
Worst-case Stall Analysis for Multicore
Architectures with Two Memory Controllers
Muhammad Ali Awan1, Pedro F. Souto2, Konstantinos Bletsas3,
Benny Akesson4, and Eduardo Tovar5

1 CISTER Research Centre and ISEP, Porto, Portugal
muaan@isep.ipp.pt

2 University of Porto, Faculty of Engineering and CISTER Research Centre,
Porto, Portugal
pfs@fe.up.pt

3 CISTER Research Centre and ISEP, Porto, Portugal
ksbs@isep.ipp.pt

4 Embedded Systems Innovation, Eindhoven, the Netherlands
benny.akesson@tno.nl

5 CISTER Research Centre and ISEP, Porto, Portugal
emt@isep.ipp.pt

Abstract
In multicore architectures, there is potential for contention between cores when accessing shared
resources, such as system memory. Such contention scenarios are challenging to accurately ana-
lyse, from a worst-case timing perspective. One way of making memory contention in multicores
more amenable to timing analysis is the use of memory regulation mechanisms. It restricts the
number of accesses performed by any given core over time by using periodically replenished per-
core budgets. Typically, this assumes that all cores access memory via a single shared memory
controller. However, ever-increasing bandwidth requirements have brought about architectures
with multiple memory controllers. These control accesses to different memory regions and are
potentially shared among all cores. While this presents an opportunity to satisfy bandwidth
requirements, existing analysis designed for a single memory controller are no longer safe.

This work formulates a worst-case memory stall analysis for a memory-regulated multicore
with two memory controllers. This stall analysis can be integrated into the schedulability analysis
of systems under fixed-priority partitioned scheduling. Five heuristics for assigning tasks and
memory budgets to cores in a stall-cognisant manner are also proposed. We experimentally
quantify the cost in terms of extra stall for letting all cores benefit from the memory space offered
by both controllers as well as also evaluate the five heuristics for different system characteristics.

1998 ACM Subject Classification C.3 Real-time and embedded systems

Keywords and phrases Multiple memory controllers, Memory regulation, Multicore

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.YY

1 Introduction

The strong trend towards increasing integration in hardware for embedded real-time systems
has led to multicores becoming mainstream platforms of choice for such systems. Multicores
have significant advantages in terms of computing power, energy usage and weight over
single-cores. Yet, one issue with multicores is that worst-case timing analysis becomes more
complicated. In particular, the fact that multiple cores contend for the same shared system
resources (buses, caches, memory) must be accounted for [8].

© Muhammad Ali Awan, Pedro F. Souto, Konstantinos Bletsas, Benny Akesson, and Eduardo Tovar;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No.YY; pp.YY:1–YY:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.YY
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

YY:2 ABC

Focusing specifically on the problem of main memory contention, we note various research
efforts [21, 22, 15, 10, 5, 11, 13, 20, 14, 3] that employ memory regulation, to make the
memory access patterns of the different cores more amenable to worst-case timing analysis.
Under memory regulation schemes, each core gets an associated periodically-replenished
memory access budget. When a core attempts to issue more memory accesses than its budget,
it gets temporarily stalled, until the next replenishment.

However, engineering practice forges ahead and analysis has to catch up. In recent years,
in response to memory bandwidth often becoming a performance bottleneck, multicore chips
that integrate, not one, but two memory controllers, have materialised. In such platforms,
both controllers are accessible by all cores, with little to no difference in latency. Examples
include various multicore processors from the NXP QorIQ series [16], ranging from the P5020
with 2 cores to the P4080 with 8 cores. For existing approaches to apply to systems with
multiple controllers, one could statically map cores to memory controllers and apply the
analyses to each partition independently. This simple approach efficiently reduces contention
between cores. Still, it may be hard to find a partition such that no tasks depend on data
from the memory space of the other memory controller. Core-to-controller partitioning also
reduces flexibility in bandwidth allocation, as a partition’s bandwidth requirements must
be met by just the associated memory controller. In cases when no such partitions can be
found, there are currently no good solutions, because existing approaches can be unsafe when
applied to platforms with two controllers. The reason is that the worst-case memory access
pattern for each controller in isolation will not necessarily lead to the worst-case stall, as we
demonstrate in Section 5. This reality motivated the present work, whose main contributions
are the following:

First, we show via counter examples that existing techniques for upper-bounding the
memory stall, conceived for memory-regulated architectures with a single memory controller,
are not necessarily safe in the presence of multiple controllers. Our second and more important
contribution is new worst-case memory stall analysis for architectures with two memory
controllers, shared by all cores. This analysis, which presumes fixed task-to-core partitioning
and fixed-priority scheduling, can then be integrated to the schedulability analysis for the
system. Finally, we explore five different stall-cognisant heuristics for combined memory-
bandwidth-to-core assignment and task-to-core assignment and evaluate their performance
in terms of schedulability via experiments with synthetic task sets capturing different system
characteristics. These experiments, also highlight the performance implications of having
fully shared memory controllers vs. partitioning the controllers to different cores, in cases
when the latter arrangement would be viable from the application perspective (i.e., no data
sharing across memory domains).

Next, in Section 2, we discuss related work. Section 3 defines our system model and
Section 4 discusses some relevant existing results from the single-controller case. Section 5
contains our analysis. Section 6 describes five proposed stall-cognisant task-to-core assignment
heuristics. Section 7 provides an experimental evaluation of our analysis and heuristics, in
terms of theoretical schedulability, using synthetic task sets. Section 8 concludes.

2 Related work

Several software-based approaches for mitigating memory interference in multi-core plat-
forms [21, 22, 15, 10, 5, 11, 3] have been proposed in recent years. These approaches consider
a periodic server implemented in software that manages the memory budgets of the cores.
This is combined with run-time monitoring through performance counters that keep track of

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:3

the number of memory accesses and with an enforcement mechanism that suspends tasks
whenever they exhaust their budget. Our work is similar to these, as that exploits such a
memory throttling mechanism to enforce budgets on memory requests.

The memory regulation techniques used to mitigate the interference on shared memory
controller introduce new stalls and the existing analyses are unsafe unless adapted to account
for them. Some efforts in this direction exist for partitioned fixed-priority scheduling [21, 13]
and hierarchical scheduling in [5]. Mancuso et al. [13], under their Single-Core Equival-
ence framework [18], addressed the problem of fixed-priority partitioned schedulability on a
multicore. They employ the periodic software-based memory regulation mechanism Mem-
Guard [22] to ensure that each core gets an equal share of memory bandwidth in each
regulation interval (or period) and stalls until the end of the regulation period once the
budget has been depleted. Such stalls, resulting from the memory regulation are accounted
by MemGuard [22] and integrated in the schedulability analysis in [13], in addition to the
conventional stalls that occur due to contention among cores at the memory controller.

Even if equal sharing of memory bandwidth is simple and facilitates porting applications
from a single-core to multi-core platforms (by making the analysis akin to that for a single-
core), it is inefficient when the memory requirements of the applications on different cores are
diverse. Yao et al. [20], and Pellizzoni and Yun [17] generalise the arrangement along with
the analysis to uneven memory budgets per core. The former approach considers round-robin
memory arbitration, whereas the latter proposes a new analysis for First-Ready First Come
First Served memory scheduling. Recently, Mancuso et al. [14] improved their memory stall
analysis by considering the exact memory bandwidth distribution on other cores. However,
all these approaches are designed to work with a single memory controller and they are unsafe
with more than one memory controller. The reason is that the worst-case memory access
pattern for each controller in isolation no longer necessarily leads to the worst-case stall, as
we show in Section 5. In contrast, our work provides a worst-case memory stall analysis for a
memory-regulated multicore platform with two memory controllers and incorporates this stall
analysis in the schedulability analysis for fixed-priority partitioned preemptive scheduling.
We also present five memory bandwidth allocation and task-to-core assignment heuristics.

To summarise, existing works on memory regulation rely on an assumption of a single
memory controller. Here, we expand the state-of-the-art by proposing memory stall analysis,
when each core can access two controllers, facilitating data sharing among applications
and allowing more flexible use of bandwidth. We allow uneven distribution of the memory
bandwidth of each controller to available cores. Each core is scheduled under fixed-priority
preemptive scheduling, assuming a round-robin memory arbitration policy on both controllers.

3 System Model

We consider a platform with m identical cores (P1 to Pm) and 2 memory controllers on the
same chip, both uniformly accessible by all cores. The sets of memory regions accessible by
the two controllers are non-overlapping. Examples of platforms with 2-8 identical cores and
two memory controllers include NXP QorIQ P-series P4040, P4080, P5020 and P5040 [16].

