
Dynamic Smooth Compressed Quadtrees
Ivor Hoog v.d.1
Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands
i.d.vanderhoog@uu.nl

Elena Khramtcova2

Computer Science Department, Université libre de Bruxelles (ULB), Belgium
elena.khramtsova@gmail.com

Maarten Löffler3

Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands
m.loffler@uu.nl

Abstract
We introduce dynamic smooth (a.k.a. balanced) compressed quadtrees with worst-case constant
time updates in constant dimensions. We distinguish two versions of the problem. First, we
show that quadtrees as a space-division data structure can be made smooth and dynamic subject
to split and merge operations on the quadtree cells. Second, we show that quadtrees used to
store a set of points in Rd can be made smooth and dynamic subject to insertions and deletions
of points. The second version uses the first but must additionally deal with compression and
alignment of quadtree components. In both cases our updates take 2O(d log d) time, except for the
point location part in the second version which has a lower bound of Ω(logn); but if a pointer
(finger) to the correct quadtree cell is given, the rest of the updates take worst-case constant time.
Our result implies that several classic and recent results (ranging from ray tracing to planar point
location) in computational geometry which use quadtrees can deal with arbitrary point sets on
a real RAM pointer machine.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases smooth, dynamic, data structure, quadtree, compression, alignment,
Real Ram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.45

Related Version A full version is avaliable at [14], https://arxiv.org/abs/1712.05591.

Acknowledgements The authors would like to thank Joe Simons and Darren Strash for their
inspiring initial discussion of the problem.

1 Introduction

The quadtree is a hierarchical spacial subdivision data structure based on the following scheme:
starting with a single square, iteratively pick a square and subdivide it into four equal-size
smaller squares, until a desired criterion is reached. Quadtrees and their higher-dimensional

1 Supported by the Netherlands Organisation for Scientific Research (NWO) through project no
614.001.504.

2 Supported by the SNF Early Postdoc Mobility grant P2TIP2-168563, Switzerland, and F.R.S.-FNRS,
Belgium.

3 Partially supported by the Netherlands Organisation for Scientific Research (NWO) through project no
614.001.504

© Ivor Hoog v.d., Elena Khramtcova, and Maarten Löffler;
licensed under Creative Commons License CC-BY

34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.d.vanderhoog@uu.nl
mailto:elena.khramtsova@gmail.com
mailto:m.loffler@uu.nl
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.45
https://arxiv.org/abs/1712.05591
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Dynamic Smooth Compressed Quadtrees

equivalents have been long studied in computational geometry [26, 7, 17, 5, 11, 6, 18, 3]
and are popular among practitioners because of their ease of implementation and good
performance in many practical applications [12, 20, 4, 1, 9, 2]. We will not review the
extremely rich literature here and instead refer to the excellent books by Samet [24] and
Har-Peled [13].

Smooth and dynamic quadtrees

A quadtree is smooth4 if each leaf is comparable in size to adjacent leaves. It has been
long recognized that smooth quadtrees are useful in many applications [4], and smooth
quadtrees can be computed in linear time (and have linear complexity) from their non-
smooth counterparts [8, Theorem 14.4].

A quadtree is dynamic if it supports making changes to the structure in sublinear time.
Recently, quadtrees have been applied in kinetic and/or uncertain settings that call for
dynamic behaviour of the decomposition [9, 19, 15]. Bennett and Yap [3] show how to
maintain a smooth and dynamic quadtree subject to amortized constant-time split and merge
operations on the quadtree leaves.

At this point, it is useful to distinguish between the quadtree an sich, a combinatorial
subdivision of space, and the quadtree as a data structure for storing a point set (or other
set of geometric objects). Given a set P of points in the plane and a square that contains
them, we can define the minimal quadtree that contains P to be the quadtree we obtain by
recursively subdividing the root square until no leaf contains more than one (or a constant
number of) point(s). It is well-known that such a minimal quadtree can have superlinear
complexity, but can still be stored in linear space by using compression [8]. Additionally,
when working in the Real RAM computation model, it may not be possible to keep different
compressed components properly aligned [13, 18]. These complications imply that we cannot
simply apply results known for standard/regular (henceforth called uncompressed) quadtrees.
When maintaining a dynamic quadtree storing a point set P , we wish to support high-level
operations of inserting points into P and removing points from P .5

Contribution

In this paper, we show that it is possible to maintain a quadtree storing a set of points P
that is smooth and possibly compressed, which supports worst-case constant-time insertions
and deletions of points into P , assuming we are given a pointer (finger) to the cell of the
current quadtree containing the operation. Our result runs on a Real RAM pointer machine
and generalises to arbitrary constant dimensions.

In the first half of the paper (Sections 3-5), we focus on the problem of making the
quadtree itself dynamic and smooth, improving the recent result by Bennett and Yap [3]
from amortized to worst-case constant time split and merge operations. The challenge here
is to avoid cascading chains of updates required to maintain smoothness. Our key idea is to
introduce several layers of smoothness: we maintain a core quadtree which is required to be
2-smooth, but cells added to satisfy this condition themselves need only be 4-smooth, etc
(refer to Section 2 for the formal definition of 2j-smoothness). In Section 3, we show that
when defining layers in this way, we actually need only two layers in R2, and the second

4 Also called balanced by some authors, which is not to be confused with the notion of balance in trees
related to the relative weights of subtrees.

