
On the Parameterized Complexity of Contraction
to Generalization of Trees∗

Akanksha Agrawal1, Saket Saurabh2, and Prafullkumar Tale3

1 Department of Informatics, University of Bergen, Bergen, Norway
akanksha.agrawal@uib.no

2 Department of Informatics, University of Bergen, Bergen, Norway and
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.re.in

3 The Institute of Mathematical Sciences, HBNI, Chennai, India
pptale@imsc.res.in

Abstract
For a family of graphs F , the F-Contraction problem takes as an input a graph G and
an integer k, and the goal is to decide if there exists S ⊆ E(G) of size at most k such that
G/S belongs to F . Here, G/S is the graph obtained from G by contracting all the edges in S.
Heggernes et al. [Algorithmica (2014)] were the first to study edge contraction problems in the
realm of Parameterized Complexity. They studied F-Contraction when F is a simple family
of graphs such as trees and paths. In this paper, we study the F-Contraction problem, where
F generalizes the family of trees. In particular, we define this generalization in a “parameterized
way”. Let T` be the family of graphs such that each graph in T` can be made into a tree by
deleting at most ` edges. Thus, the problem we study is T`-Contraction. We design an FPT
algorithm for T`-Contraction running in time O((2

√
` + 2)O(k+`) · nO(1)). Furthermore, we

show that the problem does not admit a polynomial kernel when parameterized by k. Inspired
by the negative result for the kernelization, we design a lossy kernel for T`-Contraction of size
O([k(k + 2`)](d

α
α−1 e+1)).

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Graph Contraction, Fixed Parameter Tractability, Graph Algorithms,
Generalization of Trees

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.1

1 Introduction

Graph editing problems are one of the central problems in graph theory that have been
extensively studied in the realm of Parameterized Complexity. Some of the important graph
editing operations are vertex deletion, edge deletion, edge addition, and edge contraction. For
a family of graphs F , the F -Editing problem takes as an input a graph G and an integer k,
and the goal is to decide whether or not we can obtain a graph in F by applying at most k edit
operations on G. In fact, the F-Editing problem, where the edit operations are restricted
to one of vertex deletion, edge deletion, edge addition, or edge contraction have also received
a lot of attention in Parameterized Complexity. When we restrict the operations to only
deletion operation (vertex/edge deletion) then the corresponding problem is called F -Vertex

∗ A full paper containing all the proofs and explanations can be found at https://arxiv.org/abs/1708.
00622

© Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 1; pp. 1:1–1:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.1
https://arxiv.org/abs/1708.00622
https://arxiv.org/abs/1708.00622
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Contraction to Generalization of Trees

(Edge) Deletion problem. On the other hand if we only allow edge contraction then the
corresponding problem is called F-Contraction. The F-Editing problem generalizes
several NP-hard problems such as Vertex Cover, Feedback vertex set, Planar
F-Deletion, Interval Vertex Deletion, Chordal Vertex Deletion, Odd cycle
transversal, Edge Bipartization, Tree Contraction, Path Contraction, Split
Contraction, Clique Contraction, etc. Most of the studies in the Parameterized
Complexity or the classical Complexity Theory have been restricted to combination of
vertex deletion, edge deletion or edge addition. Only recently, edge contraction as an
edit operation has started to gain attention in the realm of Parameterized Complexity.
In this paper, we add another family of graphs F – a parameterized generalization of
trees – such that F-Contraction is fixed parameter tractable (FPT). We also explore
the problem from the viewpoints of Kernelization Complexity as well as its new avatar the
Lossy Kernelization. For more details on Parameterized Complexity we refer to the books of
Downey and Fellows [11, 12], Flum and Grohe [13], Niedermeier [21], and Cygan et al. [8].

Our starting point is the result of Heggernes et al. [17] who studied F-Contraction
when F is the family of paths (P) and trees (T). To the best of our knowledge these were
the first results concerning Parameterized Complexity of F-Contraction problems. They
showed that P-Contraction and T-Contraction are FPT. Furthermore, they showed that
T-Contraction does not admit a polynomial kernel. On the other hand P-Contraction
admits a polynomial kernel with at most 5k + 3 vertices (see [18] for an improved bound
of 3k + 4 on the number of vertices). Moreover, F-Contraction is not FPT(unless some
unlikely collapse in Parameterized Complexity happens) even for simple family of graphs
such as Pt-free graphs for some t ≥ 5, the family of Ct-free graphs for some t ≥ 4 [6, 19], and
the family of split graphs [2]. Here, Pt and Ct denotes the path and cycle on t vertices. In
light of these mixed answers, two natural questions are:
1. What additional parameter we can associate with T-Contraction such that it admits a

polynomial kernel?
2. What additional parameter we can associate with T-Contraction such that an FPT al-

gorithm with combination of these parameterizations leads to an algorithm that generalizes
the FPT algorithm on trees?

In our earlier paper (a superset of authors) we addressed the first question [1]. In particular
we studied F-Contraction, where F is the family of trees with at most ` leaves (together
with some other problems), and designed a polynomial kernel (hence an FPT algorithm) with
O(k`) vertices. This was complimented by a matching kernel lower bound result. In this
paper we focus on the second question.

Our Problem and Results. To define our problem formally let us define T` to be the family
of graphs such that each graph in T` can be made into a tree by deleting at most ` edges.
Thus the problem we study will be called T`-Contraction.