Assume a set of n sporadic tasks, τ1 to τn. Each task has a minimum interarrival time
Ti, a deadline Di ≤ Ti, and a worst-case execution time (WCET) of Ci. Like Yao et al. [20],
we assume that CPU computation and memory access do not overlap in time. Each task
can access memory via both controllers. Therefore, Ci = Cei + Cm1

i + Cm2
i , where Cei is the

worst-case CPU computation time and Cm1
i and Cm2

i are the worst-case total memory access
times of a task via each respective controller in isolation.

ECRTS 2018

YY:4 ABC

The tasks are partitioned to the cores (no migration) and fixed-priority scheduling is used.
For the memory controllers and their interconnects, we assume a round-robin policy [22, 20].
The last-level cache is either private or partitioned to each core. Like Yao et al. [20], we
assume that access to main memory is regulated, e.g., by Memguard [22] or in hardware.
We also require performance monitoring counters to count the number of memory accesses
issued to each controller from each core. As in [20], we assume each memory access takes a
constant time L. This allows us to specify P and Cei , Cm1

i and Cm2
i as multiples of L. Our

model is agnostic w.r.t. the points in time when memory accesses may occur, within the
activation of a task hence, does not impose any particular programming model.

Memory accesses are regulated as follows. Each core i has a memory access budget Q1i
for memory controller 1, which is the maximum allowed memory access time (measured in
multiples of L) via that controller, within a regulation period of length P . Likewise, it has
a budget Q2i for controller 2. These budgets are set at design time and may be different.
A core i that consumes its memory access budget for a given memory controller within a
regulation period, is stalled until the start of the next regulation period1. Regulation periods
on all cores are synchronised. The memory bandwidth share of core i on controller 1 is
b1i = Q1i

P . Similarly for b2i and controller 2. By design,
∑
i b1i ≤ 1 and

∑
i b2i ≤ 1, i.e., the

bandwidth of any controller is not overcommitted.

4 Relevant existing results from the single-controller case

We now summarise some existing results from [20], for a similar, albeit single-controller,
system, in order to later show why those do not apply, and new analysis was needed.

The technique in [20] calculates a worst-case stall term for each task, which is added to
the RHS of the standard worst-case response time (WCRT) recurrence relation for fixed
priorities. For ease of presentation, the authors make a simplifying assumption that there is a
single task running on the core in consideration. Later on, for the case when many tasks are
assigned to a core, they explain how to equivalently model the task in consideration τi and
all higher-priority tasks as a single synthetic task, in order to apply their stall analysis and
derive the worst-case stall term for τi. Below, we will similarly assume a single task per core.

A memory request may stall either (i) because of requests from other cores, contending
for the memory controller simultaneously (a case of contention stall) or (ii) because the
issuing core has exhausted its budget for the current regulation period (a regulation stall).

Yao et al identify worst-case patterns for memory accesses and computation within a
single regulation period, characterised by maximum stall with the fewest memory accesses.
Next, they use these patterns as main “building blocks" for the worst-case pattern for the
entire task activation, over multiple regulation periods. In more detail:

Case bi ≤ 1/m (regulation dominant): If bi ≤ 1/m, i.e., if the task’s bandwidth
share is “fair" at most, then a task incurs worst-case stall when all its memory accesses
are clustered at the start of its activation, before any computation. Another pessimistic
assumption is that the task is released just after a regulation stall, so it waits for (P −Qi)
until the next regulation period. The task will incur a stall of (P −Qi) within each of the next
bC

m
i

Q c regulation periods; whether this is entirely due to a regulation stall or partially also
due to contention from other cores is irrelevant. Afterwards, any remaining memory accesses

1 On practical grounds, we assume that a core is stalled immediately after the Qth memory access in a
regulation period via the respective controller is served. Yao et al [20], more generously, assume that it
is stalled immediately before attempting a (Q+ 1)th access within the same regulation period.

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:5

(which are too few to trigger a regulation stall), can each incur a worst-case contention stall
of (m-1), i.e., one contending access from each other core.

Case bi > 1/m (contention dominant): In this case, the least number of memory
accesses per period a core must issue to get the maximum stall is RBS def= Pi−Qi

m−1 , and occurs
when the remaining budget is shared evenly among the other cores. From the assumption
of the case, bi>1/m, it follows that RBS <Qi. Therefore, the worst-case pattern for one
regulation period involves cmi = RBS accesses, each suffering a maximum contention stall of
(m− 1), for a total stall of P −Qi. This leaves Qi −RBS time units not filled by memory
accesses or respective stalls. These are filled with computation; if memory accesses were
added instead, they would incur no stall. To bound the stall for the entire task activation,
this pattern is applied for as many regulation periods as possible. Two subcases exist: either
memory accesses or computation will run out first.

Due to space constraints, we refer to [20] for details. Meanwhile, some insights driving
Yao’s analysis, for single-controller systems, are codified via the following lemmas from [20]:

I Lemma 1. Considering the stall of core due to memory regulation alone, the worst case
memory access pattern of one task is when all the accesses within the task are clustered, and
the stall is upper bounded by P −Qi for each regulation period P .

I Lemma 2. If the memory is not overloaded and the regulation periods are the same and
synchronized, the stall due to inter-core memory contention alone on each core i with assigned
budget Qi is upper-bounded by P −Qi for every regulation period P .

I Lemma 3. Considering the contention stall alone, the maximum stall for core i with
budget Qi is obtained when the remaining budget P −Qi is evenly distributed among all other
cores and they generate the maximum amount of accesses.

5 Analysis

In this section, we formulate the main contribution of this paper: a stall analysis for multicores
with two memory controllers, that leverages on Yao et al [20] stall and schedulability analysis
for multicores with a single memory controller First, we look at Lemmas 1 to 3 and Yao’s
analysis in general, and examine what holds over from [20] and what does not. For readability,
we omit the core (task) index, since it is implied. Table 1 summarizes the symbols used.

5.1 What holds over from Yao’s analysis and what does not
When we have multiple controllers, with an assigned memory budget Qj for each, Lemma 1
can be generalized as follows:

I Lemma 4. Considering the stall of a core due to memory regulation alone on controller
j, with budget Qj, the worst case memory access pattern of one task is when all the accesses
via controller j within the task are clustered, and the stall is upper bounded by P −Qj for
each regulation period P .

A corollary of this Lemma is that the regulation stall on controller j is maximum when there
are no memory accesses via the second controller in that period. Note also that a core can
only regulation-stall on at most one memory controller in a given regulation period.

With multiple controllers Lemmas 2 and 3 apply to each controller separately. Furthermore,
because, a core may access memory via multiple controllers in a single regulation period, a
consequence of Lemma 2 is the following:

ECRTS 2018

YY:6 ABC

Table 1 Symbols used in the analysis

Q1, Q2 memory budget on controllers 1 and 2, respectively
Cm1, Cm2 maximum number of memory accesses via controllers 1 and 2, respectively
Ce worst case computation time
P regulation period
m number of cores
b1, b2 core memory bandwidth on controllers 1 and 2, respectively
RBS1, RBS2 remaining budget share on controllers 1 and 2, respectively
cm1∗, cm2∗ worst case number of memory accesses per period in contention dominant case
K1∗ number of regulation periods of phase 1 in contention dominant case
Ĉe, Ĉm1, Ĉm2 task computation parameters after phase 1 (in contention dominant case)
∆ρ∗ worst case reduction in regulation stalls wrt maximum regulation stalls in the

third case (regulation is dominant only for one controller)
∆Ce additional “computation" added to contention only phase by reducing the number

of regulation stalls by 1
∆Cm2∗

c additional number of contention stalls required when moving ∆Ce to ensure
that the total stall is larger with one less regulation stall on controller 1

∆Cm2
c (max) maximum number of additional contention stalls obtained by moving ∆Ce to

the contention only phase
∆Cm2

c (min) minimum number of additional contention stalls obtained by moving ∆Ce to
the contention only phase

rm = Cm2

Cm1 ratio of memory accesses via each controller
Cm2

c̄ number of memory accesses via controller 2 without contention
single() worst-case single controller stall according to Yao’s analysis, ignoring the regula-

tion stall at the beginning of the execution

I Lemma 5. If the memory is not overloaded and the regulation periods are the same and
synchronized, the stall due to inter-core memory contention alone on each core i with assigned
budget Qji on controller j is upper-bounded by min

(∑
j(P −Qji),

P
m · (m− 1)

)
for every

regulation period P .