5 In Table 1 in Section 2 we provide a complete list of operations and how they relate.

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:3

layer will always already be smooth. In Section 4, we show that we can handle updates
on the core quadtree in constant time. In Section 5, we generalise the result to arbitrary
dimensions (now, the number of layers, and thus the smoothness of the final tree, depends
on the dimension).

In the second half of the paper (Sections 6-7), we focus on lifting our result to quadtrees
that store a set of points on a pure real-valued pointer machine. The challenge here is to
redefine compressed quadtrees in a consistent way across different layers of smoothness, and
to re-align possibly misaligned components on the fly when such components threaten to
merge. In Section 2, we show that we can view insertion of a point as a two-step procedure,
where we first need to locate the correct leaf of the current tree containing the new point,
and then actually insert it into the quadtree. We show in Section 6 that we can still handle
the second step in worst-case constant time. In Section 7, we deal with the issue of avoiding
the use of the floor operation, which is not available on a pure Real RAM.

Implications

Many publications in computational geometry use a concept which we shall dub principal
neighbor access: The idea that for any cell C we can find its relevant neighbors in constant
time:

I Definition 1. Given a quadtree T over Rd, we say that we have principal neighbor
access if for any cell C in T we can find the smallest cells C ′ in T with |C ′| ≥ |C| and C ′
neighboring C in constant time if d is constant.

Bennet and Yap in [3] implement principal neighbor access by storing explicit principle
neighbor pointers to the larger neighbors C ′. Khramtcova and Löffler in [15] achieve
principal neighbor access with the well known level pointers on a smooth quadtree. These
two unique ways to guarantee principle neighbor access were also noted by Unnikrishnan et al.
in [25] where a threaded quadtree in [25] maintained the equivalent to principle neighbor
pointers as opposed to a roped quadtree in [23] which only maintained level pointers.

Principle neighborhood access allows us to traverse the neighborhood of any cell C in
constant time. Bennet and Yap observe that any (non-compressed) quadtree must be smooth
to dynamically maintain level pointers by using a sequence of cells that they insert. In the full
version [14] we show that if quadtrees are compressed, you even need Θ(n) time for a single
split operation to update the level pointers. For this reason Bennet and Yap develop their
amortized-constant dynamic smooth quadtrees in Rd in [3]. We note that most applications
that use principal neighbor access (dynamic variant of collision detection [21], ray tracing
[1, 20] and planar point location [15, 19]) often run many operations parallelized on the GPU.
In such an environment amortized analysis can become troublesome since there is a high
probability that at least one GPU-thread obtains the worst-case O(n) running time. In that
scenario the other threads have to wait for the slow thread to finish so the computations
effectively run in O(n) time which makes our worst-case constant time algorithm a vast
improvement.

A large number of papers in the literature explicitly or implicitly rely on the ability
to efficiently navigate a quadtree, and our results readily imply improved bounds from
amortized to worst-case [20, 15, 19, 9, 22], and extends results from bounded-spread point
sets to arbitrary point sets [10]. Other papers could be extended to work for dynamic input
with our dynamic quadtree implementation [1, 18, 21]. Several dynamic applications are in
graphics-related fields and are trivially parallelizable, which enhanced the need for worst-case

SoCG 2018

45:4 Dynamic Smooth Compressed Quadtrees

bounds. In the full version [14] we give a comprehensive overview of the implications of our
result.

2 Preliminaries

In this section we review several necessary definitions. Concepts that were already existing
prior to this work are underlined. Consider the d-dimensional real space Rd. For a hypercube
R ⊂ Rd, the size of R, denoted |R|, is the length of a 1-dimensional facet (i.e., an edge) of R.

I Definition 2 (Quadtree). Let R be an axis-aligned hypercube in Rd. A quadtree T on
the root cell R is a hierarchical decomposition of R into smaller axis-aligned hypercubes
called quadtree cells. Each node v of T has an associated quadtree cell Cv, and v is either
a leaf or it has 2d equal-sized children whose cells subdivide Cv.6

From now on, unless explicitly stated otherwise, when talking about a quadtree cell C we
will be meaning both the hypercube C and the quadtree node corresponding to C.

I Definition 3 (Neighbor, Sibling neighbor). Let C and C ′ be two cells of a quadtree T
in Rd. We call C and C ′ neighbors, if they are interior-disjoint and share (part of) a
(d− 1)-dimensional facet. We call C and C ′ sibling neighbors if they are neighbors and
they have the same parent cell.

I Observation 1. Let C be a quadtree cell. Then: (i) C has at most 2d neighbors of size |C|;
and (ii) For each of the d dimensions, C has exactly one sibling neighbor that neighbors C
in that dimension.

I Definition 4 (2j-smooth cell, 2j-smooth quadtree). For an integer constant j, we call a
cell C 2j-smooth if the size of each leaf neighboring C is at most 2j |C|. If every cell in a
quadtree is 2j-smooth, the quadtree is called 2j-smooth.

I Observation 2. If all the quadtree leaves are 2j-smooth, then all the intermediate cells are
2j-smooth as well.7 That is, the quadtree is 2j-smooth.

I Definition 5 (Family related). Let C1, C2 be two cells in a quadtree T such that |C1| ≤ |C2|.
If the parent of C2 is an ancestor of C1 we call C1 and C2 family related.8

We now consider quadtrees that store point sets. Given a set P of points in Rd, and a
hypercube R containing all points in P , an uncompressed quadtree that stores P is a
quadtree T in Rd on the root cell R, that can be obtained by starting from R and successively
subdividing every cell that contains at least two points in P into 2d child cells.

