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Abstract
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and
prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem
when online vertices arrive in random order. Our result shows that random arrivals help beating
the 1-1/e barrier even in the vertex-weighted case. We build on the randomized primal-dual
framework by Devanur et al. (SODA 2013) and design a two dimensional gain sharing function,
which depends not only on the rank of the offline vertex, but also on the arrival time of the
online vertex. To our knowledge, this is the first competitive ratio strictly larger than 1-1/e
for an online bipartite matching problem achieved under the randomized primal-dual framework.
Our algorithm has a natural interpretation that offline vertices offer a larger portion of their
weights to the online vertices as time goes by, and each online vertex matches the neighbor with
the highest offer at its arrival.
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1 Introduction

With a wide range of applications, Online Bipartite Matching and its variants are a focal point
in the online algorithms literature. Consider a bipartite graph G(L∪R,E) on vertices L∪R,
where the set L of offline vertices is known in advance and vertices in R arrive online. On the
arrival of an online vertex, its incident edges are revealed and the algorithm must irrevocably
either match it to one of its unmatched neighbors or leave it unmatched. In a seminal paper,
Karp et al. [19] proposed the Ranking algorithm, which picks at the beginning a random
permutation over the offline vertices L, and matches each online vertex to the first unmatched
neighbor according to the permutation. They proved a tight competitive ratio 1 − 1

e of
Ranking, when online vertices arrive in an arbitrary order. The analysis has been simplified
in a series of subsequent works [14, 5, 12]. Further, the Ranking algorithm has been extended
to other variants of the Online Bipartite Matching problem, including the vertex-weighted
case [2], the random arrival model [18, 21], and the Adwords problem [23, 7, 11].

As a natural generalization, Online Vertex-Weighted Bipartite Matching was considered
by Aggarwal et al. [2]. In this problem, each offline vertex v ∈ L has a non-negative weight
wv, and the objective is to maximize the total weight of the matched offline vertices. A
weighted version of the Ranking algorithm was proposed in [2] and shown to be (1 − 1

e )-
competitive, matching the problem hardness in the unweighted version. They fix a non-
increasing perturbation function ψ : [0, 1] → [0, 1], and draw a rank yv ∈ [0, 1] uniformly
and independently for each offline vertex v ∈ L. The offline vertices are then sorted in
decreasing order of the perturbed weight wv · ψ(yv). Each online vertex matches the first
unmatched neighbor on the list upon its arrival. It is shown that by choosing the perturbation
function ψ(y) := 1 − ey−1, the weighted Ranking algorithm achieves a tight competitive
ratio 1 − 1

e . In a subsequent work, Devanur et al. [12] simplified the analysis under the
randomized primal-dual framework and gave an alternative interpretation of the algorithm:
each offline vertex v makes an offer of value wv · (1 − g(yv)) as long as it is not matched,
where g(y) := ey−1, and each online vertex matches the neighbor that offers the highest.

Motivated by the practical importance of Online Bipartite Matching and its applications
for online advertisements, another line of research seeks for a better theoretical bound beyond
the worst-case hardness result provided by Karp et al. [19]. Online Bipartite Matching with
random arrivals was considered independently by Karande et al. [18] and Mahdian et al. [21].
They both studied the performance of Ranking assuming that online vertices arrive in a
uniform random order and proved competitive ratios 0.653 and 0.696 respectively. On
the negative side, Karande et al. [18] explicitly constructed an instance for which Ranking
performs no better than 0.727, which is later improved to 0.724 by Chan et al. [9]. In terms of
problem hardness, Manshadi et al. [22] showed that no algorithm can achieve a competitive
ratio larger than 0.823.

The natural next step is then to consider Online Vertex-Weighted Bipartite Matching with
random arrivals. Do random arrivals help beating 1− 1

e even in the vertex-weighted case?

Arbitrary Arrivals Random Arrivals
Unweighted 1 − 1

e
≈ 0.632 [19, 5, 12, 14] 0.696 [21]

Vertex-weighted 1 − 1
e

≈ 0.632 [2, 12] 0.6534 (this paper)
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1.1 Our Results and Techniques
We answer this affirmatively by showing that a generalized version of the Ranking algorithm
achieves a competitive ratio 0.6534.

I Theorem 1. There exists a 0.6534-competitive algorithm for the vertex-weighted Online
Bipartite Matching with random arrivals.

Interestingly, we do not obtain our result by generalizing existing works that break the
1− 1

e barrier on the unweighted case [18, 21] to the vertex-weighted case. Instead, we take
a totally different path, and build our analysis on the randomized primal-dual technique
introduced by Devanur et al. [12], which was used to provide a more unified analysis of the
algorithms for the Online Bipartite Matching with arbitrary arrival order and its extensions.

