
Higher-Order Equational Pattern Anti-Unification
David M. Cerna
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
david.cerna@risc.jku.at

Temur Kutsia
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
temur.kutsia@risc.jku.at

Abstract
We consider anti-unification for simply typed lambda terms in associative, commutative, and
associative-commutative theories and develop a sound and complete algorithm which takes two
lambda terms and computes their generalizations in the form of higher-order patterns. The
problem is finitary: the minimal complete set of generalizations contains finitely many elements.
We define the notion of optimal solution and investigate special fragments of the problem for
which the optimal solution can be computed in linear or polynomial time.

2012 ACM Subject Classification Theory of computation → Rewrite systems, Theory of com-
putation → Higher order logic

Keywords and phrases Simply typed lambda calculus, anti-unification, equational theories

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.12

Funding This research is supported by the FWF project P28789-N32.

1 Introduction

Anti-unification algorithms aim at computing generalizations for given terms. A generalization
of t and s is a term r such that t and s are substitution instances of r. Interesting
generalizations are those that are least general (lggs). However, it is not always possible
to have a unique least general generalization. In these cases the task is either to compute
a minimal complete set of generalizations, or to impose restrictions so that uniqueness is
guaranteed.

Anti-unification, as considered in this paper, uses both of these ideas. The theory is
simply-typed lambda calculus, where some function symbols may be associative, commutative,
or associative-commutative. A-, C-, and AC-anti-unification is finitary even for first-order
terms, and a modular algorithm has been proposed in [1] to compute the corresponding
minimal complete set of generalizations. Anti-unification for simply typed lambda terms can
be restricted to compute generalizations in the form of Miller’s patterns [13], which makes it
unitary, and the single least general generalization can be computed in linear time by the
algorithm proposed in [8]. These two approaches combine nicely with each other when one
wants to develop a higher-order equational anti-unification algorithm, and we illustrate it in
this paper. Basically, it extends the syntactic1 generalization rules from [8] by equational
decomposition rules inspired by those from [1], getting a modular algorithm in which different
equational axioms for different function symbols can be combined automatically. The

1 We refer to the higher-order anti-unification algorithm from [8] as syntactic, although it works modulo
βη-conversion.

© David M. Cerna and Temur Kutsia;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.cerna@risc.jku.at
mailto:temur.kutsia@risc.jku.at
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Higher-order Equational Anti-Unification

algorithm takes a pair of simply typed lambda terms and returns a set of their generalizations
in the form of higher-order patterns. It is terminating, sound, and complete. However, the
number of nondeterministic choices when decomposing may result in a large search tree.
Although each branch can be developed in linear time, there can be too many of them to
search efficiently.

This is the problem that we address in the second part of the paper. The idea is to use
a greedy approach: introduce an optimality criterion, use it to select an anti-unification
problem among different alternatives obtained by a decomposition rule, and try to solve
only that. In this way, we would only compute one generalization. Checking the criterion
and selecting the right branch should be done “reasonably fast”. To implement this idea,
we introduce conditions on the form of anti-unification problems which are guarantee to
compute “optimal” solutions, and study the corresponding complexities. In particular, we
identify conditions for which A-, C-, and AC-generalizations can be computed in linear time.
We also study how the complexity changes by relaxing these conditions.

Higher-order anti-unification has been investigated by various authors from different
application perspective. Research has been focused mainly on the investigation of special
classes for which the uniqueness of lgg is guaranteed. Some application areas include proof
generalization [14], higher-order term indexing [15], cognitive modeling and analogical
reasoning [9, 17], recursion scheme detection in functional programs [3], inductive synthesis of
recursive functions [16], just to name a few. Two higher-order anti-unification algorithms [6, 8]
are included in an online open-source anti- unification library [4, 5]. This related work does
not consider anti-unification with higher-order terms in the presence of equational axioms.
However, such a combination can be useful, for instance, for developing indexing techniques
for higher-order theorem provers [12] or in higher order program manipulation tools.

The organization of the paper is as follows: In Section 2 we introduce the main notions
and define the problem. In Section 3 we recall the higher-order anti-unification algorithm
from [8]. In Section 4 we extend the algorithm with equational decomposition rules. Section 5
is devoted to the introduction of computationally well-behaved fragments of anti-unification
problems. The next sections describe the behavior of equational anti-unification algorithms
on these fragments: In Section 6 we discuss associative generalization and speak about
optimality. Sections 7 and 8 are about C- and AC-generalizations. Sections 9 summarizes
the results and contains a discussion of future work and open problems.

2 Preliminaries

This work builds upon the formulations and results of [7, 8]. Higher-order signatures are
composed of types constructed from a set of base types (typically δ) using the grammar
τ ::= δ | τ → τ . We will consider → to be associative right unless otherwise stated. Variables
(typically X,Y, Z, x, y, z, a, b, . . .) as well as constants (typically f, c, . . .) are assigned types
from the set of types constructed using the above grammar. λ-terms (typically t, s, u, . . .)
are constructed using the grammar t ::= x | c | λx.t | t1 t2 where x is a variable and c is a
constant, and are typed using the type construction mentioned above. Terms of the form
(. . . (h t1) . . . tm), where h is a constant or a variable, will be written as h(t1, . . . , tm), and
terms of the form λx1.λxn.t as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn.
This basic language will be extended by higher-order constants satisfying equational axioms.
When necessary, we write a λ-term t together with its type α as t : α.

Every higher-order constant c will have an associated set of axioms, denoted by Ax(c). If
Ax(c) is empty then c does not have any associated properties and is called free. Otherwise,

D.M. Cerna and T. Kutsia 12:3

Ax(f) ⊆ {A,C} where A is associativity, i.e. f(a, f(b, c)) ≡ f(f(a, b), c) and C is commutativ-
ity, i.e. f(a, b) ≡ f(b, a). Note that only functions of the type α→ α→ α are allowed to have
equational properties. We assume that terms are written in flattened form, obtained by re-
placing all subterms of the formf(t1, . . . , f(s1, . . . , sm), . . . tn) by f(t1, . . . , s1, . . . , sm, . . . tn),
where A ∈ Ax(f). Also, by convention, the term f(t) stands for t, if A ∈ Ax(f). Other
standard notions of the simply typed λ-calculus, like bound and free occurrences of variables,
α-conversion, β-reduction, η-long β-normal form, etc. are defined as usual (see [2, 10]). By
default, terms are assumed to be written in η-long β-normal form. Therefore, all terms
have the form λx1, . . . , xn.h(t1, . . . , tm), where n,m ≥ 0, h is either a constant or a variable,
t1, . . . , tm have this form, and the term h(t1, . . . , tm) has a basic type.

The set of free variables of a term t is denoted by Vars(t). When we write an equality
between two λ-terms, we mean that they are equivalent modulo α, β and η equivalence.