I Definition 6 (Compression). Given a large constant α, an α-compressed quadtree is a
quadtree with additional compressed nodes. A compressed node Ca has only one child C
with |C| ≤ |Ca|/α, and the region Ca \ C ⊂ Rd does not contain any points in P . We call
the link between Ca and C a compressed link, and Ca the parent of the compressed link.

Compressed nodes induce a partition of a compressed quadtree T into a collection of
uncompressed quadtrees interconnected by compressed links. We call the members of such a
collection the uncompressed components of T .

6 We follow [18] in using quadtree in any dimension rather than dimension-specific terms (i.e. octree, etc).
7 Observe that if a single (leaf) cell is 2j-smooth, its ancestors do not necessarily have to be such.
8 Observe that C1 and C2 do not have to be neighbors.

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:5

Table 1 Operations considered in this paper and the running times of the provided implementation.

Operation Running time
I. Quadtree operations (uncompressed quadtree)
Split a cell O((2d)d)
Merge cells O((2d)d)
II. Quadtree operations (α-compressed quadtree)
Insert a component O(d2(6d)d)
Delete a component O(d2(6d)d)
Upgrowing of a component O(log(α)d2(6d)d)
Downgrowing of a component O(log(α)d2(6d)d)
III. Operations on the point set P , stored in a quadtree
Insert a point into P O(d log(n) + log(α)d2(6d)d)
Insert a point into P , given a finger O(log(α)d2(6d)d)
Delete a point from P O(log(α)d2(6d)d)

2.1 Quadtree operations and queries
Table 1 gives an overview of quadtree operations. It is insightful to distinguish three levels
of operations. Operations on a compressed quadtree (II) internally perform operations on an
uncompressed quadtree (I). Similarly, operations on a point set stored in a quadtree (III)
perform operations on the compressed quadtree (II). We now give the formal definitions and
more details.

I Definition 7 (split, merge). Given a leaf cell C of a quadtree T , the split operation for C
inserts the 2d equal-sized children of C into T . Given a set 2d leaves of a quadtree T which
share a parent, the merge operation removes these 2d cells. The parent cell is now a leaf in
T .

I Definition 8 (upgrowing, downgrowing). Let A be an uncompressed component of a
compressed quadtree with a root R. Upgrowing of A adds the parent R′ of R to T . The
cell R′ becomes the root of component A. Downgrowing of A removes the root R of A, and
all the children of R except one child C. Cell C becomes the root of A. The downgrowing
operation requires R to be an internal cell and all the points stored in A to be contained in
one child C of R.

An insertion of a point p into the set P stored in an α-compressed quadtree T is performed
in two phases: first, the leaf cell of T should be found that contains p; second, the quadtree
should be updated. The first phase, called point location, can be performed in O(d log(n))
time (see edge oracle trees in [19]), and can be considered a query in our data structure. We
refer to the second phase separately as inserting a point given a finger, see Table 1.

3 Static non-compressed smooth quadtrees in R1 and R2

We first view the quadtree as a standalone data structure subject only to merge and split
operations. In this section we are given a unique non-smooth, uncompressed quadtree T1
over R1 or R2 with n cells. It is known [8, Theorem 14.4] that an uncompressed quadtree
can be made smooth by adding O(n) cells. However, the reader can imagine that if we want
all the cells to be 2-smooth that we cannot make the quadtree dynamic with worst-case
constant updates because balancing keeps cascading. In this section we show that if T1 is

SoCG 2018

45:6 Dynamic Smooth Compressed Quadtrees

a quadtree over R1 or R2 then we can extend T1 by consecutively adding d ∈ {1, 2} sets of
cells,9 i. e., cells of d different brands, so that in the resulting extended quadtree T ∗ each cell
is smooth according to its brand. The total number of added cells is 2O(d log(d))n.

3.1 Defining our smooth quadtree
We want to add a minimal number of cells to the original quadtree T1 such that the cells
of T1 become 2-smooth and the balancing cells are smooth with a constant dependent on
d ∈ {1, 2}. In general we want to create an extended quadtree T ∗ with T1 ⊂ T ∗ where all
cells with brand j are 2j-smooth for j ≤ d+ 1.

Figure 1 Left: a quadtree in R1 (up) and R2 (down); Center: the (light-green) cells of brand 2
added; Right: the (dark-green) cells of brand 3 added. In each row, the rightmost tree is the smooth
version of the leftmost one.

The true cells (T1) get brand 1. Figure 1 shows two quadtrees and its balancing cells.
This example also illustrates our main result: to balance a tree T1 over Rd we use (d+ 1)
different brands of cells and the cells of the highest brand are automatically 2d+1-smooth.
This example gives rise to an intuitive, recursive definition for balancing cells in Rd. In this
definition we have a slight abuse of notation: For each brand j, we let Tj denote the set of
cells with brand j, and T j denote the quadtree associated with the cells in the sets Ti for all
i ≤ j:

I Definition 9 (sets Tj). Let T1 be a set of true cells in Rd. We define the sets Tj , 2 ≤ j ≤ d+1
recursively:

Given a set of cells Tj in Rd, let T j be the quadtree corresponding to ∪i≤jTi.
We define the set Tj+1 to be the minimal set of cells obtained by splitting cells of T j ,

such that each cell in Tj is 2j-smooth in Tj+1.
For each set Tj , to every cell in Tj we assign brand j.