We first briefly review the proof of Devanur et al. [12]. The randomized primal-dual
technique can be viewed as a charging argument for sharing the gain of each matched edge
between its two endpoints. Recall that in the algorithm of [2, 12], each unmatched offline
vertex offers a value of wv · (1− g(yv)) to online vertices, and each online vertex matches
the neighbor that offers the highest at its arrival. Whenever an edge (u, v) is added to the
matching, where v ∈ L is an offline vertex and u ∈ R is an online vertex, imagine a total gain
of wv being shared between u and v such that u gets wv · (1− g(yv)) and v gets wv · g(yv).
Since g is non-decreasing, the smaller the rank of v, the smaller share it gets. They showed
that by fixing g(y) = ey−1, for any edge (u, v) and any fixed ranks of offline vertices other
than v, the expected gains of u and v (from all of their incident edges) combined is at least
(1− 1

e ) · wv over the randomness of yv, which implies the 1− 1
e competitive ratio.

Now we consider the problem with random arrivals.
Analogous to the offline vertices, as the online vertices arrive in random order, in the gain

sharing process, it is natural to give an online vertex u a smaller share if u arrives early (as
it is more likely be get matched), and a larger share when u arrives late. Thus we consider
the following version of the weighted Ranking algorithm.

Let yu be the arrival time of online vertex u ∈ R, which is chosen uniformly at random
from [0, 1]. Analogous to the ranks of the offline vertices, we also call yu the rank of u ∈ R. Fix
a function g : [0, 1]2 → [0, 1] that is non-decreasing in the first dimension and non-increasing
in the second dimension. On the arrival of u ∈ R, each unmatched neighbor v ∈ L of u
makes an offer of value wv · (1 − g(yv, yu)), and u matches the neighbor with the highest
offer. This algorithm straightforwardly leads to a gain sharing rule for dual assignments:
whenever u ∈ R matches v ∈ L, let the gain of u be wv · (1− g(yv, yu)) and the gain of v be
wv · g(yv, yu). It suffices to show that, for an appropriate function g, the expected gain of u
and v combined is at least 0.6534 · wv over the randomness of both yu and yv.

The main difficulty of the analysis is to give a good characterization of the behavior of
the algorithm when we vary the ranks of both u ∈ R and v ∈ L, while fixing the ranks of
all other vertices arbitrarily. The previous analysis for the unweighted case with random
arrivals [18, 21] heavily relies on a symmetry between the random ranks of offline vertices
and online vertices: Properties developed for the offline vertices in previous work directly
translate to their online counterparts. Unfortunately, the online and offline sides are no longer
symmetric in the vertex-weighted case. In particular, for the offline vertex v, an important
property is that for any given rank yu of the online vertex u, we can define a unique marginal
rank θ such that v will be matched if and only if its rank yv < θ. However, it is not possible
to define such a marginal rank for the online vertex u in the vertex-weighted case: As its
arrival time changes, its matching status may change back and forth. The most important
technical ingredient of our analysis is an appropriate lower bound on the expected gain

ICALP 2018
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which allows us to partially characterize the worst-case scenario (in the sense of minimizing
the lower bound on the expected gain). Further, the worst-case scenario does admit simple
marginal ranks even for the online vertex u. This allows us to design a symmetric gain
sharing function g and complete the competitive analysis of 0.6534.

1.2 Other Related Works

There is a vast literature on problems related to Online Bipartite Matching. For space reasons,
we only list some of the most related here.

Kesselheim et al. [20] considered the edge-weighted Online Bipartite Matching with random
arrivals, and proposed a 1

e -competitive algorithm. The competitive ratio is tight as it matches
the lower bound on the classical secretary problem [8]. Wang and Wong [24] considered a
different model of Online Bipartite Matching with both sides of vertices arriving online (in an
arbitrary order): A vertex can only actively match other vertices at its arrival; if it fails to
match at its arrival, it may still get matched passively by other vertices later. They showed
a 0.526-competitive algorithm for a fractional version of the problem.

Recently, Cohen and Wajc [10] considered the Online Bipartite Matching (with arbitrary
arrival order) on regular graphs, and provided a (1−O(

√
log d/d))-competitive algorithm,

where d is the degree of vertices. Very recently, Huang et al. [16] proposed a fully online
matching model, in which all vertices of the graph arrive online (in an arbitrary order).
Extending the randomized primal-dual technique, they obtained competitive ratios above 0.5
for both bipartite graphs and general graphs.

Similar but different from the Online Bipartite Matching with random arrivals, in the
stochastic Online Bipartite Matching, the online vertices arrive according to some known
probability distribution (with repetition). Competitive ratios breaking the 1− 1

e barrier have
been achieved for the unweighted case [13, 4, 6] and the vertex-weighted case [15, 17, 6].

The Online Bipartite Matching with random arrivals is closely related to the oblivious
matching problem [3, 9, 1] (on bipartite graphs). It can be easily shown that Ranking has
equivalent performance on the two problems. Thus competitive ratios above 1− 1

e [18, 21]
directly translate to the oblivious matching problem. Generalizations of the problem to
arbitrary graphs have also been considered, and competitive ratios above half are achieved
for the unweighted case [3, 9] and vertex-weighted case [1].

