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Abstract
Once upon a time, a king had a very, very long list of names of his subjects. The king was also a
bit obsessed with name days: every day he would ask his servants to look the list for all persons
having their name day. Reading every day the whole list was taking an enormous amount of time
to the king’s servants. One day, the chancellor had a magnificent idea: he wrote a book with
instructions. The number of pages in the book was equal to the number of names, but following
the instructions one could find all people having their name day by looking at only a few pages
– in fact, as many pages as the length of the name – and just glimpsing at the list. Everybody
was happy, but in time the king’s servants got lazy: when the name was very long they would
find excuses to avoid looking at so many pages, and some name days were skipped. Desperate,
the king made a call through its reign, and a fat sorceress answered. There was a way to look at
much, much fewer pages using an additional magic book. But sometimes, very rarely, it would
not work (magic does not always work). The king accepted the offer, and name days parties
restarted. Only, once every a few thousand years, the magic book fails, and the assistants have
to go by the chancellor book. So the parties start a bit later. But they start anyway.
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1 Introduction

From what we can ascertain reading the enthusiastic reports of the contemporary historians,
the chancellor probably stumbled into an early version of suffix arrays [11]. His book might
have contained a table of the initial points in the list for every name, sorted lexicographically
by suffix. Indeed, the suffix array of a string s over an ordered alphabet Σ of σ elements,
in modern terms, is simply the array of the starting points of the string s$ (where $ is a
character larger than any character in Σ) sorted lexicographically by the corresponding suffix.
Suffix arrays are an extremely effective way of looking for all occurrences of a pattern in a
string, as once they are built (with some additional ancillary data), search requires only an
amount of work linear in the length of the search pattern. In modern days, a large body of
research has gone into building and representing suffix arrays efficiently (e.g., in compressed
form) [6, 4, 13, 10, 7].

In fact, at the price of an additional (and very compressible) array of integers a suffix array
can represent implicitly the suffix tree associated with the string s [1]. While asymptotically
the two approaches give the same bounds, we know that managing a billion nodes or three
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arrays of a billion integers is an entirely different business, especially if you are a poor servant
that lives on bread and water.

So, why were the servants still unhappy? Well, since the pages to look at were as many
as the letter in the names, with long names they had to jump through several pages of the
book and of the list quite at random. The book was heavy, and the list too. Looking at
consecutive pages was easy, jumping around much less.

Here is when the fat sorceress came in: she said that with an additional book and
additional instructions, looking at a number of pages equal to the logarithm of the length of
the name would have been sufficient to recover the same information, together with a few
scans on the list. The only problem is that magic is tricky and once in a while (although very
rarely) it would not work: if that happens, though, sevants would realize that something
went wrong, and they could still go the old way.

Through a thorough research we have been able to reconstruct the spell. What the fat
sorceress probably discovered is a way to apply fat binary search, the main ingredient of z-fast
tries [2], to a suffix array.1 To use fat binary search, one stores some additional linear-space
information, the z-map. Then, given a pattern p of length m, one first preprocesses p in
time O(1 + (m log σ)/w), and then performs O(logm) search steps, each accessing a constant
amount of information. Then follows a verification phase, which accesses m characters, but
the interesting fact is that the characters are accessed in sequential fashion at less than σ
different positions of the original text s. Thus, in modern-day parlance, fat binary search
makes it possible to find with high probability the occurrences of pattern p in s using time
O((m log σ)/w + logm + σ) and O((m log σ)/B + logm + σ) I/Os in the cache-oblivious
model.

2 Notation and Tools

Let Σ be a fixed alphabet (of cardinality σ) not including the special symbol $, and define
Σ̂ = Σ ∪ {$}. The alphabet Σ comes endowed with a specified (arbitrary) total order, that
is inherited by Σ̂ with the proviso that $ is larger than any other character. We use ≤ to
denote the induced lexicographic order on Σ̂∗, whereas � is used to denote the prefix order.

If x ∈ Σ̂∗ is a string, x juxtaposed with an interval is the substring of x with those indices
(indices start from 0). Thus, for instance, x[a . . b] is the substring of x starting at position a
(inclusive) and ending at position b (inclusive). We will write x[a] for x[a . . a] and x[a . . ] for
x[a . . |x| − 1]. By definition, x[|x| . . ] = ε.