I Definition 10. In Rd, we define T ∗ to be T d+1.

The extended quadtree T ∗ has three useful properties which we prove in the remainder of
this section: the tree is unique, the size of the tree is linear in n, and cells in the tree which
are related in ancestry have a related brand.

I Lemma 11. For a given set Tj, the set Tj+1 is unique.

9 In Section 5 we show the same is possible for quadtrees of arbitrary dimension d.

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:7

Figure 2 Let the figure show Tj−1 = T1, the true cells of a quadtree in R2 in white and denote
the cell with the red cross as C. Cells shown with dotted lines exist but are not important for the
example. Note that C is adjacent to a cell of 8 times its size so C is not 2-smooth and the parent of
C is also not 2-smooth. If we want to split the neighbor of C into cells with brand 2 we create cells
which are 4 times the size of C and we thus balance its parent. The second split creates cells of
brand 2 which are twice the size of C and so C is 2-smooth.

Proof. Per definition a cell C is 2j-smooth if all its neighboring leaf cells are at most a factor
2j larger than C. This means that if we want to balance a cell C then we need to check
for each of its neighboring cells if it is too large and if so, add a minimum number of cells
accordingly. This makes the minimum set of cells that balances a cell C unique. If for each
cell in Tj , its balancing cells are unique, then the set Tj+1 (the union of all sets of balancing
cells) is unique. J

I Lemma 12. Every quadtree T j has less than O((d2d)jn) leaf cells.

Proof. We prove this by induction. By definition T1 has O(n) cells and all cells in Tj exist
to balance cells in Tj−1.

Now we assume that the tree T j−1 defined for T1 has O((d2d)j−1n) leaf cells. Each of
these leaf cells C can have at most d leaf neighbors which are larger than C. If such a cell C
is not 2j−1-smooth we need to split the too large neighboring cells. Observe that for each
split we either fix the balance of C or the balance of an ancestor of C which was also in Tj−1
and which also had to be 2j−1-smooth (see Figure 2).

The result of this observation is that we perform at most d splits per leaf in T j−1. Each
split creates 2d cells so T j must have at most d2dO((d2d)j−1n) = O((d2d)jn) leaf cells.10 J

I Corollary 13. If d is constant, the tree T ∗ has size O(n).

I Lemma 14. Let C1, C2 be two family related (possibly non-leaf) cells in T ∗ such that
|C1| ≤ |C2|. Then the brand of C2 is at most the brand of C1.

Proof. The proof is a proof per construction where we try to reconstruct the sequence of
operations that led to the creation of cell C1. All of the ancestors of C1 must have a brand
lower or equal to the brand of C1, this includes the parent Ca of C2. Since C1 is a descendant
of Ca, Ca must be split. In that split all of the children of Ca (including C2) are created
with a brand lower or equal to the brand of C1. J

I Lemma 15 (The Branding Principle). Let Cj be a cell in T ∗ with brand j. Then for any
cell N neighbouring C with |N | ≥ 2j |Cj |, the brand of N is at most j + 1.

Proof. This property follows from the definition of each set of cells Tj . If Cj is 2j-smooth,
its neighboring cells N can be at most a factor 2j larger than Cj . When we define Tj+1, all

10We improve this bound to O(dj2dn) leaf cells in the full version by observing that for every balance
split, there are at least 1

2 2d cells demanding that the same cell must be split.

SoCG 2018

45:8 Dynamic Smooth Compressed Quadtrees

the neighbors of Cj either already have size at most 2j |Cj | and thus a brand of at most j, or
the neighbors must get split until they have size exactly 2j |Cj |. When the latter happens
those cells get brand j + 1. J

With these lemmas in place we are ready to prove the main result for static uncompressed
quadtrees in R1 and R2.

3.2 Static uncompressed smooth quadtrees over R1

Let T1 be a non-compressed quadtree over R1 which takes O(n) space. In this subsection
we show that we can add at most O(n) cells to the quadtree T1 such that all the cells
in the resulting quadtree are 2j-smooth for some j ≤ 2 and the true cells are 2-smooth.
Lemma 12 tells us that we can add at most O(n) cells with brand 2 to T1 resulting in the
tree T ∗ = T1 ∪ T2 where all the true cells are 2-smooth in T ∗.

Our claim is that in a static non-compressed quadtree over R1 all the cells in T2 must be
4-smooth in T ∗ since we cannot have two neighboring leaf cells in T2 with one cell more than
a factor 2 larger than the other.

I Theorem 16. Let T1 be an uncompressed quadtree over R1 which takes O(n) space. In
the smooth tree T ∗ there cannot be two neighboring leaf cells C2, C3, both with brand 2, such
that |C2| ≤ 1

22 |C3|.11

Proof. The proof is by contradiction and is illustrated in Figure 3. Assume for the sake
of contradiction that we have two neighboring cells C2 and C3 both with brand 2 with
|C3| = 4|C2|. C2 has two neighbors: one family related neighbor and one non-sibling
neighbor. C3 cannot be contained in a sibling neighbor because C3 is larger than C2. Note
that C2 exists to balance a true cell C1 of smaller size. C1 cannot be a descendant of C3
because C3 is a cell with brand 2. So C1 must be a descendant of the sibling neighbor of C2.
That would make C2 and C1 family related and Lemma 14 then demands that C2 has brand
at most 1; a contradiction. J

3.3 Static uncompressed smooth quadtrees over R2

We also show that we can make a smooth non-compressed static quadtree over R2 that takes
O(n) space, such that all the cells in the quadtree are 2j-smooth for a j ≤ 3. We denote
the original cells by T1 and we want them to be 2-smooth. We claim that in the extended
quadtree T ∗ (as defined in Definition 10) all cells are 8-smooth.