T`-Contraction Parameter: k

Input: A graph G and an integer k.
Question: Does there exist S ⊆ E(G) of size at most k such that G/S ∈ T`?

Observe that for ` = 0, T`-Contraction is the usual T-Contraction. We design
an FPT algorithm for T`-Contraction running in time O((2

√
`+ 2)O(k+`) · nO(1)). Our

algorithm follows the general approach of Heggernes et al. [17] for designing the algorithm for
T-Contraction. Also, we show that the problem does not admit a polynomial kernel, when
parameterized by k, for any (fixed) ` ∈ N. Inspired by the negative result on kernelization,
we design a lossy kernel for T`-Contraction.

A. Agrawal, S. Saurabh, and P. Tale 1:3

Related Works. For several families of graphs F , early papers by Watanabe et al. [22, 23]
and Asano and Hirata [3] showed that F-Contraction is NP-complete. From the viewpoint
of Parameterized Complexity these problems exhibit properties that are quite different
from the problems where the edit operations are restricted to deleting or adding vertices
or edges. For instance, deleting k edges from a graph such that the resulting graph is
a tree is polynomial time solvable. On the other hand, Asano and Hirata showed that
T-Contraction is NP-hard [3]. Furthermore, a well-known result by Cai [5] states that
when F is a hereditary family of graphs with a finite set of forbidden induced subgraphs then
the graph modification problem defined by F and the edit operations restricted to vertex
deletion, edge deletion, or edge addition admits an FPT algorithm. Moreover, this result
does not hold when the edit operation is edge contraction. Lokshtanov et al. [19] and Cai
and Guo [6] independently showed that if F is either the family of P`-free graphs for some
` ≥ 5 or the family of C`-free graphs for some ` ≥ 4 then F-Contraction is W[2]-hard.
Golovach et al. [14] proved that if F is the family of planar graphs then F-Contraction is
FPT. Belmonte et al. [4] proved that the problem is FPT for F being the family of degree
constrained graphs like bounded degree, (constant) degenerate and (constant) regular graphs.
Moreover, Cai and Guo [6] showed that in case F is the family of cliques, F-Contraction
is solvable in time 2O(k log k) · nO(1), while in case F is the family of chordal graphs, the
problem is W[2]-hard. Heggernes et al. [16] developed an FPT algorithm for the case where
F is the family of bipartite graphs (see [15] for a faster algorithm).

2 Preliminaries

In this section, we state some basic definitions and introduce terminologies from graph theory
and algorithms. We also establish some of the notations that will be used throughout. We
denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set {1, 2, . . . , k}.

Graphs. We use standard terminologies from the book of Diestel [10] for the graph related
terms which are not explicitly defined here. We consider simple graphs. For a graph G,
by V (G) and E(G) we denote the vertex and edge sets of G, respectively. For a vertex
v ∈ V (G), we use degG(v) to denote the degree of v in G, i.e. the number of edges in G that
are incident to v. For v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | vu ∈ E(G)}. We
drop the subscript G from degG(v) and NG(v) whenever the context is clear. For a vertex
subset S ⊆ V (G), by G[S] we denote the graph with the vertex set S and the edge set as
{vu ∈ E(G) | v, u ∈ S}. By G− S we denote the graph G[V (G) \ S]. We say S, S′ ⊆ V (G)
are adjacent if there is v ∈ S and v′ ∈ S′ such that vv′ ∈ E(G). Further, an edge uv ∈ E(G)
is between S and S′ if u ∈ S and v ∈ S′. For E′ ⊆ E(G), by G/E′ we denote the graph
obtained from G by contracting the edges in E′. For ` ∈ N, by T` we denote the family of
graphs from which we can obtain a tree using at most ` edge deletions. Observe that for any
graph G ∈ T`, we have |E(G)| ≤ |V (G)| − 1 + `. Moreover, for any connected graph G, if
|E(G)| ≤ |V (G)| − 1 + ` then G ∈ T`.

A graph G is contractible to a graph H, if their exists E′ ⊆ E(G) such that G/E′ is
isomorphic to H. In other words, G is contractible to H if there exists a surjective function
ϕ : V (G) → V (H) with W (h) = {v ∈ V (G) | ϕ(v) = h}, for h ∈ V (H) and the following
property holds.

For all h, h′ ∈ V (H), hh′ ∈ E(H) if and only if W (h),W (h′) are adjacent in G.
For all h ∈ V (H), G[W (h)] is connected.

IPEC 2017

1:4 Contraction to Generalization of Trees

Let W = {W (h) | h ∈ V (H)}. Observe that W defines a partition of vertices in G. We
call W as an H-witness structure of G. The sets in W are called witness sets. If a witness set
contains more than one vertex then we will call it a big witness-set, otherwise it is a small
witness set. A graph G is said to be k-contractible to a graph H if there exists E′ ⊆ E(G)
such that G/E′ is isomorphic to H and |E′| ≤ k.

For a subset S ⊆ V (G) and a k-coloring φ of G, S is said to be monochromatic with
respect to φ if for all s, s′ ∈ S, φ(s) = φ(s′). Observe that φ partitions V (G) into (at most)
k pairwise disjoint sets. A subset S ⊆ V (G) is said to be monochromatic component with
respect to φ if S is monochromatic and G[S] is connected.

