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Preface

The 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2018) was held in Uppsala, Sweden, June 25-29, 2018.

Analysis of algorithms is a scientific basis for computation, providing a link between
abstract algorithms and the performance characteristics of their implementations in the
real world. The general effort to predict precisely the performance of algorithms has come
to involve research in analytic combinatorics, the analysis of random discrete structures,
asymptotic analysis, exact and limiting distributions, and other fields of inquiry in computer
science, probability theory, and enumerative combinatorics. See http://aofa.cs.purdue.edu/ .

The Call for Papers invited papers in
analytic algorithmics and combinatorics,
probabilistic analysis of algorithms,
randomized algorithms.

We also welcomed papers addressing problems such as: combinatorial algorithms, string
searching and pattern matching, sublinear algorithms on massive data sets, network al-
gorithms, graph algorithms, caching and memory hierarchies, indexing, data mining, data
compression, coding and information theory, and computational finance. Papers were
also welcomed that address bridges to research in related fields such as statistical physics,
computational biology, computational geometry, and simulation.

Authors of selected accepted extended abstracts will be invited to submit full papers for
peer review to a special issue (published circa late 2019) of Algorithmica.

—James Allen (“Jim”) Fill and Mark Daniel Ward,
on behalf of the Program and Steering Committees

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Al-
gorithms (AofA 2018).
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Flajolet Lecture

The Philippe Flajolet Lecture Prize for outstanding contributions to analytic combinatorics
and analysis of algorithms is awarded every two years by the Analysis of Algorithms (AofA)
community—a community that owes its existence to Philippe Flajolet. The first Flajolet
Lecture was presented by Donald E. Knuth at the 25th International Conference on Probab-
ilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms in 2014 in
Paris, France, and the second one by Robert Sedgewick at the 27th AofA Conference in 2016
in Krakow, Poland.

At this year’s conference, Luc Devroye presented the third Flajolet Lecture, entitled
“OMG: GW, CLT, CRT and CFTP.

The prize is named in honor and recognition of the extraordinary accomplishments of the
late Philippe Flajolet, who spent most of his scientific life at INRIA, France. Philippe is best
known for fundamental advances in mathematical methods for the analysis of algorithms. His
research laid the foundation of a subfield of mathematics now known as analytic combinatorics.
Analytic combinatorics is a modern basis for the quantitative study of combinatorial structures
(such as words, trees, mappings, and graphs), with applications to probabilistic study of
algorithms that are based on these structures. It also strongly influences research in other
scientific domains, such as statistical physics, computational biology, and information theory.
Flajolet’s work takes the field forward by introducing original approaches in combinatorics
based on two types of methods: symbolic and analytic. The symbolic side is based on the
automation of decision procedures in combinatorial enumeration to derive characterizations
of generating functions. The analytic side treats those functions as functions in the complex
plane and leads to precise characterization of limit distributions. Beyond these foundational
contributions, Philippe’s research opened new avenues in various domains of applied computer
science, including streaming algorithms, communication protocols, database access methods,
data mining, symbolic manipulation, text-processing algorithms, and random generation.
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Organization and Funding

Local organization of the conference was coordinated by Cecilia Holmgren (Uppsala University,
Sweden) and Sofie White (Uppsala, Sweden), in coordination with Program Committee
Chair Jim Fill (Johns Hopkins University, USA). The conference location was the Campus
Blasenhus of Uppsala University.

Generous funding for the conference was provided by the Marcus Wallenberg Foundation
for International Scientific Collaboration and by the Swedish Research Council.
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OMG: GW, CLT, CRT and CFTP

Luc Devroye

School of Computer Science, McGill University, 3480 University St., Montreal, Canada H3A 0E9
http://luc.devroye.org/

lucdevroye@gmail.com

—— Abstract

After a brief review of the main results on Galton-Watson trees from the past two decades, we
will discuss a few recent results in the field.

2012 ACM Subject Classification Mathematics of computing — Trees, Mathematics of comput-
ing — Probability and statistics

Keywords and phrases Galton-Watson trees, applied probability, asymptotics, simply generated
trees
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Assumptionless Bounds for Random Trees

Louigi Addario-Berry

Department of Mathematics & Statistics, McGill University, 1005-805 Rue Sherbrooke O.,
Montréal, QC, H3A 2K6, Canada

http://problab.ca/louigi

louigi.addario@mecgill.ca

—— Abstract

Let T be any Galton-Watson tree. Write vol(7") for the volume of T' (the number of nodes), ht(7')
for the height of T' (the greatest distance of any node from the root) and wid(7") for the width
of T' (the greatest number of nodes at any level). We study the relation between vol(7"), ht(T')
and wid(T).

In the case when the offspring distribution p = (p;,4 > 0) has mean one and finite variance,
both ht(7) and wid(T) are typically of order vol(T)'/2, and have sub-Gaussian upper tails on
this scale. Heuristically, as the tail of the offspring distribution becomes heavier, the tree T
becomes “shorter and bushier”. I will describe a collection of work which can be viewed as
justifying this heuristic in various ways In particular, I will explain how classical bounds on
Lévy’s concentration function for random walks may be used to show that for any offspring
distribution, the random variable ht(T")/wid(T") has sub-exponential tails. I will also describe

a more combinatorial approach to coupling random trees with different degree sequences which
allows the heights of randomly sampled vertices to be compared.

2012 ACM Subject Classification Mathematics of computing — Trees, Mathematics of comput-
ing — Random graphs, Mathematics of computing — Probability and statistics

Keywords and phrases Random trees, simply generated trees
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Making Squares — Sieves, Smooth Numbers,
Cores and Random Xorsat

Béla Bollobas

University of Cambridge, Department of Pure Mathematics and Mathematical Statistics,
Wilberforce Road, Cambridge CB3 0OWB, UK and University of Memphis, Department of
Mathematical Sciences, Memphis, TN 38152, USA

bb12@Qdpmms.cam.ac.uk

—— Abstract

Since the advent of fast computers, much attention has been paid to practical factoring algorithms.
Several of these algorithms set out to find two squares x2, y? that are congruent modulo the
number n we wish to factor, and are non-trivial in the sense that « # +y (mod n). In 1994, this
prompted Pomerance to ask the following question.

Let a1,az,... be random integers, chosen independently and uniformly from a set {1,...z}.
Let N be the smallest index such that {a1,...,an} contains a subsequence, the product of whose
elements is a perfect square. What can you say about this random number N? In particular,
give bounds Ny and Nj such that P(Ng < N < N;j) — 1 as £ — oo. Pomerance also gave bounds
Ny and N; with log Ny ~ log V5.

In 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds of Pom-
erance, bringing them within a constant of each other, and conjectured that their upper bound
is sharp. In a recent paper, Paul Balister, Rob Morris and I have proved this conjecture. In the
talk I shall review some related results and sketch some of the ideas used in our proof.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases integer factorization, perfect square, random graph process
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Bootstrap Percolation and Galton—Watson Trees

Karen Gunderson!
University of Manitoba, 186 Dysart Road, Winnipeg MB R3T 2N2, Canada
karen.gunderson@umanitoba.ca

—— Abstract

A bootstrap process is a type of cellular automaton, acting on the vertices of a graph which are
in one of two states: ‘healthy’ or ‘infected’. For any positive integer r, the r-neighbour bootstrap
process is the following update rule for the states of vertices: infected vertices remain infected
forever and each healthy vertex with at least r infected neighbours becomes itself infected. These
updates occur simultaneously and are repeated at discrete time intervals. Percolation is said
to occur if all vertices are eventually infected. For an infinite graph, of interest is the random
setting, in which each vertex is initially infected independently with a fixed probability. I will
give some history of this process for infinite trees and present results on the possible values of
critical probabilities for percolation on Galton—Watson trees.
This talk is based on joint work with Bollobds, Holmgren, Janson, and Przykucki.

2012 ACM Subject Classification Mathematics of computing — Random graphs, Mathematics
of computing — Trees

Keywords and phrases bootstrap percolation, Galton—Watson trees
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Thinking in Advance About the Last Algorithm
We Ever Need to Invent

Olle Haggstrom

Dept of Mathematical Sciences, Chalmers University of Technology, 412 96 Goteborg, Sweden,
and Institute for Future Studies, Box 591, 101 31 Stockholm, Sweden

olleh@chalmers.se

—— Abstract

We survey current discussions about possibilities and risks associated with an artificial intelligence
breakthrough on the level that puts humanity in the situation where we are no longer foremost
on the planet in terms of general intelligence. The importance of thinking in advance about such
an event is emphasized. Key issues include when and how suddenly superintelligence is likely to
emerge, the goals and motivations of a superintelligent machine, and what we can do to improve
the chances of a favorable outcome.

2012 ACM Subject Classification Computing methodologies — Philosophical/theoretical found-
ations of artificial intelligence

Keywords and phrases intelligence explosion, Omohundro—Bostrom theory, superintelligence
Digital Object Identifier 10.4230/LIPIcs.AofA.2018.5

Category Keynote Speakers

1 Introduction

In 1951, Alan Turing, in his Intelligent machinery, a heretical theory [41], anticipated many
of the key ideas in current artificial intelligence (AI) futurology:

My contention is that machines can be constructed which will simulate the behaviour
of the human mind very closely. [...] Let us now assume, for the sake of argument, that
these machines are a genuine possibility, and look at the consequences of constructing
them. [...] It seems probable that once the machine thinking method had started, it
would not take long to outstrip our feeble powers. There would be no question of the
machines dying, and they would be able to converse with each other to sharpen their
wits. At some stage therefore we should have to expect the machines to take control.

One of Turing’s collaborators at Beltchley Park, mathematician 1.J. Good, later made a
related prediction, in a famous passage [13] from which the title of the present paper is partly
borrowed:

Let an ultraintelligent machine be defined as a machine that can far surpass all the
intellectual activities of any man however clever. Since the design of machines is one
of these intellectual activities, an ultraintelligent machine could design even better
machines; there would then unquestionably be an “intelligence explosion,” and the
intelligence of man would be left far behind. Thus the first ultraintelligent machine is
the last invention that man need ever make.

© Olle Haggstrom,;
oY licensed under Creative Commons License CC-BY
29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of

Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 5; pp. 5:1-5:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:olleh@chalmers.se
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

The Last Algorithm

The presently favored term for what Good called ultraintelligence is superintelligence:
a superintelligent machine is one that by far exceeds human performance across the full
range of relevant cognitive skills, including the mysterious-seeming quality we label creativity
or the ability to think outside the box. Defining an agent’s intelligence is of course not
straightforward, and no strict definition will be given here, but it can be thought of informally
as the ability to direct the world towards whatever goals the agent has. If a machine has at
least human-level such ability across more or less the full range of domains encountered by
humans, we speak of artificial general intelligence (AGI), and if its general intelligence
vastly exceeds that of humans, then it has superintelligence.

Is it really reasonable to expect superintelligence any time soon — let’s say before the
end of the present century? This is a highly controversial issue where expert opinions vary
wildly, and while I accept that the question is wide open, I also hold — as the first of my two
main claims in this paper — that the emergence of superintelligence is a sufficiently plausible
scenario to warrant taking seriously. This claim is defended in Section 2 on the possibility in
principle of superintelligence, and in Sections 3 and 4 on timelines.

The second main claim in this paper is that it is of great practical importance to think in
advance about safety aspects of a superintelligence breakthrough, because if those aspects
are ignored or otherwise mismanaged, the event might have catastrophic consequences to
humanity. Such risks are discussed in Section 5, aided mainly by the Omohundro-Bostrom
theory for instrumental vs final Al goals, which is explained in some detail. Ideas on how to
ensure a more benign outcome are briefly discussed in Section 6, and Section 7 offers some
concluding remarks.

2  The possibility in principle

Is a superintelligent machine possible in principle in the universe we inhabit? If a supernatural
human soul — or something else in that vein — exists, then all bets are out the window, so I
will ignore that possibility and instead focus on the case which is more amenable to rational
argument: a physical world in which all high-level phenomena, including the human mind,
are the result of particular arrangements of matter. Assuming this, the example of the human
brain demonstrates that there are arrangements of matter that gives rise to human-level
intelligence.

There are several independent ways to argue that the human brain is unlikely to be
anywhere near an optimal arrangement of mater for producing intelligence. One is to point to
the fact that our brain is the product of biological evolution, which viewed as an optimization
algorithm is a rather primitive local search approach, which in a setting as complex as
optimizing for intelligence is unlikely to find anything like a global optimum. Another
thing to point at is the extreme slowness of the nervous system compared to how the same
information processing might be carried out on a modern electronic computer. A third one
is the many obvious miscalibrations and biases our brain has [12], that might be corrected
for. See also Sotala [38] for further concrete examples of ways in which there is room for
improvement upon human intelligence.

So there are good reasons to believe that there are physical arrangements of matter that
produce intelligence far superior to the human brain, i.e., superintelligence. The argument
so far does not show that it can be implemented on a digital computer, but if we accept
the Church—Turing—Deutsch principle that a Turing-complete computing device can be used
to simulate any physical process [9], then there is an algorithm out there that achieves
superintelligence.
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This argument is not entirely watertight, because if the algorithm is based on simulating
the physical process on a very low level (say, the movement of elementary particles), then an
implementation of it on a digital computer may turn out to be so slow that it cannot be
recognized as superintelligent. But it seems plausible that more efficient implementations of
the system’s essential information processing should be possible. We note in passing that the
level of detail with which a human brain needs to be implemented on a digital computer to
capture its intelligence remains a highly open question [34].

While some uncertainty remains, considerations such as these strongly suggest the exist-
ence of algorithms that can be implemented on a digital computer to achieve superintelligence.
Husfeldt [24] accepts the existence of such an algorithm, calls it the monster in the library of
Turing, and suggests that it is prohibitively difficult to find such a monster. So even if we
accept its existence, we should still be open to the possiblity that the answer to the question
that the next section addresses — that of when we can expect a superintelligent machine —
is “never”. It might be that finding it requires — short of a thremodynamics-level mircle —
astronomical (or larger) amounts of brute force search, so in the next sections’s discussion on
when to expect the emergence of superintelligence, time ¢t = co will be considered a genuine
possibility.

3  When to expect superintelligence?

In view of the current surge of progress in Al for a wide range of applications such as speech
synthesis [37], board games [36] and autonomous vehicles [25], it may be tempting to read
this as a sign that AGI and superintelligence are just around the corner. We should not jump
too quickly to such conclusions, however. Many commentators, including recently Jordan
[26], emphasize a fundamental discontinuity between specialized Al applications and AGI —
the former should not in general be understood as stepping stones towards the latter — and
they may well be right. (On the other hand, see Yudkowsky [44] who points out that we
do not have strong evidence to conclude that AGI and superintelligence are not around the
corner.)

When looking at the history of AI, the contrast between the the extraordinary achieve-
ments in specialized Al applications and the much less impressive progress towards AGI is
striking. It is sometimes claimed that the latter has been literally zero, but that seems to
me a bit harsh. For instance, an Al was developed a few years ago that quickly learned to
successfully play a range of Atari video games [29]. As I admitted in [19], this is of course
a very far cry from the ability to handle the full range of tasks encountered by humans in
the physical and social world we inhabit; nevertheless, it is a nonzero improvement upon
having specialized skill in just a single video game. One possible path towards AGI, among
many, might be a step-by-step expansion of the domain in which the machine is able to act
intelligently.

