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—— Abstract

In k-ary cuckoo hashing, each of cn objects is associated with k£ random buckets in a hash table of
size n. An (-orientation is an assignment of objects to associated buckets such that each bucket
receives at most £ objects. Several works have determined load thresholds ¢* = c*(k, ¢) for k-ary
cuckoo hashing; that is, for ¢ < ¢* an f-orientation exists with high probability, and for ¢ > ¢*
no f-orientation exists with high probability.

A natural variant of k-ary cuckoo hashing utilizes double hashing, where, when the buckets
are numbered 0,1,...,n — 1, the k choices of random buckets form an arithmetic progression
modulo n. Double hashing simplifies implementation and requires less randomness, and it has
been shown that double hashing has the same behavior as fully random hashing in several other
data structures that similarly use multiple hashes for each object. Interestingly, previous work
has come close to but has not fully shown that the load threshold for k-ary cuckoo hashing is
the same when using double hashing as when using fully random hashing. Specifically, previous
work has shown that the thresholds for both settings coincide, except that for double hashing it
was possible that o(n) objects would have been left unplaced. Here we close this open question
by showing the thresholds are indeed the same, by providing a combinatorial argument that
reconciles this stubborn difference.
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Cuckoo Thresholds for Double Hashing

1 Introduction

1.1 The Threshold Question

Cuckoo hashing, introduced by Pagh and Rodler [13] and generalized in many subsequent
works (see e.g. [1, 2], and [9] for additional background and references), has proven useful
both as a theoretical building block and in practical systems. In k-ary cuckoo hashing, each
of cn objects is associated with k random buckets in a hash table of size n. An £-orientation
is an assignment of objects to associated buckets such that each bucket receives at most /¢
objects. Several works have determined load thresholds ¢* = ¢*(k, £) for k-ary cuckoo hashing;
that is, for ¢ < ¢* an f-orientation exists with high probability, and for ¢ > ¢* no f-orientation
exists with high probability. Beyond their theoretical interest, these load thresholds are
important for designing systems that use cuckoo hashing, as they provide an accurate guide
to what loads can be achieved in practical settings.

A natural variant of k-ary cuckoo hashing utilizes double hashing. Double hashing
originally appeared in the context of open-address hash tables, where an object 57 would
be placed by successively trying to find an open bucket at locations h(i,j) = (h1(j) +
iha(j)) mod |T'| for i = 0,1,..., where here |T| represents the table size and hy and hy
are two independently selected hash functions. In the context of cuckoo hashing when
the buckets are numbered 0,1,...,n — 1, the k choices of random buckets are of the form
h(i,j) = (h1(j) +ih2(j)) mod n for i =0,...,k — 1, so that the choices form an arithmetic
progression modulo n.

Double hashing both simplifies implementation and requires less randomness. Moreover,
a classical result in the theory of open-address hash tables is that double hashing yields
asymptotically the same cost for an unsuccessful search as using full randomness [8], showing
that there is negligible performance cost in using double hashing. This type of result, that
using double hashing does not change the performance, has since been shown for other
hashing-based data structures using several choices, such as Bloom filters [4] and balanced
allocation hash tables [10, 11]. We therefore expect that the load thresholds for cuckoo
hashing would be the same using double hashing as when using full randomness. Indeed, as
we describe in more detail below, previous work has almost shown that the thresholds are
the same, but completing the argument has proven stubbornly elusive. Here we complete
the proof through a suitable combinatorial argument.

1.2 Terminology

In the rest of the paper, we make use of the following terminology.

Fully random graph. Let HY .. be a k-uniform random hypergraph with vertex set Z,
and cn edges or something “morally equivalent”. Specifically, for our purposes it is often
convenient to have perfect independence of edges, each edge e being picked as e = {x1, ...,z }
where x1, ..., x) are chosen independently and uniformly from Z,. Note that this may result
in some edges of size less than k, as well as duplicate edges. These deviations do not change

the threshold, as is known via standard arguments.