3 FPT Algorithm for T`-Contraction

In this section, we design an FPT algorithm for T`-Contraction. Our algorithm proceeds
as follows. We start by applying some simple reduction rules. Then by branching we ensure
that the resulting graph is 2-connected. Finally, we give an FPT algorithm running in
time O((2

√
`+ 2)O(k+`) · nO(1)) on 2-connected graphs. The approach we use for designing

the algorithm for the case when the input graph is 2-connected follows the approach of
Heggernes et al. [17] for designing an FPT algorithm for contracting to trees. Also, whenever
we are dealing with an instance of T`-Contraction we assume that we have an algorithm
running in time O((2

√
`′ + 2)O(k+`′) · nO(1)) for T`′-Contraction, for every `′ < `. That

is, we give family of algorithms inductively for each `′ ∈ N, where the algorithm for Tree
Contraction by Heggernes et al. forms the base case of our inductive hypothesis.

We start with few observation regarding the graph class T`, which will be useful while
designing the algorithm.

I Observation 1. For each T ∈ T` the following statements hold.
1. The chromatic number of T is at most 2

√
`+ 2.

2. If T ′ is a graph obtained by subdividing an edge in T then T ′ ∈ T`.
3. If T ′ is a graph obtained by contracting an edge in T then T ′ ∈ T`.

Let (G, k) be an instance of T`-Contraction. The measure we use for analysing the
running time of our algorithm is µ = µ(G, k) = k. We start by applying some simple
reduction rules.

I Reduction Rule 3.1. If k < 0 then return that (G, k) is a no instance of T`-Contraction.

I Reduction Rule 3.2. If k = 0 and G ∈ T` then return that (G, k) is a yes instance of
T`-Contraction.

I Reduction Rule 3.3. If G is a disconnected or k = 0 and G /∈ T` then return that (G, k)
is a no instance.

We assume that the input graph is 2-connected, and design an algorithm for input
restricted to 2-connected graphs. Later, we will show how we can remove this constraint.
The key idea behind the algorithm is to use a coloring of V (G) with at most 2

√
`+ 2 colors

to find a T -witness structure (if it exists) of G, where G is contractible to T ∈ T` using at
most k edge contractions (see Observation 1). Moreover, if such a T does not exist then we
must correctly conclude that (G, k) is a no instance of T`-Contraction. Towards this, we
introduce the following notion.

I Definition 2. Let G be a 2-connected graph, T be a graph in T`, W be a T -witness
structure of G, and φ : V (G)→ [2

√
`+ 2] be a coloring of V (G). Furthermore, let TS be a

A. Agrawal, S. Saurabh, and P. Tale 1:5

(fixed) spanning tree of T , M = {t, t′ | tt′ ∈ E(T) \ E(TS)} ∪ {t ∈ V (T) | dT (t) ≥ 3}, and
B = {t ∈ V (T) | |W (t)| ≥ 2}. We say that φ is W-compatible if the following conditions are
satisfied.
1. For all W ∈ W, and w,w′ ∈W we have φ(w) = φ(w′).
2. For all t, t′ ∈M ∪B such that tt′ ∈ E(T) we have φ(W (t)) 6= φ(W (t′)).
We refer to the set M ∪B as the set of marked vertices.

Assume that (G, k) is a yes instance of T`-Contraction, and F be one of its (inclusion-
wise) minimal solution. Furthermore, let T = G/F , and W be the T -witness structure of
G. Suppose we are given G and a W compatible coloring φ : V (G)→ [2

√
`+ 2] of G, but

we are neither given W nor T . We will show how we can compute a T ′ witness structure
W ′ of G such that |V (T ′)| ≥ |V (T)|, where T ′ ∈ T`. Informally, we will find such a witness
structure by either concluding that none of the edges are part of the solution, some specific
set of edges are part of the solution, or finding a star-like structure of the monochromatic
components of size at least 2 in G, with respect to φ. Towards this, we will employ the
algorithm for Connected Vertex Cover (CVC) by Cygan [7].

I Proposition 3 ([7]). CVC admits an algorithm running in time 2knO(1). Here, k is the
size of a solution and n is the number of vertices in the input graph.

We note that we use the algorithm of Cygan [7] instead of the algorithm by Cygan et
al. [9], because the latter algorithm is a randomized algorithm. Also, the algorithm given by
Proposition 3 can be used to output a solution.

Consider the case when G is k-contractable to a graph, say T ∈ T`, and let W be a
T -witness structure of G. Furthermore, let φ : V (G)→ [2

√
`+ 2] be a W-compatible coloring

of G, and X be the set of monochromatic components of φ. We prove some lemmata showing
useful properties of X .

I Lemma 4. Let T ′ be the graph with X as the T ′-witness structure of G. Then T ′ ∈ T`
and |V (T ′)| ≤ |V (T)|.

Next, we proceed to show how we can partition each X ∈ X into many smaller witness
sets such that either we obtain W or a T ′-witness structure of G for some T ′ ∈ T` which has
at least as many vertices as T . Towards this, we introduce the following notions.

For X ∈ X , by X̂ we denote the set of vertices that have a neighbor outside of X, i.e.
X̂ = N(V (G) \X). A shatter of X is a partition of X into sets such that one of them is a
connected vertex cover C of G[X] containing all the vertices in X̂ and all other sets are of
size 1. The size of a shatter of X is the of size of C. Furthermore, a shatter of X is minimum
if there is no other shatter with strictly smaller size.