We do not at present have very clear ideas on what approach to Al has the best potential
for realizing AGI. The main driver behind the rapid progress we see today in various Al
applications is the deep learning approach, which is essentially a rejuvenation and further
development of old neural network techniques that used to yield unimpressive results but
which in many cases work remarkably well today, thanks to faster machines and access to
huge training data sets. It is not, however, written in stone that deep learning will retain its
position as the dominant Al paradigm forever. Other potentially useful approaches that share
the black box feature of deep learning include genetic programming mimicking biological
evolution, and the brute force copying of the workings of the human brain in sufficient detail
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to reproduce its behavior. This last possibility is advocated enthusiastically by Kurzweil [27]
and discussed in more balanced fashion by Sandberg and Bostrom [34]. Alternatively, we
might see a revival of the non-black box approach of GOFAI (Good Old-Fashioned AI) with
explicit hand-coding of the machine’s central concepts and reasoning procedures. Or perhaps
some hitherto untried combination of these approaches, or something else entirely. It might
be that none of these will ever yield AGI, but the reasonable stance seems to be to at least
be open to the possibility that one of them might eventually accomplish that.

But when would that happen? This is highly uncertain, as illustrated by a survey by
Miiller and Bostrom [30] of estimates by the world’s top 100 most cited Al researchers —
eatimates that are spread out all over the present century, and beyond. Not only is the
amount of between-individual differences large, the individually reported uncertainty ranges
also tend to be broad. Among the 29 who responded, the median of their estimates for the
time when human-level AGI can be expected to have arrived with probability 50% (given
that “human scientific activity continues without major negative disruption”) is 2050, with a
median estimate of 50% for the probability that superintelligence emerges within 30 years
later. More detailed but broadly consistent results are reported in the more recent survey
by Grace et al. [14]. Yet another expert survey is reported in what looks like a deliberate
attempt to downplay the importance of thinking ahead about AGI and superintelligence [11],
but see [8] for an effective rebuttal.

The short answer to the question of when to expect superintelligence is that we do not
know: experts are highly divided. In such a situation, it would be epistemically reckless to
have a firm belief about if/when superintelligence will happen, rather than prudently and
thoughtfully accepting that it may well happen within decades, or within centuries, or not at
all.

Yet, it is quite common to hear, even among commentators for whom the label “Al
expert” seems justified, dismissive attitudes towards the idea of a future superintelligence;
Dubhashi and Lappin [10] and Bentley [3] are typical examples (see [20] for my fair and
balanced response to the latter). Rarely or never do these commentators offer convincing
arguments for their view. So one might wonder what the actual reasons for their view is,
and although admittedly it is dubious to speculate on one’s disputant’s motives, I made a
brave attempt in [17] to suggest an explanation for their stance in terms of what I decided
to call vulgopopperianism, which I defined as the implicit attitude of someone who

(a) is moderately familiar with Popperian theory of science, (b) is fond of the kind
of asymmetry [appearing between the task of showing that all swans are white and
showing that at least one non-white swan exists], and (c) rejoices in claiming, whenever
he encounters two competing hypotheses one of which he for whatever reasons prefers,
some asymmetry such that the entire (or almost the entire) burden of proof is on
proving the other hypothesis, and insisting that until a conclusive such proof is
presented, we can take for granted that the preferred hypothesis is correct.

The superintelligence timing case can for instance be concretized as a choice between
two competing hypotheses (H1) and (H2), where (H1) is the hypothesis that achieving
superintelligence is hard in the sense of not being attainable (other than possibly by extreme
luck) by human technological progress by the year 2100. (H2) is the complementary hypothesis
that achieving superintelligence is comparatively easy in the sense of being within reach of
human technological progress (if allowed to continue unhampered) by 2100. A priori both
hypotheses seem reasonably plausible, and the presently available evidence of one over the
other is fairly weak (in both directions). This gives a vulgopopperian favoring (H1) the
opportunity to focus on the shortage of evidence for (H2) and thus declare (H1) the winner —
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while neglecting the shortage of evidence for (H1). This may be backed up with an analogy to
the swan example: just like we stick to the “all swans are white” hypothesis until a non-white
swan is encountered, we can stick with (H1) for as long as no superintelligence has been
produced [17]. T believe this example would (or at least should) have made Popper nervous,
because the idea behind his theory of falsificationism is to make science self-correcting [33],
while in the case of stubbornly sticking to (H1) the desired self-correction (in case (H1) is
wrong) is likely to materialize only the moment that superintelligence shows up and and it is
too late for us to avert an Al apocalypse — a scenario whose plausibility I will argue for in
Section 5.

4 How suddenly?

Related to, but distinct from, the question of when superintelligence can be expected, is
that of how sudden its emergence from modest intelligence levels is likely to be. Bostrom
[6] distinguishes between slow takeoff and fast takeoff, where the former happens over
long time scales such as decades or centuries, and the latter over short time scales such as
minutes, hours or days (he also speaks of the intermediate case of moderate takeoff, but
for the present discussion it will suffice to contrast the two extreme cases). Fast takeoff is
more or less synonymous with the Singularity (popularized in Kurzweil’s 2005 book [27])
and intelligence explosion (the term coined by I.J. Good as quoted in Section 1, and the
one that today is preferred by most Al futurologists). The practical importance of deciding
whether slow or fast takeoff is the more likely scenario is mainly that the latter gives us less
opportunity to adapt during the transition, making it even more important to prepare in
advance for the event.

The idea that is most often held forth in favor of a fast takeoff is the recursive self-
improvement suggested in the Good quote in Section 1. Once we have managed to create
an Al that outperforms us in terms of general intelligence, we have in particular that this
AT is better equipped than us to construct the next and improved generation of AI, which
will in turn be even better at constructing the next Al after that, and so on in a rapidly
accelerating spiral towards superintelligence. But is it obvious that this spiral will be rapidly
accelerating? No, because alternatively the machine might quickly encounter some point of
diminishing return — an “all the low-hanging fruit have already been picked” phenomenon.
So the problem of deciding between fast and slow takeoff seems to remain open even if we
can establish that a recursive self-improvement dynamic is likely.

Just like with the timing issue discussed in Section 3, our epistemic situation regarding
how suddenly superintelligence can be expected to emerge is steeped in uncertainty. Still, I
think we are at present a bit better equipped to deal with the suddenness issue than with
the timing issue, because unlike for timing we have what seems like a promising theoretical
framework for dealing with suddenness. In his seminal 2013 paper [43], Yudkowsky borrows
from economics the concept of returns on reinvestment, frames the Al’s self-improvement as
a kind of cognitive reinvestment, and phrases the slow vs fast takeoff problem in terms of
whether returns on cognitive reinvestment are increasing or decreasing in the intelligence level.
Roughly, increasing returns leads to an intelligence explosion, while decreasing returns leaves
the AT struggling to reach any higher in the tree than the low branches with no fruits left
on them. From that insight, a way forward is to estimate returns on cognitive reinvestment
based on various data sets, e.g, from the evolutionary history of homo sapiens, and think
carefully about to what extent the results obtained generalize to an Al takeoff. Yudkowsky
does some of this in [43], and leans tentatively towards the view that an intelligence explosion
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is likely. This may be contrasted against the figures from the Miiller—Bostrom survey [30]
quoted in Section 3, which suggest that a majority of Al experts lean more towards a slow
takeoff. I doubt, however, that most of these experts have thought as systematically and as
hard about the issue as Yudkowsky.

5 Goals of the superintelligent Al: Omohundro—Bostrom theory

Consequences of an AGI breakthrough may turn out extremely beneficial to humanity, or
they may turn out catastrophic. A favorite example of the latter — cartoonish on purpose to
emphaisze that it is merely an example — is the so-called Paperclip Armageddon, which
dates back at least to 2003 [4]. Imagine a paperclip factory, which is run by an advanced (but
not yet superintelligent) AI, programmed to maximize paperclip production. Its computer
engineers are continuously trying to improve it, and one day, more or less by accident, they
manage to push the machine over the threshold where it enters the spiral of self-improvement
causing an intelligence explosion. Coming out of the explosion is the world’s first and only
superintelligent Al. Having retained its goal of maximizing paperclip production, it promptly
goes on to turn our entire planet (including us) into a giant heap of paperclips, followed
by an expansion into outer space in order to turn the rest of the observable universe into
paperclips. (For readers who feel repelled by the crude and seemingly farfetched character of
Paperclip Armageddon, I recommend the more subtle and elaborate but no less frightening
thought experiments offered by Armstrong [1] and Tegmark [40].)

Of course, Al futurology is not about randomly dreaming up weird scenarios, but about
reasoning as rigorously as the topic admits about what is plausible and what is likely. The
difficulty in evaluating whether an apocalypse along the lines of Paperclip Armageddon
might really happen lies not so much in what a superintelligent machine would be capable of
doing, but rather what it would be motivated to do. (For some vivid scenarios illustrating
the capability of a superintelligent Al see, e.g., [42], [6] and [40].) Currently the only game
in town for going beyond mere speculations regarding a superintelligent AI’s goals and
motivations is what in my 2016 book [16] I decided to call the Omohundro—Bostrom
theory of final vs instrumental AI goals, honoring key contributions by Omohundro
[31, 32] and Bostrom [5, 6]. An agent’s final goal is what the agent values as an end in itself
rather than as a means towards achieving something else. An instrumental goal, in contrast,
is one that is set up as a stepping stone towards another goal.

(Some philosophers, such as Searle [35], are fond of saying that this whole approach
is confused, because computers cannot have goals. But the confusion is on their side, as
even heat-secking missiles and thermostats have goals in the relevant sense. See [15] for my
detailed response to Searle.)

The two cornerstones of Omohundro—Bostrom theory are the orthogonality thesis
and the the instrumental convergence thesis. We begin with the former.

The Orthogonality Thesis: More or less any final goal is compatible with more or
less arbitrarily high levels of intelligence.

In his original formulation, Bostrom [5] omits the qualifier “arbitrarily high” (writing instead
“any”), but I prefer its inclusion so as not to have to bother with possible counterexamples
that combine low intelligence with conceptually advanced goals. He does, however, include
the qualifiers “more or less” (in both places), underlining the statement’s lack of mathematical
precision; it really does seem to be needed due to the kinds of counterexamples discussed
towards the end of this section.
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In response to the question “What will a superintelligent machine be inclined to do?”,
the Orthogonality Thesis on its own obviously isn’t of much help in narrowing down from
the useless answer “anything might happen”. It does, however, serve as an antidote to
naive (but fairly common; [22] is a typical example) anthropomorphisms such as “Paperclip
Armageddon is impossible, since having such a stupid goal would directly contradict the very
notion of superintelligence; surely someone who is superintelligent would realize that things
like human welfare and ecosystem preservation are more important than monomanically
producing ever-increasing numbers of paperclips,” which conflate intelligence with goals. The
Orthogonality Thesis helps remind us to distinguish between intelligence and goals.

More useful in terms of narrowing down on what a superintelligent machine can be
expected to do is the Instrumental Convergence Thesis, in combination with a collection of
concrete goals to which it applies.

The Instrumental Convergence Thesis: There are several instrumental goals
that are likely to be adopted by a sufficiently intelligent agent in order to pursue its
final goal, for a wide range of final goals and a wide range of circumstances.

Omohundro [31] and Bostrom [5] list several instrumental goals that they argue to be in the
range of applicability of the instrumental convergence thesis:

Self-preservation: if you continue to exist and are up and running, you will be in a

better position to work for your final goal compared to if you are turned off, so don’t let

anyone pull the plug on you!

Self-improvement: improvements to one’s own software and hardware design.

Acquisition of resources such as hardware, but also things like money in case the

agent operates in a world that is still dominated by the kind of economy we have today.

Goal integrity: make sure your final goal remains intact.

The instrumental goal of self-improvement plays a special role in the theory of intelligence
explosion discussed in Section 5, because it explains why, among the millions of other things
it might decide to do, we should not be surprised to see the Al choose to work its way up
the spiral of recursive self-improvement.

The value, for the purpose of pursuing a generic final goal, of the first three instrumental
goals on the list is more or less self-explanatory, but the fourth item on the list — goal
intrgrity — may warrant an explanation. As a simple example, imagine an Al with the goal
of maximizing paperclip production, and suppose that, perhaps triggered by some external
impulse, it starts to contemplate whether in fact ecosystem preservation might in fact be a
preferable goal to pursue, compared to maximizing paperclip production. Should it stick to
the old goal, or should it switch? In order to decide, it needs some criterion for which goal
is the better one. Since it hasn’t yet switched to the new goal, but is merely considering
whether to do so, it still has the paperclip maximization goal, so the criterion will be: which
goal is likely to lead to the larger number of paperclips? In all but some very contrived
circumstances, paperclip maximimzation will win this comparison, so the AI will stick to
that.

Equipped with Omohundro—Bostrom theory, we are in a position to understand that
a scenario like Paperclip Armageddon is not as far-fetched as it first might seem. The
Orthogonality Thesis helps us see that while paperclip maximization may seem bizarre to us
(because we have other goals), it need not look that way to the machine, who may instead
find goals like ecosystem preservation and promotion of human well-being utterly pointless.
The instrumental goal of self-improvement helps explain why the paperclip maximizer might
go through an intelligence explosion, and the instrumental goal of goal integrity explains why
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the machine can be expected to come out of the intelligence explosion with its monomaniacal
wish to produce paperclips intact.

A common objection to Paperclip Armageddon-like scenarios is that a superintelligent
machine will understand that its original human programmers did not intend it to turn the
observable universe into paperclips, and will therefore refrain from doing so. The mistake
here is to take for granted that “do things that please your programmers” is among the
machine’s goals. Every programmer today knows that whenever there is a discrepancy
between what the programmer intends and what appears literally in the computer code, it is
the latter that counts. Omohundro—Bostrom theory predicts that principle to remain true
for superintelligent machines. If that sounds like bad news, then perhaps a remedy might be
to make “do things that please your programmers” the machine’s final goal. Ideas in that
spirit are in fact being considered in contemporary work on Al risk. More on that in the
next section.

Before that, let me emphasize that while Omohundro-Bostrom theory is, for the time
being, an indispensable tool for reasoning about consequences of an AGI breakthrough, it
is also to some extent tentative. Its two cornerstones deal with messy concepts with fuzzy
boundaries, and they do not (as yet, in their present form) deserve the same epistemic status
as mathematical theorems that have been established once and for all. Therefore, predictions
derived from the theory should be treated with some degree of epistemic humility (which
is not to say that they can be dismissed out of hand). In my recent paper [18], I discuss a
variety of challenges to the validity and range of applicability of Omohundro—Bostrom theory
— in particular, the following three.

First, self-referentiality. Bostrom [5] points out that a superintelligent machine with
the final goal of being stupid (properly specified) is unlikely to remain superintelligent
for very long. Thus, for all practical purposes, the final goal of being stupid serves as a
counterexample to the Orthogonality Thesis. Given one counterexample, how can we stop a
wildfire of others? Some extra condition on the final goal needs to be found that excludes
the stupidity example and whose inclusion makes the Orthogonality Thesis true. An obvious
candidate is that the final goal cannot refer back to the machine itself, but the discussion in
[18] points towards the task of defining such self-referentiality being highly problematic.

Second, Tegmark’s physics challenge. Could other properties of a final goal, beyond
self-referentiality, have the potential to invalidate the conclusion of the Orthogonality Thesis?
A perhaps-too-obvious candidate is incoherence. What would it even mean for the machine
to act towards an incoherent goal? Tegmark [39] suggests that the class of incoherent goals
might be much bigger than we currently think:

Suppose we program a friendly Al to maximize the number of humans whose souls go
to heaven in the afterlife. First it tries things like increasing people’s compassion and
church attendance. But suppose it then attains a complete scientific understanding of
humans and human consciousness, and discovers that there is no such thing as a soul.
Now what? In the same way, it is possible that any other goal we give it based on our
current understanding of the world (“mazimize the meaningfulness of human life”,
say) may eventually be discovered by the Al to be undefined.