The size of a term t, denoted |t|, is defined recursively as |h(t1, . . . , tn)| = 1 +
∑n
i=1 |ti|

and |λx.t| = 1 + |t|. The depth of a term t, denoted depth(t) is defined recursively as
depth(h(t1, . . . , tn)) = 1 + maxi∈{1,...,n} depth(ti) and depth(λx.t) = 1 + depth(t). For a term
t = λx1, . . . , xn.h(t1, . . . , tm) with n,m ≥ 0, its head is defined as head(t) = h.

A higher-order pattern is a λ-term where, when written in η-long β-normal form, all
free variable occurrences are applied to lists of pairwise distinct (η-long forms of) bound
variables. For instance, λx.f(X(x), Y), f(c, λx.x) and λx.λy.X(λz.x(z), y) are patterns,
while λx.f(X(X(x)), Y), f(X(c), c) and λx.λy.X(x, x) are not.

Substitutions are finite sets of pairs {X1 7→ t1, . . . , Xn 7→ tn} where Xi and ti have
the same type and the X’s are pairwise distinct variables. They can be extended to type
preserving functions from terms to terms as usual, avoiding variable capture. The notions of
substitution domain and range are also standard and are denoted, respectively, by Dom and
Ran.

We use postfix notation for substitution applications, writing tσ instead of σ(t). As
usual, the application tσ affects only the free occurrences of variables from Dom(σ) in t.
We write #»xσ for x1σ, . . . , xnσ, if #»x = x1, . . . , xn. Similarly, for a set of terms S, we define
Sσ = {tσ | t ∈ S}. The composition of σ and ϑ is written as juxtaposition σϑ and is defined
as x(σϑ) = (xσ)ϑ for all x. Another standard operation, restriction of a substitution σ to a
set of variables S, is denoted by σ|S .

A substitution σ1 is more general than σ2, written σ1 � σ2, if there exists ϑ such that
Xσ1ϑ = Xσ2 for all X ∈ Dom(σ1) ∪ Dom(σ2). The strict part of this relation is denoted
by ≺. The relation � is a partial order and generates the equivalence relation which we
denote by '. We overload � by defining s � t if there exists a substitution σ such that
sσ = t. The focus of this work is generalization in the presence of equational axioms thus
we need a more general concept of ordering of substitutions/terms by their generality. We
say that two terms s, t are s =E t if they are equivalent modulo E ⊆ {A,C}. For example,
f(a, f(b, c)) 6= f(f(a, b), c) but, f(a, f(b, c)) ={A} f(f(a, b), c). Under this notion of equality
we can say that a substitution σ1 is more general modulo an equational theory E ⊆ {A,C} than
σ2 written σ1 �E σ2 if there exists ϑ such that Xσ1ϑ =E Xσ2 for all X ∈ Dom(σ1)∪Dom(σ2)
Note that ≺ and ' and the term extension are generalized accordingly. Form this point on
we will use the ordering relation modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory E
of two terms t1 and t2 if t �E t1 and t �E t2. It is a higher-order pattern generalization if
additionally t is a higher-order pattern. It is the least general generalization (lgg in short),
aka a most specific anti-instance, of t1 and t2, if there is no generalization s of t1 and t2
which satisfies t ≺E s. An anti-unification problem (shortly AUP) is a triple X(#»x) : t , s

FSCD 2018

12:4 Higher-order Equational Anti-Unification

where
λ #»x .X(#»x), λ #»x .t, and λ #»x .s are terms of the same type,
t and s are in η-long β-normal form, and
X does not occur in t and s.

The variable X is called a generalization variable. The term X(#»x) is called the generalization
term. The variables that belong to #»x , as well as bound variables, are written in the lower
case letters x, y, z, Originally free variables, including the generalization variables, are
written with the capital letters X,Y, Z, This notation intuitively corresponds to the usual
convention about syntactically distinguishing bound and free variables. The size of a set of
AUPs is defined as |{X1(# »x1) : t1 , s1, . . . , Xn(# »xn) : tn , sn}| =

∑n
i=1 |ti|+ |si|. Notice that

the size of Xi(#»xi) is not considered. An anti-unifier of an AUP X(#»x) : t , s is a substitution
σ such that Dom(σ) = {X} and λ #»x .X(#»x)σ is a term which generalizes both λ #»x .t and λ #»x .s.

An anti-unifier of X(#»x) : t , s is least general (or most specific) modulo an equational
theory E if there is no anti-unifier ϑ of the same problem that satisfies σ ≺E ϑ. Obviously, if
σ is a least general anti-unifier of an AUP X(#»x) : t , s, then λ #»x .X(#»x)σ is a lgg of λ #»x .t

and λ #»x .s.
Here we consider a variant of higher-order equational anti-unification problem:

Given: Higher-order terms t and s of the same type in η-long β-normal form and an equational
theory E ⊆ {A,C}.

Find: A higher-order pattern generalization r of t and s modulo E ⊆ {A,C}.

Essentially, we are looking for r which is least general among all higher-order patterns
which generalize t and s (modulo E). There can still exist a term which is less general than
r, generalizes both s and t, but is not a higher-order pattern. In [8] there is an instance
for syntactic anti-unification: if t = λx, y.f(h(x, x, y), h(x, y, y)) and s = λx, y.f(g(x, x, y),
g(x, y, y)), then r = λx, y.f(Y1(x, y), Y2(x, y)) is a higher-order pattern, which is an lgg of t
and s. However, the term λx, y.f(Z(x, x, y), Z(x, y, y)), which is not a higher-order pattern,
is less general than r and generalizes t and s.

Another important distinguishing feature of higher-order pattern generalization modulo
E is that there may be more than one least general pattern generalization (lgpg) for a given
pair of terms. In the syntactic case there is a unique lgpg. The main contribution of this
paper is to find conditions on the AUPs under which there is a unique lgpg for equational
cases, and introduce weaker-optimality conditions which allow one to greedily search the
space for a less general generalization compared to the syntactic one. We formalize these
concepts in the following sections.

3 Higher Order Pattern Generalization in the Empty Theory

Below we assume that in the AUPs of the form X(#»x) : t , s and the term λ #»x .X(#»x) is a
higher-order pattern. We now introduce the rules for the higher-order pattern generalization
algorithm from [8], which works for E = ∅. It produces syntactic higher-order pattern
generalizations in linear time and will play a key role in our optimality conditions introduced
in later sections.

These rules work on triples A;S;σ, which are called states. Here A is a set of AUPs
of the form {X1(# »x1) : t1 , s1, . . . , Xn(# »xn) : tn , sn} that are pending to anti-unify, S is a
set of already solved AUPs (the store), and σ is a substitution (computed so far) mapping
variables to patterns. The symbol] denotes disjoint union.