Double-Hashing graph. Similarly, D .,

but the cn edges must be k-term arithmetic progressions. More precisely, each edge e is
independently sampled as e = {a +ibmod n | 0 < i < k} for a € Z,, and 1 < b < n/2 chosen
independently and uniformly at random. If n is prime then each edge has size k and, for
convenience, we assume this to be the case.

is also a random hypergraph with vertex set Z,,
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equality shown in this paper,
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Figure 1 Two out of three steps for Theorem 1 are already known.

Orientability. A hypergraph H = (V, E) is (perfectly) ¢-orientable if there is function
f+ E — V mapping each edge e € E to an incident vertex f(e) € e such that each vertex
v is the image of at most ¢ edges. For d € N we say H = (V, E) is d-almost ¢-orientable if
there is B/ C E of size |E'| = |E| — d such that H' = (V, E’) is f-orientable.

Orientability threshold. A family (H,)nen of random hypergraphs depending on a param-
eter ¢ has an f-orientability threshold ¢* > 0 if for ¢ < ¢*, H,, is f-orientable whp (“with high
probability”, i.e. with probability 1 — 0,,—,00(1)) and for ¢ > ¢*, H,, is not ¢-orientable whp.
Similarly we can define d-almost f-orientability thresholds; we may even allow for d to be a
function of n.

2  Outline of the Argument

Our goal is to prove the following theorem.

» Theorem 1. For any fized constants k > 3,{ > 1, the {-orientability threshold for
(H}: o )nen and the (-orientability threshold for (D ., )nen coincide.

n,cn

We review what is known about double hashing in the context of cuckoo hashing, to explain
what remains left to show (see Figure 1). Leconte [6] showed that the families (HE . )nen
and (DF ., )nen have the same Galton-Watson Tree as random weak limit. Lelarge [7] showed
that the threshold for o(n)-almost f-orientability of a graph family only depends on the
random weak limit of the family. It is fairly easy to reconcile the f-orientability and the
o(n)-almost f-orientability for (HE ., )nen (see [7]), showing that the thresholds are the same
for that family. In order to establish Theorem 1 all we need to prove is an analogous result for
Dk,

o(n)-almost ¢-orientability, so only the non-trivial direction is given.

which is done in the following proposition. Note that f-orientability trivially implies

» Proposition 1. Let k > 3 and £ > 1 be fixed constants. Let ¢* be the o(n)-almost
L-orientability threshold for (Dﬁ’m)neN. Then for any ¢ < c*, DF _is (-orientable whp.

n,cn

The proof uses two lemmas that are proved in Sections 3 and 4. To understand them, we need
another concept. In the context of discussing ¢-orientability of a hypergraph H = (V, E), we
call V! C V a Hall-witness if the set E(V') of edges induced by V' has size |[E(V')| > £-|V].
By Hall’s Theorem (restated in Section 4), H is ¢-orientable if and only if no Hall-witness
exists.

SWAT 2018
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The lemmas we utilize are as follows:

» Lemma 2. Letk >3, ¢ > 1 and ¢ > 0 be fized constants. Then there exists a constant
0 > 0 such that, whp, no Hall-witness of size less than dn exists for thcn.

» Lemma 3. If H = (V, E) is d-almost (-orientable and e € E is contained in some minimal
Hall-witness, then H'©) = (V, E — {e}) is (d—1)-almost {£-orientable.

Given these lemmas, we prove Proposition 1, following [7].
Proof of Proposition 1. Let ¢ = ¢* — ¢ for some ¢ > 0. We may sample DF _ by first

n,cn
k

n,c'n

sampling D for ¢/ = ¢* — /2 and then removing en/2 edges. More precisely, we set
DO .= DF , and obtain DU from D@ by removing an edge uniformly at random for
0 < i < en/2. Then D"/2) is distributed as Dk ...

For 0 < i < en/2, let d; be the smallest d such that D is d-almost f-orientable. By
choice of ¢* we have dg = o(n) whp. We take ¢ from Lemma 2 and condition on the high
probability event that any Hall-witness of D(®) has size at least dn. Of course, the same
bound applies to Hall-witnesses of the subgraphs D) with i > 1.

