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Abstract
Alternating minimization heuristics seek to solve a (difficult) global optimization task through
iteratively solving a sequence of (much easier) local optimization tasks on different parts (or
blocks) of the input parameters. While popular and widely applicable, very few examples of this
heuristic are rigorously shown to converge to optimality, and even fewer to do so efficiently.

In this paper we present a general framework which is amenable to rigorous analysis, and
expose its applicability. Its main feature is that the local optimization domains are each a group
of invertible matrices, together naturally acting on tensors, and the optimization problem is
minimizing the norm of an input tensor under this joint action. The solution of this optimization
problem captures a basic problem in Invariant Theory, called the null-cone problem.

This algebraic framework turns out to encompass natural computational problems in combin-
atorial optimization, algebra, analysis, quantum information theory, and geometric complexity
theory. It includes and extends to high dimensions the recent advances on (2-dimensional) oper-
ator scaling [14, 11, 22].

Our main result is a fully polynomial time approximation scheme for this general problem,
which may be viewed as a multi-dimensional scaling algorithm. This directly leads to progress
on some of the problems in the areas above, and a unified view of others. We explain how faster
convergence of an algorithm for the same problem will allow resolving central open problems.

Our main techniques come from Invariant Theory, and include its rich non-commutative
duality theory, and new bounds on the bitsizes of coefficients of invariant polynomials. They
enrich the algorithmic toolbox of this very computational field of mathematics, and are directly
related to some challenges in geometric complexity theory (GCT).

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, G.1.6 Optimiza-
tion

∗ This work was partially supported by an NWO Veni grant no. 680-47-459 and a DFG grant BU 1371 2-2.
† A full version of the paper is available at https://arxiv.org/abs/1711.08039, [6].

© Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson;
licensed under Creative Commons License CC-BY

9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1711.08039
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 Alternating Min., Scaling Alg., and the Null-Cone Problem from Invariant Theory

Keywords and phrases alternating minimization, tensors, scaling, quantum marginal problem,
null cone, invariant theory, geometric complexity theory

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.24

1 Introduction and summary of results

Alternating minimization refers to a large class of heuristics commonly used in optimization,
information theory, statistics and machine learning. It addresses optimization problems of
the following general form. Given a function

f : X1 × · · · × Xd → R (1)

the goal is to find a global optimum

inf
x1∈X1,...,xd∈Xd

f(x1, . . . , xd). (2)

While both the function f and its domain may be extremely complicated, in particular
non-convex, the decomposition of the domain to d blocks is such that the local optimization
problems are all feasible. More precisely, for every i ∈ [d], and for every choice of αj ∈ Xj

with j 6= i, computing

inf
xi∈Xi

f(α1, . . . , αi−1, xi, αi+1, . . . , αd)

is easy.
A natural heuristic in such cases is to repeatedly make local improvements to different

coordinates. Namely, we start from some arbitrary vector α(0), and generate a sequence
α(0), α(1), . . . , α(t), . . . , such that α(t+1) is obtained by solving the above local optimization
problem for some i = i(t), freeing up this variable while fixing all other coordinates according
to α(t). The argmin of the optimum replaces the ith coordinate in α(t) to create α(t+1).

There is a vast number of situations which are captured by this natural framework. For
one example (we’ll see more), consider the famous Lemke-Howson [28] algorithm for finding
a Nash-equilibrium in a 2-player game. Here d = 2, and starting from an arbitrary pair of
strategies, proceed by alternatingly finding a “best response” strategy for one player given
the strategy of the other. This local optimization is simply a linear program that can be
efficiently computed. As is well known, this algorithm always converges, but in some games
it requires exponential time!

So, the basic questions which arise in some settings are under which conditions does
this general heuristic converge at all, and even better, when does it converge efficiently.
Seemingly the first paper to give provable sufficient conditions (the “5-point property”) for
convergence in a general setting was Csiszár and Tusnády [8]. An application is computing
the distance (in their case, KL-divergence, but other metrics can be considered) between
two convex sets in Rn, as well as the two closest points achieving that distance. Again, the
local problem (fixing one point and finding the closest to it in the other convex set) is a
simple convex program that has a simple efficient algorithm. For two affine subspaces and
the `2-distance, von Neumann’s alternating projection method [36] is an important special
case with numerous applications. As mentioned, in the past three decades numerous papers
studied various variations and gave conditions for convergence, especially in cases where d > 2
(often called also “block-coordinate descent”) – we cite only a few recent ones [46, 37, 44]
which address a variety of problems and have many references. Much much fewer cases
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are known in which convergence is fast, namely requires only a polynomial number of local
iterations. Some examples include the recent works on matrix completion [23, 17]. Our aim
is to develop techniques that expand efficient convergence results in the following algebraic
setting, which as we shall see is surprisingly general and has many motivations.

We will consider the case of minimizing (1) with very specific domain and function,
that we in turn explain and then motivate (so please bear with this necessary notation).
First, each of the blocks Xi is a special linear group, SLni

(C) (which we will also abbreviate
by SL(ni)), namely the invertible complex matrices of some size ni and determinant one.
Note that this domain is quite complex, as these groups are certainly not convex, and not
even compact. To explain the function f to be minimized over this domain, consider the
natural linear transformation (basis change) of the vector space Cni by matrices Ai ∈ SL(ni).
Thus, the product group G := SL(n1) × SL(n2) × · · · × SL(nd) acts on tensors X ∈ V :=
Ten(n0, n1, n2, . . . , nd) = Cn0 ⊗ Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnd of order d + 11, where (the basis
change) Ai is applied to all vectors (slices, “fibers”) of X along the ith dimension. Now the
objective function f = fX depends on an input tensor X ∈ V ; for any vector of matrices
A = (A1, A2, . . . Ad) ∈ G, fX(A) is defined simply as the `2-norm squared2 of A · X, the
tensor resulting by the action of A on X. Summarizing this description, for input X ∈ V we
would like to compute (or approximate) the quantity we call capacity of X, denoted cap(X)
defined by

cap(X) := inf
A∈G

‖A ·X‖22. (3)

In particular, we would like to decide the null-cone problem: is the capacity of X zero or not?
While this formulation readily lends itself to an alternating minimization procedure (the

local problems have an easily computed closed-form solution), the algorithms we will develop
will be related to a dual optimization (scaling) problem that also has a similar form. Our
main result will be a fully polynomial time approximation scheme (FPTAS) for that dual
problem! This will also allow us to solve the null-cone problem. However we defer this
discussion and turn to motivations.

Now where do such problems and this notion of capacity naturally arise? Let us list a
few sources, revealing how fundamental this framework really is. Some of these connections
go back over a century and some were discovered in the past couple of years. Also, some are
less direct than others, and some overlap. Some of them, and others, will be elaborated on
throughout the paper.