We analyze our algorithms on a unit-cost word RAM with word size w in the cache-
oblivious model [5]. In this model, the machine has a two-level memory hierarchy, where the
fast level has an unknown size of M words and the slow level has an unbounded size and is
where our data reside. We assume that the fast level plays the role of a cache for the slow
level with an optimal replacement strategy where the transfers (a.k.a. I/Os) between the two
levels are done in blocks of an unknown size of B ≤M words; the I/O cost of an algorithm
is the total number of such block transfers. Scanning is a fundamental building block in the
design of cache-oblivious algorithms: given an array of N contiguous items the I/Os required
for scanning is O(1 +N/B).

We measure space in words. Thus, we will say that a suffix array takes linear space, even if
it needs O(n logn) bits. A more detailed analysis can be performed when specific instances of
the various support structure have been instantiated (e.g., a compressed vs. non-compressed
lcp array).

1 We should mention here that trying such a spell was suggested to the sorceress by the great sorcerer of
sorcerers, Ricardo Baeza-Yates.
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3 Static Z-Fast Tries on Arbitrary Languages

Fat binary search appeared for the first time in the context of probabilistic static z-fast
tries [2], which were originally introduced for prefix-free binary languages. Their main
purpose was to assign buckets to a larger set of strings. The basic idea is that of enriching a
standard compacted trie with a kind of acceleration map, the z-map, which makes it possible
navigate the trie quickly (i.e., using a number of accesses to the map logarithmic in the
length of the search string).

Subsequently, fat binary search was applied to dynamic z-fast tries [3], again based on
prefix-free binary strings. Dynamic z-fast tries exist in two versions: an exact version and
a signature-based version. In the first case, we store a z-map from strings to nodes, in the
second case a z-map from string signatures to nodes, and we have to handle collisions and
false positives.

In this section we start introducing exact static z-fast tries on prefix-free languages L on
a general alphabet Σ, and show how they can be used to solve the following problem: is p
the prefix of some element of L? We describe the algorithms in the exact setting, adding
assertions that may fail in the signature-based setting.

3.1 Compacted tries
A compacted trie [9] over Σ is a rooted tree such that

every node α is endowed with a string cα ∈ Σ∗ (the compacted path of α)
every arc connecting an internal node α with one of its children α′ is labelled with a
character cα,α′ ∈ Σ and cα,α′ 6= cα,α′′ for any two distinct children α′ and α′′ of α
every internal node has at least two children.

For every node α of a compacted trie, we define its name nα ∈ Σ∗ and its extent eα ∈ Σ∗ as
follows:

nroot = ε

eα = nαcα
if α′ is a child of α, then nα′ = eαcα,α′ .

For any given finite nonempty prefix-free language L ⊆ Σ∗, the compacted trie of L is the
only compacted trie2 T (L) over Σ such that L is the set of all the extents of the leaves of
T (L).

In Figure 1, we show an example of a trie with the nomenclature just introduced (and
some more that will be introduced in the following).

3.2 Exit nodes
Given a compacted trie over Σ, and given a string p, we let exit(p) be the exit node of p, that
is, the only node α such that nα � p and for every other node α′ if nα′ � p then n′α � nα.
In other words, it is the node whose name is the longest possible prefix of p. (See Figure 1
for an example of an exit node). Moreover, we call parex node of p the parent of the exit
node of p, or a special symbol ⊥ if the exit node of p is the root (note that the parex of p is
the node with the longest extent that is a proper prefix of p).

It is worth stating the following property of exit nodes:

2 In [2], we studied compacted tries only for the binary case (i.e., Σ = 2).
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Figure 1 (above) The compacted trie T (L) (with the corresponding nomenclature) and its z-map.
Here L = {001001010, 0010011010010, 00100110101}.

I Lemma 1. For a given string p, exit(p) is the only node γ such that nγ � p and one of
the following mutually exclusive properties holds:

p � eγ ;
eγ ≺ p and γ does not have a p[|eγ |] child;
p and eγ are �-incomparable.