From Lemma 4 (and Definition 2) it follows that for each X ∈ X there is WX ⊆ W such
that X = ∪Y ∈WX

Y . In the following lemma, we prove some properties of sets in WX , which
will be useful in the algorithm design.

I Lemma 5. Consider X ∈ X with |X| ≥ 2, WX ⊆ W such that X = ∪Y ∈WX
Y , and all of

the following conditions are satisfied.
G[X] = (u, v1, . . . , vq, v) is an induced path, where q ∈ N.
For each i ∈ [q] we have deg(vi) = 2.
There exists X ′ ∈ X \ {X} such that N(u) ∩X ′ 6= ∅ and N(v) ∩X ′ 6= ∅.

Then |WX | = 1.

I Lemma 6. Consider X ∈ X with |X| ≥ 2, WX such that X = ∪Y ∈WX
Y , and all the

following conditions are satisfied.

IPEC 2017

1:6 Contraction to Generalization of Trees

G[X] = (v0, v1, . . . , vq, v) is an induced path, where q ∈ N.
For each i ∈ [q] we have deg(vi) = 2.
There exists no X ′ ∈ X such that N(u) ∩X ′ 6= ∅ and N(v) ∩X ′ 6= ∅.

Then |WX | = |X|.

Next, we show that each X ∈ X for which Lemma 5 and 6 are not applicable must
contain exactly one big witness set. Moreover, the unique big witness set (together with
other vertices as singleton sets) forms one of its shatters.

I Lemma 7. For X ∈ X with |X| ≥ 2, let WX ⊆ W such that X = ∪Y ∈WX
Y . Furthermore,

the set X does not satisfy the conditions of Lemma 5 or 6. Then there is exactly one big
witness set in WX .

I Lemma 8. Consider X ∈ X such that |X| ≥ 2 and it contains a big witness set, and it
does not satisfy conditions of Lemma 5 or 6. Let WX ⊆ W such that X = ∪Y ∈WX

Y , and
W ∗ be the (unique) big witness set in X. Then W ∗ is a connected vertex cover of G[X] and
it contains X̂.

Using Lemma 6 to Lemma 8 we show how we can replace each X ∈ X with the sets of
its shatter. Recall that we are given only G and φ, and therefore we know X , but we do not
know W. In the Lemma 9, we show how we can find a T ′-witness structure of G for some
T ′ ∈ T`, which has at least as many vertices as T (without knowing W).

I Lemma 9. Given X , we can obtain a T ′-witness structure of G in time 2knO(1) time,
where T ′ ∈ T` and |V (T ′)| ≥ |V (T)|.

Now we are ready to present our randomized algorithm for T`-Contraction when input
graph is 2-connected.

I Theorem 10. There is a Monte Carlo algorithm for solving T`-Contraction on 2-
connected graphs running in time O((2

√
` + 2)O(k+`) · nO(1)), where n is the number of

vertices in the input graph. It does not return false positive and returns correct answer with
probability at least 1− 1/e.

Proof. Let (G, k) be an instance of T`-Contraction, where G is a 2-connected graph.
Furthermore, the Reduction Rules 3.1 and 3.3 are not applicable, otherwise we can correctly
decide whether or not (G, k) is a yes instance. The algorithm starts by computing a random
coloring φ : V (G)→ [2

√
`+2], by choosing a color for each vertex uniformly and independently

at random. Let X be the set of monochromatic connected components with respect to φ
in G. The algorithm applies Lemma 9 in time 2knO(1) and tries to compute T ′ such that
T ′ ∈ T` and G is k-contractible to T ′. It runs (2

√
`+ 2)6k+8` many iterations of two steps

mentioned above. If for any such iteration it obtains a desired T ′-witness structure of G
then it returns yes. If none of the iterations yield yes then the algorithm returns no. This
completes the description of the algorithm.

Observe that the algorithm returns yes only if it has found a T ′ ∈ T` such that G is
contractible to T ′ using at most k edge contractions. Therefore, when it outputs yes, then
indeed (G, k) is a yes instance of T`-Contraction. We now argue that if (G, k) is a yes
instance then using a random coloring the algorithm (correctly) returns the answer with
sufficiently high probability. Let T be a graph in T`, such that G is k-contractible to T , and
W be a T -witness structure of G. Furthermore, let TS be a (fixed) spanning tree of T , and
vertex set M , B are set of vertices defined in Definition 2. Let ψ : V (G)→ [2

√
`+ 2] be a

coloring where colors are chosen uniformly at random for each vertex. The total number

A. Agrawal, S. Saurabh, and P. Tale 1:7

of vertices contained in big witness sets of W is at most 2k. By our assumption, every leaf
is a singleton witness set and it is adjacent to a big witness set. Here, we assume that the
number of vertices in T is at least 3, otherwise we can solve the problem in polynomial time.
This implies that no leaf is in M ∪B. Consider graph T ′ obtained from T by deleting all the
leaves and deleting edges in E(T`) \ E(TS). All the marked vertices of T` and all the paths
connecting two marked vertices are also present in T ′. Notice that T ′ is tree with at most
k + 2` leaves. Since the number of vertices of degree three is at most the number of leaves in
any tree, there are at most k + 2` vertices of degree at least 3. There are at most k vertices
in T which are big witness sets and at most 2` vertices incident to edges in E(T`) \ E(TS).
Hence the total number of marked vertices is at most 2k+ 4`. Since T ′ is a tree, there are at
most 2k + 4` vertices which lie on a path between two vertices in M ∪B and are adjacent to
one of these. The number of vertices of G which are marked vertices or vertices which are
adjacent to it in T ′ is at most 2(2k+4`)+2k. Therefore, the probability that ψ is compatible
withW is at least 1/(2

