
CacheShuffle: A Family of Oblivious Shuffles

Sarvar Patel
Google LLC, Mountain View, USA
sarvar@google.com

Giuseppe Persiano
Google LLC, Mountain View, USA and Università di Salerno, Salerno, Italy
giuper@gmail.com

Kevin Yeo
Google LLC, Mountain View, USA
kwlyeo@google.com

Abstract
We consider oblivious two-party protocols where a client outsources N blocks of private data
to a server. The client wishes to access the data to perform operations in such a way that the
access pattern does not leak information about the data and the operations. In this context, we
consider oblivious shuffling with a focus on bandwidth efficient protocols for clients with small
local memory. In the shuffling problem, the N outsourced blocks, B1, . . . , BN , are stored on the
server according to an initial permutation π. The client wishes to reshuffle the blocks according to
permutation σ. Oblivious shuffling is a building block in several applications that hide patterns of
data access. In this paper, we introduce a generalization of the oblivious shuffling problem, theK-
oblivious shuffling problem, and provide bandwidth efficient algorithms for a wide range of client
storage requirements. The task of a K-oblivious shuffling algorithm is to shuffle N encrypted
blocks that were previously randomly allocated on the server in such a way that an adversarial
server learns nothing about either the new allocation of blocks or the block contents. The
security guarantee must hold when an adversary has partial information on the initial placement
of a subset of K ≤ N revealed blocks. The notion of oblivious shuffling is obtained for K = N .

We first study the N -oblivious shuffling problem and start by presenting CacheShuffleRoot,
that is tailored for clients with O(

√
N) blocks of memory and uses approximately 4N blocks

of bandwidth. CacheShuffleRoot is a 4x improvement over the previous best known N -oblivious
shuffle for practical sizes of N . We then generalize CacheShuffleRoot to CacheShuffle that can be
instantiated for any client memory size S and requires O(N logS N) blocks of bandwidth. Next,
we present K-oblivious shuffling algorithms that require 2N+f(K,S) blocks of bandwidth for all
K and a wide range of S. Any extra bandwidth above the 2N lower bound depends solely on K
and S. Specifically, for clients with O(K) blocks of memory, we present KCacheShuffleBasic that
uses exactly 2N blocks of bandwidth. For clients with memory S ≤ K, we present KCacheShuffle,
that requires 2N + O(K logS K) blocks of bandwidth. Finally, motivated by applications to
ORAMs, we consider the case where the server stores D dummy blocks whose contents are irrel-
evant in addition to the N real blocks. For this case, we design algorithm KCacheShuffleDummy
that shuffles N + D blocks with K revealed blocks using O(K) blocks of client storage and
approximately D + 2N blocks of bandwidth.

2012 ACM Subject Classification Security and privacy → Management and querying of en-
crypted data, Security and privacy→ Privacy-preserving protocols, Information systems→ Data
encryption

Keywords and phrases Shuffling, Data-Oblivious Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.161

EA
T

C
S

© Sarvar Patel, Giuseppe Persiano, and Kevin Yeo;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 161; pp. 161:1–161:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sarvar@google.com
mailto:giuper@gmail.com
mailto:kwlyeo@google.com
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.161
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

161:2 CacheShuffle: A Family of Oblivious Shuffles

Related Version A full version of the paper can be found at [11], https://arxiv.org/abs/1705.
07069.

1 Introduction

In recent years, cloud storage has increased in popularity due to the great benefits available to
users. Outsourcing files to the cloud allows users to share documents conveniently. Users are
able to access documents from many different machines without transferring data. The burden
of data replication for recovery is placed on the storage provider. For many corporations,
cloud storage is cost efficient compared to maintaining their own internal storage systems.
With the widespread use of cloud storage, providing privacy for outsourced data becomes
crucial. Unfortunately, encrypting outsourced data is not sufficient. Previous works [8, 9]
show that learning the patterns of data access may leak information about the contents of
encrypted data. This scenario provides motivation towards the study of oblivious algorithms.

In this paper, we focus on oblivious algorithms for shuffling data stored on a server. The
ability to obliviously move blocks of encrypted data is an important primitive for privacy-
conscious users of cloud storage. We consider the scenario where a client has outsourced the
encryptions of N identically-sized blocks, B1, . . . , BN , to a server. The N blocks are stored
by the server on an array Source according to a permutation π. That is, an encryption of Bi
is stored as Source[π(i)], for all i = 1, . . . , N . The client wishes to shuffle the blocks into a
server-stored destination array, Dest, according to a permutation σ.

An oblivious shuffle is an algorithm whose pattern of block movement and operations
involving the server does not leak information about either σ or the contents of B1, . . . , BN .
If the client has N blocks of client memory available, oblivious shuffling is trivial. All N
blocks are downloaded, decrypted, re-encrypted and re-uploaded to their correct location
in Dest according to σ. Similarly, if bandwidth is unlimited, then oblivious shuffling is also
trivial. The client streams all N blocks and keeps block Bσ−1(1) to be be placed into Dest[1]
after all blocks have been streamed. The client repeats this algorithm for all i = 2, . . . , N ,
which costs N2 blocks of bandwidth. Our work focuses on oblivious shuffles that minimize
bandwidth while the client has only a sublinear number of blocks of memory available.

Our Contributions. Our contribution is two-fold. We propose an obliviousness notion
that abstracts the initial knowledge of π given to the adversarial server. Then, we present
bandwidth efficient oblivious shuffles for any possible initial knowledge of π by the adversary
and a wide range of client memory requirements.