2 Preliminaries

We consider the Online Vertex-Weighted Bipartite Matching with random arrival order. Let
G(L∪R,E) be the underlying graph, where vertices in L are given in advance and vertices in
R arrive online in random order. Each offline vertex v ∈ L is associated with a non-negative
weight wv. Without loss of generality, we assume the arrival time yu of each online vertex
u ∈ R is drawn independently and uniformly from [0, 1]. Mahdian and Yan [21] use another
interpretation for the random arrival model. They denote the order of arrival of online
vertices by a permutation π and assume that π is drawn uniformly at random from the
permutation group Sn. It is easy to see the equivalence between two interpretations4.

4 Mapping from an arrival time vector to a permutation is immediate. Given a permutation π, we
independently draw n random variables uniformly from [0, 1] and assign these values to be the arrival
times of all vertices according to the permutation π, from the smallest to the largest.
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Weighted Ranking. Fix a function g : [0, 1]2 → [0, 1] such that ∂g(x,y)
∂x ≥ 0 and ∂g(x,y)

∂y ≤ 0.
Each offline vertex v ∈ L draws independently a random rank yv ∈ [0, 1] uniformly at random.
Upon the arrival of online vertex u ∈ R, u is matched to its unmatched neighbor v with
maximum wv · (1− g(yv, yu)).
I Remark. In the adversarial model, Aggarwal et al.’s algorithm [2] can be interpreted as
choosing g(yv, yu) := eyv−1 in our algorithm. Our algorithm is a direct generalization of
theirs to the random arrival model.

For simplicity, for each u ∈ R, we also call its arrival time yu the rank of u. We use
~y : L ∪R→ [0, 1] to denote the vector of all ranks.

Consider the linear program relaxation of the bipartite matching problem and its dual.

max :
∑

(u,v)∈E wv · xuv min :
∑
u∈V αu

s.t.
∑
v:(u,v)∈E xuv ≤ 1 ∀u ∈ L ∪R s.t. αu + αv ≥ wv ∀(u, v) ∈ E

xuv ≥ 0 ∀(u, v) ∈ E αu ≥ 0 ∀u ∈ L ∪R

Randomized Primal-Dual. Our analysis builds on the randomized primal-dual technique
by Devanur et al. [12]. We set the primal variables according to the matching produced
by Ranking, i.e. xuv = 1 if and only if u is matched to v by Ranking, and set the dual
variables so that the dual objective equals the primal. In particular, we split the gain wv of
each matched edge (u, v) between vertices u and v; the dual variable for each vertex then
equals the share it gets. Given primal feasibility and equal objectives, the usual primal-dual
techniques would further seek to show approximate dual feasibility, namely, αu +αv ≥ F ·wv
for every edge (u, v), where F is the target competitive ratio. Observe that the above primal
and dual assignments are themselves random variables. Devanur et al. [12] claimed that the
primal-dual argument goes through given approximate dual feasibility in expectation. We
formulate this insight in the following lemma and include a proof for completeness.

I Lemma 2. Ranking is F -competitive if we can set (non-negative) dual variables such that∑
(u,v)∈E xuv =

∑
u∈V αu; and

E~y [αu + αv] ≥ F · wv for all (u, v) ∈ E.

Proof. We can set a feasible dual solution α̃u := E~y [αu] /F for all u ∈ V . It’s feasible
because we have α̃u + α̃v = E~y [αu + αv] /F ≥ wv for all (u, v) ∈ E. Then by duality we
know that the dual solution is at least the optimal primal solution PRIMAL, which is also
at least the optimal offline solution of the problem:

∑
u∈V α̃u ≥ PRIMAL ≥ OPT. Then

by the first assumption, we have OPT ≤
∑
u∈V α̃u =

∑
u∈V

E~y [αu]
F = 1

F E~y

[∑
u∈V αu

]
=

1
F E~y

[∑
(u,v)∈E wv · xuv

]
= 1

F E [ALG], which implies an F competitive ratio. J

In the rest of the paper, we set

g(x, y) = 1
2
(
h(x) + 1− h(y)

)
, ∀x, y ∈ [0, 1]

where h : [0, 1]→ [0, 1] is a non-decreasing function (to be fixed later) with h′(x) ≤ h(x) for
all x ∈ [0, 1]. Observe that ∂g(x,y)

∂x = 1
2h
′(x) ≥ 0 and ∂g(x,y)

∂y = − 1
2h
′(y) ≤ 0. By definition of

g, we have g(x, y) + g(y, x) = 1. Moreover, for any x, y ∈ [0, 1], we have the following fact
that will be useful for our analysis.

I Claim 2.1. ∂g(x,y)
∂y ≥ g(x, y)− 1.

Proof. ∂g(x,y)
∂y = − 1

2h
′(y) ≥ − 1

2h(y) ≥ 1
2 (h(x) + 1− h(y))− 1 = g(x, y)− 1. J

ICALP 2018
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3 A Simple Lower Bound

In this section, we prove a slightly smaller competitive ratio, 5
4−e

−0.5 ≈ 0.6434, as a warm-up
of the later analysis.

We reinterpret our algorithm as follows. As time t goes, each unmatched offline vertex
v ∈ L is dynamically priced at wv · g(yv, t). Since g is non-increasing in the second dimension,
the prices do not increase as time goes by. Upon the arrival of u ∈ R, u can choose from its
unmatched neighbors by paying the corresponding price. The utility of u derived by choosing
v equals wv − wv · g(yv, yu). Then u chooses the one that gives the highest utility. Recall
that g is non-decreasing in the first dimension. Thus, u prefers offline vertices with smaller
ranks, as they offer lower prices.