Third, human values are a mess. If we believe that the Omohundro—Bostrom framework
captures something important about the goal structure of a sufficiently intelligent agent,
then we should also expect its neat dichotomy of final vs instrumental goals to be observable
in such agents. The most intelligent agent we know of is homo sapiens, but the goals of a
typical human do not seem to admit such a clearcut dichotomy [18].
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6 Al Alignment

Various attempts have been made to avoid Turing’s [41] conclusion (quoted in Section 1)
that in the presence of superintelligent machines, “we should have to expect the machines
to take control”, but none of them seem to provide a clearcut solution. Probably the most
studied such attempt is the so-called Al-in-a-box approach, which is to keep the machine
boxed in and unable to influence the world other than via a narrow and carefully controlled
communications channel. While this deserves further study, the present state-of-the-art
seems to point in the direction that such boxing-in is extremely difficult and can be expected
to work for at most a temporary and rather brief time period; see, e.g., [2] and [21].

It therefore makes sense to look into whether it is possible to accept that the superintelli-
gent Al takes control and still get a favorable outcome (whatever that means). For that to
happen, we need that the Al has goals that work out in our favor. Due to the instrumental
goal of goal integrity, discussed in Section 5, it is unlikely that a superintelligent AT would
allow us to tamper with its final goal, so the favorable goal needs to be installed into the Al
before it attains superintelligence. This is the aim of the AT Alignment research program,
formulated (under the alternative heading Friendly AI, which however is perhaps best
avoided as it has an unnecessarily anthropomorphic ring to it) in Yudkowsky’s seminal 2008
paper [42], and much discussed ever since; see, e.g., [6], [16] and [40].

Following Bostrom [6], we can think of AT Alignment as two problems: First, the difficult
technical problem of how to encode whatever the desired goals are and install them into
the AI — Bostrom calls this the value loading problem and “a research challenge worthy
of some of the next generation’s best mathematical talent”. Second, the ethical problem of
what the desired goals are, who gets to determine them, and via what procedure (democratic
or otherwise). We probably do not want to leave it to a small group of AI developers in
Silicon Valley or elsewhere to decide on the fate of humanity for the rest of eternity. Most
thinkers in this field (including Yudkowsky [42] and Bostrom [6]) seem to agree that rather
than explicitly hand-coding the values we wish the Al to have, an indirect approach is better,
where somehow the Al is instructed to figure out what we want — or even better, what we
would have wanted if we were more knowledgable and ethically mature, and had more time
to think about it.

A key insight going back at least to Yudkowsky [42] is that human values are highly fragile,
in the sense that getting them just a little bit wrong can bring catastrophic consequenecs
in the mighty hands of a superintelligent Al. There may also be a tension between what is
good for humanity and what is good in a less anthropocentric and possibly more objective
sense: for instance, the goal “maximize the amount of hedonic utility in the world” might in
a sense be very good for the universe, but is also likely to lead to the prompt extinction of
humanity, as our bodies and brains are probably very far from optimizing the amount of
hedonic utility per kilogram of matter.

Solving the AT Alignment problem should in my opinion be a high on the list of today’s
most urgent research tasks, but not for the reason that AGI and superintelligence would
be likely to emerge during the next few years (although see [44]). Rather, even if they are
decades away, the problem may well be so difficult that we need those decades to solve it,
with little or no room for procrastination.

7 Concluding remarks

Let me conclude with the following remarks.
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—— Abstract
Consider a random permutation drawn from the set of permutations of length n that avoid a
given set of one or several patterns of length 3. We show that the number of occurrences of
another pattern has a limit distribution, after suitable scaling. In several cases, the limit is
normal, as it is in the case of unrestricted random permutations; in other cases the limit is a
non-normal distribution, depending on the studied pattern. In the case when a single pattern of
length 3 is forbidden, the limit distributions can be expressed in terms of a Brownian excursion.

The analysis is made case by case; unfortunately, no general method is known, and no general
pattern emerges from the results.
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1 Introduction

Let &,, be the set of permutations of [n] := {1,...,n}, and &, = |J,»,; 6. If 0 =
o1 Om € 6, and m = 7 ---m, € &,, then an occurrence of o in w is a subsequence
Tiy +* " T, with 1 <4y < --- <, < n, that has the same order as o, i.e., 7, <m, <=
oj < oy, for all j, k € [m]. We let n,(m) be the number of occurrences of ¢ in 7, and note
that

> )= (1): 0

ceS,,

for every m € &,,. For example, an inversion is an occurrence of 21, and thus no; () is the
number of inversions in 7.
We say that m avoids another permutation 7 if n,(7) = 0. Let

Gu(r) :={m €6, :n,(m) =0}, (2)
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the set of permutations of length n that avoid 7. More generally, for any set T = {7y, ..., 7%}
of permutations, let

k
G (T)=6,(r1,...,7%) = m@n(ﬂ), (3)

i=1

the set of permutations of length n that avoid all 7; € T. We also let &.(T') :=J,—, &,(T)
be the set of T-avoiding permutations of arbitrary length.

The classes G, (7) and, more generally, &,(T") have been studied for a long time. For
examples relevant to analysis of algorithms, see e.g. [13, Exercise 2.2.1-5] (7 can be obtained
by a stack if and only if 7 € &,(312); equivalently: = is stack-sortable if and only if
m € 6,(312)); [13, Exercise 2.2.1-10,11] and [17] (7 is deque-sortable if and only if 7
m € 6,(2431,4231); [16] (7 can be sorted by 2 parallel queues if and only if 7 € &,,(321).
Further examples are given in [15], Exercises 6.19 x (321), y (312), ee (321), ff (312), ii
(231), oo (132), xx (321); 6.25 g (321); 6.39 k, 1 ({2413,3142}), m ({1342,1324}); 6.47 a
({4231, 3412}); 6.48 (1342). See also [3].

In particular, one classical problem is to enumerate the sets &,,(T), either exactly or
asymptotically, see e.g. [3, Chapters 4-5] and [14].

The general problem that concerns us is to take a fixed set T of one or several permutations
and let w7, be a uniformly random T-avoiding permutation, i.e., a uniformly random element
of &,,(T), and then study the asymptotic distribution of the random variable n,(7r.,) (as
n — oo) for some other fixed permutation o. (Only o that are themselves T-avoiding are
interesting, since otherwise ny(7r.,) = 0.)

Here we study the cases when T is a set of permutations of length 3. The cases when T'
contains a permutation of length < 2 are trivial, since then there is at most one permutation
in 6,,(T) for any n. The case of forbidding one or several permutations of length > 4 seems
much more complicated, but there are recent impressive results for &,,(2413,3142) (separable
permutations) by Bassino, Bouvel, Féray, Gerin, and Pierrot [2], with generalizations to some
other classes in [1].

There are 2° = 64 sets T of permutations of length 3. Of these, every T that contains
{123,321}, and every T with |T| > 4 is trivial, in the sense that &,,(T) contains at most
2 elements for any n > 5 (see [14]). Ignoring these cases, there are 1+ 6 + 14 4+ 16 = 37
remaining cases (with |T| = 0, 1,2, 3, respectively), and by symmetries, see Appendix A,
these reduce to 1 + 2 + 4 + 4 = 11 non-equivalent cases, which are treated in Sections 2-12.
For further details, see [12], [8], [9], [10]; these papers also contain further references to
related work, and to some of the many papers by various authors that study other properties
of random 7-avoiding permutations.

The cases studied here, i.e., the non-trivial cases with T C &3, all have asymptotic
distributions of one of the following two types.

I. Normal limits: For every o € &,(T), there exists constants «, 3, such that, as n — oo,

Ng (ﬂ-T;n) - ﬂna d
no—1/2 - N(0772)’ (4)

with convergence of all moments. Furthermore, assuming |o| > 2, 42 > 0, so the limit is
not deterministic, except possibly for one o € &,,(T) for each length m > 2.
In particular, En,(7p,,) ~ Bn®. Note that (4) implies concentration, in the sense

Ng (ﬂT;n)

By (1) — 1. (5)
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Table 1 The table shows whether n,(77;,) has limits of type I or II; furthermore, the exponent
a = a(o) is given in the column for the type. The last column shows the exceptional cases, if any,
where the asymptotic variance vanishes. C), := n%rl (2:) is a Catalan number; F,, 11 is a Fibonacci
number (Fp =0, F1 = 1); sp—1 is a Schréder number; D(o) is the number of descents and B(o) is

the number of blocks in o.

T |6, (T)| | typel type II as. variance = 0
0 n! lo|
{132} Cy (lo| + D(o))/2 m---1
{321} Cy (lo| + B(0))/2 1---m
{132,312} PA o]
{231, 312} PA B(o) 1---m
{231, 321} A B(o) 1---m
{132,321} (3)+1 |o|
{231,312,321} | F,11 | B(o) 1---m
{132,231,312} n |o|
{132,231, 321} n lo| —1 or |o] 1---m
{132,213,321} n |o|
{2413, 3142} Sn—1 |o|

Il. Non-normal limits without concentration: For every o € &,(T), there exists a constant
o such that

el 2w, ©)

with convergence of all moments, for some random variable W, > 0. Hence, also

Neo (7TTn) d /

—= — W, 7
E?’lg (WT;n) o) ( )
with convergence of all moments, for some random variable W/ > 0 (necessarily with
EW. = 1). Furthermore, assuming |o| > 2, VarW, > 0, so W, and W/ are not

deterministic, except possibly for one o € &,,,(T) for each length m > 2.

» Remark. In all cases studied here, if there are any exceptional o € &,(T) with o > 2
such that the limit in (4) or (6) is deterministic, i.e., the asymptotic variance is 0, then the
exceptional ¢ are either all identity permutations 1---m, or all decreasing permutations

m - -- 1. Furthermore, these exceptional cases arise because almost all of the ( "

|U|) patterns in
7,y of length |o| are occurrences of o; more precisely, ]E((‘Z‘) — n,,(ﬂ'Tm)) = O(n""*l) for
the exceptional cases of type I and O(n‘”‘_l/z) for the cases of type II. (It follows that (5)

holds also for the latter.)

We summarize the results for T consisting of permutations of length 3 in Table 1; for
reference, we include the number |&,,(T')| of T-avoiding permutations of length n, see e.g.
[13, Exercises 2.2.1-4,5], [15, Exercise 6.19ee,fl], [3, Corollary 4.7], and [14]. We include also
the case T' = {2413, 3142} from [2]; see [17] for the enumeration.

We see no obvious pattern in the existence of limits of type I or II in Table 1. Moreover,
the proofs, sketched below, are done case by case; we have not succeeded to prove any general
results, treating all (or at least some) forbidden sets T at the same time.

» Remark. We do not know whether a general set of forbidden permutations T has limits
in distribution of n,(7r,,) (after normalization) at all, and even if limits exist, there is no
known reason implying that they have to be of type I or II above; other types of limits are
conceivable.
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» Remark. The non-normal limits in the cases {132}, {321} and {2413,3142} can all be
expressed as functionals of a Brownian excursion e, see [8, 9, 2]. However, the expressions in
these three cases are, in general, quite different (and obtained by quite different arguments),
so there is no obvious hope for a unification. (The other cases of non-normal limits in Table 1
are different, and of a more elementary kind.)

1.1 Some notation

Let ¢ = ¢, be the identity permutation of length n.

If 0 € G, and 7 € &,,, their composition o x T € &, 1, is defined by letting T act on
[m + 1,m + n] in the natural way; more formally, o x 7 = 7 € &,;,+,, where 7; = o; for
1<i<m,and mj1p = 75 +m for 1 < j < n. We say that a permutation 7 € &, is
decomposable if m = o % 1 for some 0,7 € G, and indecomposable otherwise; we also call an
indecomposable permutation a block.

It is easy to see that any permutation m € G, has a unique decomposition 7 = 7y *- - - %7y
into indecomposable permutations (blocks) 71, ..., 7s; we call these the blocks of w. (These
are useful to characterize the permutations in some of the classes below.)

2 No restriction, T =0

As a background, consider first the case T = (), so &,,(T) = &,,; the set of all n! permutations
of length n. It is well-known, see Béna [4, 5] and [12, Theorem 4.1], that if 7, is a uniformly
random permutation in &, then n,(7,) has an asymptotic normal distribution as n — oo
for every fixed permutation o:

» Theorem 1 (Béna [4, 5]). If |o| = m > 2 then, as n — oo, for some v* > 0,

() = 5 (n) d (0,72). (8)

Sketch of proof. A random permutation 7,, can be obtained by taking i.i.d. random variables
X1,..., X, ~U(0,1) and considering their ranks. Then

ne(my) = Z f(Xm...,XZ-m) (9)

1< <ipm

for a suitable (indicator) function f. This sum is an asymmetric U-statistic, and the result
follows by general results on U-statistics, see [6] and [11]. <

» Remark. The asymptotic variance 42 depends on o. It can be calculated explicitly, and
the same holds for all parameters 2 (or ) in the limit theorems below. Moreover, the
convergence (8) holds with convergence of all moments, and it holds jointly for any set of o;
also this holds for all later limit theorems too.

3 Avoiding 132

Consider next the cases when T consists of a single permutation of length 3. The symmetries
in Appendix A leave two non-equivalent cases. In this section we avoid T' = {132}; equivalent
cases are {213}, {231}, {312}. Recall that the standard Brownian excursion e(z) is a random
non-negative function on [0, 1]. Let

Ao) = |o| + D(o) (10)
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where D(o) is the number of descents in o, i.e., indices ¢ such that o; > 0,41 or (as a
convenient convention) i = |o|. Note that 1 < D(o) < |o|, and thus

o] +1 < Ao) < 2]a], (11)

with the extreme values A\(0) = |o| + 1 if and only if 0 = 1---k, and A(o) = 2|o] if and only
ifo=k---1, for some k = |o|.

» Theorem 2 ([8]). There exist strictly positive random variables A, such that as n — oo,
N (T 13250) /N2 L5 A, (12)

Sketch of proof. The analysis is based on a well-known bijection with binary trees and Dyck
paths, and the, also well-known, convergence in distribution of random Dyck paths to a
Brownian excursion. For (not so simple) details, see [8]. <

The limit variables A, in Theorem 2 can be expressed as functionals of a Brownian
excursion e(x), see [8]; the description is, in general, rather complicated, but some cases are
simple. Moments of the variables A, can be calculated by a recursion formula given in [8].

» Example 3. In the special case 0 = 12, A5 = \/ifol e(z)dx, see [8, Example 7.6]; this
is (apart from the factor v/2) the well-known Brownian excursion area, see e.g. [7] and the
references there.

For the number nsy; of inversions, we thus have

n 1
(2) — na21(m132;0) _ n12(77132;n) d _
7 =3 A =V2 ; e(x)dx. (13)

By symmetries, see Appendix A, the left-hand side can also be seen as the number of

inversions naj (231.5) OF N21 (M312.,), normalized by n®/2, where we instead avoid 231 or 312.

4 Avoiding 321

In this section we avoid T' = {321}. The case T = {123} is equivalent.

G,(321) is treated in detail in [9]. As for &,,(132) in Section 3, the analysis is based
on a well-known bijection with Dyck paths, but the details are very different, and so are in
general the resulting limit distributions.