Our work generalizes the notion of obliviousness studied in previous work by presenting
the notion of K-oblivious shuffling that takes into account the knowledge of the adversary
on the initial positioning of the blocks (that is, π). In the K-oblivious shuffling problem, the
adversary fixes the position of K ≤ N blocks, which we denote as the revealed blocks. The
client wishes to shuffle the N blocks into the server-stored destination array, Dest, without
revealing information about σ or the contents of B1, . . . , BN to the adversarial server. The
parameter K describes the difficulty of the problem. Intuitively, as K decreases, K-obliviously
shuffling should be more efficient. In our work, we present algorithms whose bandwidth
above inherent lower bounds depend only on K. For K = N , the notion of K-oblivious
shuffling coincides with the original notion of a oblivious shuffling by Ohrimenko et al. [10],
which assumes that the adversary has initial knowledge about all N input blocks.

The notion ofK-oblivious shuffling is suitable in the context of Oblivious RAMs. Oblivious
RAM (or ORAM) is a storage primitive introduced by Goldreich [4] that allows random

https://arxiv.org/abs/1705.07069
https://arxiv.org/abs/1705.07069

S. Patel, G. Persiano, and K. Yeo 161:3

access to N encrypted blocks that are stored by an adversarial server. Many ORAMs use
oblivious shuffling as a building block to move blocks without revealing information about
the final positions of blocks as well as the contents of the blocks. In the majority of ORAM
constructions, the adversary does not learn the position of all blocks that are going to be
shuffled. By incorporating the initial amount of knowledge available to the adversary about
the N input blocks, we can improve the bandwidth efficiency of ORAM constructions such
as the Square Root ORAM [4, 5].

Before designing efficient K-oblivious shuffling algorithms, we revisit the original obliv-
ious shuffling (that is, N -oblivious shuffling) problem and present new oblivious shuffling
algorithms with improved bandwidth efficiency. Our algorithms use a client-stored cache
to store blocks. The main technical difficulty in our algorithms is showing that the size of
the cache remains small. We first apply this design principle in Section 3 by presenting
an oblivious shuffling algorithm, CacheShuffleRoot, that uses approximately 4N blocks of
bandwidth and O(

√
N) block of client storage. For similar client memory usage, the previous,

state-of-the-art algorithm, the Melbourne Shuffle [10], uses about 4 times more bandwidth.
We present a generalization of CacheShuffleRoot, CacheShuffleS , in Section 4 when the client
has S = ω(logN) blocks of available client storage. CacheShuffleS uses O(N logS N) blocks
of bandwidth.

Next, we focus on designing K-oblivious shuffling algorithms when K < N . All previous
oblivious shuffling algorithms have always considered the most difficult scenario when K = N .
To our knowledge, our work is the first to separate the two problems. In Section 5, we present
a simple K-oblivious shuffling algorithm, KCacheShuffleBasic, when the client has O(K)
blocks of available client storage. KCacheShuffleBasic uses exactly 2N blocks of bandwidth.
In Section 6, we present KCacheShuffleS for clients with only O(S) blocks of client storage
available. KCacheShuffle uses 2N + O(K logS K) blocks of bandwidth. For the case of
S =

√
K, we present KCacheShuffleRoot, which uses approximately 2N + 4K blocks of

bandwidth. In general, any K-oblivious shuffling algorithm must upload and download each
block at least once meaning a lower bound of 2N blocks of bandwidth when K > 0. The
amount of bandwidth used by all our K-oblivious shuffling algorithms beyond the lower
bound only depends on K.

In many ORAM schemes, encryptions of dummy blocks are also outsourced to the server.
The contents of a dummy block is irrelevant. However, it is important that an adversarial
server cannot learn whether a block is dummy or not. In the full version [11], we consider
a scenario where the client has outsourced the encryptions of D dummy blocks and N real
blocks inspired by the work of Stefanov et al. [12]. Any K-oblivious shuffling algorithm
could be used to perform shuffling by treating dummy blocks as real blocks. By using the
fact that the contents of dummy blocks are irrelevant, we present KCacheShuffleDummy
that uses approximately D + 2N blocks of bandwidth when the client has O(K) blocks
of available client storage. Applying directly KCacheShuffleBasic would require 2(N + D)
blocks of bandwidth. Therefore, KCacheShuffleDummy saves D blocks of bandwidth. The
bandwidth savings come at the cost of a small amount of server computation.

We complement our theoretical analysis with experiments to show that our algorithms
are of practical interest in the full version.

Previous works. The early approach to oblivious shuffling was based on oblivious sorting
algorithms which could be immediately derived from any sorting circuit. To evaluate a
compare-exchange gate of a sorting circuit, the client downloads the two input encrypted
blocks, decrypts and re-encrypts both blocks and uploads them in the correct order. Batcher’s

ICALP 2018

161:4 CacheShuffle: A Family of Oblivious Shuffles

sort [2] is considered the most practical sorting circuit even though it has asymptotic cost of
O(N log2 N). Sorting networks such as AKS [1] and Zig-Zag [7] have O(N logN) size but
large hidden constants. Randomized Shellsort [6] is another O(N logN) oblivious sort with
smaller hidden constants but larger depth. Waksman [13] presents a circuit for oblivious
shuffling of size O(N logN). Oblivious shuffling based on sorting circuits is interesting
because the client only needs to store O(1) blocks at any point. However, sorting circuits
incur a large Ω(N logN) blocks of bandwidth cost. The first oblivious shuffling algorithm
not based on sorting circuits, the Melbourne Shuffle, was introduced by Ohrimenko et al. [10].
The Melbourne Shuffle uses O(N) bandwidth while only requiring O(

√
N) blocks to be stored

on the client at any time.
In the table below, we compare our algorithms with the Melbourne Shuffle [10].