D.M. Cerna and T. Kutsia 12:5

Dec: Decomposition
{X(#»x) : h(t1, . . . , tm) , h(s1, . . . , sm)}]A; S; σ =⇒
{Y1(#»x) : t1 , s1, . . . , Ym(#»x) : tm , sm} ∪A; S; σ{X 7→ λ #»x .h(Y1(#»x), . . . , Ym(#»x))},

where h is a free constant or h ∈ #»x , and Y1, . . . , Ym are fresh variables of the appropriate
types.

Abs: Abstraction Rule
{{X(#»x) : λy.t , λz.s}}]A; S; σ =⇒
{X ′(#»x , y) : t , s{z 7→ y}} ∪A; S; σ {X 7→ λ #»x , y.X ′(#»x , y)} ,

where X ′ is a fresh variable of the appropriate type.

Sol: Solve Rule
{X(#»x) : t , s}]A; S; σ =⇒ A; {Y (#»y) : t , s} ∪ S; σ {X 7→ λ #»x .Y (#»y)}

where t and s are of a basic type, head(t) 6= head(s) or head(t) = head(s) = Z 6∈ #»x . The
sequence #»y is a subsequence of #»x consisting of the variables that appear freely in t or in s,
and Y is a fresh variable of the appropriate type.

Mer: Merge Rule
A; {X(#»x) : t1 , t2, Y (#»y) : s1 , s2}] S; σ =⇒
A; {X(#»x) : t1 , t2} ∪ S; σ {Y 7→ λ #»y .X(#»xπ)}

Where π : { #»x} → { #»y } is a bijection, extended as a substitution with t1π = s1 and t2π = s2.
Note that in the case of the equational theory we will consider later we would use =E instead
of =.

We will refer to these generalization rules as Gbase. To compute generalizations for two
simply typed lambda-terms in η-long β-normal form t and s, the algorithm from [8] starts
with the initial state {X : t , s}; ∅; ∅, where X is a fresh variable, and applies these rules as
long as possible. The computed result is the instance of X under the final substitution. It is
the syntactic least general higher-order pattern generalization of t and s, and is computed in
linear time in the size of the input.

We will use this linear time procedure in the following section to obtain “optimal” least
general higher-order pattern generalizations of terms modulo an equation theory. These
optimal generalizations are dependent on the generalizations the syntactic algorithm produces.
When we need to check more than one decomposition of a given AUP in order to compute the
optimal generalizations modulo an equational theory, we compute the optimal generalization
for each decomposition path and than compare the results. The details are explained below.

We assume that terms are written in flattened form, obtained by replacing all subterms
of the formf(t1, . . . , f(s1, . . . , sm), . . . tn) by f(t1, . . . , s1, . . . , sm, . . . tn), where A ∈ Ax(f).
Also, by convention, the term f(t) stands for t, if A ∈ Ax(f).

4 Equational Decomposition Rules

In this section we discuss an extension of the basic rules concerning higher-order pattern
generalization by decomposition rules for A, C, and AC function symbols. Here, we consider
the general, unrestricted case. Efficient special fragments are discussed in the subsequent
section.

FSCD 2018

12:6 Higher-order Equational Anti-Unification

We start from decomposition rules for associative generalization:

Dec-A-L: Associative Decomposition Left
{X(#»x) : f(t1, . . . , tn) , f(s1, . . . , sm)}]A; S; σ =⇒
{Y1(#»x) : f(t1, . . . , tk) , s1, Y2(#»x) : f(tk+1, . . . , tn) , f(s2, . . . , sm)} ∪A;
S; σ{X 7→ λ #»x .f(Y1(#»x), Y2(#»x))},

where Ax(f) = {A}, 1 ≤ k ≤ n−1, n,m ≥ 2, and Y1 and Y2 are fresh variables of appropriate
types.

Dec-A-R: Associative Decomposition Right
{X(#»x) : f(t1, . . . , tn) , f(s1, . . . , sm)}]A; S; σ =⇒
{Y1(#»x) : t1 , f(s1, . . . , sk), Y2(#»x) : f(t2, . . . , tn) , f(sk+1, . . . , sm)} ∪A;
S; σ{X 7→ λ #»x .f(Y1(#»x), Y2(#»x))},

where Ax(f) = {A}, 1 ≤ k ≤ m−1, n,m ≥ 2, and Y1 and Y2 are fresh variables of appropriate
types.

We refer to the extension of Gbase by the above associativity rules as GA and extend the
termination, soundness and completeness results for Gbase to GA.

I Theorem 1 (Termination). The set of transformations GA is terminating.

Proof. Termination follows from the fact that Gbase terminates [8] and the rules Dec-A-L
and Dec-A-R can be applied finitely many times. J

I Theorem 2 (Soundness). If {X : t , s}; ∅; ∅ =⇒∗ ∅;S;σ is a transformation sequence of
GA, then Xσ is a higher-order pattern in η-long β-normal form and Xσ � t and Xσ � s.

Proof. It was shown in [8] that Gbase is sound. Let us assume as a base case that all
occurrences of associative function symbols in t , s have two arguments. Then the rules
Dec-A-L and Dec-A-R are equivalent to the Dec rule. As an induction hypothesis (IH),
assume soundness holds when all occurrences of associative function symbols in t , s have
≤ n arguments. We show that it holds for n+ 1. Let t , s be of the form f(t1, . . . , tm) ,
f(s1, . . . , sk) for max{k,m} ≤ (n + 1) and let associative function symbols occurring in
t1, . . . tm, s1, . . . sk have at most n arguments. Any application of Dec-A-L or Dec-A-R will
produce two AUPs for which the IH holds, and thus, the theorem holds. We can extend this
argument to an arbitrary number of associative function symbols with n+ 1 arguments with
another induction. J

I Theorem 3 (Completeness). Let λ #»x .t1 and λ #»x .t2 be higher-order terms and λ #»x .s be a
higher-order pattern such that λ #»x .s is a generalization of both λ #»x .t1 and λ #»x .t2 modulo
associativity. Then there exists a transformation sequence {X(#»x) : t1 , t2}; ∅; ∅ =⇒∗ ∅;S;σ
in GA such that λ #»x .s � Xσ.

Proof. We can reason similarly to the previous proof. It was shown in [8] that Gbase is
complete. Let us assume as a base case that all occurrences of associative function symbols
in t , s have two arguments. Then the rules Dec-A-L and Dec-A-R are equivalent to the Dec
rule and completeness holds. When we have n+ 1 arguments there are n ways to group the
arguments associatively and the decompositions rules Dec-A-L and Dec-A-R allow one to
consider all groupings. J

D.M. Cerna and T. Kutsia 12:7

The addition of associative function symbols allows for more than one decomposition
and thus more than one lgg in contrast to higher-order pattern generalization which results
in a unique lgg . If we wish to compute the complete set of lggs we would simply exhaust
all possible applications of the above rules. However, for most applications an “optimal”
generalization is sufficient. We postpone discussion till the next section.