11 Careful readers can observe two things in this section: (i) Cells which are 2-smooth are allowed to have
neighbors which are 4 times as large but in R1 they cannot. (ii) The proof of this theorem actually
shows that C3 can not even be a factor two larger than C2. We choose not to tighten the bounds
because these two observations do not generalize to higher dimensions.

Figure 3 Two neighboring cells with brand 2 in a one-dimensional quadtree. In the figure white
cells have brand 1 and light green cells have brand 2.

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:9

I Theorem 17. Let T1 be an uncompressed quadtree over R2 which takes O(n) space. In the
extended tree T ∗ there cannot be two neighboring leaf cells C3, C4, both with brand 3, such
that |C3| ≤ 1

23 |C4|.

Proof. The proof resembles the proof of Theorem 16, and it is illustrated in Figure 4.
However, it requires two cases instead of one. Note that for C3 to exist there must be at
least two consecutive neighbors of C3, (C2 and C1) with brand 2 and 1 respectively, such
that |C1| = 1

2 |C2| = 1
2 ·

1
4 |C3|.

Observe that C1, C2 and C3 cannot be family
related because of Lemma 14 and observe that C4
can not be a sibling neighbor of C3. The proof
claims that it is impossible to place C1, C2, C3 and
C4 in the plane without either violating the brand-
ing principle (Lemma 15), Lemma 14, or causing a
cell with brand 1 or 2 to be not smooth.

Our first claim is that C3 must share a vertex
with C4 (and similarly, C2 must share a vertex
with C3). If this is not the case all the neighbors of
C3 (apart from C4) are either contained in sibling
neighbors of C3 or neighbors of C4. However that
would imply that either C2 is family related to C3
or that an ancestor of C2 of size |C3| is a neighbor
of C4. The first case cannot happen because of
Lemma 14, in the second case we have a cell with
brand 2 neighboring C4 which is 1

8 ’th the size of C4
so C4 must have been split but C4 must be a leaf.
Without loss of generality we say that C3 shares
the top left vertex with C4 (Figure 4).

Figure 4 Two neighboring cells with
brand 3 in a two-dimensional quadtree.
The cells with brand 2 are light green
and cells with brand 3 are dark green.

Since C2 cannot be placed in a sibling neighbor of C3, C2 must be placed in the positive
~y direction from C3. C2 must also share a vertex with C3 so we distinguish between two
cases: C2 shares the top left vertex with C3 or the top right.

Case 1: The top left vertex. In this case C2 is the blue square in Figure 4. C1 cannot
be contained in a sibling neighbor of C2 so C1 must lie to the left. However if C1 is
adjacent to C2, its parent A0 (the dashed lines in the figure) must also be a neighbor
of C2. Because we placed C4 and C3 without loss of generality, Figure 4 shows us that
A0 must neighbor a sibling neighbor of C3 which we will denote as F (C3). We know
that |F (C3)| = |C3| ≥ 21|A0| and that A0 has brand 1 and F (C3) has brand 3. This is a
contradiction with the Branding Principle (Lemma 15).

Case 2: The top right vertex. In this case C2 is the red square in the figure. C1 cannot
be contained in a sibling neighbor of C2 so C1 must lie to the right. However, if C1 is
adjacent to C2, its parent A0 (the dashed lines in the figure) must also be a neighbor of
C2. Moreover (for similar reasons as the first case) A0 must also be a neighbor of C4. We
know that A0 is the ancestor of a true cell, so A0 has brand 1. Moreover, |C4| ≥ 8|A0| so
C4 must have been split which contradicts that C4 is a leaf.

Both cases lead to a contradiction so Theorem 17 is proven. The structure of this proof
is identical to the structure of the proof of the generalized theorem in the full version. J

SoCG 2018

45:10 Dynamic Smooth Compressed Quadtrees

4 Dynamic quadtrees

In the previous section we have shown that, given a static uncompressed quadtree T1 of O(n)
size over R1 or R2, we can create a static smooth tree T ∗ of O(n) size. In this section we
prove that if T1 is a dynamic tree, we can also dynamically maintain its extended variant T ∗.

Let T1 be a quadtree over R1 or R2 subject to the split and merge operation (Table 1 I.).
If we use the split operation to create new true cells in T1 then in T ∗ we (possibly) need to
add cells (to the set T2) that smooth the new true cells. Similarly if we add cells to T2 we
might need to add cells to T3. The first question that we ask is: can we create a new split
and merge operation that takes a constant number of steps per operation to maintain T ∗?

I Lemma 18. Given an uncompressed non-smooth quadtree T1 in Rd of O(n) size and its
extended tree T ∗. Let T ′1 be an uncompressed non-smooth quadtree such that T1 can become
T ′1 with one merge or split operation. Then T ∗ and T ′∗ differ by at most (2d)d quadtree cells.

Proof. In the proof of Lemma 12 we showed that each cell in Tj had at most d balancing
cells in Tj+1. So if we add a new cell in T1 with the split operation, we need to do at most
dd split operations to create the dd cells to smooth the tree up to the level (d+ 1).12 dd split
operations create at most (2d)d cells.