» Theorem 4 ([9]). Let 0 € 6,(321). Let m := |o|, and suppose that o has £ blocks of
lengths my,...,my. Then, as n — oo,

ng(ﬂ321;n)/n(m+[)/2 i) VV(7 (14)

for a positive random variable W, that can be represented as
W, = wg/ e(ty)™ 1 e(ty)™ Aty - - dty, (15)
0<ty < <te<l

where w, 1S positive constant.

Sketch of proof. As for Theorem 2, the analysis is based on a bijection with Dyck paths,
and the convergence in distribution of random Dyck paths to a Brownian excursion. For
details, see [8]. <
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In this case, we have an explicit general formula (15) for the limit variables. On the
other hand, we do not know how to compute even the mean E W, in general; see [9] for
calculations in various special cases.

» Example 5. Let o = 21. Then wy, = 272, see [9], and thus (14)-(15), with £ = 1 and
my = m = 2, yield for the number of inversions,

1
na(Tonin) 4, 271/2/ e(z) dz. (16)
n 0

Note that the limit in (16) differs from the one in (13) by a factor 2.

5 Avoiding {132,312}
In this section we avoid T = {132,312}. Equivalent sets are {132,231}, {213,231}, {213, 312}.
» Theorem 6. For any m > 2 and o € 6,,(132,312), as n — oo,

Ne(T132.312:0) — 217™0™/m! 4
pm—1/2 - N(0’72)' (17)

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent formulation) that
a permutation T belongs to the class 6.(132,312) if and only if every entry m; is either
a mazimum or a minimum. We encode a permutation 7 € &,(132,312) by a sequence

oy .. & € {£1}771, where & = 1 if 7; is a maximum in 7, and ; = —1 if 7r; is a minimum.
This is a bijection, and hence the code for a uniformly random 732 312:, has &2, ..., &, ii.d.
with the symmetric Bernoulli distribution P(¢; = 1) =P(&; = —1) = 3.
Let o € 6,,,(132,312) have the code g, ..., Nm. Then m;, -+ -7, is an occurrence of o in
7 if and only if &, = n; for 2 < j < m. Consequently, nq(m132,312;n) is a U-statistic
no(migzsizn) = > f(Giseiin)s (18)
1< <im
where
Flen - &m) =] 148 = mi}- (19)
j=2
Note that f does not depend on the first argument.
The result now follows from the theory of U-statistics [6], [11]. <
» Example 7. For the number of inversions, we have ¢ = 21 and m = 2, 5, = —1. A
calculation yields pu = % and 72 = %, and thus Theorem 6 yields
no1(m132,312:n) — N2 /4 d
— N(0, %), (20)

n3/2

6 Avoiding {231,312}

In this section we avoid T' = {231, 312}. The only equivalent set is {132, 213}.

» Theorem 8. Let 0 € 6,,(231,312) have block lengths ¢1,...,L,. Then, as n — oo,

N (Ta31,312:0) — 1P /B! 4 9
nb—1/2 — N(0,7°). (21)
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Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a
permutation w belongs to the class G,(231,312) if and only if every block in 7 is decreasing,
i.e., of the type £L({ — 1)---21 for some £. Hence there exists exactly one block of each
length ¢ > 1, and a permutation © € 6,(231,312) can be encoded by its sequence of block
lengths. In this section, let my, ., denote the permutation in &,(231,312) with block
lengths ¢4, ..., 4.

A uniformly random permutation 7231 312:n, can be generated as 7, .. ., where the
block lengths Li,..., Lg are obtained from an infinite i.i.d. sequence L, Lg,- -+ ~ Ge(%),

stopped at B such that L +---+ Lg > n, and then adjusting Lp such that L1 +---+Lpg = n.

Let 0 € 6,(231,312) have block lengths ¢1,. .., ¢, so that o = 7y, g,. Then,

)= Y (%) )

1<iy < <ipy<B j=1

This is again a kind of U-statistic, but it is based on the sequence L1, ..., Lp of random
length B, obtained by stopping the infinite sequence L;. Nevertheless, general results for
U-statistics cover this modification and yield the result, see [11]. <

» Example 9. For the number of inversions, we have o = 21 and b = 1, #; = 2. A calculation
yields v2 = 6, and Theorem 8 yields

n21(7231,312;n) — 1

d
o ~4, N(0,6). (23)

7 Avoiding {231, 321}

In this section we avoid T = {231, 321}. Equivalent sets are {123,132}, {123,213}, {312, 321}.

» Theorem 10. Let o € 6,,(231,321) have block lengths £y, ..., 0, and let by be the number
of blocks of length ¢; = 1. Then, as n — oo,

N (231 321:n) — 2b1=0nb /bl 4
nb—1/2 - N(O”VQ)' (24)

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a
permutation T belongs to the class &4(231,321) if and only if every block in m is of the type
012--- (¢ —1) for some £. Thus, as in Section 6, a permutation in &,(231,321) is determined
by its block lengths, and these can be arbitrary. Hence, a uniformly random 7231 321;, has
block lengths L1, ..., Lp with the same distribution as in Section 6. Letting now o be the
permutation in &,(231, 321) with block lengths ¢4, ..., fy, ny(m231,321;n) is a function of the
block lengths Ly, ..., Lp that is similar (but not identical) to (22). This time some lower
order terms appear, but they may be neglected, and the remainder is a U-statistic similar to
the one in the proof of Theorem 8, and the result follows in the same way. |

» Example 11. For the number of inversions, we have 0 =21l and b=1,/¢; =2,b; =0. A
calculation yields 42 = 1/4, and Theorem 10 yields
n21(m231,321:n) — /2 4

nl/2 — N(0, i) (25)

In fact, in this special case it can be seen that we have the exact distribution

No1 (231 321:m) ~ Bi(n -1, %) (26)
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8 Avoiding {132, 321}

In this section we avoid T' = {132, 321}. Equivalent sets are {123,231}, {123,312}, {213, 321}.

It was shown in [14, Proposition 13| that a permutation m belongs to &,(132,321) if and
only if either m = v,, for some n, or m = Ty ¢m for some k, £ >1 and m > 0, where, in this
section,

Thom =C+1,. .. 0+kL ... Lk+Ll+1,...,k+L+m) € Cririm. (27)

Recall that the Dirichlet distribution Dir(1, 1, 1) is the uniform distribution on the simplex
{(z,y,2) ER3 :x+y+2=1}.

» Theorem 12. Let 0 € 6,(132,321). Then the following hold as n — co.
(i) If o = m; 5, for some i, j,p, then

nf(i+j+p)n,7(7\’1327321;n) i> Wi7j7p = WXinZp, (28)
where (X,Y, Z) ~ Dir(1,1,1).
(ii) If o = i, then
— d 1 i i J
NN (T132,321:0) — Wi 1= ﬁ((X +2)+ (Y +2) -2 ), (29)

with (X,Y,Z) ~ Dir(1,1,1) as in i.

Sketch of proof. For asymptotic results, we may ignore the case when 1323210 = tn.
Conditioning on 732 321:n 7# tn, We have T132.321.n = TK,Ln—K—L, Where K and L are
random with (K, L) uniformly distributed over the set {K,L >1: K + L <n}. Asn — oo,
we thus have

(5 L n—K-L

» T
n n n

) 4 (X,Y, Z) ~ Dir(1,1,1). (30)

If 0 = 7, for some ¢, j, p, then it is easily seen that

= ()()(2)

Similarly, if o = ¢;, then, by inclusion-exclusion,

N (Thtm) = (k t m) + (Etm> - (T) (32)

These exact formulas and (30) yield the results. <

» Corollary 13. The number of inversions has the asymptotic distribution

n"2ng) (m152.5910m) — W = XY, (33)
with (X,Y) as above; the limit variable W has density function

2log(1+ V1 —4z) —2log(1 —V1—4z), 0<=z<1/4, (34)

and moments

ri?
EW"m=2—+— 0. 35
(2r +2)I s (35)
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9 Avoiding {231,312,321}

We proceed to sets of three forbidden patterns. In this section we avoid T = {231, 312, 321}.

An equivalent set is {123,132,213}.

» Theorem 14. Let 0 € 6,,(231,312,321) have block lengths €1, ...,0,. Then, as n — oo,

no(T231,312,321:0) — unl/bl 4
nb—1/2 — N(0’72)’ (36)

for some constants y and .

Sketch of proof. It was shown in [14, Proposition 15*] (in an equivalent form) that a
permutation w belongs to the class ©,(231,312,321) if and only if every block in 7 is decreasing
and has length < 2, i.e., every block is 1 or 21. Hence, a permutation = € &,,(231, 312, 321)
is uniquely determined by its sequence of block lengths Lq,..., Lg, where each L; € {1,2}
and L1 +---+Lg =n.

Let p := (v/5 — 1)/2, the golden ratio, so that p + p? = 1. Let X be a random variable
with the distribution

P(X=1)=p, PX=2)=p% (37)
Consider an i.i.d. sequence X1, Xa,... of copies of X, and let S; := Zle X;. Let further
B(n) := min{k : Sx > n}. Then, conditioned on Sp(,) = n, the sequence X1,..., Xp(,) has
the same distribution as the sequence L, ..., Lp of block lengths of a uniformly random
permutation w31 312 321;n-

Consequently, n,(m231,312,321;n) can be expressed as a U-statistic based on X;,..., X5,
conditioned as above. This conditioning does not affect the asymptotic distribution, see [11],
and the result follows again by general results for U-statistics. |

» Example 15. For the number of inversions, o = 21 we have b = 1. A calculation yields
p=1—-p=(3—-+5)/2and 4* = 5-%/2. Consequently,
3-V56

n21(7l'2317312,321;n)— 5 N d —3/2
i — N(0,57%7%).

(38)

100 Avoiding {132,231,312}

In this section we avoid {132,231,312}. Equivalent sets are {132,213,231}, {132,213, 312},
{213,231, 312}.

It was shown in [14, Proposition 16*] (in an equivalent form) that &,(132,231,312) =
{Tkn—k : 1 < k <n}, where, in this section,

Thei=(k ..., Lk+1,... k+0) €Gpp, k>1,0>0. (39)

» Theorem 16. Let 0 € 6,(132,231,312). Then the following hold as n — oo, with U ~
u(o,1).
(i) If 0 = T m—r with 2 <k <m, then

1

mU’“(l —uU)ymk, (40)

_ d
n""ng(T132,231,312i) — Wim—k 1=

6:9
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(ii) If o = T1,m—1 = tm, then

1 1
n~ "Ny (m132,231,312:n) <4 Wim—1 = WU(l —u)mt g ﬁ(l -u)m
1 m—
:;Eu+0n—mUx1—U) L (41)

Sketch of proof. The random 7132 231,312:n = Tk ,n—k, Where K € [n] is uniformly random.
Obviously, as n — oo,

K/n -5 U ~U(0,1). (42)
Furthermore, if o = 7y, ¢, then it is easy to see that

() (") k=2,

Ne (ﬂ-K,an) = K K (43>
K5+ (50, k=1

The results follow. <
» Corollary 17. The number of inversions has the asymptotic distribution
_ d
n 27121(77132,231,312;n) S W =U?/2 (44)

with U ~ U(0,1). Thus, 2W ~ B(1,1), and W has moments

1
EW = —— 0. 45
a1 (45)

11  Avoiding {132,231,321}

In this section we avoid {132,231, 321}. Equivalent sets are {123,132,231}, {123,213, 312},
(213,312,321}, {123,132,312}, {123,213,231}, {132,312, 321}, {213,231, 321}

It was shown in [14, Proposition 16*] (in an equivalent form) that &,,(132,231,321) =
{Tkn—k : 1 <k <n}, where, in this section,

7Tk7g:Z(k,l,...,k—1,]{1+1,...,]€—|—€)EG;H_g, k>1,¢0>0. (46)

» Theorem 18. Let 0 € 6,(132,231,321). Then the following hold as n — oo, with U ~
u(o,1).
(i) If o = T m—r with 2 <k <m, then

i d 1 _ m—
n( l)na(ﬂ'132,231,321;n) — Wim—k = o= 1) (m— k)'Uk Ya—u)ym="*. (47)
(ii) If 0 = M1 m—1 = tm, then
- — L iomy 2t 48
n” "Ny (T132,231,32130) = il + (n ) — ol (48)
Sketch of proof. The random permutation 7132231,321;n = Tkn—k, where K € [n] is
uniformly random. The results follow similarly to the proof of Theorem 16. <

» Corollary 19. The number of inversions nei(m132,231,321,n) has a uniform distribution on
{0,...,n — 1}, and thus the asymptotic distribution

n71n21(77132,231,321;n) LU~ u(o,1). (49)
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Avoiding {132,213,321}

In this section we avoid {132,213,321}. An equivalent sets is {123,231, 312}.

It was shown in [14, Proposition 16*] (in an equivalent form) that &,,(132,213,321) =

{Tkn—k : 1 < k < n}, where, in this section,

e =C+1,...,0+k1,....0) € Sy, k>1,¢0>0. (50)

» Theorem 20. Let o € 6,(132,213,321). Then the following hold as n — oo, with U ~
u(o,1).
(i) If 0 = mgm—r with 1 <k <m—1, then

1

-m d o k(1 _ m—k
n na(ﬂ'132,213,321;n) — Wk,m—k = mU (1 U) : (51)
(it) If 0 = Tm,0 = tm, then
—m d 1 m m
n ng(7r13272137321m) — Wm,O = ﬁ(U -+ (1 — U) ) (52)
Sketch of proof. Similarly to the proof of Theorem 16. |

» Corollary 21. The number of inversions has the asymptotic distribution

n72ﬂ21(ﬂ'132,213,321;n) LW = u(1-u), (53)

with U ~ U(0,1). Thus, 4W ~ B(1,3), and W has moments

L(r+1)2
E r = —— . 4
%% T2 12) r>0 (54)
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A  Symmetries

For any permutation m = my - - - m,,, define its inverse 7~1 in the usual way, and its reversal
and complement by

=T, T, (55)

m=Mm+1—m) - (n+1—m). (56)

These three operations generate a group & of 8 symmetries (isomorphic to the dihedral group
Dy). Tt is easy to see that for any symmetry s € &,

Ngs (1°) = ng (). (57)
Thus, if we define 7% := {7°: 7 € T'}, then

Gn(T?) ={r*: 1€ &,(T)}, (58)
and, for any permutation o,

Mo (T7210) = g (T700). (59)

We say that the sets of forbidden permutations T' and T*® are equivalent, and note that (59)
implies that it suffices to consider one set T in each equivalence class {T° : s € &}.
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Vanishing of Cohomology Groups of Random Simplicial Complexes

1 Introduction

1.1 Motivation

In their seminal paper [12], Erdés and Rényi introduced the uniform random graph and ad-
dressed the problem of determining the probability of this graph being connected. Nowadays,
this classical result is usually stated for the binomial model, in which each edge is present
with a given probability p independently: the connectedness of the binomial random graph
G(n,p) on n vertices undergoes a phase transition around the sharp threshold p = 10% [24],
where log denotes the natural logarithm.

» Theorem 1.1. Let w be any function of n which tends to infinity as n — co. Then with
high probability,! the following holds.

(i) Ifp= log%, then G(n,p) is not connected.

(ii) Ifp= 1°g++w, then G(n,p) is connected.

As an even stronger result, Erdés and Rényi [12] determined the limiting probability
for connectedness around the point of the phase transition. Subsequently, Bollobas and
Thomason [7] proved a hitting time result, stating that whp the random graph process
becomes connected at the very same time at which the last isolated vertex—the smallest
obstruction for connectedness—disappears.