Combinatorial Optimization. Computing matroid intersection (for linear matroids
over Q) easily reduces to checking zeroness of capacity for d = 2 for very “simple” inputs
X. This was discovered in [14], who showed it remains true for an implicit version of
this problem for which there was no known polynomial time algorithm. His alternating
minimization algorithm (called today operator scaling) is efficient for such simple inputs.
It also generalizes similar algorithms for such problems as perfect matchings in bipartite
graphs and maximum flow in networks, where again zeroness of capacity captures the
decision versions of the problems. The associated alternating minimization algorithm
gives a very different and yet efficient way than is taught in algorithms texts for these
classical problems (these go by the name of matrix scaling, originated in [38] and described
explicitly in [30]).

1 Equivalently, this means that we study n0-tuples of tensors of order d.
2 Namely, the sum of squares of the absolute values of the entries.
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Non-commutative algebra. The most basic computational problem in this field is the
word problem, namely, given an expression over the free skew field (namely, a formula over
Q in non-commutative variables), is it identically zero3. As shown in [11] this problem is
reducible to testing if the capacity is 0, for d = 2. [11] significantly extends [14], proving
that his algorithm is actually an FPTAS for all inputs, resolving the d = 2 of our general
problem above, and providing the first polynomial time algorithm for this basic word
problem (the best previous algorithm, deterministic or probabilistic, required exponential
time)4.
Analysis. We move from efficiently testing identities to efficiently testing inequalities.
The Brascamp-Lieb inequalities [4, 29] are an extremely broad class capturing many
famous inequalities in geometry, probability, analysis and information theory (including
Hölder, Loomis-Whitney, Shearer, Brunn-Minkowski, . . . ). A central theorem in this
field [29] expresses feasibility, and the tightest possible constant if feasible, for every
instantiation of such inequality in terms of capacity (defined somewhat differently, but
directly related to ours). In [12] a direct alternating minimization algorithm5 is given
which efficiently approximates it on every input! Previous techniques to even bound
capacity were completely ineffective, using compactness arguments.
Quantum Information Theory and Geometric Complexity Theory. We finally
move to arbitrary d. The quantum marginal problem (generalizing the classical marginal
problem in probability theory) asks if a collection of marginals (namely, density matrices)
on d subsystems of a given quantum system are consistent, namely is there a density
matrix on the whole system whose partial traces on the given subsystems result in
these marginals [27]. When the state of the whole system is pure and the marginals are
proportional to identity matrices, each subsystem is maximally entangled with the others.
It is an important task to distill entanglement, that is, given a tensor, to transform it
into such a locally maximally entangled state by SLOCC6 operations [2, 26]. It turns out
that this amounts precisely to the capacity optimization problem, and the matrices which
minimize it solve this distillation problem. One can thus view our FPTAS as achieving
approximate entanglement distillation (see, e.g., [41, 43, 42]). We note that for d = 3,
the non-zeroness of capacity captures a refinement of the asymptotic positivity of special
Kronecker coefficients, a central notion in representation theory and geometric complexity
theory (GCT) of [33, 5, 20]. We refer to [6] for more detail.
Invariant Theory. We will be brief, and soon discuss this area at length, as it underlies
most of the work in this paper. Invariant theory studies symmetries, namely group actions
on sets, and their invariants. The action of our particular group G above on the particular
linear space of tensors V is an example of the main object of study in invariant theory:
actions of reductive7 groups G on linear spaces V . A central notion in the (geometric)
study of such actions is the null cone; it consists of all elements in v ∈ V which G maps
arbitrarily close to 0 ∈ V . Here the connection to our problem is most direct: the null
cone of the action in our framework is precisely the input tensors X whose capacity is 0!
We stress that previous algorithms for the null cone (for general reductive actions) required

3 This is an analog of the PIT problem in algebraic complexity, for non-commutative formulas with
division.

4 This problem was solved for finite characteristics by different methods in [22].
5 Which can be viewed also as a reduction to the operator scaling algorithm in [11].
6 Acronym for Stochastic Local Operations and Classical Communication; these are the natural actions
when each of the subsystems is owned by a different party.

7 A somewhat technical term which includes all classical linear groups.
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doubly exponential time (e.g., [39, Algorithm 4.6.7]). In contrast, our algorithm (for the
general framework above) decides if a given tensor is in the null cone in singly exponential
time! We will also discuss special cases where our FPTAS achieves polynomial time. The
same null-cone problem is a direct challenge among the algorithmic problems suggested
by Mulmuley towards the GCT program in [32].

We now turn to discuss at more length the relevant features of invariant theory, explaining
in particular the dual optimization problem that our algorithm actually solves. Then we will
state our main results.

1.1 Invariant theory
Invariant theory is an area of mathematics in which computational methods and efficient
algorithms are extremely developed (and sought). The reader is referred to the excellent
texts [9, 39] for general background, focused on algorithms. Using invariant theory was key for
the recent development of efficient algorithms for operator scaling mentioned above [11, 22],
while these algorithms in turn solved basic problems in this field itself. This paper proceeds
to expand the applications of invariant theory for algorithms (and computational complexity!)
and to improve the efficiency of algorithms for basic problems in the field.

Invariant theory is an extremely rich theory, starting with seminal works of Cayley [7]8,
to compute invariants of SL(n), of Hilbert [18, 19]9 and others in the 19th century. Again,
we focus on linear actions of reductive groups G on vector spaces V . It turns out that in
this linear setting the relevant invariants are polynomial functions of the variables (entries
of vectors in V with respect to some fixed basis), and the central problem is to understand
the invariant ring, namely all polynomials which are left invariant (compute the same value)
under the action of G. Two familiar examples, which illustrate how good an understanding
we can hope for, are the following:

When G = Sn, the group of permutations of the coordinates of an n-vector in V = Fn, the
ring of invariants are (naturally) all symmetric polynomials, which is (finitely!) generated
by the n elementary symmetric polynomials.
When G = SL(n)× SL(n)10 acts on n× n matrices by changing basis of the rows and
columns respectively, the ring of invariants is generated by one polynomial in the entries
of this matrix: the determinant.

One of Hilbert’s celebrated results in [18, 19] was that the invariant ring is always finitely
generated. Further understanding calls for listing generators, finding their algebraic relations,
making them as low degree as possible, as few as possible, and as easily computable as
possible. Many new motivations for these arose from the GCT program mentioned above
(and below).