When there are multiple memory controllers, the maximum contention stall may occur when
there are accesses via more than one controller. The first argument to the min operator in
the above expression sums up the contention stall from each controller according to Lemma 2.
The second argument expresses the fact that no more than P/m accesses (irrespective via
which controller) can all suffer the worst-case per-access contention stall of (m− 1). Both
terms independently bound the contention stall.

When there are multiple controllers and we try to upper-bound the stall over multiple
regulation periods, Yao’s analysis may not be safe, i.e., it may underestimate the worst-
case stall, as illustrated by the example of Figure 1. Execution i) has the worst-case stall,
according to Yao’s stall analysis, when in a regulation period all memory accesses are via
the same controller. In each period, the first two memory accesses suffer the maximum stall,
however the remaining 4 memory accesses suffer no stall, because the maximum stall in
every regulation period is 6, P −Qi, and it occurs in the first two memory accesses of the
respective regulation period. Execution ii) shows the worst case stall, when there are accesses
via both controllers on the same period. In each period, we have 2 memory accesses via each
controller and each of these accesses suffers the maximum contention stall, m− 1. This is
because the contention stall on accesses via one controller does not affect the contention stall
on accesses via the other controller. Thus, in execution ii) all memory accesses suffer the
maximum contention stall, whereas in execution i) only a third does.

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:7

Cm1 = Cm2 = 12 Q1 = 6 (RBS1 = 2) Q2 = 6 (RBS2 = 2) m = 4 P = 12

24
i)

ii)
0 12

0 12 36 48
Stall = 24

24 36 48
Stall = 72

96

contention stall access via controller 1 access via controller 2

Figure 1 As shown in this example, the worst case total stall is when there are memory accesses
via more than one controller in the same regulation period.

5.2 Two-controller Task Stall Analysis
Having shown the need for new analysis, we consider several cases depending on the values
of b1 and b2. Some entail sub-cases. More specifically, we consider 3 cases:
1. b1 ≤ 1

m ∧ b2 ≤
1
m

2. b1 > 1
m ∧ b2 >

1
m

3. remaining cases, i.e. (b1 ≤ 1
m ∧ b2 >

1
m) ∨ (b1 > 1

m ∧ b2 ≤
1
m)

5.2.1 Case 1: b1 ≤ 1
m
∧ b2 ≤ 1

m

In this case, for each controller, the worst case occurs when there is a regulation stall, as shown
in [20]. By Lemma 4, the following execution suffers the worst case stall. In a first-phase,
there is the longest sequence of consecutive periods with regulation stalls on controller 1,
followed by a second phase consisting of the longest sequence of consecutive periods with
regulation stalls on controller 2. Finally, there is a third phase with the remaining memory
accesses via each controller, Cmi mod Qi, that suffer the maximum contention stall per
memory access, m − 1, and any computation. Because in each of the two first phases all
memory accesses are via a single controller, we can use Yao’s stall analysis to compute an
upper-bound on the stall in each of these phases. The upper-bound of the total stall, can
then be computed by adding the upper-bounds for each phase. I.e.:

Stall =single(Cm =
⌊
Cm1

Q1

⌋
·Q1, Ce = 0, Q = Q1, P = P,m = m)

+ single(Cm =
⌊
Cm2

Q2

⌋
·Q2, Ce = 0, Q = Q2, P = P,m = m)

+ (Cm1 mod Q1 + Cm2 mod Q2) · (m− 1) (1)

where single() is the stall based on Yao’s (single controller) stall analysis for the respective
set of parameter values.

5.2.2 Case 2: b1 > 1
m
∧ b2 > 1

m

In this case, according to Yao’s analysis, for each controller, the worst case occurs when there
is the maximum contention stall in a regulation period with the minimum number of memory
accesses. However, as shown in Fig. 1, in this case the worst case stall may occur when a task
accesses memory via different controllers in the same regulation period. Therefore, the worst
case memory access pattern of a task in this case has 3 phases, as illustrated e.g. in Fig. 2 i):
Phase 1 In this phase, every regulation period incurs the maximum contention stall. This

phase terminates when the task runs out of memory accesses via some controller, and
therefore it cannot sustain the maximum contention stall any more. In Fig. 2 i), this

ECRTS 2018

YY:8 ABC

Cm1 = 12 Cm2 = 5 Q1 = 18 (RBS1 = 2) Q2 = 18 (RBS2 = 2) m = 4 P = 24

48
i)

ii)

0 24 72 96
Ce = 36

contention stall access via controller 1 access via controller 2 computation

iii)

480 24 72 96
Ce = 20

iv)
480 24 72 96

Ce = 4

480 24 72 96
Ce = 8

Figure 2 Example execution patterns with worst case stall, for the contention-dominant case
when (P −Q1) + (P −Q2) < P

m
· (m− 1)

phase spans the two first periods, and, in each period, there are RBS1 and RBS2 memory
accesses via the respective controller.

Phase 3 In this phase, all accesses are via a single controller. This phase may not exist, if
the task runs out of memory accesses via both controllers in the same regulation period.
In Fig. 2 i), this is the 4th and last period and has memory accesses only via controller 1.

Phase 2 This “middle" phase may also not exist, but if it exists, it has only one regulation
period. In this phase, we have memory accesses via both controllers, but either there are
not enough memory accesses via at least one of the controllers to ensure the maximum
contention stall in that period or there is not enough execution to fill the complete period.
In Fig. 2 i), this is the 3rd period, and has only one memory access via controller 2.

According to Lemma 5, there are two main cases for the maximum contention stall in a
regulation period. We analyse each of these cases separately.

5.2.2.1 Sub-case 1: (P −Q1) + (P −Q2) < P
m · (m− 1)

In this case, the maximum contention stall in a regulation period occurs when a task
performs RBS1 memory accesses via controller 1 and RBS2 memory accesses via controller
2. Therefore the maximum stall per period is (RBS1+RBS2)·(m−1) = (P−Q1)+(P−Q2).
Because, the task is non preemptive and (P −Q1) + (P −Q2) < P

m · (m− 1), there is a "hole"
of size P − (RBS1 +RBS2) ·m that must be filled with execution, i.e. either computation or
memory accesses. An execution in which computation fills as many of these holes as possible
suffers the maximum stall, because any additional memory accesses in these periods suffer
no contention stall. This will minimize the number of memory accesses without contention
in phase 1, increasing the number of memory accesses in latter phases, and possibly their
stall. Similar reasoning can be applied to phase 2, as well.

Fig. 2 illustrates an execution pattern that leads to the worst case stall, based on the
above observations. In execution i) there is enough computation to fill in the holes in phases
1 (the first two periods) and 2. However, there is not enough computation to ensure that all
memory accesses suffer contention: in the 4th and last period, which belongs to phase 3, there
are 4 memory accesses via controller 1 that do not suffer any contention. In execution ii)
there is not enough computation to fill the holes in phase 2, and therefore, we have 6 memory
accesses via controller 1, in phase 2, the 3rd period, that do not suffer any contention, and
there is no 3rd phase. In execution iii) there is no phase 2, because all memory accesses via
controller 2 are used to fill the holes in phase 1. Phase 3 consists only of a single memory
access via controller 1. Finally, in execution iv) there is not enough computation, and phase

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:9

1, like phase 2, has only one period, and there is no phase 3.
It can be shown, by case analysis, that in any of these executions swapping any com-

putation or memory access in one regulation period with computation or memory accesses
in later regulation periods does not lead to an increase in the total stall, and therefore the
execution pattern shown suffers the maximum stall. The following stall analysis is based on
the execution pattern shown in Fig. 2.

In order to reuse the analysis in other cases below, let cm1∗ and cm2∗ be the minimum
values of cm1 and cm2, respectively, that maximize the contention stall in a regulation period,
assuming that any holes are filled with computation. Note that by Lemma 5, it must be
cm1∗ ≤ RBS1 and cm2∗ ≤ RBS2. In this case, they are RBS1 and RBS2 respectively.

In our analysis, we consider phase 1 separately from the remaining phases, if any.
Phase-1 stall: In phase 1, the contention stall in every regulation period is maximum and
equal to (cm1∗ + cm2∗) · (m− 1). The total stall in this phase is:

Stall1 = K1∗ · (cm1∗
+ cm2∗

) · (m− 1) (2)

where: K1∗ = min

(⌊
Cm1

cm1∗

⌋
,

⌊
Cm2

cm2∗

⌋
,

⌊
Ce + Cm1 + Cm2

P − (cm1∗ + cm2∗) · (m− 1)

⌋)
(3)

is the number of regulation periods in phase 1. Indeed, to sustain maximum contention stall
in every regulation period of phase 1, the task must have both:
1. Enough memory accesses via controller 1, i.e. K1∗ ≤

⌊
Cm1

cm1∗

⌋
.