Let i be an index with d; > 0. Then D is not f-orientable and a minimal Hall-witness
exists. Its size is at least dn, and it induces at least §fn + 1 edges. In particular, the
probability that a random edge of D) is contained in this minimal Hall-witness is at least
5@5:{1 > §4/c = ©(1). If such an edge is chosen for removal, then by Lemma 3 we have
dit1 = d; — 1. Until we reach D"/2) there are en/2 = ©(n) opportunities to reduce the d-
value by 1, and each opportunity is realized with probability ©(1). Since the initial gap is o(n),
the probability that we have d.,, /o > 0 is Pr[X < o(n)] where X ~ Bin(©(n),0(1)). Simple
concentration bounds on binomial random variables prove that this is an o(1)-probability
event, so we have d.,/» = 0 whp. Thus D(en/2) — D,’;cn is (perfectly) f-orientable whp as

desired. <

3 No small Hall-witness exists

In this section, we prove Lemma 2. We argue first that it is enough to prove the statement
in the case k = 3 and ¢ = 1. Indeed, if thcn contains no V’ C V inducing more than
|[V’| edges, then certainly no such V' induces more than ¢|V’| edges. Moreover, let us write
e = {a. +ib. : 0 < i < k} for an edge e of Dﬁ}cn. We project each edge e in wan to
e/ = {ae +ib. : 0 < i < 3}; then the resulting 3-uniform hypergraph is distributed like D3
and each V/ C V induces at least as many edges as in D,’i’m. It therefore suffices to show
the unlikeliness of certain Hall witnesses in the case of k = 3, £ = 1, and fixed ¢ € RT.

We introduce the notion of an (s, t)-set, a set of size s that contains precisely ¢ arithmetic
triples for some 3 < s <mand 1 <t < (;) More specifically, a subset S of [0,n — 1] contains
some number of arithmetic triples modulo n, which unfortunately does not depend solely
on the size of the subset S, and we therefore parametrize the number of triples with an

additional variable ¢. Our plan is to use first moment methods and bound the sum:

Z Qs,tps,t

(s:t)

where Q, is the number of (s, t)-sets that could be minimal Hall-witnesses, and p;  is an
upper bound on the probability that an (s, t)-set actually is a minimal Hall-witness in D3

n,cn*

We separately deal with the following ranges of the parameters s and t¢.
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Case 1: Small s. If s = o(n'/?) we exploit that > Qs¢ is sufficiently small by direct
counting.

Case 2: Medium s, small-ish t. For s = w(n?/%) and t < %, the probability ¢/(}) ~ 2
that random edges are contained in such an (s,t)-set is small enough to find a good

bound on py ;.

Case 3: Medium s, large t. For on > s = w(n?/°) (for a small § chosen later) and ¢ > %
it turns out that ¢ far exceeds the number of arithmetic triples that would be expected
from a random set of size s. A concentration bound by Warnke [14] then gives a useful
bound on Qs +.

We deal with these three cases below. We use the following simple bounds on p, ;. As we are

working in the setting where ¢ = 1, for a set of size s to be a minimal Hall-witness, there

must be at least s + 1 edges whose elements are in the set. We therefore find:
t \*"/ en 26\ [ ene\* ! 2cet\ * 1!
Psit = | 7ay <\ - =\ (1)
(2) s+1 n S sn
s+1
ces
<|— . 2
< (=) )

The bound is derived by taking the probability that for a set of s + 1 edges, each edge turns
out to be one of the ¢ arithmetic triples contained in S. This is multiplied with the number
of ways to choose s + 1 out of the cn edges of D3

n,cn*
bound t < (;) < %

For the second line we used the trivial

Case 1: s = o(y/n). Assume S C Z, is a minimal Hall-witness for D} ., inducing a set P
of edges (with |P| > 3|S|). As a hypergraph, (5, P) is spanning, i.e. each vertex is contained
in an edge, otherwise the isolated vertex can be removed for a smaller Hall-witness. Also,
(S, P) is connected, i.e. for any x,y € S there is a sequence e1,...,e; € P withx € e1,y € ¢;
and e; Ne;r1 # 0 for 1 < i < j). Otherwise, at least one connected component forms a
smaller Hall-witness.