The action of G naturally carves the space V into orbits, namely sets of the form G · v
consisting of all images of v ∈ V under the action of G. Understanding when are two vectors
in the same orbit captures numerous natural problems, e.g., graph isomorphism (when is
a graph in the orbit of another, under vertex renaming), module isomorphism (when is a
vector of matrices in the orbit of another, under simultaneous conjugation), and others. Over
the complex numbers C it is more natural to consider orbit closures and answer similar
problems regarding membership of vectors in such orbit closures. For an important example,

8 Which describes his ingenious algorithm, the Omega-process.
9 In which he proves his celebrated Nullstellensatz and Finite Basis theorem.
10Here SL(n) is the group of invertible matrices of determinant 1.
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the central approach of Mulmuley and Sohoni’s GCT program [33] to Valiant’s conjecture
that VP 6=VNP is to translate it to the question of whether the permanent is in the orbit
closure of (a polynomially larger) determinant under a linear action on the matrix entries.
Understanding orbit closures is the subject of Geometric Invariant Theory, starting with the
seminal work of Mumford [34] in the middle of the last century. He proved that answering
such questions is equivalent to computing invariants. That is, the orbit closures of two vectors
v, w ∈ V intersect if and only if p(v) = p(w) for all invariant polynomials p.

An important special case is to understand the orbit closures that contain the zero vector
0 ∈ V . Note that by the theorem above, these are all vectors v ∈ V for which p(v) = 0 holds
for all invariant polynomials p without constant term. This is an algebraic variety (nothing
more than a zero set a system of polynomials), which is called the null cone of the action of
G on V . Understanding the null cone is also central to geometric complexity theory from a
topological viewpoint when projectivizing the space of orbits (making a point of each one,
“modding out” by the group action).

A key to understanding the null cone is a duality theory for the group action, which may
be viewed as a non-commutative analog of the duality theory for linear programming. We
will elaborate on this duality theory, essential to our work, in Sections 3 and 4 and only
sketch the essentials here. It is clear that a vector v ∈ V is in the null cone if its capacity
is equal to zero, and so can be “certified” by exhibiting a sequence of group elements gt

such that ‖gt · v‖ approaches zero. How can we “certify” that a vector v ∈ V is not in the
null cone? The capacity formulation means that there must be some fixed δ > 0 such that,
for every element w = g · v in the orbit of v, ‖w‖ ≥ δ. Consider a point w attaining this
minimum distance to 0 (assume it exists). There is a way to write down a non-commutative
analog of the “Lagrange multiplier” conditions giving equations saying essentially that the
derivative of the group action on w in any direction is zero. It turns out that the distance to
satisfying these equations is another, dual optimization problem. In particular, to “certify”
non-membership of v in the null cone, it suffices to exhibit a sequence of group elements gt

such that gt · v approaches distance 0 from satisfying these equations. Again, we give plenty
more detail on that in Sections 3 and 4.

What is remarkable is that in our setting, when G is a product of d groups as above, the
new optimization has the exact same form as the original one we started with – only with a
different function to minimize! Moreover, the set of equations decouples to d subsets, and
optimizing each local one is efficiently computable. In short, this makes our new optimization
problem again amenable to alternating minimization. Further, the conditions that we need to
satisfy may be viewed as “scaling conditions”, which for d = 2 can be shown to be equivalent
to the matrix scaling conditions in the commutative case, and to the operator scaling
conditions in the non-commutative case. Thus, these scaling algorithms in combinatorial
optimization to “doubly stochastic” position naturally arise from general considerations of
duality in geometric invariant theory. We will continue to borrow this name and call a tensor
that satisfies the minimization conditions “d-stochastic”, and we quantify how well a tensor Y
satisfies d-stochasticity by a distance measure denoted ds(Y ). For an input tensor X, we
then seek to compute the minimal distance to d-stochasticity, denoted dds(X), which is the
infimum of ds(Y ) over all Y in the orbit of X (and formally defined in Theorem 6). Thus,
summarizing, with G and V as before Eq. (3), our new, dual optimization problem is

dds(X) := inf
A∈G

ds(A ·X). (4)

In our framework, ds(Y ) has a very simple form. Taking the quantum information theory
view of the the problem (described above in the motivation), the tensor Y captures a quantum
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system of d local parts; then ds(Y ) is simply the total `2-distance squared of the d subsystems
to being maximally mixed (that is, proportional to normalized identity density matrices).

We now proceed to describe our main results: the problems we address, our algorithms
for them, and their complexities. More formal statements of all will appear in the technical
sections.

1.2 Our results
We first describe our technical results and then the conceptual contribution of our paper.

Technical results

We fix G and V as above. While we work over the complex numbers, we will think of an
input tensor X ∈ V as an array of integers (one can consider rational numbers, but this is no
gain in generality) represented in binary. The input size parameters will be the number of
tensor entries n = n0 × n1 × · · · × nd, and the maximum binary length of each entry, which
will be denoted by b. So the total input length may be thought of as nb.

Recall again that we have considered two dual optimization problems11 above for which
the input is X:

cap(X) = inf
A∈G

‖A ·X‖22, dds(X) = inf
A∈G

ds(A ·X). (3,4)

These lead to both exact and approximate computational problems for which we give
new algorithms.

The exact null-cone problem we will consider is to test if the input tensor X is in the null
cone of the group action G. As we discussed, X is in the null cone iff cap(X) = 0 and iff
dds(X) > 0 (!).

We will give two different exponential time algorithms for this problem. We note that
the previous best algorithms (which work in the greater generality of all reductive group
actions) required doubly exponential time! These algorithms may be very useful for the study
of invariants for the actions of “small”, specific groups. We will discuss these algorithms
soon.

The approximate problem we will consider will be to approximate dds(X)12. Our
approximation of dds runs in polynomial time in the input length nb and the (additive)
approximation ε – thus a FPTAS is our main result13, and we state it first.

I Theorem 1 (Main theorem). There is a poly(n, b, 1
ε ) time deterministic algorithm (Al-

gorithm 1) that, given a tensor X ∈ V with integer coordinates of bit size bounded by b, either
identifies that X is in the null cone or outputs a “scaling” Y ∈ G ·X such that ds(Y ) < ε.

11While we do not know of any precise relationship between the value of these optimization problems, the
vanishing behaviour of these two problems, as explained above, is dual to each other.

12One could also consider the same for cap(X), but unlike dds(X), we have no faster algorithm for
approximating cap(X) than computing it exactly.

13 Some readers might object to our use of the term FPTAS for our algorithm since we have an additive
approximation guarantee whereas the term is commonly used for multiplicative guarantees. However,
note that a multiplicative guarantee for either cap(X) or dds(X) will need to determine their vanishing
behaviour. This captures the null-cone problem, a polynomial time algorithm for which is the main open
problem left open by this work. Also note that we don’t have any guarantee on approximating dds(X)
if dds(X) > 0, which is also left as an interesting open problem. However, approximating dds(X) when
it is 0 is more fundamental because of the connection to the null cone.

ITCS 2018
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We present the algorithm right below in Section 3.1 and analyze it in Section 3.2. It is a
realization of the alternating minimization scheme discussed before, and may be viewed as
a scaling algorithm. Indeed, it generalizes the FPTAS given in [11] for d = 2, which is the
operator scaling case. While the analysis is similar in spirit, and borrows many ideas from [11],
we note that for higher dimensions d > 2, the understanding of invariant polynomials was
much poorer. Thus, new ideas are needed, and in particular we give explicit14 generators
(via classical Invariant Theory techniques) of the invariant ring (for all degrees), all of which
have small coefficients, and we bound the running time in a way which is independent of
degree bounds.