√
`+2)6k+8`. Since the algorithm runs (2

√
`+2)6k+8` many iterations,

probability that none of these colorings which is generated uniformly at random is compatible
with W is at most (1 − 1/(2

√
` + 2)6k+8`)(2

√
`+2)6k+8`

< 1/e. Hence, algorithm returns a
solution on positive instances with probability at least 1− 1/e. Each iteration takes 2k ·nO(1)

time and hence the total running time of the algorithm is O((2
√
`+ 2)O(k+`) · nO(1)). J

Next, we design reduction rules and a branching rule whose (exhaustive) application will
ensure that the instance of T`-Contraction we are dealing with is 2-connected. Either we
apply one of these reduction rules or branching rule, or we resolve the instance using the
algorithm for T`′ -Contraction, where `′ < `. This together with Theorem 10 gives us an
algorithm for T`-Contraction on general graphs.

I Lemma 11. If for some 0 ≤ `′ < `, (G, k) is a yes instance of T`′-Contraction then
return that (G, k) is a yes instance of T`-Contraction.

Our next reduction rule deals with vertices of degree of 1.

I Reduction Rule 3.4. If there is v ∈ V (G) such that d(v) = 1 then delete v from G. The
resulting instance is (G− {v}, k).

If a connected graph G is not 2-connected graph then there is a cut vertex say, v in G.
Let C1, C2, . . . , Ct be the components of G − {v}. Furthermore, let G1 = G[V (C1) ∪ {v}]
and G2 = G− V (C1). Next, we try to resolve the instance (if possible) using the following
lemma.

I Lemma 12. If there exists `1 and `2 with `1 + `2 = `, where `1, `2 > 0, and k1 and k2 with
k1 + k2 = k such that (G1, k1) is a yes instance of T`1-Contraction and (G2, k2) is a yes
instance of T`2-Contraction then return that (G, k) is a yes instance of T`-Contraction.

Notice that if Lemma 12 is not applicable then one of G1 or G2 must be contracted to a
tree. Let k1 be the smallest integer such that (G1, k1) is a yes instance of T-Contraction,
and k2 be the smallest integer such that (G2, k2) is a yes instance of T-Contraction. Notice
that k1 and k2 can be computed in (deterministic) time 4knO(1) using the algorithm for
T-Contraction [17]. We next proceed with the following branching rule.

I Branching Rule 3.1. We branch depending on which of the graphs among G1 and G2 are
contracted to a tree. Therefore, we branch as follows.

Contract G1 to a tree, and the resulting instance is (G2, k − k1).
Contract G2 to a tree, and the resulting instance is (G1, k − k2).

IPEC 2017

1:8 Contraction to Generalization of Trees

Note that the measure strictly decreases in each of the branches of the Branching Rule 3.1
since Reduction Rule 3.4 is not applicable. If we are unable to resolve the instance using
Lemma 11 and 12, and Reduction Rules 3.3 and 3.4 and Branching Rule 3.1 are not applicable
then the input graph is 2-connected. And, then we resolve the instance using Theorem 10.

I Theorem 13. For each ` ∈ N, there is a Monte Carlo algorithm for solving T`-Contrac-
tion with running in time O((2

√
`+ 2)O(k+`) · nO(1)). It does not return false positive and

returns correct answer with probability at least 1− 1/e.

4 Derandomization

In this section, we derandomize the algorithm presented in Section 3. Before proceeding
forward we define the following important object of this section.

I Definition 14 (Universal Family). A (n, k, q)-universal family is a collection F , of functions
from [n] to [q] such that for each S ⊆ [n] of size k and a function φ : S → [q], there exists
function f ∈ F such that f |S ≡ φ.

Here, f |S denotes the function f when restricted to the elements of S. For q = 2, the
universal family defined above is called an (n, k)-universal set [20]. Hence, (n, k, q)-universal
family is a generalization of (n, k)-universal set. The main result of this section is the
following theorem (Theorem 15), which we use to derandomize the algorithm presented in
Section 3.

I Theorem 15. For any n, k, q ≥ 1, one can construct an (n, k, q)-universal family of size
O(qk · kO(k) · logn) in time O(qk · kO(k) · n logn).