So for fixed s, we can count all (s,t)-sets (with arbitrary ¢) that might be minimal
Hall-witnesses by counting vertex sets that can support connected spanning hypergraphs.
We do this by counting annotated depth-first-search-runs (dfs-runs), associated with such
(s, t)-sets, in the following way. A dfs-run through S starts at a root vertex r € S and puts
it on the stack, whose topmost element is referred to as top. Then a sequence of steps follow,
each of which either removes top from the stack (backtrack) or finds new vertices in S that
are then put on the stack. More precisely, new vertices are found by specifying an arithmetic
triple that is contained in S and involves top. The two vertices other than top may either
both be new (findy) or only one vertex is new, and a third vertex v was already found in
a previous step (findy). The following data about the dfs-run is needed to reconstruct S
from it:

The root vertex r. There are n possibilities.

The type of each step, which can be backtrack, find; or findy. Since there are at most 2s
steps, there are at most 32 possibilities in total.

For each step of type find;, the vertex v that was previously found and that together with
top and the new vertex forms an arithmetic triple. There are less than s possibilities.
In addition we need the position of top and v in the arithmetic triple (essentially four
possibilities). The newly discovered vertex can then be computed from top and v.

SWAT 2018
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For each step of type finds, the difference between adjacent elements of the arithmetic
triple — there are n/2 possibilities. Also, the position of top in that triple — there are 3
possibilities.
If f1 and f5 count the number of times the steps find; and finds are used in the dfs-run
through S of size s, then we have fi + 2f, = s — 1. For s = o(y/n), the finds-steps yield a
significantly higher number of possibilities per found vertex compared to find;-steps, so we
compute:

D Qeu <n-3% - (45)71(3n/2)2 <n 3% - (3n/2)7 V2 < in(TD/2
t

where ¢ is a constant. Using Equation (2) we get:

o(y/n) o(y/n)
YD Qs < D (Y Qua)(maxpsy)
s=3 t s=3 t

o(yv/n) ces\ 51 o(y/n) o5 s+1
Z s (s+1)/2 E -
= cin ( n ) = (\/ﬁ)

s5=3 s=3

for a new constant ¢;. Since each term in the sum is O(n~2) and since there are o(n'/?)
terms, the sum is clearly o(n=3/2) = o(1), closing this case.

Case 2: s = w(n?/%) and t < ;.. Combining the trivial bound of Qs < (7), Equa-

4ce?"
tion (1), and our assumption on ¢t we obtain:

n 2cet T ne\’ s \*! 1\°
Qs,t - Ps;t < | — <l — | = <lz].
’ ’ s sn s 2ne 2

This is clearly o(1), even after summing over all O(n) admissible choices for s and all O(n?)
choices for t.

Case 3: w(n?/%) <s<dnandt > %. A random set S C Z, of size s in this range
behaves very much like a random set T that is obtained by picking each element of Z,
independently with probability p = 2. Let X be the number of arithmetic triples in T'. We
have p := E[X] = (Z)p3 < % In particular, the case X > % is very rare if s < dn for
sufficiently small 6. We can therefore expect the number @), ; to be significantly less than
(7). Formally we write:

Qs < (Z) Pr[S contains t a.p.] = (Z) Pr[X =t||T] =] < (Z) Pr[X = ]O(vn)

where O(y/n) is the inverse of the probability of the event |T'| = s. Using Theorem 1 from
[14] with k = 3, p = s/n, we get positive constants b, B > 0 such that for sufficiently large n

[14] —
Pr{X =] < Pr[X > (1+ 5] < o0/ T Vilog(1/p)

1
4ce?

2 3
by/t — plog(3) > b/ 322 — 5. 108(3) > bs\/ 7oz — 5108(5) > bsy/ 52z log(3) = scslog()

Using our bound on ¢ and assuming ¢ < we can bound the negated exponent by:
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for some constant cg > 0 which yields Pr[X = t] < (6)*. Combining this with Equation (2),
1

5007y WE can write

this time assuming % <

n

< O(v/n) (26) <O(vm) -2

which is o(1), even when summing over all ©(n) admissible values s and all ©(n?) admissible
values for ¢.