Moving to the algorithms for the exact null-cone problem, as discussed, we have two
exponential time ones, improving the known doubly exponential ones.

The first algorithm is a natural instantiation of the FPTAS above, with the right choice
of ε. Specifically, we prove that when if X is not in the null cone, dds(X) ≥ exp(−O(n logn)).
So picking ε = exp(−O(n logn)) suffices. This algorithm is described in Theorem 8.

Our second algorithm is much more general, and applies to the action of a product of
general linear groups on any vector space V , not just the the set of tensors. Here, instead of
giving explicit generators, we simply prove their existence, via Cayley’s famous Omega-process.
Namely, we prove that in this very general case there are always generating invariants which
have both exponential degree and whose coefficients have exponential bit length. These
bounds turns out to be sufficient to carry out our time analysis. The bound on the size of
coefficients is (to the best of our knowledge) a new structural result in Invariant Theory, and
what our analysis demonstrates is its usefulness for solving computational problems.

The corollaries of these main results to specific areas, which we described in some of the
motivation bullets earlier in the introduction, are presented in the different technical sections.

Conceptual contributions

We believe that the general framework we present, namely an algebraic framework of alternat-
ing minimization, establishes an important connection between the fields of optimization and
invariant theory. As we saw, this framework is very general and encompasses many natural
problems in several fields. It exposes the importance of symmetry in many of these problems,
and so invites the use of tools from invariant theory which studies symmetry to the analysis
of algorithms. This is akin to the GCT program, which connects algebraic complexity theory
with invariant theory and representation theory, exposing the importance of using symmetry
to proving lower bounds.

At the same time we expose basic computational problems of invariant theory, which
are in great need of better algorithms and algorithmic techniques from computer science
and optimization to solve them. The advent of operating scaling already pointed out to this
power in their utility of alternate minimization and scaling numerical algorithms to a field in
which most work was symbolic, and we expand on this theme in this paper. But there are
many other optimization methods which can be useful there, and we note only one other
example, that may in particular be useful for the very null-cone problem we study. While
the problem of capacity optimization is not convex under the usual Euclidean metric, it is
actually geodesically convex [24, 35, 45] if one moves to the natural (hyperbolic) metric on the
group. This opens up this problem (and related ones) to avenues of attack from techniques
of classical optimization (gradient and other descent methods, interior point methods, etc.)

14The generators are explicitly defined but may not be efficiently computable by algebraic circuits.
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when generalized and adapted to such metrics. We believe that the area of geodesic convex
optimization, which itself in its nascent stages (from an algorithmic standpoint), is likely to
have a significant impact on algorithmic invariant theory. See more on algorithmic techniques
for geodesic convexity in the work of [47] and the references therein.

2 Null-cone problem as an optimization problem

In the introduction, we defined the null cone as the set of tensors X such that the zero
vector 0 ∈ V lies in the orbit closure G ·X, i.e., there exists a sequence of group elements
A(1), A(2), . . . sending the vector to zero, limj→∞A(j) ·X = 0. Thus the null-cone problem
amounts to the optimization problem (3): A tensor X ∈ V = Ten(n0, n1, . . . , nd) is in the
null cone if and only if the capacity is equal to zero, namely:

cap(X) = inf
A∈G

‖A ·X‖22 = min
Y ∈G·X

‖Y ‖22 = 0.

I Remark. We are denoting the above optimization problem by cap(X), short for capacity,
to remain consistent with similar notions defined in previous papers like [16, 14, 15, 11]. In
most of these cases, the capacity notion that they consider is also looking at the optimization
problem: “minimum `2-norm in an orbit closure” for specific group actions. As phrased
in these papers, they might look different (e.g., they involve determinants in place of `2
norms) but there is a tight connection between the two via the AM-GM inequality (i.e.,
the inequality of arithmetic and geometric means) in one direction and a single alternating
minimization step in the other direction.

A fundamental theorem of Hilbert [19] and Mumford [34] gives an alternative characteriz-
ation of the null cone. It states that the null cone is precisely the set of tensors X on which
all invariant polynomials P (without constant term) vanish. This is the starting point to the
field of Geometric Invariant Theory.

It is instructive to see why P (X) = 0 must hold for any tensor X in the null cone: Since
P is G-invariant, P (Y ) = P (X) for all Y in the G-orbit of X, and, by continuity, also for all
Y in the closure of the orbit. If the tensor X is in the null cone, then Y = 0 ∈ V is in its
closure. But then P (X) = P (0) = 0, since the polynomial P has no constant term. In [6]
we derive a more subtle, quantitative version of this observation. It will be a fundamental
ingredient to the analysis of our algorithm.

Since the group G = SL(n1) × · · · × SL(nd) consists of tuples A = (A1, . . . , Ad), an
alternating minimization algorithm suggests itself for solving the optimization problem
cap(X): Fix an index i ∈ [d] and optimize only over a single Ai, leaving the (Aj)j 6=i

unchanged. This gives rise to an optimization problem of the following form:

inf
AS∈SL(nS)

‖(AS ⊗ InT
) · Y ‖22

Here nS = ni, nT =
∏

j 6=i nj and Y = A ·X. This optimization problem has a closed form
solution in terms of the following quantum mechanic analog of the marginals of a probability
distribution:

I Definition 2 (Quantum marginal). Given a matrix ρ acting on HS⊗HT , where HS and HT

are Hilbert spaces of dimensions nS and nT , respectively (e.g., HS = CnS and HT = CnT ).
Then there is a unique matrix ρS acting on HS , called the quantum marginal (or reduced
density matrix) of S, such that

tr [(MS ⊗ IT ) ρ] = tr [MSρS ] (5)

for every MS acting on HS .
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This point of view gives rise to an important interpretation of our result [6].
It can be easily seen that if ρ is positive semidefinite (PSD) then ρS is PSD, and that it

has the same trace as ρ. It is given by the following explicit formula

ρS =
nT∑

k=1
(IS ⊗ ek)† ρ (IS ⊗ ek) .

Here the ek’s are the elementary column vectors of dimension nT .
Now observe that

‖(AS ⊗ IT ) · Y ‖22 = tr
[(
A†SAS ⊗ IT

)
Y Y †

]
.

Let ρi be the partial trace of ρ = Y Y † obtained by tracing out all the Hilbert spaces except
the ith one, and rename Ai = AS . Then, using Eq. (5),

tr
[(
A†SAS ⊗ I

)
Y Y †

]
= tr

[
A†iAiρi

]
.