Proof. The only remaining case is that eγ � p with γ having a p[|eγ |]-child: but in this case,
that child would have a name that is still a prefix of p, longer than nγ . J

Another easy consequence of the definition is the following:

I Proposition 2. Let L ⊆ Σ∗ and consider the trie T (L). A string p ∈ Σ∗ is a prefix of
some element of L if and only if p � eexit(p). Moreover, if the latter happens then the set

{eα | α is a leaf descendant of exit(p)}

is precisely the set of x ∈ L such that p � x.

In the example of Figure 1, p = 00100100 is not the prefix of any of the strings in the
language. The name of its exit node exit(p) (the leftmost child of the root in the figure) is
0010010, which is in fact a prefix of p. Yet the extent of exit(p) is 001001010 of which p is
not a prefix. If we had taken p′ = 00100110 we would have exited at the rightmost child
of the root, whose extent 0010011010 has p′ as prefix: in fact, p′ is the prefix of two of the
elements of L, corresponding precisely to the rightmost two leaves in the trie.

A final important remark is the following: if p is not a prefix of an element of L, according
to Proposition 2, p 6� eexit(p). But more than this is true: p 6� eα for all nodes α (for
otherwise, a fortiori, p would be a prefix of the extent of a leaf).

3.3 Static z-fast tries
Let us assume that we have built the trie T (L) for a given language L of size n. Proposition 2
gives an easy way to determine if a string p of length m is a prefix of some element of L:
it is enough to locate exit(p) and then to check whether p is a prefix of its extent or not.
Moreover, the second part of the statement suggests which elements of L have p as prefix.
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Algorithm 1 Querying the z-fast trie using fat binary search. Given a string p, it will return
either exit(p) or parex(p).

Input: a string p of length m
Output: either parex(p) or exit(p)
`, r ← 0,m
while ` ≤ r do
f ← the 2-fattest number in [` . . r]
β ← Z(p[0 . . f − 1])
if β 6= ⊥ then
`←

∣∣eβ∣∣+ 1
γ ← β

else
r ← f − 1

end if
end while
return γ

Locating exit(p) can be done trivially in O(mσ) steps, going down in the trie starting
from the root. In [2] we suggest an alternative, faster solution that needs an additional data
structure, called z-map. We briefly recall the idea.

I Definition 3 (2-fattest numbers and handles). The 2-fattest number of an interval [a . . b] of
non-negative integers is the unique integer in [a . . b] that is divisible by the largest power of
two, or equivalently, that has the largest number of trailing zeroes in its binary representation.
The handle hα of a node α of a trie is the prefix of eα whose length is 2-fattest in [|nα| . . |eα|]
(the skip interval of α).

In Figure 1 we show the (length of the) handles of each node, including the leaves: the
handle is the string ending just above the dotted lines you can see in each node.

I Definition 4 (z-map). The z-map Z(−) for the trie T (L) is a map from elements of Σ∗ to
nodes in the trie, which maps hα to α for each internal node α.

In the example of Figure 1, there are only two internal nodes, so the map contains only
two pairs. The z-map can be stored using any static dictionary with constant-time access;
we assume that the dictionary returns the special value ⊥ whenever the key is not in the
dictionary.

The usefulness of the z-map is made evident by Algorithm 1, which takes as input a
string p ∈ Σ∗ and outputs a node of the trie which is either exit(p) or parex(p): it is a
general-alphabet version of the classic fat binary search [2], and in fact, it is exactly identical
to the binary version, since the alphabet has no role in such searches. The proof from [2]
goes along in the same way.

I Theorem 5. Algorithm 1 is correct and its loop is executed at most logm times; in
particular, the z-map is accessed at most logm times.

Note that fat binary search does not use the trie structure: it only queries the z-map,
each time using a prefix of p, and computes possibly the length of the extent of a node
returned by the z-map.

If our purpose is determining whether p is the prefix of some element of L, we can start
with Algorithm 1, but then we need two things: first we must understand whether the

FUN 2018
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Algorithm 2 Given a string p, it will return either exit(p) or ⊥, depending on whether p is
the prefix of a string in L or not.