Table 1 N denotes the number of blocks. Algorithm KCacheShuffleDummy receives D additional
dummy blocks, for a total of N +D blocks. Algorithm KCacheShuffleRoot is obtained from algorithm
KCacheShuffle by setting S =

√
N . For all algorithms, server storage is cN , for a small constant c.

Client Storage Bandwidth

K
=
N Melbourne Shuffle [10] O(

√
N) ≈ 18N

CacheShuffleRoot O(
√
N) (4 + ε)N

CacheShuffle O(S) O(N logS N)

G
en

er
al
K KCacheShuffleBasic O(K) 2N

KCacheShuffleRoot O(
√
K) 2N + (4 + ε)K

KCacheShuffle O(S) 2N +O(K logS K)
KCacheShuffleDummy O(K) D + (2 + ε)N

An algorithm similar to CacheShuffleRoot was developed in parallel and independent work
in [3] for the context of privacy-preserving software monitoring.

2 Definitions

In this section, we give formal definition for shuffling algorithms and oblivious shuffling
algorithms. Our reference scenario is a cloud storage model where a client outsources the
storage of N identically-sized data blocks to a server with the capacity to store M ≥ N

blocks.
We assume the N data blocks are uploaded by the Setup algorithm. As input, Setup

receives N data blocks, B = (B1, . . . , BN), each of size B and a permutation π : [N]→ [N].
Setup randomly selects an encryption key, key, whose length is determined by the security
parameter λ, for a symmetric encryption scheme and uploads an encryption of each of the
N data blocks to the server according to π. Formally, an encryption of Bi under key will
be stored at server location π(i), for all i ∈ [N]. Once Setup has uploaded all N blocks, an
adversary A is allowed to learn the initial position of a subset of the data blocks, which we
denote Revealed ⊆ [N]. For each index i ∈ Revealed, π(i) is revealed to A. We call the data
blocks in Revealed, the revealed data blocks.

The shuffling algorithm takes as input the encryption key key, the permutation map
π, the set of revealed data blocks Revealed, and a new permutation σ. The task of the
shuffling algorithm is to re-permute the N data blocks stored on the server according to the
new permutation map σ. In particular, we are interested in oblivious shuffling algorithms.
Roughly speaking, oblivious shuffles hide information about both the contents of B1, . . . , BN

S. Patel, G. Persiano, and K. Yeo 161:5

and σ even when the adversary has partial information on π (restricted to the input set
Revealed) and observes the blocks movements performed by the shuffling algorithm.

For convenience, we will abuse the notation of array indexing and function evaluation
throughout our work. For any array A and index i, A[i] refers to the element stored at
location i in A. For a set of indices S, we define A[S] := {A[s] : s ∈ S}. Similarly for any
function f and input set S, we define f(S) := {f(s) : s ∈ S}.

2.1 Mechanics of the Shuffling Algorithm

A shuffling algorithm receives as input the initial permutation π, the final permutation σ
and the set Revealed. A shuffling algorithm proceeds in steps. The state after the q-th step
is described by a server allocation map ρq : [M]→ [N] ∪ {⊥} and by a client allocation map
Lq : [S]→ [N] ∪ {⊥}. Each allocation map specifies the block currently occupying each of
the M server locations and S client locations, respectively. More precisely, ρq(j) = i means
that, after the q-th step is performed, the j-th server location contains an encryption of
the Bi. If instead ρq(j) =⊥, then an encryption of a dummy block is stored at location j.
Similar statements are true for the client allocation map, Lq.

When a shuffling algorithm starts, the server allocation map ρ0 coincides with permutation
map π on the first N storage location of the M server memory locations. That is, ρ0(i) =
π−1(i) for all i = 1, . . . , N . The remaining N −M locations contain encryptions of dummy
blocks. All S client block locations initially contain dummy blocks. That is, L0(i) =⊥ for all
i = 1, . . . , S. During each step, a shuffling algorithm can perform either a move operation or a
server computation operation. A move operation can be either a download or an upload move
and they modify the state as follows. All download and upload operations are associated
with a source and a destination. Suppose the q-th operation is a download with source sq
and destination dq. Then, an encryption of block Bρq−1(sq) stored at server location sq is
copied to location dq of client storage. Before storing in client storage, the block is decrypted
and re-encrypted. As a consequence, the ρq is identical to ρq−1. On the other hand, Lq
is identical to Lq−1 except that Lq(dq) = ρq−1(sq). If the q-th operation was an upload
with source sq and destination dq, then the encryption of block BŁq−1(sq) stored at client
location sq is copied to location dq of server storage. In this case, Lq is identical to Lq−1.
However, Sq is obtained by modifying Sq−1 such that Sq(dq) = Lq−1(sq). Shuffle algorithms
may perform upload moves with the source as ⊥. In this case, an encryption of a dummy
block is uploaded to the destination location of server storage.

A server computation operation is specified by the server performing a circuit that uses a
subset of the blocks as input and copies the circuit’s output to a subset of server storage
locations. In our shuffling algorithms, server computation operations consist of homomorphic
operations on block ciphertexts, which reduce bandwidth by using small amounts of server
computation. The circuit description sent by the client must be considered as bandwidth.

2.2 Efficiency Measures

In our work, we consider three measures of efficiency for a shuffling algorithm: bandwidth,
client memory and server memory. Our work focuses on minimizing bandwidth for a given
amount of client memory, which is typically sublinear. While we do not prioritize optimizing
server storage, all our shuffling algorithms use server storage that is linear with small constants
in the number N of blocks. For shuffling algorithms with small client storage, we assume
that the input permutations π and σ are space-efficient pseudorandom permutations.

ICALP 2018

161:6 CacheShuffle: A Family of Oblivious Shuffles

Throughout this work, we consider blocks as our unit of measure. For example, if a
shuffling algorithm uses T bandwidth, it means the shuffling algorithm uses T blocks of
bandwidth.