Hence we are left with the optimization problem:

inf
Ai∈SL(ni)

tr
[
AiA

†
iρi

]
. (6)

We can see by the AM-GM inequality that the optimum of the program (6) is ni det(ρi)1/ni ,
which is achieved for Ai = det(ρi)1/2niρ

−1/2
i (if ρi is not invertible then we define the inverse

on the support of ρi; the infimum will at any rate be zero).
We thus obtain the core of an alternating minimization algorithm for the capacity cap(X).

At each step t, select an index i ∈ [d], compute the quantum marginal ρi of the current
tensor X(t), and update by performing the following scaling step:

X(t+1) ← det(ρi)1/2niρ
−1/2
i ·X(t). (7)

Here and in the following we use the abbreviation

Ai · Y := (In0 ⊗ In1 ⊗ . . .⊗ Ini−1 ⊗Ai ⊗ Ini+1 ⊗ . . .⊗ Ind
) · Y,

where we act nontrivially on the i-th tensor factor only.
We will analyze essentially this algorithm, augmented by an appropriate method for

selecting the index i at each step and a stopping criterion (see Algorithm 1 in the next
section).

3 Noncommutative duality and the tensor scaling algorithm

To obtain a scaling algorithm with rigorous guarantees, we will now derive a dual formulation
of the optimization problem cap(X). This will achieved by a theorem from Geometric Invari-
ant Theory, due to Kempf and Ness, which can be understood as part of a noncommutative
duality theory.

We briefly return to the setting of a general action of a group G on a vector space V
to explain this result. Fix a vector v ∈ V and consider the function fv(g) := ‖g · v‖22. The
moment map at v, µ(v), measures how much fv(g) changes when we perturb g around the
identity. So µ(v) is just the derivative of the function fv(g) at the identity element (in a
precise sense which we do not need to define here). Now suppose v is not in the null cone.
Then there exists a nonzero vector w ∈ G · v of minimal norm in the orbit closure. Since
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the norm is minimal, perturbing w by the action of group elements g close to the identity
element does not change the norm to first order. Hence µ(w) = 0. To summarize, if v is not
in the null cone, then there exists 0 6= w ∈ G · v such that µ(w) = 0. This condition can be
understood as a vast generalization of the notion of “doubly stochastic”, which one might be
tempted to call “G-stochastic”.

A remarkable theorem due to Kempf and Ness [24] asserts that this is not only a necessary
but in fact also sufficient condition, i.e., v is not in the null cone if and only if there exists
0 6= w ∈ G · v such that µ(w) = 0. This is a duality theorem and (along with the Hilbert-
Mumford criterion discussed below) should be thought of as a non-commutative version of
linear programming duality, which arises when the group G is commutative (see Section 3
below, [40], and [6]). For a detailed discussion of moment maps, we refer the reader to [45, 42].

We now return to our setting where G = SL(n1) × · · · × SL(nd) acts on tensors in
V = Ten(n0, n1, . . . , nd). We first define the notion of a scaling and then instantiate the
Kempf-Ness theorem in the situation at hand:

I Definition 3 (Scaling). A tensor Y ∈ Ten(n0, n1, . . . , nd) is called a (tensor) scaling of
X ∈ Ten(n0, n1 . . . , nd) if Y ∈ G ·X.

This notion of scaling generalizes the notions of operator scaling [14, 11] and matrix
scaling [38]. It is immediate from the definition of the capacity that a tensor X is in the null
cone if and only if any of its scalings Y lies in the null cone.

We now state the Kempf-Ness theorem for tensors:

I Theorem 4 (Duality, special case of [24]). A tensor X ∈ Ten(n0, . . . , nd) is not in the null
cone if and only if there exists Y ∈ G ·X such that the quantum marginals ρ1, . . . , ρd of
ρ = Y Y †/Y †Y of the last d tensor factors are given by ρi = Ini

/ni.

We note that the trace of ρ = Y Y †/Y †Y is one. This normalization is very natural from
the quantum viewpoint. In quantum theory, PSD matrices of unit trace describe quantum
states of multi-partite systems and the quantum marginals describe the state of subsystems.
The condition that ρi is proportional to the identity means that the state of the kth subsystem
is maximally mixed or, for ρ as above, that the kth system is maximally entangled with the
rest. We discuss applications of our result to quantum information theory in [6].

The condition that each ρi is proportional to the identity matrix generalizes the notion of
“doubly stochastic”, which arises in the study of the left-right action/operator scaling [14, 11].
We will refer to it as “d-stochastic”, which we define formally below.

I Definition 5 (d-stochastic). A tensor Y ∈ Ten(n0, . . . , nd) is called d-stochastic if the
quantum marginals of ρ = Y Y †/Y †Y of the last d tensor factors are given by ρi = Ini

/ni

for i ∈ [d].

More explicitly, we can state the condition that ρi = Ini
/ni as follows: We want

that the slices of the tensor Y in the kth direction are pairwise orthogonal and that their
norm squares are equal to 1/ni. That is, for each i ∈ [d] consider the order d tensors
Y (1), . . . , Y (ni) ∈ Ten(n0, . . . , ni−1, ni+1, . . . , nd) defined as

Y (j)(j0, . . . , ji−1, ji+1, . . . , jd) := Y (j0, . . . , ji−1, j, ji+1, . . . , jd);

then the following should hold:

〈Y (j), Y (j′)〉 = 1
ni
δj,j′ .
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Here δi,j is the Kronecker delta function and the inner product is the Euclidean inner product
of tensors.

Theorem 4 implies that X is not in the null cone if and only if we can find scalings Y
whose last d quantum marginals are arbitrarily close to Ini

/ni. We can therefore rephrase
the null-cone problem as another, dual optimization problem, where we seek to minimize
the distance of the marginals to being maximally mixed. This is captured by the following
definitions:

I Definition 6 (Distance to d-stochasticity). Let Y ∈ Ten(n0, n1, . . . , nd) be a tensor and
ρ = Y Y †/Y †Y , with quantum marginals ρ1, . . . , ρd on the last d systems. Then we define
the distance to d-stochasticity ds(Y ) as the (squared) distance between the marginals and
d-stochastic marginals,

ds(Y ) :=
d∑

i=1

∥∥∥∥ρi −
Ini

ni

∥∥∥∥2

F

,

where ‖M‖F := (trM†M)1/2 is the Frobenius norm. Following Eq. (4), we further define
the minimal distance to d-stochasticity as

dds(X) := inf
A∈G

ds(A ·X).

Using this language, Theorem 4 states that X is in the null cone if and only if the
minimal distance to d-stochasticity is nonzero. We summarize the duality between the two
optimization problems:

X is in the null cone ⇐⇒ cap(X) = 0 ⇐⇒ dds(X) > 0 (8)

I Remark. According to Eq. (8), for any tensor X exactly one of the following two statements
is true: X is in the null cone (cap(X) = 0) or its orbit closure contains a d-stochastic
tensor (dds(X) = 0). Such dichotomies are well-known from the duality theory of linear
programming (Farkas’ lemma, Gordan’s lemma, the duality between membership in a convex
hull and the existence of separating hyperplanes, etc.). In the case of the (commutative)
group of diagonal matrices, one recovers precisely these linear programming dualities from
the general noncommutative framework.

