matching conditional lower bound for combinatorial algorithms
based on the hardness of combinatorial Boolean matrix multiplication (see [14]). However,
for constant sized alphabets the runtime is solvable in O(n logm) using a constant number
of convolution computations (which are implemented via the FFT algorithm) [20].

The challenge in beating Abrahamson’s algorithm naturally lead to approximation
algorithms for computing the Hamming distance in this setting, which is the problem
that we consider here and is defined as follows. Denote Tj = T [j, . . . , j + m − 1]. In the
pattern-to-text approximate Hamming distance problem the input is a parameter ε > 0, T ,
and P . The goal is to compute for all locations i ∈ [1, n − m + 1] a value δi such that
(1−ε)HAM(Ti, P ) ≤ δi ≤ (1+ε)HAM(Ti, P ). For simplicity we assume without loss of generality
that Σ is the set of integers {1, 2, . . . , |Σ|}.
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Karloff in [22] utilized the efficiency of the algorithm for constant sized alphabets to
introduce a beautiful randomized algorithm for solving the pattern-to-text approximate
Hamming distance problem, by utilizing projections of Σ to binary alphabets. Karloff’s
algorithm runs in Õ( nε2 ) time, and is correct with high probability.

Communication complexity lower bounds

One of the downsides of Karloff’s algorithm is the dependence on 1
ε2 . In particular, if one is

interested in a one percent approximation guarantee, then this term becomes 10000, which
is extremely large for many applications. Remarkably, many believed that beating the
runtime of Karloff’s algorithm is not possible, mainly since there exist qualitatively related
lower bounds for estimating the Hamming distance of two equal length strings (for a single
alignment). In particular, Woodruff [32] and later Jayram, Kumar and Sivakumar [21]
showed that obtaining a (1± ε) approximation for two strings in the one-way communication
complexity model requires sending Ω(1/ε2) bits of information. The lower bounds were
extended to the two-way communication complexity model as well [13].

In [23] we showed that this belief was flawed, by introducing an Õ(nε ) time algorithm
that succeeds with high probability. In particular, we proved the following.

I Theorem 1 ([23]). There exists an algorithm that with high probability solves the pattern-
to-text approximate Hamming distance problem and runs in O(nε log 1

ε logn logm log |Σ|)
time.

Our algorithm in [23] turned out to be rather complicated and borrows ideas from sparse
recovery and constructions of specialized families of hash functions.

A simpler algorithm

In this paper we show how to solve the pattern-to-text approximate Hamming distance
problem faster (in terms of logarithmic factors) and simpler. The rest of this paper is devoted
to proving the following theorem.

I Theorem 2 ([23]). There exists an algorithm that with high probability solves the pattern-
to-text approximate Hamming distance problem and runs in O(nε logn logm) time.

2 The Algorithm

For a function h : Σ→ Σ′ and for any string S = s1s2 . . . sk, let h(S) = h(s1)h(s2) . . . h(sk).

Local versus global operations

The operations that our algorithm performs during the approximation of the Hamming
distance at some location j are partitioned into two types. The first type is local operations
which are independent of the computations performed for other locations in T . The second
type is global operations, which are operations that for efficiency purposes are computed
as a batch for all of the alignments in T . In particular, all of the global operations in our
algorithm are to compute HAM(h(Tj), h(P )) where h : Σ →

[ 2
ε

]
. Such a computation

will make use of the following Theorem (which uses the FFT algorithm; see [20]), and is
summarized in Corollary 4.
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Algorithm 1 The new algorithm.

ApproxHAM(Tj , P, ε)
1 for i = 1 to c logn
2 do Pick a random h : Σ→ {1, 2, . . . , 2

ε }.
3 compute xi = HAM(h(Tj), h(P ))
4 return max1≤i≤c logn{xi}

I Theorem 3. Given a binary text T of size n and a binary pattern P of size m, there exists
an O(n logm) time algorithm that computes for all locations j in T the number of times that
a 1 in Tj is aligned with a 1 in P .

I Corollary 4. Given a text T of size n and a pattern P of size m both over alphabet Σ,
there exists an O(|Σ| · n logm) time algorithm that computes HAM(Tj , P ) for all locations j
in T .

The algorithm for Corollary 4 is implemented by considering a separate binary text and
binary pattern for each character σ ∈ Σ. For character σ in this set, occurrences of σ in T
are assigned to 1, while occurrences of other characters are assigned to 0. On the other hand,
occurrences of σ in P are assigned to 0, while occurrences of other characters are assigned
to 1. Applying Theorem 3 on the binary text and pattern defined by σ enables computing
for every location j the number of times character σ in Tj contributes to HAM(Tj , P ). A
summation over all the mismatches for all the characters in Σ completes the computation
of HAM(Tj , P ). Since Theorem 3 is applied |Σ| times, the Corollary follows. Notice that
when the algorithm of Corollary 4 is applied, then each location in the text is charged an
O(|Σ| logm) (global) time cost.

The algorithm

With the goal of easing the presentation of our algorithm, we focus on estimating the
Hamming distance between Tj and P , and count the cost of global and local operations for
this location. Since we are interested in algorithms that succeed with high probability (at
least 1− 1

nΘ(1) ) then it suffices to show that with high probability the algorithm succeeds at
location j. The pseudo-code for the algorithm is given in Algorithm 1.

Time complexity

Computing the Hamming distance between the projected text and projected pattern in Line 3
takes place by applying the algorithm from Corollary 4 where the alphabet is

[ 2
ε

]
. Thus, the

total time cost for location j is O( 1
ε logn logm), and so the overall time cost for all locations

is O(nε logn logm).

Correctness

Let d = HAM(Tj , P ). The goal of the algorithm is to approximate d. Notice that the
expected value of xi is E[xi] = (1− ε

2 )d, since each mismatch in the original text and pattern
remains a mismatch after the projection obtained by applying h with probability 1− ε

2 . Thus,
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E[d− xi] = εd
2 , and so by the Markov inequality,

Pr[xi < (1− ε)d] = Pr[d− xi > εd] ≤ E[d− xi]
εd

= 1
2 .

Since the algorithm returns the largest xi value, the only way in which the algorithm
fails is if all of the xi values are less than (1 − ε)d. Since the choices of the projections is
independent, this happens with probability at most n−c.
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