2.3 Obliviousness

We define a transcript produced an execution of a shuffling algorithm Sh as the information
seen by the adversarial server. The transcript consists of the initial encryptions of the data
blocks as stored in server memory, the ordered list of the sources of all download moves,
the ordered list of the destinations of all upload moves as well as the encryptions of the
uploaded block and the list of circuits uploaded by the client. We stress that a transcript
only contains the server locations that are involved in each move. That is, the transcript only
contains the source for downloads and the destination for uploads. The transcript does not
contain the involved client locations in each upload and download. The transcript models
that an adversarial server A cannot observe information about the client’s storage such as
the destination of a download and the source of an upload.

Using the definition of a transcript, we now formally define an oblivious shuffling algorithm.
For every sequence of N blocks B = (B1, . . . , BN), every subset Revealed of revealed blocks,
and every pair of permutations (π, σ), a shuffling algorithm Sh naturally induces a probability
distribution TSh(B, π, σ,Revealed) over all possible transcripts. We capture the notion of a
K-oblivious shuffling algorithm by the following game OSGameASh for a shuffling algorithm
Sh between an adversary A and a challenger C. In the formalization of our security notion,
the adversary A receives partial information on the starting permutation map π to reflect
the fact that the shuffling algorithm Sh might be part of a larger protocol whose execution
leaks information about π. More precisely, A chooses the initial server locations of a subset
of the N data blocks, Revealed. We parametrize the security notion by the cardinality of
the set Revealed, which we denote as K. We say that an adversary A is K-restricted if it
specifies the location of at most K blocks. That is, |Revealed| ≤ K. C fills in the remaining
N − |Revealed| locations randomly under the constraint that each of the N blocks appears in
exactly one location on the server. Then, A proposes two sequences of N blocks, B0 and
B1, and two permutations, σ0 and σ1. C randomly picks b ∈ {0, 1} and samples a transcript
trans according to TSh(Bb, π, σb,Revealed). On input trans, A outputs its guess b′ for b.
We present the formal definition below.

I Definition 1. For a shuffle algorithm Sh, we define the game OSGameASh(N,λ) between an
adversary A and a challenger C for N data blocks and security parameter λ as follows:
1. A chooses a subset Revealed ⊆ [N], specifies π(i) for each i ∈ Revealed, and sends

(Revealed, π(Revealed) to C;
2. A chooses two pairs (B0, σ0) and (B1, σ1) and sends them to C;
3. C completes the permutation π by randomly choosing the values at the point left unspec-

ified by A;
4. C randomly selects b ← {0, 1} and sends A transcript trans drawn according to
TSh(Bb, π, σb,Revealed);

5. A on input trans outputs b′;
The game outputs 1 iff b = b′.

I Definition 2 (K-oblivious shuffling). We say that shuffling algorithm Sh is a K-oblivious
shuffling algorithm if for all K-restricted probabilistically polynomial time adversaries A,

S. Patel, G. Persiano, and K. Yeo 161:7

and for all N = poly(λ)

Pr[OSGameASh(N,λ) = 1] ≤ 1
2 + negl(λ).

We refer to N -oblivious shuffling algorithms as just oblivious shuffling algorithms.

2.4 Move-Based shuffling Algorithms
Move-based algorithms are shuffling algorithm that only perform move operations between
client and server storage; that is, the server does not perform any computation on the stored
encrypted blocks. To prove K-obliviousness for move-based algorithms, it suffices to show
that for every random π and for every subset Revealed ⊆ [N] containing at most K indices,
the probability distribution consisting of both the sources of downloads and the destinations
of uploads are independent of σ conditioned on Revealed and π(Revealed). More precisely, we
defineMSh(B, π, σ,Revealed) as the distribution of the move transcript Mtrans obtained from
a transcript trans drawn from TSh(B, π, σ,Revealed) by removing the encryption of server-
stored blocks and the encrypted blocks associated with upload moves. This is equivalent to
considering the blocks as opaque indistinguishable balls. It is straightforward to prove that if
the encryption scheme is IND-CPA and TSh(B, π, σ,Revealed) is independent of σ conditioned
on Revealed and π(Revealed), then Sh is a K-oblivious shuffling algorithm.

In the full version, we show that move-based K-oblivious shuffles have an inherent lower
bound of 2N blocks of bandwidth when K ≥ 1.

3 Oblivious Shuffling with O(
√

N) Client Memory

In this section, we describe CacheShuffleRoot, which is an oblivious shuffling algorithm that
uses O(

√
N) blocks of client storage except with negligible probability. For every ε > 0,

we describe an algorithm CacheShuffleRootε that uses (3 + ε/2)N blocks of server storage,
(4 + ε)N blocks of bandwidth and δε

√
N blocks of client storage except with negligible

probability in N . The value δε is a constant that depends solely on ε and not from N .
Whenever ε is clear from the context, we will just call the algorithm CacheShuffleRoot.

3.1 Intuition
We start by describing a simple algorithm, which is insufficient to perform oblivious shuffling.
However, the algorithm provides a general idea of our techniques.

Let us recall the inputs to oblivious shuffling. The client is provided permutations π and
σ. Note that in our security model, σ is provided privately to the client and hidden from the
adversarial server. On the server, N block ciphertexts are stored in the array Source. An
encryption of block Bi is stored at Source[π(i)], for all i = 1, . . . , N . At the termination of an
oblivious shuffling, an encryption of block Bi should appear at Dest[σ(i)], for all i = 1, . . . , N .