Since then, various higher-dimensional analogues of both random graphs and connected-
ness have been analysed and in particular two different approaches have received considerable
attention. A first natural generalisation is the random k-uniform hypergraph G, = G(k;n, p)
in which each (k + 1)-tuple of vertices forms a hyperedge with probability p independently.
There are several natural ways of defining connectedness of G, which have been extensively
studied [4, 5, 6, 8, 9, 10, 11, 15, 16, 22, 23].

A more recent approach concerns random simplicial complexes, of which a first model
for the 2-dimensional case was introduced by Linial and Meshulam [17]. They considered
F2-homological 1-connectivity of the random 2-complex as the vanishing of its first homology
group with coefficients in the two-element field Fs, which is equivalent to the vanishing of the
first cohomology group. More precisely, the model ), = V(k;n,p) considered by Linial and
Meshulam [17] for k = 2 and subsequently by Meshulam and Wallach [20] for general k > 2
is defined as follows. Starting from the full (k — 1)-dimensional skeleton on [n] := {1,...,n},
that is, all simplices from dimension zero up to k — 1, each (k4 1)-set forms a k-simplex with
probability p independently. They showed that the vanishing of the (k — 1)-th cohomology
group H*=1()),;F2) with coefficients in F5 has a sharp threshold at p = kl‘;ﬁ.

» Theorem 1.2 ([17, 20]). Let w be any function of n which tends to infinity as n — oo.
Then with high probability, the following holds.

(i) Ifp= ’“Og#, then H*=1()),;Fy) # 0.

(i) If p= B8 yhen HF=1(Y);Fs) = 0.

Later, Kahle and Pittel [15] derived a hitting time result for the case k = 2 and determined
the limiting probability of H*~1()),;F2) = 0 for general k > 2 and p in the critical window.
In this paper, we aim to bridge the gap between random hypergraphs and random
simplicial complexes. We consider random simplicial k-complexes that arise as the downward-
closure of random (k + 1)-uniform hypergraphs. Unlike ), in this model the presence of the

1 'With probability tending to 1 as n tends to infinity, whp for short.
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full (k — 1)-dimensional skeleton is not guaranteed, thus the vanishing of the cohomology
groups of dimensions lower than & — 1 does not hold trivially. Therefore, for each j € [k — 1],
we introduce Fy-cohomological j-connectedness as the vanishing of all cohomology groups
with coefficients in Fs from dimension one up to j and the zero-th cohomology group being
isomorphic to Fs.

Although this notion of connectedness is not monotone, we prove that nevertheless
Fy-cohomological j-connectedness has a sharp threshold. Furthermore, we derive a hitting
time result and determine the limiting probability for Fs-cohomological j-connectedness
in the critical window. As a corollary, we deduce a hitting time result for ), in general
dimension, thus extending the hitting time result of Kahle and Pittel [15].

1.2 Model

Throughout the paper let k > 2 be a fixed integer. For a positive integer ¢, let [¢] := {1,...,(}.

» Definition 1.3. A family G of non-empty finite subsets of a vertex set V is called a
stmplicial complex if it is downward-closed, i.e. if every non-empty set A that is contained in
a set B € G also lies in G, and if the singleton {v} is in G for every v € V.

The elements of a simplicial complex G of cardinality k + 1 are called k-simplices of G. If
G has no (k + 1)-simplices, then we call it k-dimensional, or k-complex. If G is a k-complex,
then for each j =0,...,k — 1 the j-skeleton of G is the j-complex formed by all i-simplices
in G with 0 <4 <j.

We aim to define a model of random k-complexes starting from the binomial random
(k 4 1)-uniform hypergraph G, = G(k;n,p) on vertex set [n]: the O-simplices are the vertices
of G, the k-simplices are the hyperedges of G}, but there is more than one way to guarantee
the downward-closure property, to obtain a simplicial complex. In the model ), considered by
Meshulam and Wallach in [20], the full (k — 1)-skeleton on [n] is always included. In contrast,
we shall only include those simplices that are necessary to ensure the downward-closure
property.

» Definition 1.4. We denote by G, = G(k;n, p) the random k-dimensional simplicial complex
on vertex set [n] such that

the 0-simplices are the singletons of [n];

the k-simplices are the hyperedges of G;

for each j € [k — 1], the j-simplices are exactly the (j + 1)-subsets of hyperedges of G,.
In other words, G, is the random k-complex on [n] obtained from G, by taking the downward-
closure of each hyperedge.

Given a simplicial complex G, let H*(G;F5) be its i-th cohomology group with coefficients
in Fy (see Section 2.1 for the definition). Connectedness of G, in the topological sense—
which we call topological connectedness in order to distinguish it from other notions of
connectedness—is equivalent to H°(G,;F2) being (isomorphic to) Fo. We therefore define a
notion of connectedness as follows.

» Definition 1.5. For a positive integer j, a simplicial complex G is called Fy-cohomologically
j-connected (j-cohom-connected for short) if

H°(G;Fy) = Fa;

H(G;Fs) =0 for all i € [5].

One might define an analogous version of connectedness via the vanishing of homology

groups, which would be equivalent to Fs-cohomological j-connectedness by the Universal
Coefficient Theorem (see e.g. [21]).
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A significant difference between G, and ), is that for ), the only requirement for F,-
cohomologically (k — 1)-connectedness is the vanishing of the (k — 1)-th cohomology group,
since the presence of the full (k — 1)-skeleton guarantees topological connectedness and the
vanishing of the j-th cohomology groups for all j € [k — 2].

Moreover, it is important to observe that Fs-cohomological j-connectedness is not a
monotone increasing property of G,: adding a k-simplex to a j-cohom-connected complex
might yield a complex without this property (see Example 2.3). Thus, the existence of a
single threshold for j-cohom-connectedness is not guaranteed, but one of our main results
shows that such a threshold indeed exists.

1.3 Main results

The main contributions of this paper are fourfold. Firstly, we prove (Theorem 1.8) that for
each j € [k — 1], Fao-cohomological j-connectedness of G, undergoes a phase transition at
around probability

(j + 1)logn + loglogn

pj = (k‘—j—i—l)nk—j (k*])l (1)

Secondly, we prove a hitting time result (also Theorem 1.8), which relates the j-cohom-

connectedness threshold to the disappearance of all copies of the minimal obstruction M;

(Definition 1.7). Thirdly, our results directly imply an analogous hitting time result for ),

(Corollary 1.9), which Kahle and Pittel [15] proved for k = 2. Lastly, we analyse the critical

window around the threshold p;, showing that inside the window the dimension of the j-th

cohomology group converges in distribution to a Poisson random variable (Theorem 1.10).
Before defining the minimal obstruction M, we need the following concept.

» Definition 1.6. Given a k-simplex K in a k-complex G, a collection F = {Fy, ..., Px_;}
of j-simplices forms a j-flower in K if K = J, P; and C := [, P; satisfies |C| = j. We call
the j-simplices P; the petals and the set C the centre of the j-flower F.

Observe that for each k-simplex K and each (j — 1)-simplex C C K, there is a unique
j-flower in K with centre C, namely

F(K,C):={CuU{w}|weK\C}.

When j is clear from the context, we simply refer to a j-flower as a flower. A j-cycle
is a set J of j-simplices such that every (j — 1)-simplex is contained in an even number of
j-simplices in J.

» Definition 1.7. A copy of M; (see Figure 1) in a k-complex G is a triple (K, C, J) where

(M1) K is a k-simplex;

(M2) Cis a (j — 1)-simplex in K and each petal of the flower F = F(K,C) is contained in
no other k-simplex of G;

(M3) Jis a j-cycle that contains exactly one petal of F, i.e. there exists a vertex wy € K\ C
such that

Jﬂ}':{CU{wo}}.

We will see (Lemma 2.2) that a copy of M; can be interpreted as a minimal obstruction
for Fa-cohomological j-connectedness.

The random k-complex G, can be viewed as a process, by assigning a birth time to each
k-simplex. More precisely, for each (k + 1)-set of vertices in [n] independently, sample a birth



0. Cooley, N. Del Giudice, M. Kang, and P. Spriissel

|
L 4

Figure 1 A copy of M; for k =5, j = 2. The centre C' = {c1, c2} lies in all petals P; = C' U {w;},
1 =0,...,3 (dark grey), which are contained in no other k-simplex except K. The j-cycle J (light
grey) intersects the flower F(K,C) = { Py, P1, P2, Ps} only in the petal Py = C U {wo}.

time uniformly at random from [0,1].2 Then Gy is exactly the complex generated by the
(k + 1)-sets with birth times at most p, by taking the downward-closure. If p is gradually
increased from 0 to 1, we may interpret G, as a process. Thus, we can define pys; as the
birth time of the k-simplex whose appearance causes the last copy of M; to disappear. More
formally, let

pu; = sup{p € [0,1] | G, contains a copy of M,}. (2)

Our first main result is that the value pys; is the hitting time for j-cohom-connectedness
of G, and is “close” to p; defined in (1), implying that p; is in fact a sharp threshold for
F5-cohomological j-connectedness.

» Theorem 1.8. Let k > 2 be an integer and let w be any function of n which tends to
infinity as n — oco. For each j € [k — 1], with high probability the following statements hold.
o G+ log log n— . i+1) 1 log 1 .
(i) UHDpamibEoan= (, _ j)l < pyy, < Utipesnilogiognis (),
i) For all p < pp., Gy is not Fo-cohomologically j-connected, i.e.
J p

HY(G,;F2) # Fy or H(G,;F2) # 0 for some i € [4].

(iii) For all p > par,;, Gp is Fa-cohomologically j-connected, i.e.

HY(G,;F2) = Fy and H'(G,;Fs) =0 for all i € [j].

For the case j = k — 1, Theorem 1.8 gives a threshold pr_; = % for Fo-

cohomologically (k — 1)-connectedness, which is about half as large as the threshold kk’% in
Theorem 1.2 for J,. The reason for this is that the minimal obstructions are different: in ),
the minimal obstruction is a (k — 1)-simplex which is not contained in any k-simplex of the
complex (such a (k— 1)-simplex is called isolated). By definition, isolated (k — 1)-simplices do
not exist in G,, because G, contains only those (k — 1)-simplices that lie in some k-simplex.

Observe that Theorem 1.8 ii and iii provide a hitting time result for the process described
above. A similar result was proved by Kahle and Pittel [15] for )),, but only for the 2-
dimensional case. As a corollary of Theorem 1.8, we can now derive a hitting time result for
Y, for general k > 2. To this end, let

Pisol := sup{p € [0,1] | ), contains isolated (k — 1)-simplices} (3)

2 With probability 1 no two (k + 1)-sets have the same birth time.
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be the birth time of the k-simplex whose appearance causes the last isolated (k — 1)-simplex
to disappear and let

Peonn = sup{p € [0, 1] | H*"1(V;F2) #0 } (4)
be the time when ), becomes Fa-cohomological (k — 1)-connected.
» Corollary 1.9. Let k > 2 be an integer. Then, with high probability peonn = Disol-

Our last main result gives an explicit expression for the limiting probability of the random
complex G, being [Fo-cohomologically j-connected inside the critical window given by the
threshold p;. More generally, we prove that the dimension of the j-th cohomology group
with coefficients in Fy converges in distribution to a Poisson random variable.

» Theorem 1.10. Let k > 2 be an integer, j € [k — 1] and ¢ € R be a constant. Suppose that
¢n € R are such that ¢, === c. If
(j 4+ 1)logn +loglogn + ¢,

p= U= 1 Dyt (k=)

then dim (Hj(g,,; ]FQ)) converges in distribution to a Poisson random variable with expectation

U+ De*
(k—j+1)%50

while whp H°(G,;F2) = Fa and HY(G,;F2) =0 for alli € [j — 1]. In particular, we have

Aj =

P (G, is j-cohom-connected) =5 e~

Note that a similar result for ), was proved by Kahle and Pittel [15].

1.4 Related work

The vanishing of H*~1()),;F3) considered in [17] and [20] is a monotone property due to the
presence of the full (k — 1)-dimensional skeleton. This fact in particular makes it possible to
use a simple second moment argument to prove the subcritical case (i.e. statement (i)) of
Theorem 1.2.

In contrast, G, does not contain the full (k — 1)-dimensional skeleton. As a consequence,
we need to consider all cohomology groups up to dimension j, for each j € [k — 1]. Moreover,
our notion of Fy-cohomological j-connectedness is not a monotone property, which makes
the subcritical case far from trivial. In fact, it does not suffice to prove that G, is not
: _ (j+1)logntloglogn—w 1.
j-cohom-connected at p_ = (=7 D= (k — j)!; rather we need to show that whp
G, is not j-cohom-connected for any p up to and including p_.

The proof of the supercritical case p > pyy; is also more challenging than for ),. We
are forced to derive better bounds for the number of bad functions (see Definition 2.1), due
to the fact that for j = k — 1, the threshold in Theorem 1.8 is about half as large as the
corresponding threshold in [20].

2 Preliminaries

2.1 Cohomology terminology

We formally introduce cohomology with coefficients in Fo for a simplicial complex. The
following notions are all standard, except the definition of a bad function (Definition 2.1).
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Given a simplicial k-complex G, for each j € {0,...,k} denote by C7(G) the set of
j-cochains, that is, the set of 0-1 functions on the j-simplices. The support of a function
in C7(G) is the set of j-simplices mapped to 1. Each C7(G) forms a group with respect to
pointwise addition modulo 2. We define the coboundary operators 67: C¥(G) — CIT(G) for
j=0,...,k—1asfollows. For f € C7(G), the 0-1 function 7 f assigns to each (j+1)-simplex
o the value

8 f(o) = Z f(r)  (mod2).

TCo, |T|=j+1

In addition, we denote by 6=! the unique group homomorphism §=1: {0} — C%(G). The
j-cochains in im 67~1 and ker§’ are called j-coboundaries and j-cocycles, respectively. A
straightforward calculation shows that each coboundary operator is a group homomorphism
and that every j-coboundary is also a j-cocycle, i.e. im 7~ C ker 6. Therefore, we can
define the j-th cohomology group of G with coefficients in Fy as the quotient group

Hj(g;Fg) = keréj/iméj_l.

By definition, H7(G;Fy) vanishes if and only if every j-cocycle is a j-coboundary. This
motivates the following definition of a bad function.

» Definition 2.1. We say that a function f € C7(G) is bad if

(i) fis a j-cocycle, i.e. it assigns an even number of 1’s to the j-simplices on the boundary

of each (j + 1)-simplex;

(ii) f is not a j-coboundary, i.e. it is not induced by a 0-1 function on the (j — 1)-simplices.

Thus, H’(G;Fs) vanishes if and only if no bad function in C7(G) exists.
Recall that a set J of j-simplices is a j-cycle if every (j — 1)-simplex lies in an even

number of j-simplices in J. It is easy to see that if f is a j-cocycle and J is a j-cycle such
that f|; has support of odd size, then f is not a j-coboundary and thus is a bad function.

2.2 Minimal obstructions

Let us explain why M; (Definition 1.7) can be interpreted as the minimal obstruction to
j-cohom-connectedness. Given a copy (K,C,J) of M, in a k-complex G, define a function
f € C7(G) that takes value 1 on the petals of the flower F (K, C) and 0 everywhere else. Since
each petal lies in K but in no further k-simplices, every (j + 1)-simplex contains either two
petals or none. In particular, f is even on the boundary of every (j + 1)-simplex. However,
J would be a j-cycle containing precisely one j-simplex (namely C'U{wg}) on which f takes
value 1, ensuring that f is bad. The support of f has size k — j + 1.

» Lemma 2.2. Let G be a k-complex and let S be a non-empty support of a j-cocycle. Then
either S is the flower of an M; (and thus |S|=k—j+1) or S| > k—j+2.