Input: a string p
Output: if p is the prefix of an element of L then exit(p), otherwise ⊥
γ ←Algorithm 1 on p
assert nγ � p
if p � eγ then

return γ /* γ is the exit node */
else

if p and eγ are �-incomparable then
return ⊥ /* γ is the exit node, but p 6� eexit(p) */

else
/* necessarily eγ ≺ p */
if γ has a child labelled p[|eγ |] then
let γ′ be the child /* γ′ is the exit node */
if p � eγ′ then

return γ′

else
assert p and eγ′ are �- incomparable or γ′ does not have a p[|eγ′ |]-child
return ⊥

end if
else

return ⊥ /* γ is the exit node, but p 6� eexit(p) */
end if

end if
end if

algorithm returned the exit node or its parent (and in the latter case we must go down to
the actual exit node), and second we need to use Proposition 2 to determine if p � eexit(p) or
not. Algorithm 2 does both things at the same time.

I Theorem 6. Algorithm 2 is correct; moreover, if the length of the strings in L is bounded
by O(w/ log σ), the algorithm uses O(logm+ σ) time and I/Os.

Proof. First of all, note that since nγ � p (as in the first assert), one can determine if
p � eγ just by comparing p[|nγ | . . |eγ |] and cγ . A similar consideration is true (later on in
the algorithm) for deciding if p � eγ′ .

Let now γ be the output of Algorithm 1; γ is either the exit node or the parex: in either
case nγ � p (which justifies the first assertion). If p � eγ , necessarily γ is the exit node and
moreover p is a prefix of some element of L by Proposition 2. If p and eγ are incomparable,
once more γ is the exit node (because none of the children of γ can have a name that is a
prefix of p), but (again using Proposition 2) we must return ⊥. The last case is that eγ ≺ p.
If γ has no child with label p

[∣∣eγ∣∣], for the same reasons as in the last case, γ is the exit node
but we must return ⊥. Otherwise, the child with label p

[∣∣eγ∣∣], say γ′, is the real exit node.
We must continue to check if p � eγ′ or not, but we can limit the check to the part of the
string p that was not checked so far. The last assertion states that γ′ is indeed the exit node.

For the complexity statement, the call to Algorithm 1 requires time O(logm) and the
same amount of I/Os to query Z(−) (every access to Z(−) is done in constant time because
of the assumption about the length of the strings in L). The comparison between p and
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eγ (and, later, eγ′) requires time O(1 + (m log σ)/w) and O(1 + (m log σ)/B) I/Os (as we
observed above, in both cases we are comparing a substring of p with the compacted path
of a node), but m = O(w/ log σ) so these quantities are both O(1). The only case in which
Algorithm 1 needs to access the trie structure is when it needs to find the child of γ with
label p

[∣∣eγ∣∣], which can be done in time O(σ). J

It is worth noting that Algorithm 2 performs at most one access to the trie structure in
case it needs to enumerate the children of γ. Moreover, the comparisons between p and other
strings requires at most σ scans of overall m characters.

We also remark that if the z-map is modified to include also the handles of the leaves,
Algorithm 1 on a string in L never outputs the parex, which means that Algorithm 2 needs
just O(logm) time and I/Os to solve a membership query.

3.4 Signature-based static z-fast tries
If the length of the strings in L is not bounded by O(w/ log σ), the map Z(−) described in
the previous section uses superlinear space and superconstant time at every access. This is
why the “long string” version of dynamic z-fast tries [3] replaces handles with signatures:
instead of storing pairs (hα, α) we store pairs (H(hα), α) where H(−) is a suitably chosen
signature hash function. The signature-based version is designed to work with sets of at
most 2O(w) strings of length up to 2O(w), but fat binary searches return the correct result
only with high probability.

Note that by using hashes of size (c+ ε) logn, c ≥ 2, we will find distinct hash values for
all handles after a constant expected number of attempts. Indeed, under a full randomness
assumption the probability of a collision when t elements are extracted from a set of u with
replacement is well approximated by 1− e−t2/2u, which means that with the choice above
the probability of having a hash collision between distinct handles is at most

1− e−n
2/21+(c+ε) log n

= 1− e−n
2/2nc+ε

≤ 1
2nc−2+ε → 0 as n→∞.

Once the signatures are all distinct, in estimating the probability of error of a fat binary
search we have to care just about at most logm false positives, which by the union bound
happen with probability at most

2−(c+ε) logn logm = 1
ncnε

O(w) = o

(
1
nc

)
.