We now describe a simple, but incorrect, algorithm to provide intuition of our tech-
niques. The N indices of Dest are randomly partitioned into q :=

√
N destination buckets,

destInd1, . . . , destIndq. Each i ∈ [N] is assigned to a uniformly and independently chosen
destination bucket. The indices of Source are partitioned into s :=

√
N source groups,

srcInd1, . . . , srcInds, of exactly N/s =
√
N blocks. The j-th source group consists of blocks

located in Source[(j − 1)N/s + 1, . . . , j · N/s], for all j = 1, . . . , s. Finally, there will be q
temporary server-stored arrays, temp1, . . . , tempq, each of size s and initially empty.

On average, each destination bucket will contain N/q =
√
N indices. Furthermore, each

destination bucket will receive one block from each of the s source groups according to σ

ICALP 2018

161:8 CacheShuffle: A Family of Oblivious Shuffles

in expectation. For now, let us suppose that each destination bucket receives exactly one
block from each of the s source groups. In this case, we show that oblivious shuffling can be
easily performed. Our algorithm would process each of the s source groups one at a time.
When processing srcIndj , the algorithm downloads all

√
N blocks of Source[srcIndj]. Then,

exactly one block is uploaded to each of temp1, . . . , tempq from srcIndj . In particular, the
block to tempk is the only block from srcIndj that will be placed to Dest[destIndk] according
to σ. After all s source groups have been processed, each tempk contains all the blocks that
are to be placed in a location of Dest[destIndk] but in the incorrect order. The algorithm
performs another q phases to process each of temp1, . . . , tempq. When processing tempk, all
s blocks of tempk are downloaded and re-uploaded to their correct locations in Dest[destIndk]
in any arbitrary order (such as as increasing order of destIndk).

This algorithm is easily seen to be oblivious but, unfortunately, it is unlikely that each
destination bucket receives exactly the expected number blocks from each group. We thus
present algorithm CacheShuffleRoot, which modifies the above algorithm to handle variances
in expectation. CacheShuffleRoot does not expect each source group to contain exactly one
block that should be uploaded to each destination bucket. Any time more than one block
from a source group should be uploaded to a destination bucket, the extra blocks will be
stored in a cache in the client’s private storage. To ensure that the client’s cache does
not grow too large, we slightly increase the number of destination buckets from

√
N to

(1 + ε/2)
√
N , for any constant ε > 0. Let us now proceed more formally.

3.2 CacheShuffleRoot Description
For any constant ε > 0, we describe algorithm CacheShuffleRoot. As input, the client receives
permutations π and σ. On the server, the N blocks are stored in the source array Source
according to π. That is, a ciphertext of block Bi appears in Source[π(i)], for all i = 1, . . . , N .
CacheShuffleRoot will output a server-stored destination array, Dest, such that an encryption
of block Bi is stored as Dest[σ(l)], for all l = i, . . . , N .

CacheShuffleRoot proceeds by partitioning the indices of Source into s :=
√
N source

groups srcInd1, . . . , srcInds. For all j = 1, . . . , s, srcIndj consists of blocks stored at loca-
tions Source[(j − 1)s + 1, . . . , js]. The N indices of the destination array Dest are ran-
domly partitioned into q := (1 + ε/2)

√
N destination buckets, destInd1, . . . , destIndq. For-

mally, index i ∈ [N] is assigned to uniformly and independently chosen destination bucket.
CacheShuffleRoot also initializes q server-stored temporary arrays, temp1, . . . , tempq and q
client-stored caches, Q1, . . . , Qq. Each temporary array initially contains s empty block
locations and each cache is initially empty.

CacheShuffleRoot consists of two phases: Spray and Recalibrate. The Spray phase consists
of s rounds, one for each of the s source groups. In the j-th Spray round, the algorithm
downloads all blocks in Source[srcIndj]. Each downloaded ciphertext is decrypted and re-
encrypted with fresh randomness. Each downloaded block is placed into one of the q caches
according to their placement by σ. If block Bi is downloaded, then the re-encryption of Bi
is placed into Qk such that σ(i) ∈ destIndk. After all blocks of Source[srcIndj] are placed into
their respective queues, exactly one block from each of Q1, . . . , Qq is uploaded to the server.
In particular, one block from Qk is uploaded to tempk. If any Qk is empty, a dummy block
containing an encryption of any arbitrary block is uploaded instead. After all s rounds of the
Spray phase are completed, each of temp1, . . . , tempq contains exactly s blocks. Furthermore,
there might be some blocks remaining in Q1, . . . ,Qq. Every block that is assigned to a
location of Dest[destIndk] according to σ appears in either Qk or tempk.

The Recalibrate phase will simply rearrange all non-dummy blocks of Qk and tempk into
the correct locations of Dest[destIndk]. Formally, Recalibrate operates in q rounds, one round
for each pair of (Q1, temp1), . . . , (Qq, tempq). In the k-th round, all s blocks of tempk are

S. Patel, G. Persiano, and K. Yeo 161:9

downloaded. All non-dummy blocks of tempk are decrypted and re-encrypted before being
placed into Qk. At this point, all blocks assigned to Dest[destIndk] according to σ appear
in Qk. All blocks are simply uploaded to Dest[destIndk] in any arbitrary order (such as
increasing order of destIndk). After all q rounds of Recalibrate, CacheShuffleRoot finishes
executing.

The proof of the following theorem can be found in the full version.

I Theorem 3. CacheShuffleRoot is an oblivious shuffle algorithm that uses (4 + ε)N blocks
of bandwidth, (3 + ε/2)N blocks of server memory and O(

√
N) blocks of client memory except

with probability negligible in N .

4 Oblivious Shuffling with Smaller Client Memory

In this section, we generalize algorithm CacheShuffleRoot from Section 3. For any S =
ω(logN), we provide an oblivious shuffling algorithm that uses O(S) blocks of client memory
and O(N logS N) blocks of bandwidth.