Both the presence of a copy of M; and j-cohom-connectedness are not monotone, as the
following example shows.

» Example 2.3. Let G be the 2-complex on vertex set {1,2,3,4,5} generated by the 3-
uniform hypergraph with hyperedges {1, 2,3} and {1,4, 5}, see Figure 2. Then G is 1-cohom-
connected and thus contains no copies of M;. Adding to G the 2-simplex {2, 3,4} (and its
downward-closure) creates several copies of M; and thus yields a complex G’ which is not
1-cohom-connected. If we further add the 2-simplex {1, 3,4} to G’, we obtain a 2-complex
G" which is 1-cohom-connected and thus contains no copies of M.

77
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g g g"

Figure 2 Adding simplices might create new copies of M; or destroy existing ones.

3  Subcritical regime

3.1 Overview

In this section we study the subcritical case p < pys; and state results necessary for the
proofs of statements i and ii of Theorem 1.8.
Define

pr :=sup{p € [0,1] | G, is not topologically connected}

as the birth time of the k-simplex whose appearance causes the complex G, to become
topologically connected. In addition, we will need the probabilities

__ logn
by = et
- 1 (j+1)logn ‘ .
Fi ( @) (k—j—Fl)nk—J( J)! for each j €| ]

Observe that H%(G,;F2) # Fa in [0,pr) by definition. In order to prove Theorem 1.8 ii, we
aim to show that whp H7(Gp;Fa) # 0 in [p;_;, par,) for all j € [k — 1] and that

J
[OapT) U U[p;—lvai) - [O>pMj)a
i=1
which we prove by showing that pr > py and pa; > p; > p,_, for all j € [k — 1] whp. To
cover the interval [Pj_—p P, ), we in fact prove the existence of just three copies of M; such
that whp for all p in this interval, at least one of these copies is present in G,,.

» Lemma 3.1. Let j € [k — 1]. With high probability, there exist three triples (K¢, Co, Jy),
¢ =1,2,3, such that for all p € [p;_y,pm;), (Ke, Cy, Je) forms a copy of M; in G, for some
¢. In particular, whp H?(Gy;F2) # 0 for all p € [p;_hpMj).

3.2 Topological connectedness

Topological connectedness of G, is equivalent to vertex-connectedness of the random (k + 1)-
uniform hypergraph, whose (sharp) threshold follows e.g. as a special case of [8] or [22].

» Lemma 3.2. Let w be any function of n which tends to infinity as n — co. Then with
high probability

1ogn—wk! <oy < logn + w

k!
nk nk

and thus in particular pr > py .
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3.3 Finding obstructions
In order to prove Lemma 3.1, we make use of a simplified version of the obstruction M;.

» Definition 3.3. copy of M, in a k-complex G is a pair (K, C) such that

(M1) K is a k-simplex;

(M2) Cisa (j — 1)-simplex in K such that each petal of the flower F(K, C) is contained in
no other k-simplex of G.

In other words, a copy of M;" can be viewed as a copy of M; without the condition
(M3) of Definition 1.7, i.e. without the j-cycle J containing one of the petals. Therefore,
it (K,C,J) is a copy of M; in G,, then (K, C) is a copy of M. Vice versa, the following
lemma ensures that whp for p at least

&) 1

p; = ; s
P0G + (b ek

whp every copy of M~ gives rise to a copy of M;, allowing us to consider just copies of M~

as obstructions to j-cohom-connectedness. In other words, the existence of copies of M}

and M; are essentially equivalent for p > pgl).

» Lemma 3.4. There exists a positive constant v such that with high probability for every
(1)

p=p; . each j-simplex o in Gy lies in at least yn many j-cycles in G, that meet only in o.

In particular, whp for all p > pgl), every copy of M; in G, is part of a copy of M;.

3.4 Excluding obstructions and determining the hitting time
A second moment argument shows that at time

(j +1)logn + 1 loglogn

By = T B ), o)

whp Gj, contains (a growing number of) copies of M ; » and thus whp also copies of M; by
Lemma 3.4. Define pyy; as the first birth time p larger than p; such that there are no copies
of Mj; in G,. By definition of pys;, conditioned on the high probability event M; C Gj,, we
have p M; < pu;- In the next lemma we show that they are in fact equal whp.

To do so, we need the following definition.

» Definition 3.5. Given a k-complex G, a k-simplex K is a local obstacle if K contains at
least £ — 7 + 1 many j-simplices which are not contained in any other k-simplex of G.

Observe that each M, is in particular a local obstacle. Moreover, whp each copy of M~
in G, for p > p; gives rise to copies of M; by Lemma 3.4.

» Lemma 3.6. With high probability, for all p > p; every local obstacle that exists in G,
also exists in Gp,. In particular, we have pnr; = par; whp.

» Corollary 3.7. Whp for all p > pu,, there are no copies of M;™ in Gy,.

b2

By first and second moment arguments, we can now easily derive that pys; is “close to
pj. Observe that the following corollary is exactly Theorem 1.8 i.

» Corollary 3.8. Let w be any function of n which tends to infinity as n tends to infinity.

Then whp

(j+1)logn +loglogn + w
(k—j+1)nk—J

(j+1)logn+loglogn —w
(k— 7+ 1)nk-i

(k — j)L.

(k=) <pm,; <
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3.5 Covering the interval

Our strategy to derive Lemma 3.1 is to divide the interval [pjll, pu;) into three subintervals
[pj:l,pg»l)}, [ gl),pj_], [pj_,pMj), each of which we cover by one copy of M;. We first use a
second moment argument to show that at time Pi_1s whp there are “many” copies of M;.
With high probability, at least one copy (K7, C1, J1) survives until probability pgl).

In order to find a copy of M; that covers the interval [p§-1)7 pﬂ, we show that whp “many’
copies of M ;. exist at time p;, of which one whp was already present at the beginning of
the interval. Together with the fact that whp each M;™ gives rise to a copy of M; (Lemma
3.4), this implies that whp one copy (K», Cs, J2) of M; exists throughout this interval.

For the remaining interval [p;, P, ), consider a copy (K3,Cs) of M ; that vanishes at
time pys;. Corollary 3.8 implies that whp p; = (1 —0(1))pn;, and thus (K3,C3) whp was
already present at time p; . Now Lemma 3.4 ensures the existence of a j-cycle J3 such that

(K3, Cs, J3) is a copy of M, throughout the range [p]-_,pMj).

)

4  Critical window and supercritical regime

In this section, we study obstructions around the point of the claimed phase transition and in
the supercritical regime, that is, for p = (1 4+ o(1))p; and p > pyy;, respectively. The results
of this section will form the foundation of the proof of Theorem 1.8 iii. Furthermore, they
will play a crucial role in the proof of Theorem 1.10.

By the definition of pys;, there are no copies of M; in G, (and also no copies of M;™ by
Corollary 3.7) for any p > pys,. It remains to show that there are no other obstructions
either. In fact, we shall even prove (Lemma 4.2) that from slightly before py;, onwards, any
j-cocycles are generated by copies of M ;- To make this more precise, we need the following
notation.

» Definition 4.1. We say that a j-cochain fx ¢ arises from a copy (K,C) of M, in a
k-complex G if its support is the j-flower F(K, C). Observe that then fx ¢ is a j-cocycle.

We say that a j-cocycle f in G is generated by copies of M, if it lies in the same
cohomology class as a sum of cocycles that arise from copies of M;". We denote by Ng the
set of j-cocycles that are not generated by copies of M ;-

We show that whp for all p > par,, Ng, = 0, which will in particular imply that there are
no non-empty j-cocycles in G,. Furthermore, a similar argument will enable us to directly
relate the number of copies of M with the dimension of H 9(Gp;F2) (cf. Theorem 1.10).

» Lemma 4.2. For every p > p; » we have ng = () with high probability. Moreover, with
high probability ./\/gp =0 for all p > pn, simultaneously.

In order to prove Lemma 4.2, we first show that a smallest support of elements of Ng
would have to have a property we call traversability.

» Definition 4.3. Let G be a k-complex and S C G be a collection of j-simplices. For
01,09 € S, we write 0y ~ 03 if o1 and o5 lie in a common k-simplex.® We say that S is
traversable if the transitive closure of ~ is S x S.

In other words, a set of j-simplices in a k-complex is traversable if it cannot be partitioned
into two non-empty subsets such that no k-simplex contains j-simplices in both subsets.

3 Observe that this relation is reflexive, because every j-simplex is contained in at least one k-simplex.
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» Lemma 4.4. Let G be a k-complex and f be an element of Ng with smallest support S.
Then S is traversable.

We then show that whp no such smallest support can exist in G,. For “small” support
size and probability around p;, a standard application of the first moment method suffices.

» Lemma 4.5. For p = (1+0(1))p; and for any constant d > k — j +2, with high probability
G, has no j-cocycle with traversable support of size s withk —j+2 < s <d.

For larger size, we make use of traversability to define a breadth-first search process
that finds all possible supports. Using this process, we can bound the number of possible
smallest supports of elements of ng more carefully, thus allowing us to prove that whp for
all relevant p simultaneously, such a smallest support cannot be “large”.

» Lemma 4.6. There exists a positive constant d such that with high probability for all
p = p; , the smallest support of a j-cocycle in Ng, has size s < d.

In particular, for any fixed p = (1 + o(1))p;, whp the smallest support of elements of Ng, is
not “small” by Lemma 4.5 and not “large” by Lemma 4.6, which means that Ng, = () whp.

Finally, we complete the argument by proving that any new element of Ng, with “small”
support that might appear if we increase p would have to give rise to a “new” local obstacle.
But Lemma 3.6 already tells us that whp no new local obstacles appear. This concludes the
proof of Lemma 4.2.

5 Proofs of main results

5.1 Proof of Theorem 1.8

Corollary 3.8 states that for any function w of n which tends to infinity as n — oo, whp

i + 1)logn + loglogn + w
(j +1)log glog
(k—j+1)nk-i

i + 1)logn +loglogn — w
(j +1)log glog
(k—j+1)nk-i

which is precisely Theorem 1.8 i.
To prove ii, recall that Lemma 3.1 tells us that for each i € [j — 1], whp H*(G,;F2) # 0

for all p € [p;_1,pm,). By i, whp

1 (i+1)logn
Viogn ) (k—i+1)nk—?

pu; > <1 - (k—i)l=p;,

J
and thus whp G, is not j-cohom-connected throughout |J [p;_,pn,) = [Py P, )-
i=1

Now observe that by Lemma 3.2 whp pr > p, and that G, is not topologically connected
in [0, pr) by definition of py. Therefore, whp G, is not j-cohom-connected in

[OapJVIj) - [OapT) U [p(;apMj)7

as required.

It remains to prove iii. By Corollary 3.7, we know that for all p > pas;, there are no copies
of M, in G,. Thus, if H 3(Gp;F2) # 0, then any representative of a non-zero cohomology class
cannot arise from copies of M and therefore lies in g, (Definition 4.1). But by Lemma
4.2, whp each such Ng, is empty and thus whp H 7(Gp;F2) =0 for all p > pu; - Analogously,
whp all cohomology groups H(G,; Fy) for i € [j — 1] vanish, because whp pas, < pas, by i
Finally, by i and Lemma 3.2 whp pr < pys,, meaning that whp G, is topologically connected
for all p > pas;. This implies that whp each such G, is Fa-cohomologically j-connected. <«
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5.2 Proof of Corollary 1.9

Let w be any function of n which tends to infinity as n — oco. It follows by a simple first and
second moment argument (see e.g. [20]) that whp

klogn —w klogn +w

Disol (6)

In order to prove that peonn = Pisol Whp, suppose that a (k — 1)-simplex ¢ is isolated in
Y, for some p. The indicator function f, of ¢ is a (k — 1)-cocycle, because o is isolated. But
fo is not a (k — 1)-coboundary, because o lies in (many) (k — 1)-cycles due to the presence
of the full (k — 1)-dimensional skeleton. In particular, H*=1(}),;F2) # 0. By the definitions
of Peonn and pisol, this implies that peonn > pisol-

For the opposite direction, fix the birth times of all k-simplices. Then for all p > pjsol,
we have Y, = G, and therefore ), is Fa-cohomological (k — 1)-connected whp for every
p > max(Pisol, PM,_, ) by Theorem 1.8 iii. By (6) and Theorem 1.8 i for j = k — 1, whp for
any (slowly) growing function w

klogn —w - klogn + loglogn + w
2n

Pisol > > PMy_15

hence whp for all p > piso1 we have H k—l(yp; F3) = 0. This means that whp peonn < Pisol
and thus pconn = Pisol, as required. |

5.3 Proof of Theorem 1.10

We are interested in the asymptotic distribution of D; := dim (H?(G,;F2)) for

_ (j+1)logn +loglogn + ¢, ) e
b= (k—Jj+ ki (k—3)!,  wherec, ——ceR.

Denote by X_ the number of copies of M, in G,. Standard calculations show that

G+De

E(X_)=(140(1))A;, where \; = (e

Moreover, we show that for each fixed integer ¢t > 1
X Y
IE( ; ) =(1 +0(1))ﬁ.

These equalities are precisely what is necessary to apply the method of moments (see e.g.
[13]) in order to show that X _ converges in distribution to a Poisson random variable with
expectation \;, which we denote by X_ 4, Po(Aj).

It remains to show that X_ = D; whp. To this end, denote by f1,..., fx_ the j-cocycles
arising from the copies of M;™ in G,. Lemma 4.2 states that whp the cohomology classes of
fi,..., fx_ generate H?(G,;Fy), which means that X_ > D, whp.

In order to prove the opposite direction, we show that the cohomology classes of
fi,..., fx_ are linearly independent. Observe first that whp X_ = o(n) by Markov’s
inequality, because X_ has bounded expectation. Let I C [X_] be non-empty and let S
be the support of ;. ; fi. Whp no two f;’s can have their supports contained in the same
k-simplex K, because otherwise their union would be a traversable support of size s with
k—j+2<s<2(k—j+1), but such supports whp do not exist by Lemma 4.5.
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Thus, whp the f;’s have disjoint support by property (M2) of an M (Definition 3.3), and
in particular S # (). Pick 0 € S. Lemma 3.4 tells us that whp there are ©(n) many j-cycles in
G, that contain ¢ and are otherwise disjoint. But at most |S| < (k—j+1)|I| = o(n) of these
j-cycles can contain another j-simplex in S, which means that whp there are j-cycles that
meet S only in o, showing that ), _; f; is not a j-coboundary. Therefore the cohomology
classes of fi,..., fx_ are linearly independent whp. This shows that X_ < D; and thus
X_ = D; whp, as desired.

Together with X_ % Po(\;), this proves that D; 4 Po(\;). By Theorem 1.8 (for j —1
instead of j), whp H°(G,;Fs) = F5 and H*(G,;F2) = 0 for all i € [j — 1]. In particular,

P(G,, is j-cohom-connected) = P(H7(G,;F2) = 0) + o(1)
= (1+ o(1))P(Po(A;) = 0)
= (1+o0(1))e .

This concludes the proof of Theorem 1.10. <

6 Concluding remarks

The vanishing of cohomology groups with coefficients in Fy is just one possible way of defining
the concept of “connectedness” of G,,. An obvious alternative would be to consider coefficients
from other groups or fields. For ), such notions of connectedness have been studied for
coefficients in any finite abelian group, in Z, or in any field [1, 2, 14, 18, 19, 20].