Lemma 11 states that for each set of true cells T1 the tree T ∗ is unique. So if we want
to merge four cells in T1 we must get a new unique T ′1 and T ′∗. We know that we can go
from T ′∗ to T ∗ with dd split operations, so we can also go from T ∗ to T ′∗ with dd merge
operations. J

4.1 The algorithm that maintains T ∗

Lemma 18 tells us that it should be possible to dynamically maintain our extended quadtree
T ∗ with 2O(d log(d)) operations per split or merge in the true tree T1. The lemma does not
specify which cells exactly need to be split. We note that our extended quadtree T ∗ is unique
and thus independent from the order in which we split cells in T1. In the full version we
show that this property prohibits the naive implementation (just split all cells which conflict
with another cell’s smoothness): this does not maintain a quadtree that follows the definition
of T ∗ given by Definition 9 (and thus does not have to be smooth). Instead we introduce the
following lemma which will help us design a correct algorithm for maintaining T ∗:

I Lemma 19. Given a dynamic quadtree T1 and its dynamic extended quadtree T ∗ with
T1 ⊂ T ∗ where T ∗ is defined according to Definition 9. If a cell C ∈ T ∗ has brand j > 1 then
there is at least one neighbor N of C such that N has brand j − 1 and |C| = 2j−1|N |.

Proof. If C has brand j, then according to Definition 9, C exists to smooth a cell N ∈ Tj−1.
Per definition N has brand j − 1 so |C| is indeed 2j−1|N |. J

This observation allows us to devise an algorithm that maintains T ∗ after a split operation
in T1, we call this algorithm the aftersplit procedure. The first change to our static
construction is that each cell C ∈ T ∗ gets a collection of brands (which can contain duplicates).
The current brand of a cell is the minimum of its collection of brands. Given this new definition
of a brand we define a two-phased procedure:

12 Section 5 will show that the (d+ 1)’th level is always 2d+1-smooth

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:11

Whenever we split a cell C with brand j, we check all the d neighboring leaf cells N that
are larger than C. If N is more than a factor 2j−1 larger than C, the new children of C
are non-smooth and N should be split into cells with brand j + 1. If a neighbor N is
split, we also invoke the aftersplit procedure on N .
Secondly we consider this: for any neighboring leaf N of C we check there exists a cell
C ′ with C ′ equal to N or an ancestor of N with the following property: C ′ is exactly a
factor 2j−1 larger than C. In that case C ′ could exist to smooth the new children of C
so we add the brand (j + 1) to its set of brands. We call this rebranding.

Algorithm 1 The procedure for after splitting a cell.
1: procedure AfterSplit(Cell C, Integer j)
2: for Cell N ∈ LargerLeafNeighbors do
3: if |N ||C| > 2j−1 then
4: V ← Split(N, j + 1)
5: AfterSplit(N, j + 1)
6: if ∃C ′ ∈ N ∪Ancestors(N) such that |C

′|
|C| = 2j−1 then

7: C ′.Brands.Add(j + 1)
8: if Changed(C’.Brands.Minimum) then
9: AfterSplit(C ′, C ′.Brands.Minimum)

I Lemma 20. If we split a cell with brand j, the aftersplit procedure performs at most (2d)d−j

split and merge operations and the resulting extended quadtree T ∗ implements Definition 9.

Proof. Observe that if we split a cell C with brand j, C has at most d neighbors which are
at least a factor 2j−1 larger than C and a leaf in T ∗. We can find the larger leaf neighbors
with at most d level pointer traversals and the neighbors of exactly 2j−1 size by first finding
an ancestor of C and using that ancestor’s level pointers. If we rebrand or split one of the
found neighbors, that neighbor gets a brand one greater than j so the aftersplit procedure
will recurse with a new j′ = j + 1. This means that we recurse at most d− j times which
makes the aftersplit procedure on a cell with brand j perform dd−j split operations which
creates at most (2d)d−j cells.

The resulting tree T ∗ must implement Definition 9 because of Lemma 19. This lemma
states that any neighboring cell N with |N | = 2j−1|C| could exist to smooth a child cell of
C in the static scenario, so each N should contain the option to have that brand. J

The AfterMerge procedure is simply the inverse of the Aftersplit procedure. If we merge
cells into a cell C, we check all neighbors of size 2j−1|C| and 2j−2|C|. In the first case, we
remove the brand j from the cell and check if it still has to exist. In the second case, we
remove the brand j from the cell and check if it needs to be rebranded to a higher brand.

I Theorem 21. For each dynamic compressed quadtree T1 over Rd we can maintain the
extended variant T ∗ with at most O((2d)d) split and merge operations in T ∗ per one split or
merge operation in T1.

5 Extending the proof of Section 3 to work for Rd

In this section, we prove that T ∗ is smooth in every dimension d if T1 is an uncompressed
quadtree. Due to space restrictions, we only summarize the result here; the details can be
found in the full version of the paper.

SoCG 2018

45:12 Dynamic Smooth Compressed Quadtrees

In Section 4 we already elaborated on how we can dynamically maintain our extended
quadtree T ∗ in at most O((2d)d) operations per split and merge on the true tree T1. What
remains to be proven is that the extended quadtree is indeed a smooth quadtree. We prove
this by proving a generalized version of Theorem 17 in Section 3:

I Theorem 22. Let T1 be non-compressed quadtree over Rd which takes O(n) space. In the
extended tree T ∗ there cannot be two neighboring leaf cells which we will name Cd+1, Cd+2
with both brand (d+ 1) such that |Cd+1| ≤ 1

2d+1 |Cd+2|.