The decomposition rule for commutative symbols is also pretty intuitive:

Dec-C: Commutative Decomposition
{X(#»x) : f(t1, t2) , f(s1, s2)}]A; S; σ =⇒
{Y1(#»x) : t1 , si, Y2(#»x) : t2 , s(i mod 2)+1} ∪A; S; σ{X 7→ λ #»x .f(Y1(#»x), Y2(#»x))},

where Ax(f) = {C}, i ∈ {1, 2}, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the commutativity rule as GC . We can easily extend
the termination, soundness, and completeness results to GC. Notice that also for commutative
generalization, the lgg is not necessarily unique.

Unlike commutativity, which considers a fixed number of terms, and associativity, which
enforces an ordering on terms, AC function symbols allow an arbitrary number of arguments
with no fixed ordering on the terms. The corresponding decomposition rules take it into
account:

Dec-AC-L: Associative-Commutative Decomposition Left
{X(#»x) : f(t1, . . . , tn) , f(s1, . . . , sm)}]A; S; σ =⇒
{Y1(#»x) : f(ti1 , . . . , til) , sk, Y2(#»x) : f(ti(l+1) , . . . , tin)
, f(s1, . . . , sk−1, sk+1, . . . , sm)} ∪A;
S; σ{X 7→ λ #»x .f(Y1(#»x), Y2(#»x))},

where Ax(f) = {A,C}, {i1, . . . , in} ≡ {1, . . . , n}, l ∈ {1, . . . , n−1}, k ∈ {1, . . . ,m}, n,m ≥ 2,
and Y1 and Y2 are fresh variables of appropriate types.

Dec-AC-R: Associative-Commutative Decomposition Right
{X(#»x) : f(t1, . . . , tn) , f(s1, . . . , sm)}]A; S; σ =⇒
{Y1(#»x) : tk , f(si1 , . . . , sil), Y2(#»x) : f(t1, . . . , tk−1, tk+1, . . . , tn)
, f(si(l+1) , . . . , sim)} ∪A;
S; σ{X 7→ λ #»x .f(Y1(#»x), Y2(#»x))},

where Ax(f) = {A,C}, {i1, . . . , im} ≡ {1, . . . ,m}, l ∈ {1, . . . ,m − 1}, k ∈ {1, . . . , n},
n,m ≥ 2, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the AC decomposition rules as GAC. Again,
termination, soundness and completeness are easily extended to this case.

5 Towards Special Fragments

This section is devoted to computing special kind of “optimal” generalizations, which can be
done more efficiently than the general unrestricted cases considered in the previous section.

The idea is the following: The equational decomposition rules introduce branching in the
search space. Each branch can be developed in linear time, but there can be too many of
them. However, if the branching factor is bounded, we could choose one of the alternative
states (produced by decomposition) based on some “optimality” criterion, and develop only
that branch. Such a greedy approach will give one “optimal” generalization.

FSCD 2018

12:8 Higher-order Equational Anti-Unification

In order to have a “reasonable” complexity, we should be able to choose such an optimal
state from “reasonably” many alternatives in “reasonable” time. For this, our idea is to
treat all the alternative states obtained by an equational decomposition step as syntactic
anti-unification problems, compute lggs for each of them (which can be done in linear time),
choose the best one among those lggs (e.g., less general than the others, or, if there are
several such results, use some heuristics), and restart equational anti-unification algorithm
from the state which led to the computation of that best syntactic lgg. When the branching
factor is constant, this leads to a quadratic algorithm, and when it is linearly bounded, we get
a cubic algorithm. These are the cases we consider below. We would also need to decompose
in a more clever way than in the rules above, where the decomposition was based on an
arbitrary choice of a subterm.

Hence, we need to identify fragments of equational anti-unification problems which
would have the decomposition branching factor constant or linearly bounded. We start by
introducing the following concepts.

I Definition 4 (E-refined generalization). Given two terms t and s and their E-generalizations
r and r′, we say that r is at least as good as r′ with respect to E if either r′ �E r or they are
not comparable with respect to �E .

An E-generalization r of t and s is called their E-refined generalization iff r is at least as
good (with respect to E) as a syntactic lgg of t and s.

Note that every syntactic generalization is also an E-generalization. A direct consequence
of this definition is that every element of the minimal complete set of E-generalizations
(where E is A, C, or AC) of two terms is an E-refined generalization of t and s. However,
there might exist E-refined generalizations which do not belong to the minimal complete set
of generalizations.

Looking back at the informal description of the construction above, we can say that at
each branching point we will be aiming at choosing the alternative that would lead to “the
best” E-refined generalization.

The concept of E-refined allows us to compute better generalizations than the base
procedure would do, without concerning ourselves with certain difficult to handle decomposi-
tions. We will outline what we mean by “difficult” in later sections. Some of these difficult
decompositions can be handled by finding alignments between two sequences of terms.

I Definition 5 (Alignment, Rigidity Function). Let w1 and w2 be strings of symbols. Then
the sequence a1[i1, j1] · · · an[in, jn], for n ≥ 0 and ak are not variables, is an alignment if

i’s and j’s are integers such that 0 < i1 < · · · < in < |w1| and 0 < j1 < · · · < jn < |w2|,
and
ak = w1|ik = w2|jk

, for all 1 ≤ k ≤ n. An alignment of the form a1[i, j] will be referred
to as a singleton alignment, where t|α denote the subterm at position α.

The set of all alignments will be denoted by A. A (singleton) rigidity function R is a
function that returns, for every pair of strings of symbols w1 and w2, a set of (singleton)
alignments of w1 and w2.

The main intuition behind the use of rigidity functions for generalization is to capture the
structure (modulo a given rigidity property) of as many nonvariable terms as possible.

I Definition 6 (Pair of argument head sequences and multisets). Let t = f(t1, . . . , tn) and
s = f(s1, . . . , sm). Then the pair of argument head sequences and the pair of argument head

D.M. Cerna and T. Kutsia 12:9

multisets of t and s, denoted respectively as pahs(t, s) and pahm(t, s), are defined as follows:

pahs(t, s) = 〈(head(t1), . . . , head(tn)), (head(s1), . . . , head(sm))〉 .
pahm(t, s) = 〈{{head(t1), . . . , head(tn)}}, {{head(s1), . . . , head(sm)}}〉 .2

These notions extend to AUPs: A pair of argument head sequences (resp. multisets) of
an AUP X(#»x) : t , s is the pair of argument head sequences (resp. multisets) of the terms t
and s.

There is a subset of AUPs, referred to as 1-Determined AUPs, which contain associative
function symbols and have interesting E-refined generalizations are computable in linear time.
The more general r-determined AUPs allow a bounded number of possible choices, that is r
choices, whenever associative decomposition may be applied. Even for 2-determined AUPs
computing the set of lggs is of exponential complexity. Therefore, we introduce the notion
of (R, C,G)-optimal generalization where R is a so called rigidity function [11] and C is a
choice function picking one of available decompositions. Under such optimality conditions,
we are able to compute an E-refined generalization in quadratic time for k-determined AUPs
and in cubic time for arbitrary AUPs with associative function symbols.