2. Enough memory accesses via controller 2, i.e. K1∗ ≤
⌊
Cm2

cm2∗

⌋
.

3. Enough execution, since when a core is not stalled it must be either computing or accessing
memory, i.e. in every phase-1 period a task must execute for P − (cm1∗ + cm2∗) · (m− 1).
Therefore, K1∗ ≤

⌊
Ce+Cm1+Cm2

P−(cm1∗+cm2∗)·(m−1)

⌋
.

We use the minimum of these 3 values, because this is the largest possible number of periods
in phase 1 and, as argued above, this leads to the worst case stall.
Remaining stall: Without loss of generality, let

⌊
Cm1

cm1∗

⌋
≥
⌊
Cm2

cm2∗

⌋
, i.e. controller 2 runs

out of memory accesses entirely in phase 2 the latest. (The other case is symmetric.)
To analyse the stall in phases 2 and 3, if any, we consider the stall of each controller

separately. Since memory accesses via controller 2 occur only in phase 2 (which has at most
one regulation period) and not in phase 3, the contention stall on controller 2 can be upper
bounded by min(Ĉm2, RBS2) · (m− 1), where Ĉm2 is the number of memory accesses via
controller 2 in phase 2, if any. Observe that these memory accesses and respective stall
can be taken into account as computation in the analysis of the stall of memory accesses
via controller 1, in phase 2. Furthermore, in phase 3, if any, all memory accesses are via
controller 1, only. Therefore, we apply Yao’s stall analysis to compute the stall of memory
accesses via controller 1, in phases 2 and 3, if any.

So, to complete analysis of this case, we compute Ĉm2 as well as parameters for Yao’s
single controller stall analysis. Since, in the latter we consider the remaining memory accesses
via controller 2, Ĉm2, and respective stall, if any, as computation, Ce is obtained by adding to
that value the remaining computation, Ĉe, i.e. the task computation that was not performed
in phase-1. Finally, the value of Cm to use in the single controller analysis is the number of
memory accesses via controller 1 that were not performed in phase 1, Ĉm1, if any. Thus,

Stall =Stall1 +min(Ĉm2, RBS2) · (m− 1)

+ single(Ce = Ĉm2 +min(Ĉm2, RBS2) · (m− 1) + Ĉe,

Cm = Ĉm1, Q = Q1, P = P,m = m) (4)

ECRTS 2018

YY:10 ABC

where Stall1 is given by (2). Next, we derive the expressions for Ĉe, Ĉm1 and Ĉm2.
In every phase-1 period a task must execute, i.e. either compute or access memory, when

it is not stalled. Thus, in addition to the cm1∗ + cm2∗ memory accesses that lead to the
maximum stall in a regulation period, a task may have to execute for the remaining time:
P − (cm1∗ + cm2∗) ·m. As we have argued, the total stall will be maximum in executions
where computation fills as many of these "holes" as possible. Thus:

Ĉe = max
(
0, Ce −K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

))
(5)

If there is enough computation to fill all these holes, Ce ≥ K1∗ ·
(
P − (cm1∗ + cm2∗) ·m

)
,

then Ĉm1 = Cm1 −K1∗ · cm1∗ and Ĉm2 = Cm2 −K1∗ · cm2∗.
If there is not enough computation to fill all these holes, then the remaining holes,

K1∗ · (P − (cm1∗ + cm2∗) ·m) − Ce, will be filled with memory accesses. Thus, the total
number of stalls that will be executed in the remaining phases, if any, is:

Ĉm = Cm1 + Cm2 −K1∗ · (cm1∗ + cm2)− (K1∗ · (P − (cm1∗ + cm2∗) ·m)− Ce)
= Cm1 + Cm2 − (K1∗ · (P − (cm1∗ + cm2∗) · (m− 1))− Ce) (6)

To determine Ĉm1 and Ĉm2, we distinguish two cases, depending on the value of K1∗.
If K1∗ =

⌊
Cm2

cm2∗

⌋(
≤
⌊
Cm1

cm1∗

⌋)
, then an execution that has at least min(Cm1 − K1∗ ·

cm1∗, RBS1, Ĉm) controller 1 memory accesses in the first period of the remaining phases,
will suffer maximum stall, because all these memory accesses suffer maximum contention
stall. (The first bound is the number of memory accesses not used to ensure maximum stall
on phase 1, the second bound is the maximum number of accesses via controller 1 that can
suffer maximum stall on a regulation period, and the third bound is the number of memory
accesses in the remaining phases.) This ensures that controller 2 runs out of memory accesses
before controller 1, as shown in Fig. 2 iii). Thus the number of memory accesses via controller
2 in phase 2 is Ĉm2 = min

(
Ĉm −min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm), Cm2 −K1∗ · cm2∗

)
i.e. the number of memory accesses via controller 2 in phase 2 is the number of memory
accesses not used to fill the holes in phase 1, discounted by the minimum number of memory
accesses via controller 1 that suffer maximum contention in phase 2, and upper-bounded
by the maximum number of controller 2 memory accesses that are not necessary to ensure
maximum stall in phase 1. Finally, Ĉm1 = Ĉm − Ĉm2.

If K1∗ =
⌊

Ce+Cm1+Cm2

P−(cm1∗+cm2∗)·(m−1)

⌋
, there is not enough execution to complete the K1∗+1st

regulation period, if any. I.e. the execution, has at most one regulation period after phase 1.
In this case, the total stall is maximum, in executions where the number of contention

stalls in the last period is maximum. However, there cannot be more than RBS1 (RBS2)
contention stalls on controller 1 (2, respectively) in this period. Like in the previous sub-case,
an execution with at least min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm) controller 1 memory accesses
in phase 2, guarantees that controller 2 runs out of memory accesses no later than controller
1, and suffers maximum stall, because all these memory accesses suffer maximum contention
stall. Thus, the expressions we derived for Ĉm1 and Ĉm2 in the previous sub-case, are also
valid for this one. Summarizing, we get the following expressions:

Ĉm2 =
{
Cm2 −K1∗ · cm2∗ if Ce ≥ K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

)
min(Ĉm −min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm), Cm2 −K1∗ · cm2∗) otherw.

(7)

Ĉm1 =
{
Cm1 −K1∗ · cm1∗ if Ce ≥ K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

)
Ĉm − Ĉm2 otherwise

(8)

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:11

Cm1 = 4 Cm2 = 6 Q1 = 2 Q2 = 6 (RBS2 = 2) m = 4 P = 12

24
i)

ii)
0 12

0 12 36
Stall = 26

24 36
Stall = 30

contention stall access via controller 1 access via controller 2

Figure 3 Maximizing the number of regulation stalls, may not lead to the worst case stall.

5.2.2.2 Sub-case 2: (P −Q1) + (P −Q2) ≥ P
m · (m− 1)

In this case RBS1+RBS2 ≥ P
m , and therefore it is possible to guarantee maximum contention

stall in a period, without any computation or memory accesses without contention. To ensure
the maximum stall, the memory accesses should be distributed in a "balanced" way so that
both controllers run out of memory access at more or less the same time, thus ensuring that
all Cm memory access suffers the maximum stall.

Let cm1∗ and cm2∗ be the number of memory accesses via controllers 1 and 2 per regulation
period that maximize the contention stall in a period. Thus the goal is to ensure:

Cm1

cm1∗ = Cm2

cm2∗ ⇒ cm2∗ = Cm2

Cm1 · c
m1∗ ⇒ cm2∗ = rmcm1∗,where: rm def= Cm2

Cm1 (9)

Without loss of generality, assume rm < 1; the other case is symmetrical. Then it must be:

cm1∗ + cm2∗ = P

m
⇒ (1 + rm) · cm1∗ = P

m
⇒ cm1∗ = P

m · (1 + rm) (10)

cm2∗ = rm · cm1∗ ⇒ cm2∗ = rm · P

m · (1 + rm) (11)

We now, consider three sub-cases.
Sub-case cm1∗ ≤ RBS1 ∧ cm2∗ ≥ 1: In this case it is possible to ensure that all memory
accesses suffer the maximum contention stall, even without any computation. Thus:

Stall = (Cm1 + Cm2) · (m− 1) (12)

Note that even though cm1∗ or cm2∗ may be fractional, these are average values. I.e. in
an execution with worst case stall, the number of memory accesses via any controller may
not be the same across all the regulation periods. However, there is an execution such
that cm1 + cm2 = P

m , in all but possibly the last regulation period, and cm1 ≤ RBS1 and
cm2 ≤ RBS2 in every regulation period.
Sub-case cm1∗ > RBS1: In this case, both controllers would run out of computation at
the same time only if the number of memory accesses via controller 1 exceeded RBS1, and
therefore there would be memory accesses without any contention. An execution following
the pattern illustrated in Fig. 2, with cm1∗ = RBS1 and cm2∗ = min(Pm − RBS1, RBS2)
will have the worst case stall, and therefore we can apply the analysis in Section 5.2.2.1.
Sub-case cm2∗ < 1: In this case, both controllers would run out of computation at the same
time only if there are some periods without memory accesses via controller 2. An execution
following the pattern illustrated in Fig. 2, with cm2∗ = 1 and cm1∗ = min(Pm − 1, RBS1) will
have the worst case stall, and therefore we can apply the analysis in Section 5.2.2.1.