The proof is similar to the proof in Section 3.3. If the two neighboring cells Cd+1 and
Cd+2 want to exist in the plane then there must be a chain of d cells (Cd to C1) with
decreasing brand that forces the cells to exist. We show that it is impossible to embed this
chain into the plane without either needing to split the largest cell or violating the Branding
Principle (Lemma 15). The difficulty of this proof is that there are many ways to embed such
a chain of cells in Rd. Moreover, if you want a cell Cj in the chain to cause a contradiction
with a neighboring cell you need to prove that the neighbor actually exists. We define an
abstract virtual operator that can traverse the extended quadtree. With that operator and
Lemma 14 in place we show that if you want to place Cd+2 to C1 in the pane, then each
time we must let Cj neighbor Cj+1 in a unique dimension. If we use a dimension ~y twice we
distinguish between two cases:

The first case is that we use the same dimension and same direction. This case is equal
to case 1 in Section 3.3 and we show that we must violate the Branding Principle.

The second case is that we use the same dimension and opposite direction and it
corresponds with case 2 in Section 3.3. In this case we show that Cd+2 must have been split.

The result is that we need (d+ 1) different dimensions to embed the chain but we have
only d, a contradiction.

6 Compressed quadtrees in Rd

The remainder of our work focuses on building smooth quadtrees that store a set of points
and that are dynamic with respect to insertions and deletions of points from the set. If we
want to build a dynamic quadtree over a point set of unbounded spread we need the quadtree
to be compressed. We again want to define an extended quadtree T ∗ that we can maintain
with the operations in Section 4. In this section summarize the extention of our results to
compressed quadtrees. The details can be found in the full version of the paper.

Recall that in Definition 10 we had (d+ 1) different sets of cells where each set Tj was
defined as the minimal number of cells needed to balance the cells in Tj−1. We showed
that if we have two uncompressed quadtrees T1 and T ′1 which only differ by one split/merge
operation that their extended quadtrees T ∗ and T ′∗ only differ in O((2d)d) cells. However, if
T1 and T ′1 are uncompressed quadtrees and if we use Definition 9, the reader can imagine
that there are scenarios where their extended quadtrees T ∗ and T ′∗ differ in an arbitrarily
large number of cells (see the full version). This is why instead we redefine our extended
quadtree as the union of all extended quadtrees A∗ of all uncompressed components A1
of T1: T ∗ := ∪Uncompressed componentsA1A

∗. If we only demand that cells in uncompressed
components count towards smoothness (the other cells are not stored anyway) then this
extended quadtree is clearly smooth if Theorem 22 holds. However, Theorem 22 relies on
Lemma 14 that says that cells that are family related have a related brand and with this
definition of T ∗ we can place cells with an arbitrary high brand "on top" of other cells. We
observe that the proof of Theorem 22 only uses paths that traverse d2 levels of depth in the

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:13

tree and we define additional operators that make sure that for each cell C, all ancestors
within d2 levels of C have a correct brand. The result is the following theorem:

I Theorem 23. For each dynamic compressed quadtree T1 over Rd we can maintain a smooth
variant T ∗ with at most:
O((2d)d) operations per split or merge on T1.
O(log(α)d2(6d)d+1) operations per deletion or insertion of a compressed leaf.
O(d2(6d)d) time per upgrowing or downgrowing.

7 Alignment in Real RAM

Finally, we show that we can maintain non-aligned compressed quadtrees. Here we only give
a summary of this part; for the details see the full version.

In the previous section we were treating our compressed quadtree as if for each compressed
component A1, the cell of its root R was aligned with the cell of the leaf Ca that stores its
compressed link. That is, the cell of R can be obtained by repeatedly subdividing the cell of
Ca. However, finding an aligned cell for the root of a new uncompressed component when
it is inserted is not supported in constant time in Real RAM model of computation. The
reason is that the length of the compressed link, and thus the number of divisions necessary
to compute the aligned root cell, may be arbitrary.

Instead of computing the aligned root cell at the insertion of each new compressed
component, we allow compressed nodes to be associated with any hypercube of an appropriate
size that is contained in the cell of the compressed ancestor Ca. While doing so, we ensure
that the following alignment property is maintained: For any compressed link in T ∗, if
the length of the link is at most 4α, then the corresponding uncompressed component is
aligned with the parent cell of the link.

In the full version of [19], Löffler et al. obtain this in amortized additional O(1) time by
relocating the uncompressed component just before the decompression operation starts. To
accomplish the relocation task, they exploit the algorithm of Löffler and Mulzer [18] that,
given a compressed quadtree T in R2 and an appropriate square S, produces a 2-smooth
compressed quadtree T ′ on S that stores the same point set as T . We modify the result of [19]
in three ways: (i) We de-amortize it by adapting a well-known de-amortization technique that
gradually constructs the correctly aligned copy of an unaligned uncompressed component
[16]. (ii) We adapt the algorithm of [18] so that it produces our target quadtree T ∗ instead
of a 2-smooth compressed quadtree. (iii) By extending the analysis in [18], we show that
the algorithm to produce T ∗ works in Rd, and its time complexity is linear in the size of the
relocated tree.

The main result of this section is as follows.