3.1 The tensor scaling algorithm
If X is not in the null cone then there exist scalings Y such that ds(Y ) is arbitrarily small.
The main technical result of this paper is an algorithm that finds such scalings for any
fixed ε > 0. It is a generalization of the results obtained for matrix and operator scaling
in [30, 16, 14, 11]. Recall that we use n to denote the total number of coordinates of the
tensor, n = n0 · · ·nd.

I Theorem 7. Let X ∈ Ten(n0, . . . , nd) be a (nonzero) tensor whose entries are integers
of bitsize no more than b. Let ` = mini≥1 ni and suppose that ε ≤ d/(maxi≥1 n

2
i ). Then

Algorithm 1 with T ≥ 18 ln 2
`ε d (b+ logn) iterations either identifies that X is in the null cone

or outputs a scaling Y ∈ G ·X such that ds(Y ) ≤ ε.

To motivate Algorithm 1, note that, for every i ∈ [d], we would like the quantum marginal
of the ith system to be proportional to the identity matrix. Suppose the quantum marginal on
the ith system is ρi. Then by acting on this system by any Ai ∈ SL(ni) proportional to ρ−1/2

i
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Algorithm 1 Scaling algorithm for the null-cone problem.
Input: A tensor X in Ten(n0, n1, . . . , nd) with integer entries (specified as a list of entries,
each encoded in binary, with bit size ≤ b).
Output: Either the algorithm correctly identifies that X is in the null cone, or it outputs a
scaling Y of X such that ds(Y ) ≤ ε.
Algorithm:
1. If any of the quantum marginals of X is singular, then output that the tensor X is in the

null cone and return. Otherwise set Y (1) = X and proceed to step 2.
2. For t = 1, . . . , T = poly(n, b, 1/ε), repeat the following:

Compute the quantum marginals ρi of Y (t)Y (t),†/Y (t),†Y (t) and find the index i ∈ [d]
for which

∥∥∥ρi −
Ini

ni

∥∥∥2

F
is largest. If

∥∥∥ρi −
Ini

ni

∥∥∥2

F
< ε/d, output Y (t) and return.

Otherwise, set Y (t+1) ← det(ρi)1/2niρ
−1/2
i · Y (t).

3. Output that the tensor X is in the null cone.

we can precisely arrange for the quantum marginal on ith system to be proportional to the
identity matrix15. (But this might disturb the quantum marginals on the other systems!) An
appropriate choice of Ai that ensures that it has determinant one is Ai = det(ρi)1/2niρ

−1/2
i .

Thus we find that the alternating minimization heuristics in Eq. (7) that we previously derived
for cap(X) is equally natural from the perspective of the dual problem of minimizing dds(X)!
Remarkably, iterating this operation in an appropriate order of subsystems i does ensure
that all the quantum marginals get arbitrarily close to the normalized identity matrices
– provided that X is not in the null cone. (If X is in the null cone, then it will lead to a
sequence of scalings of norm arbitrarily close to zero, certifying that X is in the null cone.)
I Remark (Rational Entries). Notice that we required our input tensor X to have integer
entries. In general, an input tensor X could have rational entries. If this is the case, we
can simply multiply X by the denominators to obtain an integral tensor X ′, on which we
can then apply our algorithm above. Since multiplying a tensor by a nonzero number does
not change the property of being in the null cone, our algorithm will still be correct. The
following remarks discuss the changes in bit complexity of our algorithm. In this case, the
size of X ′ is at most b · n, and and therefore the bound for the number of iterations T is still
poly(n, b, 1/ε), as we wanted.

When analyzing bit complexity, Algorithm 1 is not directly applicable, since it computes
inverse square roots of matrices. Even if the entries of the square roots were always rational,
the algorithm would also iteratively multiply rationals with very high bit complexity. We
can handle these numerical issues by truncating the entries of the scalings Y (t) of X, as well
as the quantum marginals ρk, to poly(n, b, 1

ε ) many bits after the decimal point. Then, in
a similar way as done in [14, 11], we can prove that there is essentially no change in the
convergence required in the number of iterations T . Since each arithmetic operation will
be done with numbers of poly(n, b, 1

ε ) many bits, this truncation ensures that we run in
polynomial time. As a consequence, we obtain our main theorem, which we had already
announced in the introduction:

I Theorem 1 (Main theorem). There is a poly(n, b, 1
ε ) time deterministic algorithm (Al-

gorithm 1) that, given a tensor X ∈ V with integer coordinates of bit size bounded by b, either
identifies that X is in the null cone or outputs a “scaling” Y ∈ G ·X such that ds(Y ) < ε.

15 It is not hard to see that if X is not in the null cone then ρi is invertible [6]
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We remark that for d = 2, our algorithm in essence reduces to the algorithm of [16, 14,
15, 11]; for n0 = 1, it refines the algorithm proposed previously in [41] without a complexity
analysis. Indeed, Theorem 1 is a generalization of the main theorem of [11] on operator
scaling (or the left-right action). There it was enough to take ε = 1/n to be sure that the
starting tensor is not in the null cone.

In our much more general setting it is still true that there exists some ε = ε(n) > 0 such
that ds(Y ) > ε for any Y in the null cone. Unfortunately, in our general setting, ε will be
exponentially small (see Theorem 16 in the next section). Therefore, Theorem 1 with this
choice of ε gives an exponential time algorithm for deciding the null-cone problem:

I Theorem 8 (Null-cone problem). There is a poly(b) exp(O(n logn)) time deterministic al-
gorithm (Algorithm 1 with ε = exp(−O(n logn))) that, given a tensor X ∈ Ten(n0, n1, . . . , nd)
with integer coordinates of bit size at most b, decides whether X is in the null cone.

Thus our algorithm does not solve the null-cone problem in polynomial time for general
tensor actions, and this remains an excellent open question!

Nevertheless, Theorem 1 as such, with its promise that ds(Y ) < ε, is of interest beyond
merely solving the null-cone problem. It has applications to quantitative notions of instability
in geometric invariant theory, to a form of multipartite entanglement distillation in quantum
information theory, and to questions about the slice rank of tensors, which underpinned
recent breakthroughs in additive combinatorics. We discuss these in Section 4 and [6].

3.2 Analysis sketch
To analyze our algorithm and prove Theorem 7, we follow a three-step argument similar to
the analysis of the algorithms for matrix scaling and operator scaling in [30, 14, 11] once we
have identified the appropriate potential function and distance measure. In the following we
sketch the main ideas and we refer to [6] for all technical details.