This leads to the following monotonicity property as in previous works [2, 12].

I Fact 3.1 (Monotonicity). For any ~y, if v ∈ L is unmatched when u ∈ R arrives, then when
yv increases, v remains unmatched when u arrives. Equivalently, if v ∈ L is matched when
u ∈ R arrives, then when yv decreases, v remains matched when u arrives.

Gain Sharing. The above interpretation induces a straightforward gain sharing rule: when-
ever u ∈ R is matched to v ∈ L, let αv := wv · g(yv, yu) and αu := wv · (1 − g(yv, yu)) =
wv · g(yu, yv).

Note that the gain of an offline vertex is larger if it is matched earlier, i.e., being matched
earlier is more beneficial for offline vertices (αv is larger). However, the fact does not hold
for online vertices. For each online vertex u ∈ R, the earlier u arrives (smaller yu is), the
more offers u sees. On the other hand, the prices of offline vertices are higher when u comes
earlier. Thus, it is not guaranteed that earlier arrival time yu induces larger αu.

This is where our algorithm deviates from previous ones [2, 12], in which the prices
of offline vertices are static (independent of time). The above observation is crucial and
necessary for breaking the 1− 1

e barrier in the random arrival model.
To apply Lemma 2, we consider a pair of neighbors v ∈ L and u ∈ R. We fix an arbitrary

assignment of ranks to all vertices but u, v. Our goal is to establish a lower bound of
1
wv
·E [αu + αv], where the expectation is simultaneously taken over yu and yv.

I Lemma 3. For each y ∈ [0, 1], there exist thresholds 1 ≥ θ(y) ≥ β(y) ≥ 0 such that when
u arrives at time yu = y,

if yv < β(y), v is matched when u arrives;
if yv ∈ (β(y), θ(y)), v is matched to u;
if yv > θ(y), v is unmatched after u’s arrival.

Moreover, β(y) is a non-decreasing function and if θ(x) = 1 for some x ∈ [0, 1], then θ(x′) = 1
for all x′ ≥ x.

Proof. Consider the moment when u arrives. By Fact 3.1, there exists a threshold β(yu)
such that v is matched when u arrives iff yv < β(yu). Now suppose yv > β(yu), in which
case v is unmatched when u arrives. Thus v is priced at wv · g(yv, yu) and u can get utility
wv · g(yu, yv) by choosing v.

Recall that g(yu, yv) is non-increasing in terms of yv. Let θ(yu) ≥ β(yu) be the minimum
value of yv such that v is not chosen by u. In other words, when β(yu) < yv < θ(yu), v is
matched to u and when yv > θ(yu), v is unmatched after u’s arrival.

Next we show that β is a non-decreasing function of yu. By definition, if yv < β(yu),
then v is matched when u arrives. Straightforwardly, when yu increases to y′u (arrives even
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𝑦𝑢

𝑦𝑣

𝜃(𝑦𝑢)

Figure 1 θ(yu) and β(yu) (left hand side); truncated θ(yu) and β(yu) (right hand side).

later), v would remain matched. Hence, we have β(y′u) ≥ β(yu) for all y′u > yu, i.e. β is
non-decreasing (refer to Figure 1).

Finally, we show that if θ(x) = 1 for some x ∈ [0, 1], then θ(x′) = 1 for all x′ ≥ x. Assume
for the sake of contradiction that θ(x′) < 1 for some x′ > x. In other words, when yu = x′

and yv = 1, v is unmatched when u arrives, but u chooses some vertex z 6= v, such that
wz · g(x′, yz) > wv · g(x′, 1).

Now consider the case when u arrives at time yu = x. Recall that we have θ(x) = 1,
which means that u matches v when yu = x and yv = 1. By our assumption, both v and z
are unmatched when u arrives at time x′. Thus when u arrives at an earlier time x, both v
and z are unmatched. Moreover, choosing z induces utility

wz · g(x, yz) = wz · g(x′, yz) ·
g(x, yz)
g(x′, yz)

> wv · g(x′, 1) · g(x, yz)
g(x′, yz)

= wv · g(x′, 1) · h(x) + 1− h(yz)
h(x′) + 1− h(yz)

≥ wv · g(x′, 1) · h(x) + 1− h(1)
h(x′) + 1− h(1)

= wv · g(x′, 1) · g(x, 1)
g(x′, 1) = wv · g(x, 1),

where the second inequality holds since h is a non-decreasing function and x < x′.
This gives a contradiction, since when yu = x and yv = 1, u chooses v, while choosing z

gives strictly higher utility. J

I Remark. Observe that the function θ is not necessarily monotone. This comes from the
fact that u may prefer v to z when u arrives at time t but prefer z to v when u arrives later
at time t′ > t. Note that this happens only when the offline vertices have general weights:
for the unweighted case, it is easy to show that θ must be non-decreasing.