The equational decomposition rules above are too non-deterministic and the computed
set of generalizations has to be minimized to obtain minimal complete sets of generalizations.
However, even if we performed more guided decompositions, obtaining e.g., terms with
the same head in new AUPs (as in [11]), there would still be alternatives. For instance,
consider the following AUP where f is associative: X(#»x) : f(t1, . . . ti, . . . , tj , . . . , tn) ,
f(s1, . . . si, . . . , sj , . . . , sm). Now let head(ti) = head(sj), head(si) = head(tj), and for every
other term comparison whose index is ≤ j the head symbols are not equivalent. Under these
assumptions there is not enough information to decide which decomposition is less general.
Furthermore, this can be generalized from two possible decompositions to k possibilities.

Under certain conditions we can force a term to have a single decomposition path, what
we will refer to as a 1-determined condition which is equivalent to unique longest common
subsequence of head symbols. We formally define k-determined AUPs using the following
sequence of definitions:

I Definition 7 (k-determinate set). Given the pair of sequences of symbols 〈s1, s2〉 with
s1 = (a1, . . . , an) and s2 = (b1, . . . , bm), and a positive integer k, the (strict) k-determinate
set of s1 and s2, denoted det (k, s1, s2) (dets (k, s1, s2)), is defined as follows:

If n = 0 and m 6= 0 or vice versa, then det (k, s1, s2) = ∅.
Otherwise, let 1 ≤ i ≤ min(n,m) be a number such that for the multiset Mi =
({{a1}} ∩ {{b1}}) ∪ ({{a2, . . . , ai}} ∩ {{b2, . . . , bi}}) 6= ∅ we have Mi ∩ {{bi+1, . . . , bm}} =
Mi ∩ {{ai+1, . . . , an}} = ∅. Let K (Ks) be the set of pairs {aj1 [j1, j2] | aj1 = bj2 and j1 =
1 iff j2 = 1} ({aj1 [j1, j2] | aj1 = bj2}). If K has at most k elements, then

det(k, s1, s2) :=
⋃

aj1 [j1,j2]∈K

add(aj1 [j1, j2], det (k, (aj1+1, . . . , an), (bj2+1, . . . , bm))).

add(a,A) =
{
{(a,A)} A 6= ∅
∅ otherwise

Otherwise, det(k, s1, s2) = {∅} .

2 {{◦}} denotes a multiset.

FSCD 2018

12:10 Higher-order Equational Anti-Unification

Note that dets (k, s1, s2) is defined analogously using Ks instead of K. We will refer to the
pairs (a,A) where a is a singleton alignment and A a k-determinate set as blocks.

We will use dets (k, s1, s2) when considering commutativity in Section 7.

I Example 8. We illustrate the previous definition:
det (1, (a, b), (a, b)) = {(a[1, 1] ; {(b[1, 1] ; {∅})})}.
det (1, (a, a), (b, a)) = {({a[2, 2] ; {∅})}.
det (1, (a, c, c, b, a, c), (a, d, b, a, c)) = {(a[1, 1] ; {(b[3, 2] ; {(a[1, 1] ; {(c[1, 1] ; {∅})})})})}.
det (1, (a, b, a), (c, a, c, b)) = {∅}
det (1, (a, b, d), (c, a, b, c)) = {(b[2, 3] ; {∅})}
det (2, (a, b, a), (c, a, b, c)) = {(b[2, 3] ; {∅})}
dets (1, (a, b), (b, a)) = {(a[1, 2] ; {∅}) , (b[2, 1] ; {∅})}
det (2, (c, a, b, c), (d, b, a, d)) = {(a[2, 3] ; {∅}) , (b[3, 2] ; {∅})}.
det (3, (a, b, a, c, d), (c, a, b, a, d)) =
{(b[2, 3] ; {(a[1, 1] ; {∅})}) , (a[3, 2] ; {(d[2, 3] ; {∅})}) , (a[3, 4] ; {∅})}.
det (k, (a, a), (b, c, d)) = {∅}.
det (k, (a, b), (a)) = ∅.
det (k, (a, a), (a)) = {∅}.

Even though det (k, (a, b), (a)) and det (k, (a, a), (a)) are related the formalism does not
handle them as similar. This merely makes the formalism a little more restricted. Notice
that a unique longest common subsequence of two symbol sequences is not equivalent to
k-determined. Consider the following example:

det (k, (c, a, a, d), (c, a, b, a, d)) = {(c[1, 1] ; {(a[1, 1] ; {(d[2, 3] ; {∅})})})}.
The alignment representing its longest common subsequence is

c[1, 1]a[2, 2]a[3, 4]d[4, 5]

I Definition 9 (k-determined term pairs). A pair of terms 〈t, s〉 is k-determined iff either
head(t) 6= head(s) or head(t) = head(s) = f and Ax(f) = ∅, or Ax(f) = {A} and
det (k, pahs(t, s)) 6= ∅. Furthermore we say that the pair 〈t, s〉 is total k-determined if
t = λx1, . . . , xn.t

′, s = λy1, . . . , yn.s
′ and t′ and s′ are η-equivalent to t′′ and s′′ with

|t′′| = |s′′| = 1, or for each (a[i, j], S) ∈ det (k, pahs(t, s)) where ti is the term at the
ith position of t and sj is the term at the jth position of s the term pair 〈ti, sj〉 is total
k-determined.

I Proposition 1. The complexity of checking if the terms of an AUP

X(x̄) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk.f(s1, . . . , sm)

is 1-determined is O(n) and total 1-determined is O(n2), where n is maximum of the length
of the two terms.

Checking k-determinedness of an AUP is a harder problem complexity-wise. For example,
given the sequences (a, . . . , a) and (a, . . . , a) there are n2 ways to align the terms which have
to be checked. Moreover, if we want to check total k-determinedness we have to again do a
quadratic check for each pair of aligned terms resulting in an O(n4) procedure.

D.M. Cerna and T. Kutsia 12:11

6 Associative Generalization: Special Fragments and Optimality

6.1 Associativity and 1-Determined AUPs
We provide a linear time algorithm for higher-order {A}-refined pattern generalization of
AUPs which are 1-determined. Essentially, at every step there is a single decomposition
choice which can be made.

I Theorem 10. A higher-order {A}-refined pattern generalizer for a total 1-determined
AUP can be computed in linear time.

Proof. If the AUP does not contain an associative function symbol, then its E-refined
generalization, which is also an lgg, can be computed in linear time [8]. If it does contain
an associative function symbol, we have two alternatives: either every occurrence of the
associative function symbol has two arguments (remember that our terms are in flattened
form), or not. In the former case, the associative decomposition rules do not differ from the
syntactic decomposition rule Dec and we can only apply the latter. It means that we can
still use the linear algorithm from [8]. The rest of the proof is about the case when there are
occurrences of associative function symbols with more than two arguments. The proof goes
by induction on the maximal number of such arguments.