Before proceeding to the proof of Theorem 15, we state how we use it to derandomize the
algorithm presented in Section 3. Let (G, k) be an instance of T`-Contraction. Assume that
(G, k) is a yes instance of T`-Contraction, and let F be one of its solution. Furthermore, let
T = G/F , where T ∈ T` and W be the T -witness structure of G, and φ : V (G)→ [2

√
`+ 2]

be a W-compatible coloring of G. Recall that our randomized algorithm starts by coloring
vertices in G uniformly and independently at random, and then uses this coloring to extract
a witness structure out of each color classes. We then argued that any random coloring is
“equally good” as that of φ with sufficiently high probability, which is given by a function of
k (and `). To derandomize this algorithm, we construct a family F of (coloring) functions
from [n] to [2

√
`+ 2]. We argue that one of the colorings in the family that we compute is

“equally good” as that of φ. Recall that the number of vertices which we need to be colored
in a specific way for a coloring to be W-compatible is bounded by 6k + 8` (see Definition 2
and Theorem 10). Let S be the set of vertices in G which needs to be colored in a specific
way as per the requirements of Definition 2. We can safely assume that |S| = 6k+ 8`. If this
is not the case we can add arbitrary vertices in S to ensure this. Notice that any coloring
f of G such that f |S = φ|S also satisfies the requirements of Definition 2. Let F be an
(n, 6k+ 8`, 2

√
`+ 2)-universal family constructed using Theorem 15. Instead of using random

coloring in the algorithm presented in Section 3, we can iterate over functions in F . Notice
that we do not know S but for any such S, we are guaranteed to find an appropriate coloring
in one of the functions in F , which gives us the desired derandomization of the algorithm.

In rest of the section, we focus on the prove of Theorem 15. Overview of the proof is as
follows: Let S be a set of size k in an n-sized universe U . We first reduce this universe U
to another universe U ′ whose size is bounded by k2. We ensure that all elements of S are
mapped to different elements of U ′ during this reduction. Let Y be the range of S in U ′.

A. Agrawal, S. Saurabh, and P. Tale 1:9

We further partition U ′ into log k parts such that Y is almost equally divided among these
partition. In other words, each partition contains (roughly) k/ log k many elements of Y . For
each of these parts, we explicitly store functions which represents all possible q-coloring of
elements of Y in this partition. Finally, we “pull back” these functions to obtain a coloring
of S.

I Definition 16 (Splitter [20]). An (n, k, q)-splitter F is a family of functions from [n] to [q]
such that for every set S ⊆ [n] of size k there exists a function f ∈ F that splits S evenly.
That is, for every 1 ≤ z, z′ ≤ q, |f−1(z) ∩ S| and |f−1(z′) ∩ S| differ by at most 1.

I Lemma 17. For every 1 ≤ k, q ≤ n there is a family of (n, k, q)-splitter of size O(nO(q))
which can be constructed in the same time.

Following is another well known result for construction of splitter when q = k2. We use
this result to reduce the size of the universe.

I Proposition 18 ([8, 20]). For any n, k ≥ 1 one can construct an (n, k, k2)-splitter of size
O(kO(1) logn) in time O(kO(1)n logn).

Next, we look at the k-Restriction problem defined by Naor et al. [20]. Before defining
the problem, we define some terminologies that will be useful. For a fixed set of alphabets,
say {1, 2, . . . , b} and a vector vector V , which is an ordered collection of alphabets, the length
of V is the size of the collection. We represent n length vector V as (v1, v2, . . . , vn). For a
positive integer i ∈ [n], V [i] denotes the alphabet at the ith position of V . Similarly, for an
(index) set S ⊆ [n], V [S] denotes the |S| sized vector obtained by taking alphabet at ith
position in V , for each i ∈ S. In other words, if S = {i1, i2, . . . , ik} for i1 < i2 < · · · < ik,
then V [S] = (V [i1], V [i2], . . . , V [ik]). An input to the k-Restriction problem is a set
C = {C1, C2, . . . , Cm} called as a k-restrictions, where Cj ⊆ [b]k for j ∈ [m] and an integer
n. Here, [b]k denotes the set of all possible vectors of length k over [b], and m denotes the
size of the k-restrictions. We say that a collection V of vectors obeys C if for all S ⊆ [n]
which is of size k and for all Cj ∈ C, there exists V ∈ V such that V [S] ∈ Cj . The goal of
k-Restriction problem is to find a collection V of as small cardinality as possible, which
obeys C. Let c = minj∈[m] |Ci|, and let T be the time needed to check whether or not the
vector V is in Cj . We next state the result of Naor et al. [20], which will be useful for proving
Theorem 15.

I Proposition 19 (Theorem 1 [20]). For any k-Restriction problem with b ≤ n, there is a
deterministic algorithm that outputs a collection obeying k-restrictions, which has size at most
(k logn+ logm)/ log(bk/(bk− c)). Moreover, the algorithm runs in time O

(
bk

c

(
n
k

)
·m ·T ·nk

)
.

Here, b is the size of the alphabet set, m is the size of the k-restrictions, n is the size of the
vectors in the output set, and c is the size of the smallest collection in the k-restrictions.

Notice that a function from [n] to [q] can be seen as an n-length vector over the alphabet
set [q]. Consider the case when each Cj contains exactly one vector of length k over [q], i.e.
C = {{C} | C ∈ [q]k}, m = qk, c = 1, and T = O(n). The output of k-Restriction on this
input is exactly an (n, k, q)-universal family. Therefore, we obtain the following corollary.

I Corollary 20. For any n, k, q ≥ 1, one can construct an (n, k, q)-universal family of size
O(qk · k · (logn+ log q)) in time O(qk · nO(k)).

Notice that we can not directly employ Corollary 20 to construct the desired family,
since its running time is O(qk · nO(k)). Therefore, we carefully use splitter to construct an
(n, k, q)-universal family to obtain the desired running time.