A rather strong notion of connectedness would be to require the homotopy groups
71(Gp), - .-, m;(Gp) to vanish. For the 2-dimensional case, the vanishing of m1()),) was studied
by Babson, Hoffman and Kahle [3]. In particular, they showed that whp 71(},) # 0 at the
time that H'(),;F2) becomes zero. From that time on, the models ), and G, coincide. As
m1(Gp) # 0 follows immediately from H'(G,;F2) # 0, the range that should be of particular
interest with respect to m(G,) in the 2-dimensional case is

logn+%loglogn 2logn +w

<p<
n n
A natural conjecture would be that whp 71 (G,) # 0 in this range.

Theorem 1.9 provides a limit result for the dimensions D; = dim(H?(G,;F2)) around the
point of the phase transition. It would be interesting to know the behaviour of D; also for
earlier regimes. More precisely, we know by Theorem 1.8 that whp D; # 0 in the interval
[p;l, pu; ). Can we say more about the value of D; in this interval? How far below pj_q do
we have D; > 0 whp?
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—— Abstract

We discuss the structure of periods in subtraction games. In particular, we discuss ways that a
computational approach yields insights to the periods that emerge in the asymptotic structure
of these combinatorial games.
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1 Overview

Subtraction games are one of the most fundamental combinatorial games. In the document
Unsolved Problems in Combinatorial Games [4], maintained by Richard J. Nowakowski, the
structure of combinatorial games is the first open problem that is discussed. Such games are
so fundamental because the underlying premise is the same as Nim: there are several piles of
beans, and on a player’s turn, he/she can remove beans from exactly one pile. As in many
areas of mathematics, this simple concept gives rise to much deeper mathematical structure.
In the case of subtraction games, an even richer structure emerges because the moves of a
player are limited. For instance, in the three-dimensional version of subtraction games with
subtraction set {s1, $2, s3}, the number of beans that can be removed from a heap during a
player’s turn is limited to one of these three possibilities. In other words, a player can only
remove either s1, sg, or s3 beans.

The problem of understanding the associated Nim values of a subtraction game is
sufficiently challenging and useful that a table of values for small s1, so, s3 is given in the
4-volume set of books called Winning Ways for your Mathematical Plays [2].

The problem of understanding the asymptotic periodicities of subtraction games with a
subtraction set of size three has been open for more than 40 years; see [1] for early analysis.

Mark Paulhus and Alex Fink have derived values of the periods in two cases, for subtraction
sets of size 3, namely, in the case where s; = 1 and sg, s3 are arbitrary, and in the case where
51 < $2 < s3 < 32 (see [4]). Achim Flammenkamp [3] has made conjectures about the types
of periodicities that arise, based on calculations with all s;’s bounded above by 256.

We organized a team of colleagues to work on this problem at the American Institute
of Mathematics (AIM), under the auspices of the Research Experiences for Undergraduate
Faculty (REUF) workshops, starting in July 2016. (Ward had already been working on
a computational attack for this problem in his spare moments, for more than a decade.)
Our REUF team relies on a data-driven approach. We have computed the Nim values and
the resulting (asymptotic) periodicity of the games for s;’s bounded above by 16384. The
computational aspects of this problem are nontrivial. Each time the size of the parameters
grows by a factor of 2, the computational time required for the resulting computations grows
by a factor of (roughly) 17. Therefore, our most recent computation took a full 37 years of
CPU time. It was accomplished by running a massive parallel computation on three of the
computational clusters at Purdue University (using thousands of computational cores). After
all, we made (16384) = 732,873,539,584 distinct computations altogether. We have generated
terabytes of data about this combinatorial problem.

We will present our computational approach to determining the combinatorial structure
of the asymptotic periods that arise in these subtraction games. Importantly, we emphasize
that our algorithms allow us to know the asymptotic periods, without resorting at all to
the traditional approach (which relies on minimal excluded numbers). Instead, we have
obtained structural insights about this problem. These results should continue to be useful
for revealing completely new viewpoints about the structure of combinatorial games.
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—— Abstract

We investigate the number of permutations that occur in random node labellings of trees. This

is a generalisation of the number of subpermutations occuring in a random permutation. It
also generalises some recent results on the number of inversions in randomly labelled trees [3].
We consider complete binary trees as well as random split trees a large class of random trees
of logarithmic height introduced by Devroye [4]. Split trees consist of nodes (bags) which can
contain balls and are generated by a random trickle down process of balls through the nodes.

For complete binary trees we show that asymptotically the cumulants of the number of
occurrences of a fixed permutation in the random node labelling have explicit formulas. Our
other main theorem is to show that for a random split tree with high probability the cumulants
of the number of occurrences are asymptotically an explicit parameter of the split tree. For the
proof of the second theorem we show some results on the number of embeddings of digraphs into
split trees which may be of independent interest.
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1 Introduction and statement of results

Our main results are Theorem 2 on the distribution of the number of appearances of a fixed
permutation in a random labelling of a complete binary tree and Theorem 4 which shows
that for a random split tree with high probability (whp) the same result holds for the number
of appearances of a fixed permutation in a random labelling of the balls of the tree. We
write a complete introduction and statement of results in terms of complete binary trees first
before defining split trees and stating our results for split trees.

© Michael Albert, Cecilia Holmgren, Tony Johansson, and Fiona Skerman;
37 licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of

Algorithms (AofA 2018).

Editors: James Allen Fill and Mark Daniel Ward; Article No. 9; pp.9:1-9:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:malbert@cs.otago.ac.nz
https://orcid.org/0000-0002-4587-1104
mailto:cecilia.holmgren@math.uu.se
https://orcid.org/0000-0003-0717-4671
mailto:tony.johansson@math.uu.se
mailto:fiona.skerman@math.uu.se
https://orcid.org/0000-0003-4141-7059
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Permutations in Binary Trees and Split Trees

Complete Binary trees

Let V,, denote the node set of the complete binary tree T}, of height m and n = 2m+! — 1
nodes. Define a partial ordering on the nodes of the tree by saying that a < b if a is an
ancestor of b. Choose a uniform random labelling of the nodes 7 : V;, — [n].

We say that nodes a and b form an inversion if @ < b and 7(a) > 7(b). The (random)
number of inversions in random node labellings of fixed trees as well as some random models
of trees were studied in a recent paper ([3]). This paper finds approximate extensions to
some of these results.

The (random) number of inverted triples is R(321,T) =3>_, .. ., m(u1) > 7(uz) >
m(uz)] where the sum runs over all triples of nodes in T such that u; is an ancestor of us and
ug an ancestor of usg. In general, we say a permutation o appears on the |o|-tuple of vertices
Up, ..U 5 if up < ... < ujp and the induced order on 7(u) = (7(u1),...,m(us)) is 0.
Write 7(u) = o to indicate the induced order is the same for example 527 ~ 312. Define

R T)E Y 1fn(u) ~ o],

u1<...<u‘6‘

so in particular R(21,T") counts the number of inversions in a random labelling of T'.

We will generally be concerned with the centralised moments, e.g., E[(R(o,T) — E [R(0, T)])"].

Let d(v) denote the depth of v, i.e., the distance from v to the root p. For any u; < ... < wjg
we have P[r(u) = o] = 1/|o]|! and so it immediately follows that,

BlRe. 1] = ¥ Elntw == 3 (7). 1)

u1<...<u‘6‘
For length two permutations, e.g. inversions, E [R(21,T)] = 2 Y(T") where Y(T) e >, dv)
is called the total path length of T. We state our results in terms of a tree parameter YX(T')
which generalises the notion of total path length.
We define Y¥(T') which allows us to generalize (1) to higher moments of R(o,T). For r

nodes vy, ...,v, (not necessarily distinct), let ¢(v1,...,v,) be the number of ancestors that
they share c¢(vy,...,v,) def {u €V :u<wv,vg,...,v,} which is also the depth of the least
common ancestor plus one. That is ¢(vy,...,v,) =d(v1 V... Vv,) + 1 where we write d(v)

for the depth of v and vy V vy for the least common ancestor of v; and ve. The ‘off by one
error’ is because the root is in the set of common ancestors for any subsets of nodes but we
use the convention the root has depth 0. Also define

O S o I (1) ©)

Ul yeney Uy =1

where the sum is over all ordered r-tuples of nodes in the tree and with the convention (g) =1
For a single node v, d(v) = ¢(v) — 1, since v itself is counted in c(v). So Y(T) = T3(T) — |V|;
i.e., we recover the usual notion of total path length. The & = 2 case recovers the r-total
1w C(V15 0.

Indeed the distribution of the number of permutations in a fixed tree has already been
studied in [3]. Let 3. = »,.(X) denote the r-th cumulant of a random variable X (provided
it exists); thus s (X) = E[X] and (X)) = Var (X).

common ancestors defined in [3], Y2(T) = Y
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» Theorem 1 (Thm 1 of Cai et al. [3]). Let T be a fived tree. Let 3, = 3,.(R(21,T)) be the
r-th cumulant of R(21,T). Then forr > 2,

v = B 2y )

r

where B, denotes the r-th Bernoulli number.

For the case of T' a complete binary tree on n vertices we asymptotically recover this
result for large n. Moreover we extend it to cover any fixed permutation o for complete
binary trees.

» Remark. In essence Theorem 1 of [3] shows the r-th cumulant of the number of inversions
is a constant times T2(T"). Our main result on fixed trees, Theorem 2 (resp. Theorem 4 on
split trees), shows that for any fixed permutation o of length k for complete binary trees
(and whp for split trees) the 7-th cumulant is a constant times Y¥(7},) asymptotically. The
exact constant is defined below and is a little more involved than for inversions but observe it
is a function only of the moment r and the length of k = |o| together with the first element
o1 of the permutation o = o7 ...0x. With some work one can show Dqa, = B.(—1)"/r and
so Theorem 2 does asymptotically recover Theorem 1 for complete binary trees.

We now state our first main result.

» Theorem 2. Let T,, be the complete binary tree of depth n and fix a permutation o =
o1...0% of length k. Let ». = s,.(R(0,T,)) be the r-th cumulant of R(o,T,). Then for
r=2,

%r*DorT( )JFO(Tk( )) (3)

where

p 2 @) O i e ®

k! J k—1)+1)!((o1 = DIk — o1)!)’

This implies the following corollary.

» Corollary 3. Let T,, be the complete binary tree of depth n. For permutations o of length 3,

LY3(T,) (1 +0(1))  for o = 123,132,312,321

V(R(O', Tn)) = {180T3(T )( +o0(1)) foro=213,231

and more generally for o0 = 0103 ...0,

W(ﬁ — k%)'f’g(l +0(1)) for o1 € {1,k}

V(R(O—, Tn)) =
(2]6—1)(/6—0‘})!(/4;-’,—01—2)! - (k,) )Tk(l +0(1))

» Remark. The methods of proof are very different for inversions and general permuta-
tions. In [3], the method takes advantage of a nice independence property of permuta-
tions. For a node u let I, be the number of inversions involving u as the top node:
I, = {w:u < w,m(u) > w(w)}|. Then the {I,}, are independent random variables and I,
is distributed as the uniform distribution on {0,...,|Ty|}, see Lemma 1 of [3].

Without an obvious similar independence property for general permutations our route
instead uses nice properties on the number of embeddings of small digraphs in both binary
trees and, whp, in split trees. This property allows us to calculate the centralised r-th

9:3
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moment of R(o,T) directly from a sum of products of indicator variables as most terms in
the sum are zero or negligible by the embedding property. The centralised r-th moment is
then approximately a function of the j-th cumulants for j7 < r and we are able to deduce the
r-th cumulant by induction.

We now define a particular notion of embedding small digraphs into a tree which will be
important as discussed in the previous remark.

In the complete binary tree we have a natural partial order, the ancestor relation, where
the root is the ancestor of all other nodes. Any fixed acyclic digraph also induces a partial
order on its vertices where v > w if there is a directed path from v to u. Define [ﬁ |1, to
be the number of embeddings ¢ of H to distinct nodes in 7T}, such that the partial order of

vertices in H is respected by the embedding to nodes in T;, under the ancestor relation.

[H]r, d§f|{4 . V(H) — V(T,,) such that if u < v in H then ¢(u) < v(v) in T, }|

! need not respect relations. If w L v in H', i.e. u,v

Observe the inverse of embedding ¢~
are incomparable in H then we can embed so that ¢(u) < ¢(v), t(u) > t(v) or t(u) = v(v)

in T,. For an example of this take the digraph Q and denote by P, the rooted path on ¢

nodes. Notice that in {}; two of the vertices are incomparable but the vertices of the digraph
can be embedded into the nodes of a path which are completely ordered. The counts are
[Q} p, = 2 and in general [{:}] P, = Q(fi).

A particular star-like digraph gk,r will be important. This is the digraph obtained
by taking r directed paths of length k£ and fusing their source vertices into a single vertex.
Alternatively we can state the theorem in terms of star counts as [§|g|7r]Tn =1l (T)(140(1)).
See the beginning of the proof of the theorem for details.

Split trees

Split trees were first defined in [4] and were introduced to encompass many families of trees
that are frequently used in algorithm analysis, e.g., binary search trees [6], m-ary search
trees [8] and quad trees [5].

The random split tree T, has parameters b, s, sg, s1, V and n. The integers b, s, sg, s1 are
required to satisfy the inequalities

2<bh, 0<s, 0<s9<s, 0<bs;i<s+1-—sq. (5)

and V = (V1,...,V,) is a random non-negative vector with 23:1 V=1

We may now define the random split tree as follows. Consider an infinite b-ary tree U.
The split tree T,, is constructed by distributing n balls (pieces of information) among nodes
of U. For a node u, let n, be the number of balls stored in the subtree rooted at u. Once n,,
are all decided, we take T;, to be the largest subtree of U such that n, > 0 for all u € T},.
Let Vi, = Vi1, -+, Vap) be the independent copy of V assigned to u. Let uq,...,up be the
child nodes of u. Conditioning on n,, and V,,, if n,, < s, then n,, = 0 for all 4; if n,, > s, then

(Muys - -y My, ) ~ Mult(n — so — bs1, Vi1, -+, Vo) + (81,81, .-, 81),

where Mult denotes multinomial distribution, and b, s, sg, s1 are integers satisfying (5). Note
that Z?:l ny, < n (hence the “splitting”). Naturally for the root p, n, = n. Thus the
distribution of (14, Vu)uev ) is completely defined. For this paper we will also require that
the internal node capacity sg is at least one so that there are some internal balls to receive
labels.

This next theorem is our other main result.
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Figure 1 An example of a directed acyclic graph H with ‘sink’ (green), ‘ancestor’ (blue) and
‘common-ancestor’ (red) nodes indicated by colour. This particular digraph is in G4,7 and it appears
in the seventh moment calculations of R(o,T) for |o| = 4.

—@—@

» Theorem 4. Fix a permutation 0 = o1 ...0y of length k. Let T, be a split tree with split
vector V = (Vi,...,Vp) and n balls. Let 3¢, = »,.(R(0,T,)) be the r-th cumulant of R(o,T,).
For r > 2 the constant D, , is defined in line (4). Whp the split tree T,, has the following

property.
s = Do, YH(T,) + o(TE(T)).

Our theorem says the following. Generate a random split tree T},, whp it has the property
that the random number of occurrences of any fixed subpermutation in a random ball
labelling of T}, has variance and higher cumulant moments approximately a constant times a
‘simple’ tree parameter of T,,.

We may contrast this with Theorem 4 of [3]. This theorem states the distribution of
the number of inversions in a random split tree; where the distribution is expressed as the
solution of a system of fixed point equations. It is work in progress to find the distribution
of YK(T,,). This would extend Theorem 4 of [3] about inversions to general permutations.