As potential function, we will use the norm squared of the tensor, denoted f(Y ) = ‖Y ‖22,
and the distance measure is ds(Y ) defined above in Theorem 6. Note that these the two
functions are exactly dual to each other in our noncommutative optimization framework (see
Eqs. (3), (4) and (8))!

The following two properties of the capacity will be crucial for the analysis:
A. cap(X) ≥ 1/(n1 · · ·nd)2 if X ∈ Ten(n0, . . . , nd) is a tensor with integral entries that is

not in the null cone ([6]).
B. cap(X) is invariant under the action of the group SL(n1)× · · · × SL(nd).
Using the above properties, a three-step analysis follows the following outline:
1. An upper bound on f(Y (1)) = f(X) from the input size.
2. As long as ds(Y ) ≥ ε, the norm squared decreases by a factor 2− `ε

6d ln 2 in each iteration:
f(Y (t+1)) ≤ 2− `ε

6d ln 2 f(Y (t)), where we recall that ` = mini≥1 ni.
3. A lower bound on f(Y (t)) for all t. This follows from properties A and B above.
The above three steps imply that we must achieve ds(Y (t)) < ε for some t ∈ [T ].

Step 1 is immediate and step 2 follows from the G-invariance of the capacity (property
B) and a quantative form the AM-GM inequality.

Step 3, or rather the lower bound on cap(X) (property A) is the technically most
challenging part of the proof. It is achieved by quantifying the basic argument given
on p. 9. The main tool required to carry out this analysis is the existence of a set of
invariant polynomials with “small” integer coefficients that spans the space of invariant
polynomials. We do so by giving an “explicit” construction of such a set via Schur-Weyl
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duality [6]. Remarkably, we do not need to use the known exponential bounds on the degree
of generating invariants in [10].

We give an alternative lower bound on cap(X) using Cayley’s Omega-process in [6]. This
proof is more general (it applies to arbitrary actions of product of SL’s) but gives a weaker
bound (although sufficient to yield a polynomial time analysis for the algorithm). Here we do
need to rely on recent exponential bounds on the degree of generating invariants by Derksen.

The size of the integer coefficients of a spanning set of invariant polynomials is an
interesting invariant theoretic quantity that appears to not have been studied in the invariant
theory literature. It is crucial for our analysis, and we believe it could be of independent
interest in computational invariant theory.

4 Hilbert-Mumford criterion and quantifying instability

In this section, we explain a special case of the Hilbert-Mumford criterion, which allows us to
characterize tensors that lie in the null cone in terms of simple, one-dimensional subgroups
of our group SL(n1)× · · · × SL(nd). Moreover, we define the instability (Theorem 11), which
quantifies how fast a tensor in the null cone can be sent to the zero vector 0 ∈ V by the
group action. The instability is an important quantity in invariant theory and we present an
algorithm for the (0, ε)-gap problem (Theorem 15).

We again consider briefly the general setting of a group G acting on a vector space V .
We know from Section 2 that a vector is in the null cone if and only if its orbit closure
contains the zero vector, 0 ∈ G · v. The Hilbert-Mumford criterion [19, 34] shows that it
suffices to consider certain one-dimensional (and hence in particular commutative) subgroups
of G. More precisely, recall that a one-parameter subgroup (1-PSG) of G is an algebraic
group homomorphism λ : C∗ → G, i.e., an algebraic map that satisfies λ(zw) = λ(z)λ(w).
(For example, any 1-PSG of C∗ is of the form z 7→ zk for some integer k.) Then the
Hilbert-Mumford criterion states that a vector v is in the null cone if and only if there exists
a 1-PSG λ of G such that limz→0 λ(z) · v = 0.

A familiar example appears when the group G = SL(n) acts by left multiplication on
a single matrix X. In this case, the null cone consists of the singular matrices and the
Hilbert-Mumford criterion tells us that if X is singular, then there is a 1-PSG given by
λ(z) = B−1 diag(za1 , . . . , zan)B which drives X to zero. It is easy to see that in this case
such one-parameter subgroup can be found by taking B to be a matrix in SL(n) which makes
X upper triangular (through row eliminations and permutations) with its last row being all
zeros, and that the exponents ai can be taken such that a1 = · · · = an−1 = 1 and an = 1− n.

We now return to our setup, where G = SL(n1)× · · · × SL(nd). Here any 1-PSG λ is of
the following form:

λ(z) =
(
B−1

1 diag(za1,1 , . . . , za1,n1 )B1, . . . , B
−1
d diag(zad,1 , . . . , zad,nd )Bd

)
, (9)

where B1, . . . , Bd are invertible matrices (Bi of dimension ni × ni) and (ai,j) is a tuple of
integers in

Γ :=
{

(ai,j)i∈[d],j∈[ni]
∣∣ ai,j ∈ Z,

ni∑
j=1

ai,j = 0 for i ∈ [d]
}
. (10)

Intuitively, the matrices Bi are a change of basis after which the action of G becomes reduced
to an action of diagonal groups (similar to actions arising in the study of the classical matrix
or tensor scalings).
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We want to understand what it means for a 1-PSG λ and a tensorX that limz→0 λ(z)·X =
0. For this, we write the tensor in the basis corresponding to B = (B1, . . . , Bd), i.e., Y = B ·X.
We define the support of Y as

supp(Y ) :=
{

(j1, . . . , jd) ∈ [n1]× · · · × [nd]
∣∣ ∃j0 s.t. Yj0,j1,...,jd

6= 0
}
.

Thus (j1, . . . , jd) is in the support of Y iff at least one of the slices Y (i) in the 0th direction
of the tensor Y has a nonzero entry at this position. Now note that

(B · λ(z) ·X)j0,j1...,jd
= z
∑d

i=1
ai,jiYj0,j1,...,jd

. (11)

It follows that limz→0 λ(z) ·X = 0 is equivalent to the support supp(Y ) being deficient in
the following sense:

I Definition 9 (Deficiency). We call a subset S ⊆ [n1]× · · · × [nd] deficient if there exists
(ai,j) ∈ Γ such that ∀ (j1, . . . , jd) ∈ S

∑d
i=1 ai,ji

> 0.

We note that in the case d = 2, a subset S ⊆ [n]× [n] is deficient if and only if the bipartite
graph corresponding to S does not admit a perfect matching, as can be proved via Hall’s
matching theorem. For d > 2, we do not know of such a clean combinatorial characterization,
although the characterization above is by a linear program, and therefore is efficiently testable.

In the Hilbert-Mumford criterion, one can do slightly better, namely restrict attention to
the one-parameter subgroups compatible with a maximally compact subgroup of the group
G. What this means in our case is that we will be able to take the matrices B1, . . . , Bd

to be unitary matrices (see Theorem 12)! We can thus summarize the statement of the
Hilbert-Mumford criterion as follows:

I Proposition 10 (Special case of [19, 34]). A tensor X ∈ Ten(n0, . . . , nd) is in the null cone
of the natural action of the group G = SL(n1)× · · · × SL(nd) iff there exist unitary ni × ni

matrices Ui, i ∈ [d], such that the support supp(Y ) of the tensor Y = (U1, . . . , Ud) · X is
deficient.