IPEC 2017

1:10 Contraction to Generalization of Trees

Proof of Theorem 15. For the sake of clarity in the notations, we assume that log k and
k/ log k are integers. Let A be a (n, k, k2)-splitter obtained by Proposition 18. Let B be
a (k2, k, log k)-splitter obtained by Lemma 17. Let D be a (k2, k/ log k, q)-universal family
obtained by Corollary 20. We construct F as follows. For every function fa in A, fb in B,
and log k functions g1, g2, . . . , glog k in D, we construct a tuple f = (fa, fb, g1, g2, . . . , glog k),
and add it to F . We note here that g1, g2, . . . , glog k need not be different functions. For
f ∈ F , we define f : [n]→ [q] as follows. For x ∈ [n], we have f(x) = gr(fb(fa(x))), where
r = fb(fa(x)).

We first argue about the size of F and the time needed to construct it. Notice that |F| ≤
|A||B||D|log k. We know |A| ≤ kO(1) logn, |B| ≤ O(kO(log k)) and |D| ≤ qk/ log kkO(k/ log k)

by Proposition 18, Lemma 17, and Corollary 20, respectively. This implies that |F| ∈
O(qk · kO(log k) · logn). Note that A,B,D can be constructed in time O(kO(1)n logn),
O(kO(log k)), and O(qk ·kO(k/ log k)), respectively. This implies that time required to construct
F is bounded by O(qk · kO(k) · n logn).

It remains to argue that F has the desired properties. Consider S ⊆ [n] of size k and
φ : S → [q]. We prove that there exists a function f ∈ F such that f |S ≡ φ. By the definition
of splitter, there exists fa ∈ A such that fa evenly splits S (see Definition 16). Since |S| < k2,
for every y ∈ [k2], |f−1

a (y) ∩ S| is either 0 or 1. Let Y = {y1, y2, . . . , yk} be a subset of [k2]
such that y1 < y2 < · · · < yk and |f−1

a (yi) ∩ S| = 1, for all i ∈ [k]. For j = k/ log k, we mark
every jth element in set Y marking log k − 1 indices altogether. In other words, construct
a subset Y ′ of Y of cardinality log k − 1 such that Y ′ = {y1j , y2j , y3j . . . , y(log k−1)j}. We
use the set Y ′ to partition [k2] in a way that every partition contains almost k/ log k many
elements of Y . Let y0 = 0 and y(log k)j = k2 and define set Yr = {y ∈ Y | yr−1 < y ≤ yr}
for r ∈ [log k]. Recall that a B is (k2, k, log k)-splitter family obtained by Lemma 17. By
construction, there exists a function fb which corresponds to subset Y ′ of log k − 1 many
indices. In other words, there is a function fb such that f−1

b (r) contains all the elements in
Yr, for each r in [log k]. We note that size of f−1

b (r) could be as large as k2. Recall that D
is a (k2, k/ log k, q)-universal family. Therefore, for every r ∈ [log k] there exists gr ∈ D such
that gr|Yr ≡ φ|Yr . Consider a function f = (fa, fb, g1, g2, . . . , glog k) in F where fa, fb and
gr satisfies the property mentioned above. The function fa is bijective on S and f(S) = Y .
The function fb partitions Y into log k many parts by mapping Y into Y1, Y2, . . . , Ylog k. For
each Yr there exists a function gr which gives the desired coloring of elements in Yr and
hence for the elements in S. Since we considering all possible combinations of fa, fb and log k
functions in D, there exists a function f such that f |S ≡ φ, which proves the theorem. J

5 Non-existence of a Polynomial Kernel for T`-Contraction

In this section, we show that T`-Contraction does not admit a polynomial kernel unless
NP ⊆ coNP/poly. We note that T-Contraction (Tree Contraction) does not admit a
polynomial kernel unless NP ⊆ coNP/poly [17]. We give a reduction from T-Contraction
to T`-Contraction as follows.

Let (G, k) be an instance of T-Contraction. We create an instance (G′, k′) of T`-
Contraction as follows. Initially, we have G = G′. Let v∗ be an arbitrarily chosen vertex
in V (G). For each i ∈ [`], we add a cycle (v∗, wi1, wi2, . . . , wik+1) on k+ 2 vertices to G′, which
pairwise intersect at v∗, and we set k′ = k. It is easy to see that (G, k) is a yes instance of
T-Contraction if and only if (G′, k′) is a yes instance of T`-Contraction.

I Theorem 21. T`-Contraction does not admit a polynomial kernel unless NP ⊆ coNP/-
poly.

A. Agrawal, S. Saurabh, and P. Tale 1:11

6 PSAKS for T`-Contraction

In this section, we design a PSAKS for T`-Contraction, which complements the result that
T`-Contraction does not admit a polynomial kernel assuming NP 6⊆ coNP/poly (Section 5).

Let (G, k) be an instance of T`-Contraction. The algorithm starts by applying
Reduction Rules 3.1 to 3.4 (if applicable, in that order). Next, we state the following lemma
which will be useful in designing a reduction rule which will be employed for bounding the
sizes of induced paths.

I Lemma 22. Let (G, k) be an instance of T`-Contraction and P = (u0, u1, . . . , uq, uq+1)
be a path in G, where q ≥ k + 2, and for each i ∈ [q + 1] we have deg(ui) = 2. Then no
minimal solution F to T`-Contraction in (G, k) with |F | ≤ k contains an edge incident to
V (P) \ {u0, uq+1}.