We assume for the induction hypothesis that if every instance of the associative function
symbol in the AUP has at most n arguments, then it is solvable in linear time, and show
that the same holds for n + 1. Let us assume that the AUP we are currently considering
has the following form X(#»x) : f(t1, . . . , tm) , f(s1, . . . , sk) where f is associative and
max{m, k} = n+ 1. Assume without loss of generality that k = n+ 1. Also, assume that
no other occurrence of f in the given AUP has more than n arguments. We make this
assumption in order to reduce the complexity of associative decomposition in the AUP and
thus, apply the induction hypothesis. If head(t1) = head(s1),then their lgg should not be
a variable. Therefore, we can apply Dec-A-L, which results in the AUPs X(#»x) : t1 , s1
(whose further decomposition will make sure that they t1 and s1 are not generalized by a
generalization variable) and X(#»x) : f(t2, . . . , tm) , f(s2, . . . , sn+1). Notice that both of the
resulting AUPs, by our assumptions, only contain f with not more than n arguments. Thus,
by the induction hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that (h[l, l], S) ∈
det (1, pahs(t, s)) s.t. Ax(h) = {A}. Therefore, we can perform Dec-A-L only on the first
argument l − 1 times, which gives the following new AUPs: {X1(#»x) : t1 , s1, . . . , Xl−1(#»x) :
tl−1 , sl−1, Xl(#»x) : f(tl . . . , tm) , f(sl, . . . , sn+1)}. All the resulting AUPs, by our
assumptions, only contain f with not more than n arguments, thus by the induction
hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that (h[i, j], S) ∈
det (1, pahs(t, s)) s.t. Ax(h) = {A} and i 6= j. This is similar to the previous case except
there is more than one possible way to apply associative decomposition. More precisely, the
number of possible ways is F (l − j + 1) where

F (0) = 1, F (r + 1) =
r+1∑
w=1

F (r + 1− w) for r ≥ 0.

which is roughly F (r) = 2(r−1). Note that F (·) is derived from the combinatorics of the
associative decomposition rule and concerns the number of possible pairings with respect to
1-determinacy. However, being that none of the head symbols of obtained term-pairs are

FSCD 2018

12:12 Higher-order Equational Anti-Unification

equivalent nor can their head symbols be equivalent to f , we know that none of the resulting
AUPs will require further decomposition. Thus, we need to apply associative decomposition.
This can be easily performed be performed by some heuristic. The result will be a set of
AUPs containing X(#»x) : f(tj . . . tm) , f(sl, . . . sn+1) and thus by the induction hypothesis
and our assumptions, the theorem holds.

For the final step we just need to apply a simple induction argument on the number
of times in a term the associative symbol f occurs with arity n+ 1. The above argument
provides the step case and base case being that we prove the theorem for one occurrence and
can use the proof for p occurrences. Thus, the theorem holds. J

In the next section we consider AUPs which are k-determined for k > 1. This will requires
a new concept of optimality based on a choice function greedily applied during decomposition.

6.2 Choice Functions and Optimality
In this section procedures and optimality conditions for total k-determined AUPs, for k > 1,
that is AUPs where there are at most k ways to apply equational decomposition.

If we were to compute the set of E-refined generalizations for a total k-determined AUP
by testing every decomposition, even for k = 2 the size of search space is too large to deal
with efficiently. However, we can find a (R, C,G)-optimal E-refined generalization (precisely
defined below) in quadratic time, where R is a singleton rigidity function, C a R-choice
function, G is a set of state transformation rules. Essentially, (R, C,G)-optimality means the
R-choice function chooses the “right” computation path via G based on the singleton rigidity
function R. The effect is that we reduce the problem of total k-determined AUPs to the
case of total 1-determined AUPs with the additional complexity of computing the choice
function at each step. We will provide a choice function with linear time complexity based
on the procedure for Gbase.

We will denote the set of all AUPs by A. We will need the concept for the following
definitions.

I Definition 11 ((P, a)-decomposition). Let P ≡ X(x̄) : λx1, . . . , xl.f(t1, . . . , tn) ,
λy1, . . . , yk.f(s1, . . . , sm), a is an alignment of 〈w1, w2〉P (see Definition 6). An (P, a)-
decomposition of P is dec(P, a) = {Y(i,j)(#»y (i,j)) : ti , sj | h[i, j] ∈ a }, where Y(i,j) are new
variables of appropriate type and #»y (i,j) are bound variables from #»x , which appear in ti , sj .

I Definition 12 (G-feasible). Let A;S;σ be a state s.t. P ∈ A where P ≡ X(#»x) :
λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk.f(s1, . . . , sm), a be an alignment of 〈w1, w2〉P and
Gbase ⊆ G be a set of state transformation rules. We say that dec(P, a) is G-feasible if there
exists A;S;σ =⇒∗ A′;S′;σ′ using G such that A′ = (A \ P) ∪ dec(P, a).

I Definition 13 ((R, P,G)-branching). Let P ≡ X(#»x) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . ,

yk.f(s1, . . . , sm), 〈w1, w2〉P be its pair of argument head sequences, R be a singleton rigidity
function, and Gbase ⊆ G be a set of state transformation rules. An (R, P,G)-branching is a
set B(R, P) = {dec(P, a) | a ∈ R(w1, w2) and dec(P, a) is G-feasible}.

I Definition 14 (R-Choice function). Let R be a singleton rigidity function and Gbase ⊆ G
be a set of state transformation rules. An R-choice function C(R,G) : A → A is a partial
function from AUPs to alignments such that if for some P ∈ A , C(R,G)(P) = a, then
dec(P, a) ∈ B(R, P).

I Definition 15 ((R, C,G)-optimal generalization). Let A be {X(x̄) : t , s}, R be a singleton
rigidity function, C be an R-choice function, and Gbase ⊆ G be a set of state transformation

D.M. Cerna and T. Kutsia 12:13

rules, which compute generalizations. We say that a generalization k of the terms t and s
is an (R, C,G)-optimal generalization if r = Xσ, where σ is resulting from the derivation
A; ∅; ∅ =⇒∗ ∅;S;σ using the rules of G, in which every decomposition is either syntactic or
respects C-equivalence.

In the following subsection we show how the above definitions can lead to a more general
result (compared to the one in the previous section) concerning associative generalization.

6.3 k-Determined Associative Generalization
Before defining our concrete choice function, we must define the singleton rigidity function
we will use. Intuitively, it should select alignments from prefixes of involved sequences. The
prefixes are of the same length and should be maximal among those that contain at most k
common elements. Formally, it is defined as follows:

I Definition 16. Let w1 = (a1, . . . , an) and w2 = (b1, . . . , bm) be sequences of symbols and
k ≥ 1 be an integer. We define the singleton rigidity function RkA as

RkA(w1, w2) =
{
{al [l, k] | (al [l, k] , S) ∈ det (k,w1, w2)} det (k,w1, w2) 6= ∅

∅ otherwise
(1)

Now we define a choice function taking an arbitrary singleton rigidity function.