Note that each time we have to query the z-map, we have to compute the hash of
a potentially long prefix: to this purpose, the dynamic z-fast trie uses hash functions
that can hash any prefix of the pattern p in constant time after preprocessing p in time
O(1+(m log σ)/w) and storing a linear amount of information. We will see that even stronger
properties will be needed in Section 5.

Finally, the signature-based version needs that besides cα, also nα can be accessed in
constant time from α. This can be obtained in different ways, but usually the simplest one
(and the one used by the dynamic z-fast trie) is to store in α a pointer to a suitable element
of L. Another possibility is to store explicitly eα.

Due to signature collisions and false positives, Algorithm 1 may output a node γ that
is neither the exit node nor the parex. Let us see how this fact impacts on Algorithm 2;
looking back at Lemma 1, we have the following cases:

FUN 2018



10:8 Kings, Name Days, Lazy Servants and Magic

the node γ returned by Algorithm 1 is in fact either the exit node or the parex (because
no false positives were found during the execution, or because by chance we anyway
landed in the correct place): in this case everything goes smoothly as before;
the returned node γ is not even an ancestor of exit(p): in this case, the first assertion
(that nγ � p) fails;
finally, if γ is a proper ancestor of parex(p), then Algorithm 2 proceeds as if γ was the
parex but then the second assertion of the algorithm fails (γ′ would in that case be an
ancestor of the parex, and not the exit node as expected).

Thus, when executing Algorithm 2 in the signature-based case, we have to actually verify
the assertions, which requires time O(1 + (m log σ)/w) and O(1 + (m log σ)/B) I/Os, as we
have to compare the whole name nγ with p (the cost of verifying the assertions covers also
the cost of the comparisons with extents discussed in the proof of Theorem 6). If either
assertion fails, we have to resort to the standard naive trie search to look for the exit node.
The naive search requires, of course, time O(mσ). Summing up:

I Theorem 7. Under a full randomness assumption, let c ≥ 2 and assume that Z(−) stores
((c+ε) logn)-bit hash values without collisions. Then, in time O((m log σ)/w+logm+σ) and
with O((m log σ)/B + logm+ σ) I/Os Algorithm 2 returns the correct result with probability
at least 1 − o(1/nc); otherwise, it detects an assertion error, in which case it returns the
correct result by resorting to the standard naive search on the trie, which requires O(mσ)
time and I/Os.

4 Suffix trees and suffix arrays

For a given string s ∈ Σ∗ of length |s| = n, let Suff(s$) be the set of all the nonempty suffixes
of s$. We write T (s) as an abbreviation for T (Suff(s$)). The trie T (s) is called the suffix
tree of s. As an example, in Figure 2 we show T (ABRACADABRA).

Observe that T (s) is a trie over the alphabet Σ̂ (the addition of $ is needed to make the
language of suffixes prefix-free). It is worth noticing that in most papers on suffix trees there
are no labels on nodes; instead, arcs are labelled with a nonempty strings (and the arcs
to the children of a node have strings that differ in the first character). Our trees can be
transformed into this (perhaps more standard) representation by removing all node labels
and changing the label of each arc (α, α′) to cα,α′cα′ . For the sake of comparison, we show
in Figure 3 the alternative representation of the same trie of Figure 2.

Although in theory one could build the suffix tree of a string explicitly, much more (space-
and time-) efficient approaches are available, based on suffix arrays. The suffix array [11] sa
of s is the permutation of {0, 1, . . . , n} such that

s$[sa[0] . . ] < s$[sa[1] . . ] < · · · < s$[sa[n] . . ].

Let us write si as an abbreviation of s$[sa[i] . . ]. It is also convenient to define the lcp array
lcp defined by letting lcp[0] = lcp[n+ 2] = 0 and lcp[i+ 1], 0 ≤ i ≤ n, as the length of the
longest common prefix between si and si+1. In Figure 4, we show the suffix array and the
lcp array for our running example s = ABRACADABRA.