We define τ, γ ∈ [0, 1], which depend on the input instance, as follows.
If θ(y) < 1 for all y ∈ [0, 1], then let τ = 1; otherwise let τ be the minimum value such

that θ(τ) = 1. Let γ := β(1). Note that it is possible that γ ∈ {0, 1}.
Since β is non-decreasing, we define β−1(x) := sup{y : β(y) = x} for all x ≤ γ.
In the following, we establish a lower bound for 1

wv
·E [αu + αv].

I Lemma 4 (Main Lemma). For each pair of neighbors u ∈ R and v ∈ L, we have

1
wv
·E [αu + αv] ≥ min

0≤γ,τ≤1

{
(1− τ) · (1− γ) +

∫ γ

0
g(x, τ)dx+

∫ τ

0
g(x, γ)dx

}
.

ICALP 2018
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We prove Lemma 4 by the following three lemmas.
Observe that for any yu ∈ [0, 1], if yv ∈ (β(yu), θ(yu)), u, v are matched to each other,

which implies αu + αv = wv. Hence we have the following lemma immediately.

I Lemma 5 (Corner Gain). E [(αu + αv) · 1(yu > τ, yv > γ)] = wv · (1− τ) · (1− γ).

Now we give a lower bound for the gain of v when yv < γ, i.e., αv ·1(yv < γ), plus the gain
of u when yv < γ and yu > τ , i.e., αu · 1(yv < γ, yu > τ). The key to prove the lemma is to
show that for all yv < γ, no matter when u arrives, we always have αv ≥ wv · g(yv, β−1(yv)).

I Lemma 6 (v’s Gain). E [αv · 1(yv < γ) + αu · 1(yv < γ, yu > τ)] ≥ wv ·
∫ γ

0 g(x, τ)dx.

Proof. Fix yv = x < γ. We first show that for all yu ∈ [0, 1], αv ≥ wv · g(x, β−1(x)). By
definition, we have β−1(x) < 1. Hence when yu > β−1(x), v is already matched when
u arrives. Suppose v is matched to some z ∈ R, then we have yz ≤ β−1(x) and hence
αv ≥ wv · g(x, β−1(x)). Now consider when u arrives at time y < β−1(x). If y > yz, then v
is still matched to z when u arrives, and αv ≥ wv · g(x, β−1(x)) holds. Now suppose y < yz.
We compare the two processes, namely when yu > β−1(x) and when yu = y.

We show that for each vertex w ∈ L, the time it is matched is not later in the second case
(compared to the first case). In other words, we show that decreasing the rank of any online
vertex is not harmful for all offline vertices. Suppose otherwise, let w be the first vertex in L
that is matched later when yu = y than when yu > β−1(x). I.e. among all these vertices,
w’s matched neighbor arrives the earliest when yu > β−1(x).

Let u1 be the vertex w is matched to when yu > β−1(x) and u2 be the vertex w is
matched to when yu = y. By assumption, we have yu2 > yu1 . Consider when yu = y and
the moment when u1 arrives, w remains unmatched but is not chosen by u1. However, w is
the first vertex that is matched later than it was when yu > β−1(x), we know that at u1’s
arrival, the set of unmatched neighbor of u1 is a subset of that when yu > β−1(x). This
leads to a contradiction, since w gives the highest utility, but is not chosen by u1.

In particular, this property holds for vertex v, i.e. v is matched earlier or at the arrival of
z and hence αv ≥ wv · g(x, yz) ≥ wv · g(x, β−1(x)), as claimed.

Observe that for yv < γ and yu ∈ (τ, β−1(yv)), we have αu + αv = wv. Thus for
yv = x < γ, we lower bound 1

wv
·Eyu

[αv · 1(yv < γ) + αu · 1(yv < γ, yu > τ)] by

f(x, β−1(x)) := g(x, β−1(x)) + max{0, β−1(x)− τ} · (1− g(x, β−1(x))).

It suffices to show that f(x, β−1(x)) ≥ g(x, τ). Consider the following two cases.
1. If β−1(x) < τ , then f(x, β−1(x)) = g(x, β−1(x)) ≥ g(x, τ), since ∂g(x,y)

∂y ≤ 0.
2. If β−1(x) ≥ τ , then f(x, β−1(x)) is non-decreasing in the second dimension, since

∂f(x, β−1(x))
∂β−1(x) = ∂g(x, β−1(x))

∂β−1(x) + 1− g(x, β−1(x))− (β−1(x)− τ) · ∂g(x, β
−1(x))

∂β−1(x) ≥ 0,

where the inequality follows from Claim 2.1 and ∂g(x,β−1(x))
∂β−1(x) ≤ 0. Therefore, we have

f(x, β−1(x)) ≥ f(x, τ) = g(x, τ).

Hence for every fixed yv = x < γ we have Eyu [αv · 1(yv < γ) + αu · 1(yv < γ, yu > τ)] ≥
wv · g(x, τ). Taking integration over x ∈ (0, γ) concludes the lemma. J

Next we give a lower bound for the gain of u when yu < τ , i.e., αu · 1(yu < τ), plus the
gain of v when yu < τ and yv > γ, i.e., αv · 1(yu < τ, yv > γ). The following proof is in the
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same spirit as in the proof of Lemma 6, although the ranks of offline vertices have different
meaning from the ranks (arrival times) of online vertices.