I Definition 17. Let P ≡ X(#»x) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk. f(s1, . . . , sm) be
an AUP and f a function symbol such that Ax(f) 6≡ ∅. We define the choice function C(R,G),
where R is a singleton rigidity function, and G is a set of state transformation rules containing
Gbase, as follows:

C(R,G)(P) =
{

amin B(R, P) 6≡ ∅
undef otherwise

(2)

where amin is an alignment of (head(t1), . . . , head(tn)) and (head(s1), . . . , head(sm)) such
that

dec(P, amin) ∈ B(R, P),
for dec(P, a) ∈ B(R, P), let D(a) be the derivation D(a) = {P}; ∅; ∅ =⇒∗G dec(P, a);S′;
σ′ =⇒∗Gbase

∅;S;σa.
Then for each a 6= amin, the corresponding D(a) computes σa such that Xσa is more
general than Xσamin , where σamin is computed by D(amin). If there are several such
amin’s, C(R,G)(P) is defined as one of them (chosen by some heuristics).

The choice function outlined above uses the linear time procedure Gbase to make a
choice between the various possible alignments. Notice that we use associative decom-
position for {P}; ∅; ∅ =⇒∗ dec(P, a);S′;σ′ and syntactic decomposition in the derivation
dec(P, a);S′;σ′ =⇒∗ ∅;S;σa.

I Theorem 18. A (RkA, C(Rk
A
,GA),GA)-optimal higher-order {A}-refined pattern generaliza-

tion for a total k-determined AUP X(#»x) : t , s can be computed in O(n2) where n is the
size of the AUP.

Proof. This follows from the existence of a linear algorithm for the computation of lggs
using Gbase and the linear time algorithm of theorem 10. Note that k is constant and thus
does not show up in complexity statement. J

FSCD 2018

12:14 Higher-order Equational Anti-Unification

6.4 Step Optimal Generalization for Full Associativity
Completely dropping the determinedness restrictions on the AUPs containing associative
function symbols is the same as considering O(n)-determined AUPs. We have already
shown that this problem is naively solvable by an exponential procedure, even when we
consider O(1)-determined AUPs. In this section we again consider the problem of finding
a (RO(n)

A , C(RO(n)
A

,GA),GA)-optimal generalization where n in the Landau-notation refers to
the maximum number of arguments of any subterms in the given AUP. However, this time
the resulting algorithm is cubic in complexity being that r in r–determined is no longer a
constant. By RO(n)

A we mean the singleton rigidity function which instead of looking for an
r-determined subsequence just considers the largest feasible multiset intersection.

I Theorem 19. A (RO(n)

A , C(RO(n)
A

,GA),GA)-optimal higher-order {A}-refined pattern gener-
alization for an AUP X(#»x) : t , s can be computed in O(n3) time where n is the size the
AUP.

Now that we have completed our analysis of associative function symbols, the simplest of
the cases we consider, we move on to the more interesting cases of unit and commutative
decomposition as well as the combinations of these algebraic properties.

7 Commutative Case

Notice that in the case of commutative decomposition if all four terms (or three terms) have
the same head symbol we end up with similar issues as in the associativity case. We can use
strict 2-determined to restrict the considered AUPs.

I Theorem 20. A higher-order {C}-refined pattern generalization, for a total strict 1-
determined AUP can be computed in linear time.

Proof. Similar to the proof of Theorem 10. J

Note that the case f(t1, t2) , f(s1, s2), where head(t1) = head(s1) and head(t2) =
head(s2), is considered by the procedure of Theorem 20, but not f(t1, t2) , f(s2, s1) This
is an issue with the definition of total strict 1-determined. We can fix this problem by
performing an addition check to see if a permutation of the terms on the left or right side
results in a better alignment. We now present a procedure for full commutativity, that is
without restrictions which has a quadratic complexity (see Theorem 18.

I Definition 21. Let w1 = (a1, . . . , an) and w2 = (b1, . . . , bm) be sequences of symbols and
k ≥ 1 be an integer. We define the rigidity function RC returning all alignments.

When the rigidity function RC is used all by our procedure there will be at most 4
alignments.

I Corollary 22. A (RC, C(RC,G{C}),G{C})-optimal higher-order {C}-refined pattern generaliz-
ation for an AUP can be computed in quadratic time.

8 Associative-Commutative Case

In this section we consider functions f such that Ax(f) = {A,C}. Unfortunately, when a
function is both associative and commutative, the number of possible decomposition paths is
even greater than the previously considered cases and thus we need to further restrict the term

D.M. Cerna and T. Kutsia 12:15

structure. To provide a better understanding of why this is the case, consider a k-determined
AUP where the multiset intersection is of size O(k) and only contains one function symbol.
This implies that there are O(k2) possible decompositions of the terms in the first multiset
intersection of the terms containing k alignments. This is not even considering that there
might be more than one function symbol in the AUP. The problem is that the more terms
with the same head symbol, the more combinations we must check. Unlike commutativity,
which considers a fixed number of terms, and associativity, which enforces an ordering on
terms, associative-commutativity allows an arbitrary number of arguments with no fixed
ordering on the terms. We can get around this problem by considering special cases of AUPs
where arguments of an associative-commutativity symbol have distinct heads.

Unfortunately, the concept of (strict) k-determined AUPs does not lead to a linear
algorithm in the case of AC-generalization. Actually, this concept is not even meaningful for
such an equational theory, since terms are not ordered in any particular way. Instead, we
need to consider so called (k, l)-distinct AUPs, which are defined as follows:

I Definition 23. Let P ≡ X(#»x) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk. f(s1, . . . , sm),
pahm(f(t1, . . . , tn), f(s1, . . . , sm)) = 〈T, S〉, and Ax(f) = {A,C}. We say that P is (k, l)-
distinct if each h ∈ T ∩ S occurs at most k times in w1 and at most k times in w2,
the number of symbols in T ∩ S ≤ l and T \ (T ∩ S) ≡ ∅ iff S \ (T ∩ S)∅. We say
P ≡ X(#»x) : λx1, . . . , xw.t , λy1, . . . , yr.s is total (k, l)-distinct if |t| = |s| = 1 or for every
pair of subterms (t′, s′) of t and s such that head(t′) = head(s′), the AUP Y (#»y) : t′ , s′ is
total (k, l)-distinct.

This concept is much simpler than k-determined in that it basically splits the arguments
of the left and right side of the given AUP into at most l sections dependent on the head
symbols of the arguments. Also, for head function symbol, there should be at most k
occurrences of it and the result of decomposition is an empty term iff the terms of the left
and right side of the AUP are empty.