For completeness, we provide a proof of the criterion in [6].
I Remark. Deficiency can also be understood in terms of the null cone of the action of the
subgroup T ⊆ SL(n1)× · · ·×SL(nd) formed by tuples of diagonal matrices. Indeed, when we
fixed B but varied the ai,j , we were precisely varying over the 1-PSGs of T . Thus, a tensor
Y ∈ Ten(n1, . . . , nd) is in the null cone for the action of the diagonal subgroup if and only if
supp(Y ) is deficient. (This follows from the Hilbert-Mumford criterion for the commutative
group T , or directly from Farkas’ lemma.) Thus Proposition 10 is a special case of a general
reduction principle in geometric invariant theory, from actions of non-commutative groups to
commutative groups up to a basis change.

In geometric invariant theory [34], vectors in the null cone are also referred to as unstable.
The Hilbert-Mumford criterion suggests a natural way of quantifying the instability of a
vector: instead of merely asking whether there exists a 1-PSG that sends the vector to zero,
we may measure the (suitably normalized) rate at which the vector is sent to zero in Eq. (11).
This rate, also known as Mumford’s numerical function, takes the following form for the
tensor action that we are studying:

I Definition 11 (Deficiency, instability). Given a set S ⊆ [n1] × · · · × [nd], we define its
deficiency as

def(S) := max
(ai,j)∈Γ

min(j1,...,jd)∈S

(∑d
i=1 ai,ji

)
√∑d

i=1
∑ni

j=1 a
2
i,j

.



P. Bürgisser, A. Garg, R. Oliveira, M. Walter, and A. Wigderson 24:17

where we recall that the set Γ was defined in Eq. (10). We then define the instability of a
tensor X ∈ Ten(n0, . . . , nd) by

instability(X) := max
U=(U1,...,Ud) tuple
of unitary matrices

def(supp(U ·X)),

The instability can also be defined using general invertible matrices:

I Lemma 12. For any X ∈ Ten(n0, . . . , nd), we have that

instability(X) = max
B=(B1,...,Bd) tuple

of invertible matrices

def(supp(B ·X)).

In particular, X 7→ instability(X) is a G-invariant function.

In our case, this follows from the QR decomposition, and we give a succinct proof in [6].
Clearly, a subset S is deficient if and only if its deficiency is positive, def(S) > 0. And by
the Hilbert-Mumford criterion, a tensor X is in the null cone if and only if its instability is
positive, instability(X) > 0. This suggests a natural relaxation of the null-cone problem:

I Problem 13. For ε > 0, the problem ε-instability is defined as follows: Given a tensor
X ∈ Ten(n0, . . . , nd) with integer coordinates such that either
1. X is not in the null cone (i.e., instability(X) ≤ 0), or
2. instability(X) ≥ ε,
decide which is the case.

We will now show that the ε-instability problem can be solved as a consequence of our
main Theorem 1. Importantly, the instability of a tensor is tightly connected to the distance
from d-stochasticity, as defined in Theorem 6.

I Lemma 14 (Special case of [35, Lemma 3.1, (iv)]). For all tensors X ∈ Ten(n0, . . . , nd),
instability(X) ≤

√
dds(X).

In fact, the inequality in Theorem 14 is tight for tensors in the null cone (e.g., [13, Corollary
11.2]), but we will not need this here (if X is not in the null cone then instability(X) ≤ 0
while ds(X) = 0). We obtain the following corollary of Theorem 1.

I Theorem 15. There is poly
(
n, b, 1

ε

)
time deterministic algorithm (Algorithm 1) for the

ε-instability problem (Problem 13) for tensors with entries of bit size bounded by b.

The algorithm is obtained by running Algorithm 1 and outputting “X is not in the
null cone” if Algorithm 1 produces a scaling Y with ds(Y ) < ε and otherwise outputting
“instability(X) ≥ ε”.

Thus ε-instability can be decided efficiently if ε = Ω(1/ poly(n)). Unfortunately, there
may well exist tensors X which are in the null cone and whose instability is exponentially
small. However, the instability cannot be worse than exponentially small, as we prove in [6]:

I Lemma 16. Suppose a tensor X ∈ Ten(n0, . . . , nd) is in the null cone. Then
√

dds(X) ≥
instability(X) = exp(−O(n logn)), where we recall that n = n0 · · ·nd.

This begs the question: are there natural examples where we can apply the above
algorithm in Theorem 15? One set of examples comes from the notion of slice rank of tensors
– discovered and widely used in the recent breakthroughs in additive combinatorics regarding
cap sets and other combinatorial objects (see, e.g., [3]). We discuss this in [6].
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5 Conclusion and open problems

This paper continues the recent line of works studying the computational complexity of
problems in invariant theory [31, 11, 21, 22, 20, 5, 32, 1]. There are many beautiful algorithms
known in invariant theory [9, 39], but most of them come without a complexity analysis
or will have at least exponential runtime. Designing efficient algorithms for problems in
invariant theory is important for the GCT program [31, 32], and we believe that viewing
invariant theory from the computational lens will provide significant new structural insights.
Several open problems arise from this work. We mention the most interesting ones:
1. Is there a polynomial time algorithm for deciding the null-cone problem for the tensor

actions that we study? It would suffice to give an analog of the algorithm in Theorem 1 with
running time poly(n, b, log(1/ε)). One might wonder if known optimization techniques are
sufficient to yield this runtime guarantee. While the optimization problem in Eq. (3) is not
convex, it is nevertheless known to be geodesically convex [24, 35, 45] (roughly speaking
one needs to move from the usual Euclidean geometry to the geometry of the group to
witness convexity). The theory of geodesically convex optimization is just starting to
emerge (see, e.g., [47] and the references therein) and it is an open problem whether there
are computationally efficient analogs of the ellipsoid algorithm and interior point methods
(algorithms that in Euclidean convex optimization guarantee poly(log(1/ε)) runtime).

2. Is there a polynomial time algorithm for the null-cone problem for more general group
actions? As mentioned before, there is a natural notion of “G-stochasticity” using moment
maps provided by the noncommutative duality theory. A first important goal is to design
an algorithm that achieves the analog of our Theorem 1 (i.e., getting to a point in the
orbit where the “distance” to satisfying G-stochasticity is at most ε). While it is not
clear how far the alternating minimization approach can be taken, Kirwan’s gradient
flow [25] seems to be a promising alternative first proposed in [43, 42].

3. Is there a polynomial time algorithm for the one-body quantum marginal problems
described in [6]? There is a natural scaling algorithm generalizing Algorithm 1 but it
has so far evaded analysis. Even obtaining a polynomial time algorithm for a promise
problem along the lines of Theorem 1 would be rather interesting.
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