I Theorem 24. Let P be a point set in Rd and T1 be an α-compressed quadtree over P
for a sufficiently big constant α with α > 22d , and let T ∗ be the extended variant of a
compressed quadtree T1 with the definition in [14]. The operations split and upgrowing on T ∗
can be modified to maintain the alignment property for T ∗. The modified operations require
worst-case O(32d + d2 · (6d)d) time.

References
1 Boris Aronov, Hervé Brönnimann, Allen Y Chang, and Yi-Jen Chiang. Cost prediction for

ray shooting in octrees. Computational Geometry, 34(3):159–181, 2006.

SoCG 2018

45:14 Dynamic Smooth Compressed Quadtrees

2 Huck Bennett, Evanthia Papadopoulou, and Chee Yap. Planar minimization diagrams via
subdivision with applications to anisotropic Voronoi diagrams. Comput. Graph. Forum,
35(5):229–247, 2016.

3 Huck Bennett and Chee Yap. Amortized analysis of smooth quadtrees in all dimensions.
Computational Geometry, 63:20–39, 2017.

4 Marshall Bern, David Eppstein, and John Gilbert. Provably good mesh generation. Journal
on Computational System Sciences, 48(3):384–409, 1994.

5 Marshall Bern, David Eppstein, and Shang-Hua Teng. Parallel construction of quadtrees
and quality triangulations. International Journal on Computational Geometry and Applic-
ations, 9(6):517–532, 1999.

6 Kevin Buchin and Wolfgang Mulzer. Delaunay triangulations in O(sort(n)) time and more.
Journal of the ACM, 58(2):Art. 6, 2011.

7 Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, 1995.

8 Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 2008.

9 Mark De Berg, Marcel Roeloffzen, and Bettina Speckmann. Kinetic compressed quadtrees
in the black-box model with applications to collision detection for low-density scenes.
Algorithms–ESA 2012, pages 383–394, 2012.

10 Olivier Devillers, Stefan Meiser, and Monique Teillaud. Fully dynamic delaunay triangu-
lation in logarithmic expected time per operation. Computational Geometry, 2(2):55–80,
1992.

11 David Eppstein, Michael Goodrich, and Jonathan Sun. The skip quadtree: a simple dy-
namic data structure for multidimensional data. International Journal on Computational
Geometry and Applications, 18(1–2):131–160, 2008.

12 Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on
composite keys. Acta Inform., 4:1–9, 1974.

13 Sariel Har-Peled. Geometric approximation algorithms, volume 173. American mathemat-
ical society Boston, 2011.

14 Ivor Hoog v.d., Elena Khramtcova, and Maarten Löffler. Dynamic smooth compressed
quadtrees. arXiv preprint arXiv:1712.05591, 2017.

15 Elena Khramtcova and Maarten Löffler. Dynamic stabbing queries with sub-logarithmic
local updates for overlapping intervals. In Proc. 12th Int. Computer Science Symp. in
Russia, (CSR), pages 176–190, 2017.

16 S Rao Kosaraju and Mihai Pop. De-amortization of algorithms. In International Computing
and Combinatorics Conference, pages 4–14. Springer, 1998.

17 Drago Krznaric and Christos Levcopoulos. Computing a threaded quadtree from the
Delaunay triangulation in linear time. Nordic Journal on Computating, 5(1):1–18, 1998.

18 Maarten Löffler and Wolfgang Mulzer. Triangulating the square and squaring the tri-
angle: quadtrees and Delaunay triangulations are equivalent. SIAM Journal on Computing,
41(4):941–974, 2012.

19 Maarten Löffler, Joseph A. Simons, and Darren Strash. Dynamic planar point location
with sub-logarithmic local updates. In 13th Int. Symp. Algorithms and Data Structures
(WADS), pages 499–511. Springer Berlin Heidelberg, 2013. full version: arXiv preprint
arXiv:1204.4714.

20 J David MacDonald and Kellogg S Booth. Heuristics for ray tracing using space subdivision.
The Visual Computer, 6(3):153–166, 1990.

I. Hoog v.d., E. Khramtcova, and M. Löffler 45:15

21 Johannes Mezger, Stefan Kimmerle, and Olaf Etzmuß. Hierarchical techniques in collision
detection for cloth animation. In Proc. Int. Conf. in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG), 2003.

22 Eunhui Park and David Mount. A self-adjusting data structure for multidimensional point
sets. Algorithms–ESA 2012, pages 778–789, 2012.

23 Hanan Samet. Neighbor finding techniques for images represented by quadtrees. Computer
graphics and image processing, 18(1):37–57, 1982.

24 Hanan Samet. The design and analysis of spatial data structures. Addison-Wesley, Boston,
MA, USA, 1990.

25 A Unnikrishnan, Priti Shankar, and YV Venkatesh. Threaded linear hierarchical quadtrees
for computation of geometric properties of binary images. IEEE transactions on software
engineering, 14(5):659–665, 1988.

26 Pravin M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM J. Comput.,
17(3):572–582, 1988. doi:10.1137/0217035.

SoCG 2018

http://dx.doi.org/10.1137/0217035

	Introduction
	Preliminaries
	Quadtree operations and queries

	Static non-compressed smooth quadtrees in R^1 and R^2
	Defining our smooth quadtree
	Static uncompressed smooth quadtrees over R^1
	Static uncompressed smooth quadtrees over R^2

	Dynamic quadtrees
	The algorithm that maintains T*

	Extending the proof of Section 3 to work for R^d
	Compressed quadtrees in R^d
	Alignment in Real RAM