I Reduction Rule 6.1. If G has a path P = (u0, u1, . . . , uq, uq+1) such that q > k + 2 and
for all i ∈ [q], we have deg(ui) = 2. Then contract the edge uq−1uq, i.e. the resulting instance
is (G/{uq−1uq}, k).

Note that Reduction Rule 6.1 can be applied in polynomial time by searching for such a
path (if it exists) in the subgraph induced on the vertices of degree 2 in G.

I Lemma 23. Consider an instance (G, k) of T`-Contraction on which Reduction Rule
6.1 is not applicable. If (G, k) is a yes instance of T`-Contraction then G has a connected
vertex cover of size at most 2(k + 3)(k + 2`).

Before describing the next reduction rule, we define a partition of V (G) into the following
sets. Let H = {u ∈ V (G) | deg(u) ≥ 2(k + 3)(k + 2`) + 1}, I = {v ∈ V (G) \H | N(v) ⊆ H},
and R = V (G) \ (H ∪ I). Vertices v, u are said to be false twins if N(v) = N(u). We use
Lemma 24 to reduce the number of vertices in I which have many false twins. Let G be
k-contractible to a graph T in T` and W be the T -witness structure of G.

I Lemma 24. Consider sets X,U ⊆ V (G) such that U is an independent set in G and for
all v ∈ U we have X ⊆ N(v). If |U | ≥ k + `+ 2 then there is a vertex t ∈ V (T) such that
X ⊆W (t).

I Reduction Rule 6.2. If there is a vertex v ∈ I that has at least k + `+ 2 false twins in I
then delete v, i.e. the resulting instance is (G− {v}, k).

For α > 1, we let d = d α
α−1e. Next, we state our last reduction rule.

I Reduction Rule 6.3. If there are vertices v1, v2, · · · , vk+`+2 ∈ I and h1, h2, · · · , hd ∈ H
such that for all i ∈ [k + ` + 2], we have {h1, . . . , hd} ⊆ N(vi) then contract all edges in
Ẽ = {v1hi | i ∈ [d]}, and decrease k by d− 1. The resulting instance is (G/Ẽ, k − d+ 1).

We note that the lossy-ness is introduced only in the Reduction Rule 6.3. We have
determined that H ′ = {h1, h2, . . . , hd} need to be in one witness bag but G[H ′] may not
be connected. To simplify the graph, we introduce additional vertex v1 to the bag which
contains H ′. By doing this we are able to contract H ′ ∪ {v1} into a single vertex. In the
following lemma, we argue that the number of extra edge contracted in this process is α
factor of the optimum solution.

I Lemma 25. Let (G, k) be an instance of T`-Contraction where none of the Reduction
Rules 6.1 to 6.3 are applicable. If (G, k) is a yes of T`-Contraction then |V (G)| ≤
c[k(k + 2`)]d+1, where c is some fixed constant.

I Theorem 26. T`-Contraction admits a strict PSAKS, where the number of vertices is
bounded by c[k(k + 2`)](d

α
α−1 e+1), where c is some fixed constant.

IPEC 2017

1:12 Contraction to Generalization of Trees

References
1 Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to

trees and cacti. In CIAC, pages 31–42, 2017.
2 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contrac-

tion: The untold story. In STACS, volume 66 of LIPIcs, pages 5:1–5:14, 2017.
3 Takao Asano and Tomio Hirata. Edge-Contraction Problems. Journal of Computer and

System Sciences, 26(2):197–208, 1983.
4 Rémy Belmonte, Petr A. Golovach, Pim Hof, and Daniël Paulusma. Parameterized complex-

ity of three edge contraction problems with degree constraints. Acta Informatica, 51(7):473–
497, 2014.

5 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

6 Leizhen Cai and Chengwei Guo. Contracting few edges to remove forbidden induced sub-
graphs. In IPEC, pages 97–109, 2013.

7 Marek Cygan. Deterministic parameterized connected vertex cover. In Scandinavian Work-
shop on Algorithm Theory, pages 95–106. Springer, 2012.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Rod G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, 1997.
12 Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized complexity.

Springer-Verlag, 2013.
13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006.
14 Petr A. Golovach, Pim van ’t Hof, and Daniel Paulusma. Obtaining planarity by contracting

few edges. Theoretical Computer Science, 476:38–46, 2013.
15 Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite contraction. Inf.

Process. Lett., 113(22–24):906–912, 2013.
16 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining

a bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics,
27(4):2143–2156, 2013.

17 Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe
Paul. Contracting graphs to paths and trees. Algorithmica, 68(1):109–132, 2014.

18 Wenjun Li, Qilong Feng, Jianer Chen, and Shuai Hu. Improved kernel results for some
FPT problems based on simple observations. Theor. Comput. Sci., 657:20–27, 2017.

19 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating
small induced subgraphs by contracting edges. In IPEC, pages 243–254, 2013.

20 Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In FOCS, pages 182–191. IEEE, 1995.

21 Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in Math-
ematics and Its Applications. Oxford University Press, 2006.

22 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden
graphs by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151–
153, 1981.

23 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the NP-hardness of edge-
deletion and-contraction problems. Discrete Applied Mathematics, 6(1):63–78, 1983.

	Introduction
	Preliminaries
	FPT Algorithm for T_ell-Contraction
	Derandomization
	Non-existence of a Polynomial Kernel for T_ell-Contraction
	PSAKS for T_ell-Contraction