Similar to the proof of Lemma 6, the key is to show that for all yu < τ , no matter what
value yv is, the gain of αu is always at least wv · g(yu, θ(yu)).

I Lemma 7 (u’s Gain). E [αu · 1(yu < τ) + αv · 1(yu < τ, yv > γ)] ≥ wv ·
∫ τ

0 g(x, γ)dx.

Proof. Fix yu = x < τ . By definition we have θ(x) < 1. The analysis is similar to the
previous. We first show that for all yv ∈ [0, 1], we have αu ≥ wv · g(x, θ(x)).

We use θ to denote the value that is arbitrarily close to, but larger than θ(x). By definition,
when yv = θ, u matches some vertex other than v. Thus we have αu ≥ wv · g(x, θ(x)). Hence,
when yv > θ, i.e. v has a higher price, u would choose the same vertex as when yv = θ, and
αu ≥ wv · g(x, θ(x)) still holds.

Now consider the case when yv = y < θ.
As in the analysis of Lemma 6, we compare two processes, when yv = θ and when

yv = y < θ. We show that for each vertex w ∈ R (including u) with yw ≤ x = yu, the utility
of w when yv = y is not worse than its utility when yv = θ. Suppose otherwise, let w be
such a vertex with earliest arrival time.

Let v′ be the vertex that is matched to w when yv = θ. Then we know that (when yv = y)
at w’s arrival, w chooses a vertex that gives less utility comparing to v′. Hence, at this
moment v′ is already matched to some w′ with yw′ < yw. This implies that when yv = θ, v′
(which is matched to w) is unmatched when w′ arrives, but not chosen by w′. Therefore,
w′ has lower utility when yv = y compared to the case when yv = θ, which contradicts the
assumption that w is the first such vertex.

Observe that when yv ∈ (γ, θ(x)), we have αu + αv = wv. Thus for any fixed yu = x < τ ,
we lower bound 1

wv
·Eyv [αu · 1(yu < τ) + αv · 1(yu < τ, yv > γ)] by

f(x, θ(x)) := g(x, θ(x)) + max{0, θ(x)− γ} · (1− g(x, θ(x))).

In the following, we show that f(x, θ(x)) ≥ g(x, γ). Consider the following two cases.
1. If θ(x) ≤ γ, then f(x, θ(x)) = g(x, θ(x)) ≥ g(x, γ), since ∂g(x,y)

∂y ≤ 0.
2. If θ(x) > γ, then

∂f(x, θ(x))
∂θ(x) = ∂g(x, θ(x))

∂θ(x) + 1− g(x, θ(x))− (θ(x)− γ) · ∂g(x, θ(x))
∂θ(x) ≥ 0,

where the inequality follows from Claim (2.1) and ∂g(x,θ(x))
∂θ(x) ≤ 0. Therefore, we have

f(x, θ(x)) ≥ f(x, γ) = g(x, γ).

Finally, take integration over x ∈ (0, τ) concludes the lemma. J

Proof of Lemma 4. Observe that αu + αv = (αu + αv) · 1(yu > τ, yv > γ) + αv · 1(yv <
γ) + αu · 1(yv < γ, yu > τ) + αu · 1(yu < τ) + αv · 1(yu < τ, yv > γ). Combing Lemma 5, 6
and 7 finishes the proof immediately. J

I Theorem 8. Fix h(x) = min{1, ex−0.5}. For any pair of neighbors u and v, and any fixed
ranks of vertices in L ∪R \ {u, v}, we have 1

wv
·Eyu,yv [αu + αv] ≥ 5

4 − e
−0.5 ≈ 0.6434.

Proof. It suffices to show that the RHS of Lemma 4 is at least 5
4−e

−0.5. Since the expression
is symmetric for τ and γ, we assume τ ≥ γ without loss of generality.

ICALP 2018
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Let f(τ, γ) be the term on the RHS of Lemma 4 to be minimized. By our choice of g,

f(τ, γ) =1− τ − γ + τ · γ + 1
2

∫ γ

0

(
h(x) + 1− h(τ)

)
dx+ 1

2

∫ τ

0

(
h(x) + 1− h(γ)

)
dx

=1− τ

2 (1 + h(γ))− γ

2 (1 + h(τ)) + τ · γ + 1
2

∫ γ

0
h(x)dx+ 1

2

∫ τ

0
h(x)dx.

Observe that

∂f(τ, γ)
∂τ

= γ − 1
2(1 + h(γ))− γ

2 · h
′(τ) + 1

2h(τ).

It is easy to check that γ − 1
2h(γ) ≤ 0 when γ ≤ 1

2 ; and γ −
1
2h(γ) > 0 when γ > 1

2 .
Hence when γ ≤ 1

2 , we have ∂f(τ,γ)
∂τ ≤ 0, which means that the minimum is attained

when τ = 1. Note that when γ ≤ 1
2 , we have

f(1, γ) = 1
2(1− h(γ)) + 1

2

∫ γ

0
h(x)dx+ 1

2

∫ 1

0
h(x)dx,

which attains its minimum at γ = 0 (since h′(γ) = h(γ) for γ ≤ 1
2 ):

f(1, 0) = 1
2(1− e−0.5) + 1

2(1
2 + 1− e−0.5) = 5

4 − e
−0.5 ≈ 0.6434.