5.2.3 Case 3: (b1 ≤ 1
m
∧ b2 > 1

m
) ∨ (b1 > 1

m
∧ b2 ≤ 1

m
)

In this case, executions with the maximum number of regulation stalls do not always lead to
the worst case stall. This is shown in Fig. 3. In execution i), all memory accesses via controller

ECRTS 2018

YY:12 ABC

1 are clustered, causing two regulation stalls on controller 1, in the first two regulation periods.
All the memory accesses via controller 2, occur in the third regulation period. Of these,
only the first two suffer the maximum contention stall. The remainder suffer no contention,
because the memory budget of the remaining cores, P −Qi, is exhausted by the stalls of
the first 2 memory accesses. In execution ii), there is one memory access via controller 1 in
each period, and thus there is no regulation stall on controller 1, but each of these accesses
suffers the maximum contention stall. Furthermore, in each of the first 3 periods, there are 2
memory accesses via controller 2, each of which suffers the maximum contention stall. Thus
all memory accesses via both controllers suffer the maximum contention stall, and the total
stall for execution ii) exceeds that of execution i). This is counter-intuitive, because the
contention stall by accesses via controller 1 in execution ii), 12, is smaller than the regulation
stall, 20, caused by the same number of accesses via controller 1 in execution i). However,
this loss is more than compensated by the contention stall in execution ii) of the 4 memory
accesses via controller 2 that suffer no contention stall in execution i). I.e., although we
are trading off a regulation stall, P −Qi, per contention stalls, presumably with maximum
contention stall, Qi · (m− 1) < P −Qi, we may also be adding stall to memory accesses via
the second controller that previously suffered no stall.

Depending on whether b1 ≤ 1
m ∧ b2 >

1
m or b1 > 1

m ∧ b2 ≤
1
m , there are two sub-cases.

Because they are symmetrical, we analyse only the former.

5.2.3.1 Sub-case 3.1: b1 ≤ 1
m ∧ b2 >

1
m

Figure 3 shows that the maximum number of regulation stalls does not always lead to the
worst case stall. Furthermore, it can be shown that the total stall is maximum, if there are
no memory accesses via the second controller in periods with a regulation stall. Thus, the
following memory access pattern with two phases leads to the worst case stall: in the first
phase, there is a number, possibly 0, of consecutive periods with regulation stalls; in the
second phase, the contention only phase, there is a number of consecutive periods, possibly
only 1, with contention stalls only. Thus, the problem of finding the worst case stall reduces
to that of determining the number of regulation stalls that maximizes that stall. Actually, to
simplify the mathematical expressions, we use the difference, ∆ρ∗, between this number and
the maximum number of regulation stalls,

⌊
Cm1

Q1

⌋
. The total stall can then be determined

using Yao’s stall analysis:

Stall = single(Q = Q1, Cm = Cm1 − Cm1 mod Q1−∆ρ∗Q1, Ce = 0)
+ ((Cm1 mod Q1) + ∆ρ∗ ·Q1) · (m− 1)
+ single(Q = Q2, Cm = Cm2, Ce = Ce + ((Cm1 mod Q1) + ∆ρ∗ ·Q1) ·m) (13)

where, for computing the stall on the memory accesses via controller 2 in the second phase, we
account the memory accesses via controller 1 in the second phase and respective contention
stalls as computation, assuming that each of them suffers the maximum contention stall
under round-robin, m− 1. Algorithms 1 an 2 detail the case analysis that we have described
so far in this section. In the following, we determine the value of ∆ρ∗.

We consider two main sub-cases depending on whether there is enough computation,
including residual memory accesses via controller 1, to ensure that every memory access via
controller 2 suffers maximum contention.

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:13

Algorithm 1 Compute stall for each task.
Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index for simplicity)
Output: Stall
1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1 , RBS2 = P −Q2
m−1 and C = Ce + Cm1 + Cm2

2: if (b1 ≤ 1
m
∧ b2 ≤ 1

m
) then . Regulation stall is dominant for both controllers

3: Stall = Equation (1)
4: else if (b1 > 1

m
∧ b2 > 1

m
) then . Contention stall is dominant for both controllers

5: if ((P −Q1) + (P −Q2) < P
m
· (m− 1)) then

6: cm1∗ = RBS1, cm2∗ = RBS2
7: Compute Stall with Algorithm 2
8: else . (P −Q1) + (P −Q2) ≥ P

m
· (m− 1)

9: rm = Cm2

Cm1 , cm1∗ = Equation 10, cm2∗ = Equation 11
10: if (rm < 1) then
11: if (cm1∗ ≤ RBS1 ∧ cm2∗ ≥ 1) then
12: Stall = Equation 12
13: else if (cm1∗ > RBS1) then
14: cm1∗ = RBS1, cm2∗ = min(RBS2, P

m
−RBS1)

15: Compute Stall with Algorithm 2
16: else . cm2∗ < 1
17: cm1∗ = min(RBS1, P

m
− 1) cm2∗ = 1

18: Compute Stall with Algorithm 2
19: end if
20: else . rm ≥ 1: symmetric of previous case, swap indices
21: end if
22: end if
23: else . Regulation stall is dominant for only one controller
24: if (b1 ≤ 1

m
∧ b2 > 1

m
) then

25: Compute ∆ρ∗ using Algorithm 3
26: stall = Equation 13
27: else . b2 ≤ 1

m
∧ b1 > 1

m
: symmetric of previous case

28: end if
29: end if
30: return stall + = (P −min(Q1, Q2)) . This adds the stall when the task arrives.

Algorithm 2 Compute stall for contention dominant case.
Input: Parameters: cm1∗, cm2∗, Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index)
Output: Stall
1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1 , RBS2 = P −Q2
m−1 and C = Ce + Cm1 + Cm2

2: K1∗ = Equation 3
3: Stall1 = Equation 2
4: Ĉe = Equation 5, Ĉm1 = Equation 8, Ĉm2 = Equation 7
5: Stall23 = single(Ce = Ĉm2 ·m+ Ĉe, Cm = Ĉm1, Q = Q1, P = P,m = m)
6: return Stall = Stall1 + min(Ĉm2, RBS2) · (m− 1) + Stall23 . Equation 41

5.2.3.2 Sub-case 1: Enough computation

If Ce ≥
⌊
Cm2

RBS2

⌋
· (P −m · RBS2) − (Cm1 mod Q1) ·m, then every memory access in the

contention-only phase suffers maximum contention, and therefore the total stall is maximum
when the number of regulation stalls is maximum, i.e. ∆ρ∗ = 0.

ECRTS 2018

YY:14 ABC

0
i)

RBS2

P

ΔCe + st

0
ii)

P

ΔCe + st

P − RBS2 ·m Maximum number of memory accesses in each interval

Increase in execution time, including stall

Figure 4 Upper (i) and lower (ii) bounds on ∆Cm2
c .

5.2.3.3 Sub-case 2: Not enough computation

In this case, as illustrated in Fig. 3, if there are memory accesses in the contention-only phase
that suffer no contention, the worst case stall may occur when the number of regulation
stalls is not maximum.