Every node α in the suffix tree can be identified with the interval [`α . . rα] of indices such
that k ∈ [`α . . rα] if and only if sk is the extent of one of the leaves that are descendants of
α. The interval [`α . . rα] is called the lcp-interval of node α [1]. It is easy to see that:

the lcp-interval of the root is [0 . . n];
leaves are the only nodes whose lcp-interval is a singleton;



P. Boldi and S. Vigna 10:9

Z

ε → root = [0 . . 11]
A → α0 = [0 . . 4]
BR → α1 = [5 . . 6]
RA → α2 = [9 . . 10]
ABRA → α3 = [0 . . 1]
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Figure 2 The zuffix tree T (ABRACADABRA) and its z-map (with lcp-intervals).

the lcp-intervals of the children α0, α1, . . . , αk of a node α are an ordered partition of
the lcp-interval of their parent, where the ordering is established by the lexicographic
order of the characters cα,αi .

Not only there are efficient algorithms to build the suffix array (and the associated lcp
array) [10, 7, 12]: at the price of one additional (and very compressible) array of integers
the suffix array can be made into a so-called enhanced suffix array, and then used to
represent and navigate implicitly the suffix tree [1]. More precisely, we can enumerate the
lcp-intervals [` . . `1 − 1], [`1 . . `2 − 1], . . . , [`k . . r] corresponding to the children of the node
whose lcp-interval is [` . . r]. Each child is enumerated in constant time.

It is easy to check that given a node with lcp-interval [` . . r] we can compute all the data
we need (name, extent, etc.) using only the suffix and the lcp arrays:

∣∣n[`,r]
∣∣ =

{
0 if ` = 0 and r = n (root)
1 + max(lcp[`], lcp[r + 1]) otherwise∣∣e[`,r]

∣∣ =
{
n− sa[`] + 1 if ` = r (leaf)
lcp[a] otherwise∣∣h[`,r]

∣∣ = the 2-fattest number in
[∣∣n`,r∣∣ . . ∣∣e`,r∣∣]

n[`,r] = s
[
sa[`] . . sa[`] +

∣∣n[`,r]
∣∣− 1

]
e[`,r] = s

[
sa[`] . . sa[`] +

∣∣e[`,r]
∣∣− 1

]
where a is the left extreme of the lcp-interval of the second child of [` . . r].

Getting back again to the example depicted in Figure 2, consider the leftmost grandchild of
the root, corresponding to the lcp-interval [0 . . 1]; its children are both leaves and correspond
to [0] and [1]. Its name has length 1 +max(lcp[0], lcp[2]) = 2 (see Figure 4) and its extent has
length lcp[1] = 4. Since sa[0] = 0, name and extent are s[0 . . 1] = AB and s[0 . . 3] = ABRA,
respectively. Its first child [0] has name of length 1 + max(lcp[0], lcp[1]) = 5 (its name is in
fact ABRAC), and extent of length n− sa[0] + 1 = 12 (which is in fact ABRACADABRA$).
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Figure 3 The suffix tree T (ABRACADABRA) in the alternative representation used in most
papers about suffix trees.

5 Zuffification

As we explained, there are very efficient (in fact, even very well engineered) algorithms to
build a suffix tree or an (enhanced) suffix array in linear time. What we want to do is adding
to them a z-map gadget (in the case of suffix arrays, the z-map is that of the suffix tree that
the suffix array implicitly represents). We call this process zuffification (which looks really
nice for a spell), and resulting data structures are called the zuffix tree and the (enhanced)
zuffix array.

The idea is very simple: we perform a depth-first visit of the suffix tree. For each internal
node, we can compute its handle (as explained in the previous section), the corresponding
hash, and store the correspondence between the hash and the node. We then check for
collisions in the hash values of handles, possibly restarting with a different hash function
if some collision is found, and finally build a static constant-time dictionary mapping the
hashes to the nodes.