When τ ≥ γ > 1
2 , we have ∂f(τ,γ)

∂τ = γ − 1
2h(γ) > 0. Hence the minimum is attained

when τ = γ, which is f(γ, γ) = 1− 2γ + γ2 +
∫ γ

0 h(x)dx. Observe that

df(γ, γ)
dγ

= −2 + 2γ + h(γ) ≥ −2 + 1 + 1 = 0.

The minimum is attained when γ = 1
2 , which equals f( 1

2 ,
1
2 ) = 5

4 − e
−0.5 ≈ 0.6434. J

4 Improving the Competitive Ratio

Observe that in Lemma 4, we relax the total gain of αu + αv into two parts: (1) when
yu ≥ τ and yv ≥ γ, αu + αv = wv. (2) for other ranks yu, yv, we lower bound αu and αv by
wv · g(yu, γ) and wv · g(yv, τ) respectively. For the second part, the inequalities used in the
proof of Lemma 6 and 7 are tight only if β, θ are two step functions (refer to Figure 1). On
the other hand, given these β, θ, when yu ≤ τ and yv ≤ γ, we actually have αu + αv = wv,
which is strictly larger than our estimation wv · (g(yu, γ) + g(yv, τ)).

With this observation, it is natural to expect an improved bound if we can retrieve this
part of gain (even partially). In this section, we prove an improved competitive ratio 0.6534,
using a refined lower bound for 1

wv
·E [αu + αv] (compared to Lemma 4) as follows.

I Lemma 9 (Improved Bound). For any pair of neighbors u ∈ R and v ∈ L, we have

1
wv
·E [αu + αv] ≥ min

0≤γ,τ≤1

{
(1− τ)(1− γ) + (1− τ)

∫ γ

0
g(x, τ)dx

+
∫ τ

0
min
θ≤γ

{
g(x, θ) +

∫ θ

0
g(y, x)dy +

∫ γ

θ

g(y, τ)dy
}
dx

}
.

Proof. Let γ and τ be defined as before, i.e., γ = β(1) and τ = min{x : θ(x) = 1}.
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We divide 1
wv
· E [αu + αv] into three parts, namely (1) when yu > τ and yv > γ; (2)

when yu > τ and yv < γ; and (3) when yu < τ :

1
wv
·E [αu + αv] = 1

wv
·E [(αu + αv) · 1(yu > τ, yv > γ)]

+ 1
wv
·E [(αu + αv) · 1(yu > τ, yv < γ)]

+ 1
wv
·E [(αu + αv) · 1(yu < τ)] .

As shown in Lemma 5, the first term is at least (1−τ)·(1−γ), as we have αu+αv = wv for
all yu > τ and yv > γ. Then we consider the second term, the expected gain of αu+αv when
yv < γ and yu > τ . For any yv < γ, as we have shown in Lemma 6, αv ≥ wv · g(yv, β−1(yv))
for all yu > τ . Moreover, when yu < β−1(yv), we have αu + αv = wv. Hence the second
term can be lower bounded by∫ γ

0

(
(1− τ) · g(yv, β−1(yv)) + max{0, β−1(yv)− τ} ·

(
1− g(yv, β−1(yv))

))
dyv.

Now we consider the last term and fix a yu < τ .
As we have shown in Lemma 7, for all yv ∈ [0, 1], αu ≥ wv · g(yu, θ(yu)).
Consider the case when θ(yu) > γ, then for yv ∈ (0, γ), αv ≥ wv · g(yv, yu); for yv ∈

(γ, θ(yu)), αu + αv = wv. Thus the expected gain of αu + αv (taken over the randomness of
yv) can be lower bounded by

wv ·
(
g(yu, θ(yu)) +

∫ γ

0
g(yv, yu)dyv + (θ(yu)− γ) · (1− g(yu, θ(yu)))

)
.

As we have shown in Lemma 7, the partial derivative over θ(yu) is non-negative, thus for
the purpose of lower bounding 1

wv
·E [αu + αv], we can assume that θ(yu) ≤ γ for all yu < τ .

Given that θ(yu) ≤ γ, we have αv ≥ wv · g(yv, yu) when yv ∈ (0, , θ(yu)); and αv ≥
wv · g(yv, β−1(yv)) when yv ∈ (θ(yu), γ).

Hence the third term can be lower bounded by∫ τ

0

(
g(yu, θ(yu)) +

∫ θ(yu)

0
g(yv, yu)dyv +

∫ γ

θ(yu)
g(yv, β−1(yv))dyv

)
dyu

Putting the three lower bounds together and taking the partial derivative over β−1(yv),
for those β−1(yv) > τ , we have a non-negative derivative as follows:

∂g(yv, β−1(yv))
∂β−1(yv)

+ 1− g(yv, β−1(yv))− (β−1(yv)− τ) · ∂g(yv, β
−1(yv))

∂β−1(yv)
≥ 0.