When the number of regulation stalls is decremented by one, the regulation stall reduction
by P −Q1 is partially compensated by an increase of the contention stall via controller 1 by
Q1 · (m− 1). If the increase in contention stall via controller 2, ∆stall2c is such that:

∆stall2c > ∆stall2
∗

c
def= P −Q1 −Q1 · (m− 1) = P −Q1 ·m (14)

then reducing the number of regulation stall leads to a larger stall. Or, stated in other words,
the total stall will be worse, if the increase in the number of memory accesses with maximum
stall, ∆Cm2

c , satisfies the following inequality:

∆Cm2
c > ∆Cm2∗

c
def= ∆stall2∗

c

m− 1 = P −Q1 ·m
m− 1 (15)

Like in the analysis in Section 5.2.2, to compute the stall on memory accesses via
controller 2, we can view the memory accesses via controller 1 and respective contention
stall as computation. Thus we need to determine ∆Cm2

c when the computation in the
contention-only phase increases by ∆Ce = Q1 ·m. The challenge is that this value, ∆Cm2

c ,
may not be constant. I.e., when we increase the computation by ∆Ce = Q1 ·m, ∆Cm2

c may
have different values depending on other parameter values.

Our solution is to compute the maximum and minimum values of ∆Cm2
c , ∆Cm2

c (max)
and ∆Cm2

c (min), respectively, and then finding ∆ρ∗ by case analysis, as described below.
When we increase the computation of the contention-only phase by ∆Ce, the total

execution of that phase, including any contention, will increase at least by that much. This
execution can replace memory accesses via controller 2 that did not have any contention, i.e
memory accesses in excess of RBS2 accesses per period, which can then be shifted towards
the end of the execution. ∆Cm2

c will be maximum if the shifted memory accesses are added
to a regulation period with no memory accesses via controller 2, up to a limit of RBS2
memory accesses per regulation period, as shown in Fig. 4 i). Thus, in this case, as a result
of adding ∆Ce memory accesses we get:

∆Cm2
c (max) = RBS2 ·

⌊
∆Ce

RBS2 + P −RBS2 ·m

⌋
+min(RBS2,∆Ce mod (RBS2 + P −RBS2 ·m))

= RBS2 ·
⌊

∆Ce

Q2

⌋
+min(RBS2,∆Ce mod Q2) (16)

The first term corresponds to the number of additional periods with RBS2 memory accesses.
(Note that ∆Ce is used both to shift memory accesses via controller 2, and to fill the "hole"

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:15

in the remaining of the period, P −RBS2 ·m.) The second term corresponds to the number
of memory accesses in the last incomplete regulation period, if any: essentially, the memory
accesses that can be replaced with the remaining of ∆Ce that was not used for the additional
full periods, upper-bounded by RBS2.

On the other hand, ∆Cm2
c will be minimum, if, before adding ∆Ce, the execution ended

immediately after the RBS2 accesses with contention. This is shown in Fig. 4 ii). In this
case, the analysis is similar to the one above, and therefore we can also use (16), except
that rather than using ∆Ce, we need to use max(∆Ce − (P −RBS2 ·m), 0), because the
remainder of the period at which the execution ended needs to be filled with "computation"
before an earlier memory access via controller 2 without contention stall can experience the
maximum contention stall by shifting it towards the end of the execution.

We can now distinguish 3 sub-cases, depending on the relative values of ∆Cm2∗
c , ∆Cm2

c (max)
and ∆Cm2

c (min).
Sub-case ∆Cm2∗

c ≥ Cm2
c (max): In this case, the increase in the number of memory

accesses with contention cannot make up for the eliminated regulation stall, so ∆ρ∗ = 0.
Sub-case ∆Cm2∗

c < Cm2
c (min): In this case, the increase in the number of memory accesses

with contention suffices to make up for the eliminated regulation stall. Therefore, the worst
case stall increases as we reduce the number of regulation stalls until one of the following 3
cases occurs: 1) there are no more regulation stalls; 2) there are not enough memory accesses
via controller 2, ∆Cm2∗

c , without the maximum contention stall, to compensate for the loss
in the regulation stall; or 3) the number of memory accesses via controller 1 in at least one
period of the second phase exceeds Q1− 1, in which case we would have a regulation stall,
and therefore there would be no reduction in the number of regulation stalls.

Because, ∆Cm2 varies, we do not know a closed form expression for the number of
regulation periods to reduce. Thus, we use the iterative procedure shown in Algorithm 3.
I.e., we start with ∆ρ∗ = 0 and keep increasing it by one until one of the above 3 stop
conditions is satisfied. Specifically, while there are still enough memory accesses via controller
2 without maximum contention stall, Cm2

c̄ , and there is still one regulation stall (line 15),
∆ρ∗ is tentatively increased by one. In each iteration, we tentatively compute the total stall
using Yao’s analysis with the appropriate parameters (line 18) and the number of memory
accesses via controller 2 that suffer no contention (line 20), for the tentative value of ∆ρ∗. If
the number of memory accesses via controller 1 in all periods of the contention-only phase
(line 21) does not exceed Q1− 1, then the tentative values become definitive (line 22), and
the algorithm loops again, otherwise it exits the loop and terminates.
All other cases, i.e. Cm2

c (min) ≤ ∆Cm2∗
c < Cm2

c (max): In this case, the total stall
sometimes increases when the number of regulations stalls decreases by one and sometimes it
does not. Thus in this case, our approach to find the value of ∆ρ∗ is to compute the stall for
every possible value of ∆ρ∗ and pick the one that leads to the maximum stall. Algorithm 3,
lines 27-37, details the computation of ∆ρ∗ in this case.

5.3 Schedulability analysis

Until now, we assumed one task per core. When many tasks are assigned to a core, the task
in consideration and those of higher priority can be modelled by one synthetic task, using the
approach in [20], and schedulability analysis can be performed as summarized in Section 4.

ECRTS 2018

YY:16 ABC

Algorithm 3 Compute ∆ρ∗

Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task index for simplicity)
Output: ∆ρ∗

1: RBS1 = P −Q1
m−1 , RBS2 = P −Q2

m−1 and C = Ce + Cm1 + Cm2

2: ∆Ce = m ·Q1
3: ∆Cm2

c (max) = Equation 16
4: ∆Cm2

c (min) = Equation 16, but replacing ∆Ce with max(∆Ce − (P −m ·RBS2), 0)
5: ∆Cm2∗

c =
⌊

P −m·Q1
m−1

⌋
6: if (Ce ≥

⌊
Cm2

RBS2

⌋
· (P −m ·RBS2)− (Cm1 mod Q1) ·m) then

7: ∆ρ∗ = 0 . There is enough "computation"
8: else if (∆Cm2

c (max) ≤ ∆Cm2∗
c) then . Which implies ∆Cm2

c (min) ≤ ∆Cm2∗
c

9: ∆ρ∗ = 0 . Maximize regulation stalls on Controller one
10: else if (∆Cm2

c (min) > ∆Cm2∗
c) then . Which implies ∆Cm2

c (max) > ∆Cm2∗
c

11: ∆ρ∗ = 0
12: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + (Cm1 mod Q1) ·m)
13: R = Cm2 + Ce + (Cm1 mod Q1) ·m+ stall

14: Cm2
c̄ = Cm2 −

⌊
R
P

⌋
·RBS2−min

(⌊
R mod P

m

⌋
, RBS2

)
15: while

(
Cm2

c̄ > ∆Cm2∗
c ∧∆ρ∗ <

⌊
Cm1

Q1

⌋)
do

16: ∆ρ∗
t = ∆ρ∗ + 1

17: Ĉm1 = Cm1 mod Q1 + ∆ρ∗
t ·Q1 . Accesses via controller 1 in second phase

18: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 ·m)
19: R = Cm2 + Ce + Ĉm1 ·m+ stall

20: Cm2
c̄t = max

(
Cm2 −

⌊
R
P

⌋
·RBS2−min

(⌊
R mod P

m

⌋
, RBS2

)
, 0
)

21: if
(
Ĉm1 −min

(
Q1− 1,max

(
0,
⌊

R mod P
m

⌋
−RBS2

))
≤ (Q1− 1) · R

P

)
then . Enough

reg. periods to ensure that there is no reg. stall in periods with accesses via both controllers.
22: ∆ρ∗ = ∆ρ∗

t , C
m2
c̄ = Cm2

c̄t

23: else break
24: end if
25: end while
26: else . ∆n2

c(min) ≤ ∆n2∗
c < ∆n2

c(max)
27: ∆ρ(max) = 0, stall(max) = 0 . Variables for maximum stall
28: for ∆ρ∗ = 0 to

⌊
Cm1

Q1

⌋
do . Do exhaustive search

29: Ĉm1 = Cm1 mod Q1 + ∆ρ∗
t ·Q1

30: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 ·m) . Cont. stall on both controllers
31: R = Cm2 + Ce + Ĉm1 ·m+ stall . Duration of contention-only phase
32: if stall +

(⌊
Cm1

Q1

⌋
−∆ρ∗

)
· (P − Q1) > stall(max)