Let us take another look at CacheShuffleRoot. Once CacheShuffleRoot completes the Spray
phase, all the blocks that should be placed into Dest[destIndk] according to σ are stored either
in tempk or Qk. Afterwards the k-th round of Recalibrate arranges all non-dummy blocks in
tempk and Qk into their correct location in Dest[destIndk]. Each round of Recalibrate requires
|tempk| + |Qk| blocks of client memory. Therefore, the key to a oblivious shuffling using
less blocks of client memory requires a modification to the Spray phase so that less blocks
are placed into each tempk and Qk. We present RSpray, a modification of Spray, to achieve
smaller server-stored temporary arrays and client-stored caches. Additionally, the output of
RSpray is structured such that RSpray may be recursively applied.

4.1 RSpray Description
First, we abstract the input to RSpray to handle recursive applications. As input, RSpray
receives a server-stored source array, RSource, of n block ciphertexts. In addition, the client
privately receives, destInd ⊆ [N], of d destination indices. For every i such that σ(i) ∈ destInd,
an encryption of block Bi appears in RSource. The remaining n− d ciphertexts of RSource
are dummy blocks.

RSpray is parameterized by the number of blocks of client storage available, which we
denote by S. As output, RSpray outputs S temporary arrays, temp1, . . . , tempS , which
contain block ciphertexts as well as a partition of destInd into S destination buckets,
destInd1, . . . , destIndS ⊂ destInd. Furthermore, RSpray guarantees that if σ(i) ∈ destIndk,
then an encryption of Bi will appear in tempk. To keep the same notation as Section 3, we
set q = S.

We now formally describe RSpray. RSpray partitions destInd into q destination buckets,
destInd1, . . . , destIndq. Each index d ∈ destInd is assigned to one of the q subsets uniformly
and independently at random. RSpray will initialize q server-stored temporary arrays,
temp1, . . . , tempq. Each tempk will contain s := n/q empty block locations. RSpray also
initializes q client-stored caches, Q1, . . . ,Qq. All q caches are initially empty. Finally,
RSpray partitions RSource into s server-stored source buckets, srcInd1, . . . , srcInds. Each block
ciphertext in RSource is assigned to one of the s source buckets uniformly and independently
at random. Unlike Spray, RSpray initializes the s source buckets randomly.

RSpray performs s rounds, one for each of srcInd1, . . . , srcInds. In the j-th round, RSpray
downloads all blocks of srcIndj . All non-dummy blocks are decrypted and re-encrypted.

ICALP 2018

161:10 CacheShuffle: A Family of Oblivious Shuffles

If block Bi is downloaded, then the new encryption of Bi is placed into Qk such that
σ(i) ∈ destIndk. After all blocks in srcIndj are placed into their corresponding cache, exactly
one block ciphertext is uploaded from each Q1, . . . ,Qq to the server. In particular, a block
from Qk is uploaded to tempk, for all k = 1, . . . , q. If Qk is empty, a dummy block is uploaded
instead.

After all s rounds complete, each tempk contains exactly s block ciphertexts. Furthermore,
RSpray guarantees that if σ(i) ∈ destIndk, then an encryption of Bi appears in either tempk
or Qk. RSpray performs another q adjustment rounds to move all client-stored blocks in Qk

to the server-stored tempk. In the k-th adjustment round, RSpray downloads all s blocks
of tempk. All dummy blocks of tempk are discarded. The non-dummy blocks of tempk
are decrypted and re-encrypted. Now, all blocks of Qk are combined with the non-dummy
downloaded blocks of tempk. If more than s non-dummy blocks remain, then RSpray fails.
If there are less than s non-dummy blocks, dummy blocks are added until exactly s blocks
remain. Finally, all s blocks are uploaded back to tempk. RSpray terminates upon completion
of the s rounds.

4.2 CacheShuffle Description
We now describe CacheShuffle, which uses RSpray and Spray as subroutines. CacheShuffle
starts by running the Spray algorithm of CacheShuffleRoot with parameters s := N/S and
q := (1 + ε)S. Under these parameters, Spray uses O(S) client memory and outputs the
following:
1. q caches Q1, . . . ,Qq on the client;
2. q temporary arrays temp1, . . . , tempq on the server;
3. q destination buckets destInd1, . . . , destIndq on the client such that if σ(i) ∈ destIndk then

Qk or tempk contain an encryption of Bi;
For j = 1, . . . , q, we perform the adjustment round of RSpray for each pair of (Qk, tempk)
outputted by Spray. In particular, all blocks of Qk are placed into tempk. After all q
adjustment rounds, we have the property that if σ(i) ∈ destIndk, then tempk contains an
encryption of Bi.

Next, CacheShuffle recursively calls RSpray on each temp1, . . . , tempq exactly l = O(logS N)
times. Formally, each application of RSpray will produce q pairs of temporary arrays and
destination buckets. RSpray will be applied to each of the q pairs independently. After l
recursive applications of RSpray, we will receive ql temporary arrays and destination buck-
ets, (templ,1, destIndl,1),. . . ,(templ,ql , destIndl,ql). Furthermore, all temporary arrays and
destination buckets will contain less than S2 elements. Each templ,k is obliviously shuffled
into Dest[destIndl,k] using CacheShuffleRoot, for all k = 1, . . . , ql. CacheShuffleRoot may be
applied since the client has at least S blocks of client memory.

The proof of the following theorem can be found in the full version.

I Theorem 4. CacheShuffle is an Oblivious Shuffle algorithm that uses O(N logS N) blocks
of bandwidth, O(N) blocks of server memory and O(S) blocks of client memory except with
probability negligible in N .