When an AUP is total (1, l)-distinct there is only one way to decompose the AUP, i.e.
either a given symbol shows up in both w1 and w2 once and can be aligned, or it cannot be
aligned and is generalized by a new variable. This leads to the following results:

I Theorem 24. A higher-order {A,C}-refined pattern generalization for a total (1, l)-distinct
AUP can be solved in linear time.

Proof. Similar to the proof of Theorem 10. J

If we attempt to relax these constraints the time complexity of the algorithm increases
substantially, even when we consider the case of (2, l)-distinct AUPs under our restricted
optimality condition.

I Definition 25. Let w1 = (a1, . . . , an) and w2 = (b1, . . . , bm) be sequences of symbols. We
define the singleton rigidity function R(k,l)

AC as follows

R(k,l)
AC (w1, w2) =

{ {
al [i, j]

∣∣ ai = bj , 1 ≤ i ≤ n1 ≤ j ≤ m
}

if (w1, w2) is (k, l)-distinct
∅ otherwise

(3)

I Theorem 26. A (R(k,l)
AC , C(R(k,l)

AC
,GAC),GAC)-optimal higher-order {A,C}-refined pattern

generalization for a total (k, l)-distinct AUP is computed in O(k2·l · n2) time where n is the
input size.

FSCD 2018

12:16 Higher-order Equational Anti-Unification

Proof. There are O(k2) ways to pair the terms with the same head and there are l blocks
thus there are O(k2·l) computations using Gbase (complexity O(n)) to be performed on an
AUP with size n. J

Obviously, computing the full set of E-refined generalizations from the results of Theorem 26
using a naive method would take in the order of O(k2·l·n) time.

9 Conclusion

The higher-order equational anti-unification algorithm presented in this paper combines
higher-order syntactic anti-unification rules with the decomposition rules for associative,
commutative and associative-commutative function symbols. This gives a modular algorithm,
which can be used for problems with different symbols from different theories without any
adaptation.

Higher order A-, C-, and AC-anti-unification problems are finitary. In practice, often it is
desirable to compute only one answer, which is the best one with respect to some predefined
criterion. We defined such an optimality criterion, which basically means that an optimal
equational solution should be at least a good as the syntactic lgg. We then identified problem
forms for which optimal solutions can be computed fast (in linear or polynomial time) by a
greedy approach.

References

1 María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. A modular order-
sorted equational generalization algorithm. Inf. Comput., 235:98–136, 2014. doi:10.1016/
j.ic.2014.01.006.

2 Henk Barendregt. The Lambda Calculus. Its Syntax and Semantics. North Holland, 1984.
3 Adam D. Barwell, Christopher Brown, and Kevin Hammond. Finding parallel func-

tional pearls: Automatic parallel recursion scheme detection in Haskell functions via anti-
unification. Future Generation Comp. Syst., 79:669–686, 2018. doi:10.1016/j.future.
2017.07.024.

4 Alexander Baumgartner. Anti-Unification Algorithms: Design, Analysis, and Implementa-
tion. PhD thesis, Johannes Kepler University Linz, 2015.

5 Alexander Baumgartner and Temur Kutsia. A library of anti-unification algorithms. In
Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014. Proceedings, volume 8761 of Lecture Notes in Computer Science,
pages 543–557. Springer, 2014. doi:10.1007/978-3-319-11558-0_38.

6 Alexander Baumgartner and Temur Kutsia. Unranked second-order anti-unification. Inf.
Comput., 255:262–286, 2017. doi:10.1016/j.ic.2017.01.005.

7 Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. A variant of higher-
order anti-unification. In Femke van Raamsdonk, editor, 24th International Conference on
Rewriting Techniques and Applications, RTA 2013, volume 21 of LIPIcs, pages 113–127.
Schloss Dagstuhl, 2013.

8 Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-order
pattern anti-unification in linear time. J. Autom. Reasoning, 58(2):293–310, 2017.

9 Tarek R. Besold, Kai-Uwe Kühnberger, and Enric Plaza. Towards a computational- and
algorithmic-level account of concept blending using analogies and amalgams. Connect. Sci.,
29(4):387–413, 2017. doi:10.1080/09540091.2017.1326463.

http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.future.2017.07.024
http://dx.doi.org/10.1016/j.future.2017.07.024
http://dx.doi.org/10.1007/978-3-319-11558-0_38
http://dx.doi.org/10.1016/j.ic.2017.01.005
http://dx.doi.org/10.1080/09540091.2017.1326463

D.M. Cerna and T. Kutsia 12:17

10 Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 1009–1062. Elsevier and MIT
Press, 2001.

11 Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms and
hedges. J. Autom. Reasoning, 52(2):155–190, 2014. doi:10.1007/s10817-013-9285-6.

12 Tomer Libal and Alexander Steen. Towards a substitution tree based index for higher-order
resolution theorem provers. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors,
Proceedings of the 5th PAAR Workshop, volume 1635 of CEUR Workshop Proceedings,
pages 82–94. CEUR-WS.org, 2016. URL: http://ceur-ws.org/Vol-1635/paper-08.pdf.

13 Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. J. Log. Comput., 1(4):497–536, 1991. doi:10.1093/logcom/1.4.
497.

14 Frank Pfenning. Unification and anti-unification in the calculus of constructions. In LICS,
pages 74–85. IEEE Computer Society, 1991.

15 Brigitte Pientka. Higher-order term indexing using substitution trees. ACM TOCL, 11(1),
2009. doi:10.1145/1614431.1614437.

16 Ute Schmid. Inductive Synthesis of Functional Programs, Universal Planning, Folding of
Finite Programs, and Schema Abstraction by Analogical Reasoning, volume 2654 of Lecture
Notes in Computer Science. Springer, 2003.

17 Martin Schmidt, Ulf Krumnack, Helmar Gust, and Kai-Uwe Kühnberger. Heuristic-driven
theory projection: An overview. In Henri Prade and Gilles Richard, editors, Computational
Approaches to Analogical Reasoning: Current Trends, volume 548 of Studies in Computa-
tional Intelligence, pages 163–194. Springer, 2014. doi:10.1007/978-3-642-54516-0_7.

FSCD 2018

http://dx.doi.org/10.1007/s10817-013-9285-6
http://ceur-ws.org/Vol-1635/paper-08.pdf
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1145/1614431.1614437
http://dx.doi.org/10.1007/978-3-642-54516-0_7

	Introduction
	Preliminaries
	Higher Order Pattern Generalization in the Empty Theory
	Equational Decomposition Rules
	Towards Special Fragments
	Associative Generalization: Special Fragments and Optimality
	Associativity and 1-Determined AUPs
	Choice Functions and Optimality
	k-Determined Associative Generalization
	Step Optimal Generalization for Full Associativity

	Commutative Case
	Associative-Commutative Case
	Conclusion