∧
(
Ĉm1 −min

(
Q1− 1,max

(
0,
⌊

R mod P
m

⌋
−RBS2

))
≤ (Q1− 1) ·

⌊
R
P

⌋)
then

33: stall(max) = stall +
(⌊

Cm1

Q1

⌋
−∆ρ∗

)
· (P −Q1)

34: ∆ρ∗(max) = ∆ρ∗

35: end if
36: end for
37: ∆ρ∗ = ∆ρ∗(max)
38: end if
39: return ∆ρ∗

6 Bandwidth Allocation and Task-to-core Assignment Heuristics

We propose 5 heuristics for allocating tasks and memory bandwidth of both controllers to the
cores. They are evaluated in terms of system schedulability. We use Audsley’s algorithm [1]

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:17

Algorithm 4 Sensitivity analysis to reclaim memory bandwidth from both controllers
Input: b1, b2, m, ∆ (threshold to stop the algorithm)) and τ
Output: Minimum required memory bandwidth of both controllers
1: b1min = 0, b1max = b1, b2min = 0, b2max = b2
2: while (b1max − b1min > ∆ ∨ b2max − b2min > ∆) do
3: for each controller j ∈ {1, 2} do
4: if (bj

max − bj
min > ∆) then

5: Xj = b b
j
min

+b
j
max

2 c
6: if (j == 1) then
7: Schedulability = MultiControllerSchedulabilityAnalysis(Xj , b2max, m, τ)
8: else
9: Schedulability = MultiControllerSchedulabilityAnalysis(b1max, X

j , m, τ)
10: end if
11: if (Schedulability == true) then bj

max = Xj

12: else bj
min = Xj

13: end if
14: end if
15: end for
16: end while
17: return {b1max and b2max}

to assign task priorities, even if it is no longer necessarily optimal in the presence of stalls.
Even: The total memory bandwidth of both controllers is equally distributed among all

cores. Subject to this even share, the task-to-core assignment is performed using first-fit.
Uneven: Initially, this heuristic also distributes both controller’s bandwidth evenly

among cores and employs the first-fit for task-to-core assignment. However, instead of
declaring failure whenever a task does not fit on any core, it sets that task aside, and moves
on to consider the next task. Any tasks that remain unassigned after considering all tasks,
are handled in-order as follows. Each core’s memory bandwidth from both controllers is
“trimmed” to the minimum value that preserves schedulability, via the sensitivity analysis
of Algorithm 4, explained later in this section. Let the total reclaimed bandwidth from all
cores be B1 and B2 from controllers 1 and 2, respectively. A second round of first-fit tries to
assign the remaining tasks, assuming that the bandwidth of the target core i is increased by
B1 and B2 for controllers 1 and 2, respectively. Upon successfully assigning such a task, we
trim anew the target cores’s memory budgets via sensitivity analysis, adjust the available
reclaimed budgets and move on to the next task in a similar manner.

Greedy-fit: Initially, the total memory bandwidth of both controllers is assigned to the
first core and the task-set is iterated over once (in a given order) to assign the maximum
number of tasks to this core; if a task does not fit, we try the next one. Afterwards, the
spare bandwidth from each controllers on this core is reclaimed via sensitivity analysis, and
is fully assigned to next core. And so on, until all tasks are assigned or the cores run out.

Humble-fit: Similar to greedy-fit, except that when a task assignment fails, we move to
the next core (attempting no more task assignments on the current one).

Memory-fit: Initially, b1i = b2i = 0, for every core i, where bxi is the allocated memory
bandwidth of controller x on core i. Each task is assigned to the core i that requires the
least increase to b1i + b2i to accommodate it, subject to existing task assignments.

“Uneven" explores a larger solution space than “Even. “Greedy-fit" and “Humble-fit"
aggressively optimise for processing capacity use foremost. Conversely, “Memory-fit" optimises
for bandwidth instead. Hence, all heuristics sample the solution space in different ways.

ECRTS 2018

YY:18 ABC

Table 2 Overview of Parameters

Parameters Values Default

Number of cores (m) {4, 8, 12, 16} 4
Task-set size (n) {8, 16, 24, 32, 40, 48} 16

Regulation period (P) {1us, 10us, 100us, 1ms} 100us
Inter-arrival time (Ti) 10ms to 100ms N/A

Nominal utilisation (Ū = U
m
) {0.1 : 0.01 : 1} N/A

Memory intensity (Γ) {0.1 : 0.1 : 1} 0.5

Sensitivity analysis: Algorithm 4 presents the sensitivity analysis that trims the unused
memory bandwidth from both controllers and outputs the least required memory bandwidth
from each controller. This sensitivity analysis, used for bandwidth optimisation, is an
adaptation of binary interval search ([19, 2]). It gives both controllers an equal chance to
preserve their bandwidth in a round-robin fashion. By comparison, completely optimizing one
controller followed by the second one, may lead to an imbalanced approach, hence avoided.

7 Evaluation

7.1 Experimental Setup
We developed a bi-modular Java tool for our experiments. The first module generates the
synthetic workload (task sets) and sets up a platform with the given input parameters. A
second module performs task-to-core allocation and feasibility analysis with two controllers.

Task-set generation: We generate the task-set with a given target U = x ·m : x ∈ (0, 1]
using UUnifast-discard algorithm [6, 9] for unbiased distribution of task utilisations. The
task-set size is given as input. Task periods are log-uniform-distributed, in the range 10-100
ms. We assume implicit deadlines, even if our analysis also holds for constrained deadlines.
The WCET of a task is derived as Ci = Ui · Ti. The total memory accesses of each task
are randomly selected in the range [0,Γ · Ci], with memory intensity factor Γ ∈ (0, 1]
user-defined. The total memory accesses are randomly divided between the two memory
controllers. By default the task-set is sorted in descending order of utilisation. For each set
of input parameters, we generate 1000 task-sets. We use independent pseudo-random number
generators for the utilisations, minimum inter-arrival times/deadlines, memory accesses and
reuse their seeds [12]. Table 2 summarises all parameters, with default values underlined.
We observed that size of the regulation period has no effect on the schedulability ratio.

To avoid having hundreds of plots, in each experiment we vary only one parameter, with
others conforming to the defaults from Table 2 and present the results as plots of weighted
schedulability. This performance metric, adopted from [4], condenses what would have been
three-dimensional plots into two dimensions. It is a weighted average that gives more weight to
task-sets with higher utilisation, which are supposedly harder to schedule. Specifically, using
notation from [7], let Sy(τ, p) represent the result (0 or 1) of the schedulability test y for a
given task-set τ with an input parameter p. Then Wy(p), the weighted schedulability for that
test y as a function p, is Wy(p) =

∑
∀τ
(
Ū(τ) · Sy(τ, p)

)
/
∑
∀τ Ū(τ). Here, Ū(τ) def= U(τ)/m

is the system utilisation, normalised by the number of cores m.
No other stall analysis with two controllers exists in the literature to compare with. We

therefore compare our approach against a system where the two controllers are partitioned
among cores that can only make requests to their assigned controller. Obviously, there are

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:19

4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

Number of cores

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Memory intensity

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 6

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Task−set sorting

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 7

8 16 24 32 40 48
0

0.1

0.2

0.3

0.4

0.5

Task−set size

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 8

pros and cons with such partitioning. The benefit of such partitioning is that it roughly cuts
contention in half. On the other hand, tasks assigned to one controller cannot access data
addressable by the other controller.

For the comparison, half the cores are assigned to each controller. Since each core
accesses only one controller, the feasibility of the tasks assigned to it can be tested with Yao’s
analysis [20]. We adapt the task-to-core assignment heuristics and bandwidth allocation
schemes presented in Section 6 for the partitioned case: The even heuristic equally divides a
controller’s bandwidth among its associated cores. Similarly, in the uneven heuristic, the
readjustment of the controllers bandwidth is performed only among the controller’s associated
cores. In the greedy-fit/humble-fit, all bandwidth of a given controller is only assigned to its
first associated core with an objective to maximise the number of tasks assigned to it. The
trimmed-off bandwidth from this controller is assigned to its remaining associated cores. If
the task is not feasible on the cores associated to the first controller, its feasibility is next
checked on the set of cores associated with the second controller. In the memory-fit, a task
is assigned to the core with the lowest bandwidth requirement of its controller. We use Yao-
and MC- prefixes to denote the partitioned and our approach, respectively, followed by the
name of the heuristic (even, uneven, greedy-fit, humble-fit and memory-fit).