5 K-Oblivious Shuffling with O(K) Client Memory

In this section, we present an K-oblivious shuffling algorithm, KCacheShuffleBasic, for clients
with at least K blocks of client memory. The algorithm uses 2N blocks of bandwidth to
shuffle N data blocks We remind the reader that the client of a K-oblivious shuffling receives

S. Patel, G. Persiano, and K. Yeo 161:11

two permutations (π, σ) as well as a subset of indices Revealed ⊆ [N]. Identical to Oblivious
Shuffling, KCacheShuffleBasic also receives ciphertexts of the N blocks in Source according
to π and must place the N blocks in Dest according to σ.

KCacheShuffleBasic starts by downloading the ciphertexts from locations
Source[π(Revealed)]. That is, the encryption of every block whose index belongs to Revealed is
downloaded. Each block is decrypted and re-encrypted. Then, KCacheShuffleBasic initializes
tbDown = [N] \Revealed, which is the set of indices of blocks that have not been downloaded
yet.

Then, KCacheShuffleBasic runs N rounds. The goal of the i-th round is to place a cipher-
text of Bσ−1(i) into Dest[i]. If σ−1(i) ∈ tbDown, and thus the ciphertext of Bσ−1(i) has not
been downloaded yet, KCacheShuffleBasic simply downloads Bσ−1(i) from Source[π(σ−1(i))]
and removes σ−1(i) from tbDown. If σ−1(i) /∈ tbDown, then Bσ−1(i) has already been down-
loaded from Source[π(σ−1(i))]. If tbDown 6= ∅, any arbitrary index i′ ∈ tbDown is removed
and Bi′ is downloaded from Source[π(i′)]. In any of the above cases, the downloaded block is
decrypted and re-encrypted. Finally, Bσ−1(i) is placed into Dest[i].

From first look, it seems that KCacheShuffleBasic requires O(N) roundtrips of client-server
communication. However, the number of roundtrips may be reduced by grouping indexes
of Dest together. Specifically, we can group indexes of Dest into groups of size O(K) and
perform the required downloads and uploads in O(N/K) roundtrips.

The proof of the following theorem can be found in the full version.

I Theorem 5. KCacheShuffleBasic is a K-Oblivious Shuffle that uses 2N blocks of bandwidth,
2N blocks of server storage and O(K) blocks of client storage.

6 K-Oblivious Shuffling with Smaller Client Memory

In this section, for any constant ε > 0, we describe KCacheShuffleε,S , a K-oblivious shuffling
that uses O(S) blocks of client memory. For convenience, we fix ε and S and refer to
KCacheShuffleε,S as simply KCacheShuffle.

KCacheShuffle will invoke a modification of CacheShuffle (using the same value of ε).
Recall that CacheShuffle invokes CacheShuffleRoot before completion. KCacheShuffle invokes
CacheShuffle such that the last Recalibrate phase of CacheShuffleRoot is skipped. Note, only
the last Recalibrate phase of CacheShuffleRoot actually places ciphertexts of blocks into the
destination array Dest. Therefore, the modified CacheShuffle does not actually use Dest at
all. Formally, CacheShuffle invokes KCacheShuffle using Source[Revealed] as the source array
and (π, σ) restricted to the input set Revealed as the input permutations. The output of the
modified CacheShuffle is:
1. q client-stored destination buckets destInd1, . . . , destIndq, which is a partition of Revealed;
2. q server-stored temporary arrays temp1, . . . , tempq containing exactly S block ciphertexts

such that if i ∈ Revealed and σ(i) ∈ destIndk then tempk contains an encryption of Bi;

In the next step, KCacheShuffle merges the revealed and unrevealed blocks. KCacheShuffle
will extend destInd1, . . . , destIndq from a partition of Revealed to a partition of [N]. That is,
each index of [N] \ σ(Revealed) is assigned uniformly and independent at random to one
of destInd1, . . . , destIndq. KCacheShuffle initializes tbDownk = σ−1(destIndk \ σ(Revealed)),
which is all unrevealed blocks assigned to Dest[destIndk] by σ, for all k = 1, . . . , q. Then,
KCacheShuffle will run up to q rounds, one for each of destInd1, . . . , destIndq. In the k-th
round, KCacheShuffle downloads all S ciphertexts of tempk.

We quickly diverge by mentioning an obvious, but incorrect, next step. In particular, it
might be tempting to just download all of Source[π(tbDownk)] to upload into Dest[destIndk].

ICALP 2018

161:12 CacheShuffle: A Family of Oblivious Shuffles

However, this step would reveal to the adversary the number of revealed (as well as unrevealed
blocks) that are placed into Dest[destIndk] according to σ. This possible next step would cause
our algorithm to lose K-obliviousness. In particular, our algorithm cannot leak knowledge
about the number of revealed (and unrevealed) blocks that belong in the set Dest[destIndk].

Instead, KCacheShuffle downloads exactly uk := |destIndk|− (1− ε)K/q unrevealed blocks
in the k-th round. If |tbDownk| > uk, then KCacheShuffle will fail and abort (in Theorem 6
we shall prove that this happens with negligible probability). On the other hand, suppose that
|tbDownk| ≤ uk. In this case, the algorithm will download all blocks in Source[π(tbDownk)]
and if more are needed, that is if |tbDownk| < uk, then extra unrevealed blocks that are
not assigned to Source[destIndk] are downloaded from the destination array with the largest
index that has not been used yet. Formally, KCacheShuffle initializes leftover = q before
any of the q rounds begins. The |tbDownk| − uk extra blocks are chosen arbitrarily from
the set Source[π(tbDownleftover)], which have not been downloaded yet. If all blocks of
Source[π(tbDownleftover)] have been been downloaded, then leftover is decremented.