4  The significance of Hall-witnesses

To understand how Hall’s Theorem relates to our situation, we view a hypergraph H = (V, E)
as a bipartite graph with F on the “left”, V on the “right” and a connection between e € E
and v € V iff v € e. We care about generalized (1, £)-matchings in this incidence graph of
H ie. sets M C E x V such that any e € E has degree at most 1 in M and any v € V has
degree at most ¢ in M. An {-orientation f of H, viewed as a set of pairs f C E x V, is then
precisely an edge-perfect (1,¢)-matching (each e € F has degree precisely 1). We call the
corresponding notion of a vertex-perfect (1,¢)-matching (each v € V has degree ¢ in M) an
{-saturation.

In this setting, Hall’'s Theorem is easily generalized to the following, where we use N(X)
to denote the direct neighbors of X in the incidence graph (note that X CV and X C E
are both allowed) and E(V’) to denote the set of edges contained in V' C V.

» Theorem 4 (Hall's Theorem).
(i) H has an l-orientation < PAE' C E with {|N(E")| < |E'|
& V' CV with (V'] < |E(V")| < No Hall-witness eists.
(ii) H has an (-saturation < BV' C V with |[N(V')| < £V
We are now ready to prove Lemma 3.

Proof of Lemma 3. Let H = (V, E) be a non-f-orientable hypergraph and S C V be a
minimal Hall-witness to this fact. Consider Hg = (5, E(S)), the sub-hypergraph of H

induced by S. Within Hg we have |Ng,(S")| > £|5’| for any § # 5" C S, as otherwise, i.e.

assuming | Ny, (S")] < £]S’|, we have
|E(S = )| = |E(S) = Nug (5)] = |E(9)| = [Nus (8] > €1S| = £]S"] = ¢|S = 5]

which would make S — S’ a smaller Hall-witness than S, contradicting minimality.
This means for Hée) := (S, E(S) — {e}) we have (replacing “>" with “>") [N (S")| >
S

0S| for any S’ C S (the claim is trivial for S’ = @). By Theorem 4(ii), Hée) has an
(-saturation M ée).

Now if H is d-almost f-orientable and M C E x V is a corresponding (1, ¢)-matching of
size | E| —d, our task is to obtain a (1, £)-matching M’ with |M| = |M’| in H®) = (V, E—{e})
where an edge e € E(S) was removed. This will imply that H(®) is (d — 1)-almost f-orientable
as desired.

Constructing M’ is easy, as we just remove all edges from E(S) from M (this certainly
gets rid of e if it was used) and re-saturate the vertices from S by adding an appropriate
subset Y C Mée). Then M’ := (M \ E(S)) UY has the same size as M. <

29:7
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5 Conclusion

We have shown that for f-orientations in k-ary cuckoo hashing (for constant & and ¢), double
hashing yields the same load thresholds as fully random hashing. This provides yet another
example of a hashing structure with the same behavior when using only double hashing in
place of random hashing. It seems somewhat unfortunate and perhaps a little mysterious
that there does not yet appear to be a unifying argument for multiple such hashing structures;
each structure, thus far, has required its own specialized argument. We optimistically suggest
that a more unified approach may exist, that would shed more light on this phenomenon.

A problem closely related to the cuckoo hashing problem we have studied here is the
question of the ¢-core threshold of a k-uniform random hypergraph. The ¢-core of a hypergraph
is obtained by repeatedly removing any vertex of degree less than ¢, and all adjacent edges.
One can think of the ¢-core as what is left after a “greedy” first stage in an offline algorithm
for finding an (¢ — 1)-orientation; each bucket with at most ¢ — 1 objects simply accepts
those objects, and the remaining objects would then have to be more carefully placed to
obtain an an (¢ — 1)-orientation, if possible. For random hypergraphs on n vertices with cn
edges, there are similar thresholds ¢* = ¢*(k, £) for the existence of a non-empty ¢-core; that
is for ¢ < ¢* the f-core is empty with high probability, and for ¢ > ¢* the {-core consists of
Q(n) edges with high probability. Empirically, the double-hashing graph appears to have
the same thresholds as random hypergraphs for the ¢-core, and it is known the thresholds
are the same when ¢ > k [12]. Tt might seem our approach would be useful for settling this
question as well, but thus far we cannot currently rule out small o(n)-sized ¢-cores under
double hashing using these ideas. This question remains tantalizingly open.
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