Thus for lower bounding 1
wv
·E [αu + αv], we assume β−1(yv) ≤ τ for all yv < γ. Hence

1
wv
·E [αu + αv] ≥ min

0≤γ,τ≤1

{
(1− τ)(1− γ) + (1− τ)

∫ γ

0
g(yv, τ)dyv

+
∫ τ

0

(
g(yu, θ(yu)) +

∫ θ(yu)

0
g(yv, yu)dyv +

∫ γ

θ(yu)
g(yv, τ)dyv

)
dyu

}
.

Taking the minimum over θ(yu) concludes Lemma 9. J
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Observe that for any θ ≤ γ, we have

g(x, θ) +
∫ θ

0
g(y, x)dy +

∫ γ

θ

g(y, τ)dy ≥ g(x, γ) +
∫ γ

0
g(y, τ)dy.

Thus the lower bound given by Lemma 9 is not worse than Lemma 4.

I Theorem 10. Fix h(x) = min{1, 1
2e
x}. For any pair of neighbors u and v, and any fixed

ranks of vertices in L ∪R \ {u, v}, we have 1
wv
·Eyu,yv

[αu + αv] ≥ 1− ln 2
2 ≈ 0.6534.

We give a proof sketch and defer the complete analysis to the full version of the paper.

Proof Sketch. For h(x) = min{1, 1
2e
x}, we have h′(x) = h(x) when x < ln(2), and

h′(x) = 0, h(x) = 1 when x > ln(2).
Let f(τ, γ) be the expression on the RHS to be minimized in Lemma 9. We first show

that for any fixed τ and γ, the minimum (over θ) of f(τ, γ) is obtained when θ = min{ln 2, γ}.
Hence we can lower bound f(τ, γ) by

(1−τ)(1−γ)+ γ

2 (1−h(τ))+ τ

2 (1−h(γ))+ ln 2
2 τ ·h(τ)+ 1

2

∫ γ

0
h(y)dy+ 1− ln 2

2

∫ τ

0
h(x)dx.

Then we show that f(τ, γ) ≥ 1− ln 2
2 ≈ 0.6534 for all τ, γ ∈ [0, 1]. We show that there

exists τ∗ ≈ 0.3574 (solution for 1 + h(τ)− 2τ = 1) such that for τ ≤ τ∗, ∂f(τ,γ)
∂γ ≤ 0. Thus

f(τ, γ) ≥ f(τ, 1). Further more, we show that ∂f(τ,1)
∂τ ≥ 0, which implies

f(τ, γ) ≥ f(τ, 1) ≥ f(0, 1) = 1
2(1− h(0)) + 1

2

∫ 1

0
h(y)dy = 1− ln 2

2 ≈ 0.6534.

For any fixed τ > τ∗, we show that the minimum (over γ) of f(τ, γ) is attained when
γ = ln 2. Hence for τ > τ∗ we have f(τ, γ) ≥ f(τ, ln 2). Finally, we show that ∂f(τ,ln 2)

∂τ < 0
when τ < τ0; and ∂f(τ,ln 2)

∂τ > 0 when τ > τ0, where τ0 ≈ 0.564375, which implies

f(τ, γ) ≥ f(τ, ln 2) ≥ f(τ0, ln 2) =(1− τ0)(1− ln 2) + ln 2
4 · (2− eτ0 + τ0 · eτ0) + 1

4

+ 1− ln 2
4 (eτ0 − 1) ≈ 0.6557 > 1− ln 2

2 .

Thus for all τ, γ ∈ [0, 1], we have f(τ, γ) ≥ 1− ln 2
2 , as claimed.

5 Conclusion

In this paper, we show that competitive ratios above 1 − 1
e can be obtained under the

randomized primal-dual framework when equipped with a two dimensional gain sharing
function. The key of the analysis is to lower bound the expected combined gain of every pair
of neighbors (u, v), over the randomness of the rank yv of the offline vertex, and the arrival
time yu of the online vertex.

Referring to Figure 1, it can be shown that the competitive ratio F ≥
∫ 1

0 f(yu)dyu, where

f(yu) := (1− θ(yu) + β(yu)) · g(yu, θ(yu)) + θ(yu)− β(yu)

+
∫ β(yu)

0
g(yv, β−1(yv))dyv +

∫ 1

θ(yu)
g(yv, β−1(yv))dyv.
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Note that here we assume β−1(yv) = 1 for all yv ≥ γ, and g(x, 1) = 0 for all x ∈ [0, 1].
For every fixed g, there exist threshold functions θ and β that minimize the integration.

Thus the main difficulty is to find a function g such that the integration has a large lower
bound for all functions θ and β (which depend on the input instance). We have shown that
there exists a choice of g such that the minimum is attained when θ and β are step functions,
based on which we can give a lower bound on the competitive ratio.

It is thus an interesting open problem to know how much the competitive ratio can be
improved by (fixing an appropriate function g and) giving a tighter lower bound for the
integration. We believe that it is possible to give a lower bound very close to (or even better
than) the 0.696 competitive ratio obtained for the unweighted case [21].
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