All uk blocks downloaded by KCacheShuffle in the k-th round will be decrypted and
re-encrypted. Then, KCacheShuffle will upload all blocks belonging to Dest[destIndk] in any
arbitrary order such as increasing in destIndk. Furthermore, KCacheShuffle has a set of extra
unrevealed blocks, which we denote Remk, that are not assigned to Dest[destIndk] by σ. If
|Remk| > 2εK/q, then KCacheShuffle fails and aborts Otherwise, KCacheShuffle pads Remk

to contain exactly 2εK/q ciphertexts by adding encryptions of dummy blocks. Afterwards,
Remk is uploaded to the server.

At some point, leftover and k will be equal. Once leftover and k are the same, KCacheShuffle
will stop running these rounds. However, KCacheShuffle still has to place blocks into
Dest[destIndleftover], . . . ,Dest[destIndq] from templeftover, . . . , tempq and Rem1, . . . , Remleftover−1.
To achieve this, KCacheShuffle invokes CacheShuffle using templeftover ∪ . . . ∪ tempq ∪ Rem1 ∪
. . .Remleftover−1 as the source array, Dest[destIndleftover∪ . . .∪destIndq] as the destination array
and (π, σ) restricted to σ−1(destIndleftover) ∪ . . . ∪ σ−1(destIndq) as the permutations. In the
full version, we show that destIndleftover ∪ . . . ∪ destIndq contains O(K) indices.

If the client has O(
√
K) blocks of client storage, then we may replace CacheShuffle with

CacheShuffleRoot above. We refer to this construction as KCacheShuffleRoot.
The proof of the following theorem can be found in the full version.

I Theorem 6. For every S = ω(logN) and for every ε, KCacheShuffleε,S is a K-oblivious
shuffling algorithm that uses 2N +O(K logS K) blocks of bandwidth, O(N) blocks of server
storage, O(S) blocks of client storage and fails with probability negligible in N .

7 Conclusions

In this paper, we studied the notion of oblivious algorithms for the problem of shuffling data.
We introduce the notion of K-oblivious shuffling, a fine-grained notion of obliviousness, which
accurately describes the adversary’s knowledge about the initial position of the N blocks. In
particular, we assume the adversary gains information about the initial position of exactly
K blocks. This notion has direct application to the design of Oblivious RAMs. Previous
notions only considered the extreme case where the adversary has complete knowledge about
the initial positioning of all N input blocks (that is, K = N).

We present bandwidth efficient moved-based K-oblivious shuffling algorithms for any K
and for any client with S = ω(logN) blocks of available storage. The bandwidth required by
our algorithms is of the form 2N + f(K,S). We also look at the previous considered the case
of K = N corresponding to previous oblivious shuffling notions. We present an oblivious

S. Patel, G. Persiano, and K. Yeo 161:13

shuffle using essentially 4N blocks of bandwidth. The previous, state-of-the-art oblivious
shuffle [10] required approximately 18N blocks of bandwidth for similar failure probabilities.

We also consider the case where we shuffle N real blocks along with D dummy blocks. In
this case, the contents of dummy blocks are irrelevant. By utilizing server-side computation,
we shuffle using essentially D + (2 + ε)N blocks of bandwidth. Thus, our algorithm uses less
bandwidth than any move-based algorithm uses at least 2(N +D) blocks of bandwidth.

References
1 M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn) sorting network. In Proceedings

of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9.
ACM, 1983.

2 K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314. ACM,
1968.

3 Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan,
David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In SOSP, pages 441–459. ACM, 2017.

4 O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, pages 182–194, New York, NY, USA, 1987. ACM.

5 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, 1996.

6 Michael T. Goodrich. Randomized Shellsort: A simple data-oblivious sorting algorithm. J.
ACM, 58(6):27:1–27:26, 2011. doi:10.1145/2049697.2049701.

7 Michael T. Goodrich. Zig-Zag sort: A simple deterministic data-oblivious sorting algorithm
running in O(n logn) time. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 684–693, New York, NY, USA, 2014. ACM.
doi:10.1145/2591796.2591830.

8 Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. Search pattern leakage in
searchable encryption: Attacks and new construction. Inf. Sci., 265:176–188, 2014.

9 Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-
preserving encrypted databases. In CCS ’15, pages 644–655. ACM, 2015.

10 Olga Ohrimenko, Michael T. Goodrich, Roberto Tamassia, and Eli Upfal. The Melbourne
shuffle: Improving oblivious storage in the cloud. In Automata, Languages, and Pro-
gramming: 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part II, pages 556–567, 2014.

11 Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. CacheShuffle: A family of oblivious
shuffles. CoRR, abs/1705.07069, 2017. arXiv:1705.07069.

12 Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. arXiv preprint
arXiv:1106.3652, 2011.

13 Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968. doi:10.1145/
321439.321449.

ICALP 2018

http://dx.doi.org/10.1145/2049697.2049701
http://dx.doi.org/10.1145/2591796.2591830
http://arxiv.org/abs/1705.07069
http://dx.doi.org/10.1145/321439.321449
http://dx.doi.org/10.1145/321439.321449

	Introduction
	Definitions
	Mechanics of the Shuffling Algorithm
	Efficiency Measures
	Obliviousness
	Move-Based shuffling Algorithms

	Oblivious Shuffling with O(sqrt{N}) Client Memory
	Intuition
	CacheShuffleRoot Description

	Oblivious Shuffling with Smaller Client Memory
	RSpray Description
	CacheShuffle Description

	K-Oblivious Shuffling with O(K) Client Memory
	K-Oblivious Shuffling with Smaller Client Memory
	Conclusions