7.2 Results
Figure 5 presents the weighted schedulability for different number of cores for both systems
with partitioned and shared controllers (our approach) using the proposed heuristics. The
first important result is that all heuristics under partitioning perform better than their

ECRTS 2018

YY:20 ABC

corresponding heuristic under shared controllers, which is due to the stall being roughly
cut in half in the former approach. This difference ranges around 10%− 30% in absolute
terms of weighted schedulability. Of course, this expected result applies only when there
are no dependencies across partitions. However, in many systems, there is always some
sharing/communication of data among tasks and this might make such partitioning impossible.
In other cases, a single controller cannot deliver enough bandwidth. This is expected to
become increasingly frequent in the future, as applications getting more demanding. Therefore
safe analysis for predictable access to both controllers, like the one proposed in this paper, is
needed.

In terms of heuristics, memory-fit, uneven, even, humble-fit and greedy-fit is the descending
ordered list w.r.t. weighted schedulability ratio. The memory-fit heuristic, which optimises
the use of memory bandwidth, performing best, implies that memory bandwidth is typically
the scarce resource for the given set of parameters. The uneven and even heuristics are more
balanced in terms of bandwidth and processing capacity distribution and hence, perform
close to memory-fit. Humble-fit and greedy-fit are too aggressive in construction to optimise
the use of processing capacity at the cost of memory resources and hence underperform
the other heuristics in a memory-scarce setup. Greedy-fit manages the memory resources
comparatively better than humble-fit and hence, outperforms it. Yet, if the applications are
compute-intensive and the system is not scarce w.r.t. memory resource, the heuristics that
optimise for processing resources may become handy and outperform their counterparts.

With more cores, the contention from other cores increases and hence, the schedulability
of the system decreases. Figure 6 presents the effect of memory intensity over the proposed
heuristics. Obviously, higher memory intensity increases the contention on the shared
controllers, consequently decreasing the schedulability. We also compared the effect of
the task indexing over the different heuristics as shown in Figure 7. The numbers 0, 1, 2
and 3 on the X-axis correspond to task-set ordering w.r.t. descending order of deadlines,
utilisation, total memory requests and memory density (i.e. total memory requests divided
by the Ti), respectively. Task-set indexing w.r.t. utilisation benefits the memory-fit, even
and uneven heuristics. Figure 8 shows that task-set size has very limited effect on the
memory-fit, uneven and even approaches and they scale well when that increases. Conversely,
the performance of humble-fit and greedy-fit degrade with greater task-set sizes due to their
aggressive optimisation of processor usage at the expense of memory bandwidth.

8 Conclusion

This paper demonstrated that worst-case memory stall analyses for single-memory-controller
multicores with memory regulation, are unsafe if applied to multicores with multiple memory
controllers. We overcome this limitation by proposing a new memory stall analysis for
multicore platforms with two memory controllers that captures the cases where all cores can
access both controllers. We also proposed five memory allocation heuristics, each specialising
in optimising processing capacity and/or memory bandwidth. Experimental results quantify
the cost of allowing all cores to flexibly access the memory space of two controllers as 10−30%
in terms of weighted schedulability. Results further show that the proposed memory-fit
heuristic performs well in memory scarce systems. The even and uneven are heuristics
are suitable for balanced systems, while greedy-fit and humble-fit heuristics are handy for
compute-intensive applications.

M.A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar YY:21

References

1 N. C. Audsley. On priority asignment in fixed priority scheduling. Information Processing
Letters, 79(1):39–44, 2001.

2 Muhammad Ali Awan, Konstantinos Bletsas, Pedro F. Souto, and Eduardo Tovar. Semi-
partitioned mixed-criticality scheduling. In Proceedings of the 30th International Confer-
ence Architecture of Computing Systems, pages 205–218, 2017.

3 Muhammad Ali Awan, Pedro Souto, Konstantinos Bletsas, Benny Akesson, and Eduardo
Tovar. Mixed-criticality scheduling with memory bandwidth regulation. In Proceedings of
the 55th ACM/IEEE Conference on Design Automation Conference, March 2018.

4 Andrea Bastoni, Björn Brandenburg, and James Anderson. Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability. Proceedings of
OSPERT, pages 33–44, 2010.

5 Moris Behnam, Rafia Inam, Thomas Nolte, and Mikael Sjödin. Multi-core composability
in the face of memory-bus contention. ACM SIGBED Review, 10(3):35–42, 2013.

6 E. Bini and G.C. Buttazzo. Measuring the performance of schedulability tests. Journal of
Real–Time Systems, 30(1-2):129–154, 2009.

7 A. Burns and R.I. Davis. Adaptive mixed criticality scheduling with deferred preemption.
In Proceedings of the 35rd IEEE Real-Time Systems Symposium, pages 21–30, Dec 2014.

8 D. Dasari, B. Akesson, V. Nélis, M. A. Awan, and S. M. Petters. Identifying the sources
of unpredictability in cots-based multicore systems. In Proceedings of the 8th IEEEInter-
national Symposium on Industrial Embedded Systems, pages 39–48, June 2013.

9 Robert I. Davis and Alan Burns. Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. In Proceedings of the 30th IEEE Real-Time
Systems Symposium, pages 398–409, 2009.

10 J. Flodin, K. Lampka, and Wang Yi. Dynamic budgeting for settling dram contention
of co-running hard and soft real-time tasks. In Proceedings of the 9th IEEEInternational
Symposium on Industrial Embedded Systems, pages 151–159, June 2014. doi:10.1109/
SIES.2014.6871199.

11 Rafia Inam, Nesredin Mahmud, Moris Behnam, Thomas Nolte, and Mikael Sjodin. Multi-
core composability in the face of memory-bus contention. In Proceedings of the 20th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2014.

12 Raj Jain. The art of computer systems performance analysis - techniques for experimental
design, measurement, simulation, and modeling. Wiley professional computing. Wiley, 1991.

13 R. Mancuso, R. Pellizzoni, M. Caccamo, Lui Sha, and Heechul Yun. WCET(m) estimation
in multi-core systems using single core equivalence. In Proceedings of the 27th Euromicro
Conference on Real-Time Systems, pages 174–183, July 2015.

14 Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo. WCET De-
rivation under Single Core Equivalence with Explicit Memory Budget Assignment. In
Proceedings of the 29th Euromicro Conference on Real-Time Systems, volume 76 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 3:1–3:23, Dagstuhl, Germany,
2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core
interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In
Proceedings of the 26th Euromicro Conference on Real-Time Systems, pages 109–118, July
2014.

16 NXP. QorIQ Layerscape Processors Based on Arm Technology, 2018. www.nxp.
com/products/processors-and-microcontrollers/applications-processors/
qoriq-platforms/p-series.

ECRTS 2018

http://dx.doi.org/10.1109/SIES.2014.6871199
http://dx.doi.org/10.1109/SIES.2014.6871199
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series

YY:22 ABC

17 Rodolfo Pellizzoni and Heechul Yun. Memory servers for multicore systems. In Proceedings
of the 22nd IEEE Real-Time and Embedded Technology and Applications Symposium, pages
97–108, 2016.

18 Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo Pel-
lizzoni, Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arundale, Bradford Richard,
et al. Single core equivalent virtual machines for hard real—time computing on multicore
processors. Technical report, Univ. of Illinois at Urbana Champaign, 2014.

19 Paulo Baltarejo Sousa, Konstantinos Bletsas, Eduardo Tovar, Pedro Souto, and Benny
Åkesson. Unified overhead-aware schedulability analysis for slot-based task-splitting.
Journal of Real–Time Systems, 50(5-6):680–735, 2014.

20 G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. Schedulability ana-
lysis for memory bandwidth regulated multicore real-time systems. IEEE Transactions on
Computers, 65(2):601–614, Feb 2016.

21 Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha. Memory access control
in multiprocessor for real-time systems with mixed criticality. In Proceedings of the 24th
Euromicro Conference on Real-Time Systems, pages 299–308, 2012.

22 Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-core platforms.
In Proceedings of the 19th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 55–64, April 2013.

	Introduction
	Related work
	System Model
	Relevant existing results from the single-controller case
	Analysis
	What holds over from Yao's analysis and what does not
	Two-controller Task Stall Analysis
	Case 1: b1 1m b2 1m
	Case 2: b1 > 1m b2 > 1m
	Case 3: (b1 1m b2 > 1m) (b1 > 1m b2 1m)

	Schedulability analysis

	Bandwidth Allocation and Task-to-core Assignment Heuristics
	Evaluation
	Experimental Setup
	Results

	Conclusion