Of course, computing a hash for x needs time O(1 + (|x| log σ)/w). However, we can
make hashing time constant by resorting to a particular kind of rolling hashing: in particular,
we want the two following properties to be true:
1. Given a string x ∈ Σ∗ and c ∈ Σ, we have H(xc) = f(H(x), c), where f can be computed

in constant time.
2. Given strings x, y ∈ Σ∗, we have H(y) = g(H(xy), H(x)), where g can be computed in

constant time.
If H is chosen in this way, we can build in linear time (by the first property) a table recording
the hashes of the prefixes of the text s. At that point, computing the hash of a(ny) substring
of s requires constant time by the second property (the values of H(x) and H(y) being
found in the table). Several types of hash functions have the properties described above: the
list includes hashing based on cyclic polynomials [15], Karp–Rabin hashing [8] and hashing
based on the remainder of the division by a general irreducible polynomial [14] (the string is
mapped to a string of bits and then interpreted as a polynomial over F2). Thus,
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i sa[i] lcp[i] si = s$[sa[i] . . ]
0 0 0 ABRACADABRA$
1 7 4 ABRA$
2 3 1 ACADABRA$
3 5 1 ADABRA$
4 10 1 A$
5 1 0 BRACADABRA$
6 8 3 BRA$
7 4 0 CADABRA$
8 6 0 DABRA$
9 2 0 RACADABRA$
10 9 2 RA$
11 11 0 $
12 0

Figure 4 The suffix array and lcp array for the string ABRACADABRA.

I Theorem 8. Zuffification can be performed in expected linear time (in fact, with high
probability) both for suffix trees and suffix arrays.

A practical improvement that slows down the construction time, but reduces significantly
the space usage, is that of recording the hashes only for prefixes whose length is multiple of
some value O(w). In the cases above, it possible to still compute the hash of a substring
quickly, albeit in some case O(w) operations might be necessary (this depends on which
instructions are considered to be atomic: for example, modern processor have constant-time
multiplication of polynomial on F2). However, we have to store much fewer prefix hashes.

5.1 Searching with zuffix arrays
We can finally completely rebuild the spell of the fat sorceress. Given a string s, we build in
linear time its enhanced suffix array, and simulate in linear time a visit of the associated
suffix tree to build the z-map, thus obtaining the zuffix array. The latter operation works in
expected linear time, because there might be collisions.

To search the zuffix array, we apply Theorem 7 to our setting, obtaining the same bounds.
More importantly, since the nodes of the simulated suffix tree are exactly the intervals of the
suffix array containing the starting points of the suffixes we are looking for, at the end of
Algorithm 2 we have found all the locations of the search pattern:

I Theorem 9. Under a full randomness assumption, given a pattern p, a zuffix array (in
time O((m log σ)/w + logm + σ) and with O((m log σ)/B + logm + σ) I/Os) returns the
interval of the underlying suffix array containing the positions at which p appears, with
probability at least 1− o(1/nc); otherwise, it returns the same result in time O(mσ).

Significant practical improvements to the space used by the z-map can be obtained using
the following theorem, which can be proved by adapting the proof of Theorem 5:

I Theorem 10. Let L be a prefix-free language, and S a parent-closed set of nodes of T (L).
Consider a map Z sending hα → α, α ∈ S. Then, Algorithm 1 returns the lowest ancestor
in S of the exit node of the pattern, or its parent.

The theorem above opens the door to a number of interesting space-time tradeoffs: for
example, eliminating c levels of leaves in Definition 4 one obtains a much smaller map, but
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now locating the actual exit node (Algorithm 2) may require to go down c levels in the trie,
using time O((m log σ)/w + logm+ cσ) and with O(m log σ/B + logm+ cσ) I/Os.

An even more interesting application is in DNA searching: usually the databases are
very large, but the patterns are several orders of magnitude shorter: by building a z-map
containing only handles shorter than `, the search for patterns shorter than ` will not be
affected, but the map will be much smaller (longer patterns will still be searchable, possibly
using time O(mσ)).

6 Conclusions

The fat sorceress was actually quite good at spells: given a pattern p, after a search that is
logarithmic in |p|, a zuffix array tests p against s scanning from at most σ positions. In practice,
this means at most σ cache misses in the test phase (this fact is only partially expressed by
the I/Os in the cache-oblivious model, as the model does not consider prefetching). The
result needs an uncompressed original text, but in the context of the rise of modern low-cost
fast storage, like solid-state drives, this limitation does not seem so serious. We remark
that in our description we used enhanced suffix arrays, but nothing prevents zuffification of
compressed suffix trees [16], compressed suffix arrays [6] or even of the FM-index [4].
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