2 Embeddings of small digraphs into the complete binary tree

Certain classes of digraphs will be important in the proof of Theorem 2, loosely those that
may be obtained by taking r copies of the path ﬁk and iteratively fusing pairs of vertices
together. It will also matter how many embeddings each digraph has into the complete
binary tree. In Proposition 9 we show the counts for most digraphs in such a class are
dwarfed by the counts of a particular digraph in the class. The main work in the proof of
this proposition is to show that the number of embeddings of any digraph H , up to a factor
of n, depends only on the numbers of two types of vertices in H. We separate this result out
as a lemma, Lemma 5, which we show first before proving the proposition.

A vertex in a directed graph is a sink if it has zero out-degree. For a directed acyclic
graph H we define A; C V(ﬁ ) to be the vertices with exactly ¢ descendents in H which are
sinks. In particular Aq is the set of sink vertices. We will call vertices in A; ancestors as
they are ancestors of a single sink and those in A; for i > 2 common-ancestors as they are
the common ancestor of at least two sinks (see Figure 1). Observe if H is a directed forest
then the sinks are the leaves but a sink may have indegree more than one as in the rightmost
sink in Figure 1

9:5
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The next lemma shows that the numbers of sinks and ancestors in H determine the
number of ways to map H into the complete binary tree T,, on n vertices to within a factor
of Inn.

» Lemma 5. Let H be a fized directed acyclic graph and let T, be the complete binary tree
of height m with n = 2™ — 1 vertices. Then writing |Ao| = |Ao(H)| for the number of sink
(green) vertices and |Ay| = |A1(H)| for the number of ancestor (blue) vertices

—

Q(nlAUl(lnn)lAll) = [H|r, = o(nlel(lnn)lAllH).

Proof of upper bound. The key observation is that for most pairs of nodes in T,, their least
common ancestor is very near the root. Let the nodes at depth d be wy, ..., wsa. Fix a node
u in the tree. Provided the depth of node w is at least d, i.e. h(u) > d then if c¢(u,v) > d it
must be that 4 and v are in the same subtree T,,, for some i. If h(u) > d let w(u) be the
node at depth d which is either node u itself or an ancestor of u. Thus

D Ae(uw,v) >d] <Y v € Tyy)] Y 1d(u) < d]
| 2(m 4 2m 4 _1)(2m T — 1)

<
< 22m—d+2+1+m2m+1+22d+2

n?273 L omn (6)

Fix € > 0 such that |Az|e < 1/2. Let B be the set of | Ag|-tuples of vertices so that some pair
of them have an ancestor at depth > n¢. By (6) the set is B is small: |B| < |Aq|?n!4ol . 277",

Given an embedding of Ag into 7, the number of ways to extend an embedding of H into
T, is at most m!411*142] This is because each vertex in A; U A must be embedded as an
ancestor of the embedding of a vertex in Ay and each vertex in T, has at most m ancestors.
And in particular, if Ag is embedded to a |Ag|-tuple not in B there are at most ml41l+el4z2l
ways to extend to an embedding of H. Thus

T < Aol |Arl+elAz| [Ao|—ep, | Arl+]A2] _ [Ao] [Ar|+1
[H]r < nl?olm +n m o(n!ol(Inn) ),
where the second inequality follows because m = O(Inn). |

Proof of lower bound. We restrict attention to embeddings where all common-ancestors are
embedded very near the root of T,,, the sink vertices are embedded to leaves of T,, and the
ancestor vertices are placed on the path between the root of T;, and the leaf in to which their
descendent sink was embedded (see Figure 2). There are sufficiently many such embeddings
to obtain the lower bound. In fact we restrict a little further to make it easy to check all the
embeddings are valid.

By an abuse in notation denote by Ay the union U;>2A4;. As H is an acyclic digraph the
directed edges define a partial order on all vertices of H and in particular for those in As.
Thus this relation can be extended to a total order. Fix some total order <, on V(H) and
relabel vertices in A, so that v1 <, ... <i V| Ay|- Thus we may embed v; to the root p in T),
and each v;41 to a child of the node to which v; was embedded and the relation between
vertices in H will be preserved by their embedding in T},; i.e. we may embed Ay to the nodes
on the path from p to some u* at depth |As| — 1. Fix such a node v* and let T* be the
subtree of T;, from u*.

Label the sinks Ag = {s1,...,5/4,} and vertices in A; according to which sink they are

the ancestors of A1 % {v e A1 : v < s;}.

We obtain a subcount of [H]z, by embedding Ay onto the path from p to u*, embedding
Ap to leaves of T* and then for each ¢ in turn embedding vertices in A; on the path from u*
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—>
21421 Jeaves

Figure 2 Schematic for the lower bound construction in Lemma 5. The colours indicate the
positions in the binary tree to which the common-ancestor (red), ancestor (blue) and sink (green)

— Py

vertices are embedded. Recall Ay = Ay(H) denotes the set of common-ancestor vertices of H.

to the embedding of s;. There are m — |Aa| — 1 vertices on the path from s; to «* and at
most |A;| of them already have an ancestor vertex embedded onto to them (i.e. from A7 for
some j < i). Thus

% 2mA2> (m—|A2|—|A1|—1)
H > )
Hlr, ( a0 )1 A1)

where the first binomial counts the number of ways to embed Ay and the i-th binomial in
the product counts the ways to embed Ai. Now because H is fixed |As| = O(1) and the

product over 7 is at least (m_l‘ffl‘_l) so the lower bound follows. <

3 Embeddings of small digraphs into the split trees

In this section we show upper and lower bounds on the number of embeddings of a fixed
digraph H , thought of as constant, into a random split tree with n balls. We begin by briefly
listing some results on split trees from the literature that will be useful for us.

For split vector V define pn = >, E[V; In V;]. The average depth of a ball is ~ i Inn [7][Cor
1.1]. Moreover almost all balls are very close to this depth. Define a ball v to be good if it
has depth

1
|d(v) — = Inn| < In%n
7

and then whp n — o(n) of the balls in the split tree are good [2][Thm 1.2]. That whp in a
split tree all good balls have a ©(n) depth and almost all balls are good is the only result
about split trees required for the proof of the lower bound on [FI |7, in Lemma 8. For the
upper bound we need a bit more.

It is known that the height of a split tree with split vector V is whp (¢ + o(1))Inn for a
(known) constant ¢; for details see [1][Thm 2]. We write T, to denote the subtree from bag

(node) u and |T,,| the number of balls in the subtree.
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» Lemma 6. Fiz k. Let U be the set of bags at depth |alnlnn| for some large enough
constant oo = a(k). Then whp

2

Sinee()

uelU

We omit the proof of the lemma but note that it follows the same steps as Lemma 3.5
of [2].

Similarly for binary trees we show that the number of embeddings of a fixed acyclic
digraph H , to a good approximation, depends only on the number of ‘sink’ and ‘ancestor
vertices in H. It is a little trickier to prove the corresponding statement to the upper bound
Lemma 5 in the case of split trees. However, we are rewarded by a tighter bound on the
number of embeddings is determined by the numbers of ‘sink’ and ‘ancestor’ vertices up to

)

Inlnn factors.

» Lemma 7. Let H be a fized directed acyclic graph and let T,, be a split tree with split
vector V and n balls. Then writing |Ag| = |Ao(H)| for the number of sink (green) vertices,
|Ay| = |Ay(H)| for the number of ancestor (blue) vertices and |As| = |Ay(H)| for the number
of common-ancestor (red) vertices whp

[H]r, = O(n!!(Inn) 41 (Inlnn)42!).

Proof. The idea of the proof is to show that any way of embedding Ao(H) into the tree can
only be extended to an embedding of all the vertices in H in a limited number of ways. Note

Hr, = Y. f(v) (7)

V=01,..,V|Aq|

where f(v) is the number of ways to extend an embedding of Ag(H) to an embedding
V(H) — V(T,). Formally label the vertices in Ao(H) by s1,..., 514, and define

f(v) = |e:uls;) =vjforeach j=1,...,|4g| and
v: V(H) = V(T;,) such that if u < v in H then v(u) < t(v) in T}, }|.

We claim first that for any v, whp f(v) = O((Inn)/411+142) and indeed will later show a
stronger bound holds for most v.

To see this first claim recall that whp the height of a split tree on n balls is ©(lnn).
In particular the depth of each ball v; is O(Inn) and so v; has O(Inn) balls as ancestors.
Each vertex in A;(H) U Ay(H) must be embedded to a ball which is the ancestor of some v;
(and possibly further restricted to balls which are ancestors of some set of v;’s but we will
not need this). Hence there are at most O(Inn) choices of where to embed each vertex in
Ay(H) U Ay(H) which finishes the claim.

Similarly to the proof for the case of binary trees we now exploit the fact that in split
trees most pairs of balls have their least common ancestor in a bag very near the root. This
will allow us to define a large set of v for which f(v) is small.

Say a tuple of balls v is inbred if some pair of balls has a common ancestor at depth
greater than L &f |alnlnn| for some « such that Lemma 6 holds with k = |A3|. Denote the

set of these tuples by Z. We claim that whp

IZ] < |Ao|?n?(nn)~ 142, (8)
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Before proving claim (8) let us show that it implies the theorem. If a tuple of balls is

not inbred, v ¢ Z, then any ancestor of any pair of balls has depth at most L = O(ln Inn).

Thus whp there are at most O(In1nn) ch01ces of where to embed each vertex in Aq(H ) when
extending an embedding in which Ag(H ) was embedded to v ¢ Z. So for non inbred v,
mg%(f( v) = O((Inn) Al (Inn n)1421).
We are almost finished (modulo the claim). By (9) and recalling there are less than n!4o!
possible tuples of balls we get

[Hlr, = > f(v)+ Y f(v) < [Z]O((Inn) 1421y 4 O(nlol (Inn) 4 (InTnn)l42T) - (9)

vel v¢T

and so the claim |Z| = O(n!4°l(Inn)~142l) does imply the theorem.
It now remains to prove the claim. Let ¢(v1,v2) be the depth of the bag which is the
least common ancestor of balls v; and vs. To prove the claim it suffices to show

n2

Z 1[e(vy,ve) > L] < W

V1,2

Trivially, if ¢(v1,v2) > L then both v; and vo must be at depth at least L. Also notice
if v; and vo have their least common ancestor at depth at least L they must have some
common ancestor, u say, at depth exactly L. Let U be the set of bags at depth L. Then

l[c(vl,vg) > L] = 1[”01,’112 e T, for some u € U}

and so we may apply Lemma 6 directly
n2
Z Ue(vr, v2) 2 Z|T * < (In )l A=l
V1,02
which establishes the claim. <

» Lemma 8. Let H be a fized directed acyclic graph and let T, be a split tree with split
vector V = {Vi,...,Vs} and n balls. Then writing |Ag| = |Ao(H)| for the number of sink
(green) vertices and |A1| = |A1(H)| for the number of ancestor (blue) vertices whp

[H]z, = Q(n4l (Inn)l 4.

Proof. (sketch) We describe a strategy to embed H into T,. The details of the proof are

then to show that whp this strategy can be followed to obtain a valid embedding of H and

that there are sufficiently many different such embeddings to achieve the lower bound.
First embed ‘common-ancestor’ vertices along a path to some node u* with 1 = Q(n)

balls. Now consider a split tree with 7 balls and embed ‘ancestor’ and ‘sink’ vertices into that.

Embed ‘sink’ vertices to ‘good’ balls in the tree (i.e. depth very close to the expected depth)
and the ‘ancestor’ vertices to balls which along the path between u* and the embedding of
their descendent. See Figure 3.

We embed the common-ancestor vertices, Ag(ﬁ ), to the balls in the nodes on the path
between a node, u* say, at depth |As| — 1 and the root, using one ball per node. This is
so far effectively the same as in the binary case. And we will later embed the ‘sink’ and
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p, n balls

|Az]

==

Figure 3 Schematic for the construction in Lemma 8. The colours indicate the positions in
the split tree to which the common-ancestor (red), ancestor (blue) and sink (green) vertices are

—

embedded. Recall A = A3(H) denotes the set of common-ancestor vertices of H.

‘

common-ancestor’ vertices to balls in the subtree T,-. We need to confirm there is some
node u* at depth L = |As| — 1 with 7 balls in its subtree. Each node (bag) has capacity at
most sp or s and at most (b*! — 1) nodes, a constant number, at depth less than L, so
n — O(1) balls remaining. These balls are shared between b¥, a constant, number of subtrees
T,. Hence by pigeon-hole principle some vertex u* has 7 = ©(n) balls in its subtree.

Now work in the split tree T;;. Embed the ‘sink’ vertices to any good balls v1, ..., v, in
the split trees. There are @(ﬁ'A‘J') ways to embed them. Label the ‘sink’ vertices s1, ..., 5|4,
and A'{ - A'{ (H) to be the ‘ancestor’ vertices with s; as their lone descendent. Vertices in
A can be embedded to balls anywhere between v; and u* and so there are O((In7)41l)
ways to do that for each j. All up there are Q(7l40l(In72)l411) ways to embed Ag(H)U Ay (H)
into balls of T;. But now as . = ©(n) we are done. <

4  Star counts

After having proved the required properties of our two classes of trees, binary trees and split
trees, we show these imply the desired results on cumulants of the number of appearances of
a permutation in the node labellings of binary trees, respectively ball labellings in split trees.

Say a sequence of trees T,, with n nodes (resp. balls) is explosive if for any fixed acyclic
digraph H

Q(nMol(inn)l Al = [H] 7, = o(n!40l(Inn)l41l+1),

Thus Section 2 was devoted to showing binary trees are explosive and Section 3 to
showing split trees are explosive whp. This section proves the cumulant results using only
this explosive property of the tree classes.

Now we introduce some notation in order to state Proposition 9. We use a notion

of subgraph on an ordered set of vertices. For a k-tuple of vertices V; = (v},...,vF)
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Figure 4 The set G5 5. Labels of the first path V1 = (v%, v, vf) indicated by black arrows between
the nodes and respectively brown arrows for labels of the second path Vo = (v%,v%vg’ ). Colours
of nodes indicate ‘sink’ (green), ‘ancestor’ (blue) and ‘common-ancestor’ (red) nodes respectively.
These labelled directed acyclic graphs appear in variance calculations of R(o) for |o| = 3.

e e
e

!
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we say H lv, = 131@ if the subgraph of H induced on V; has precisely the directed edges

1,2 ,2,3 k-1 k
(T D Dt DR DA A

The set Gy, , is the set of acyclic digraphs which may be obtained by taking r copies of
the path Py and iteratively fusing pairs of vertices together such that each path is involved

v,

in at least one fusing operation. Likewise labelled H' in g,’m are those obtained by fusing
together j labelled paths B, keeping both sets of labels when a pair of vertices are fused.
The set G} , is illustrated in Figure 4.

Formally let G , be the set of directed acyclic graphs H such that we can find (non-
disjoint) vertex subsets Vi,...,V, where for each i we have H lv, = B, and 35 # i with
VinV; = @. (The second condition is to ensure each i-th path is involved in a fusing
operation.) For H e G, write H' for H together with a labelling Vi,...,V, (note some
vertices have multiple labels). Likewise write G; . for the labelled set of graphs.

Denote by S"k,j the digraph composed by taking j copies of the path P, and fusing the j
source vertices into a single vertex. Also define S;,r = UiS’k,m where the disjoint union is
over all S, with Zl r; =1 and r; > 2. Observe Si, C G r.

» Proposition 9. Fiz k,r and let He Gk.r. Suppose T, is explosive. Ifﬁ ¢ Sk, then

(H]r, = 0[Sk, )-

Proof. First observe that §k7r has r sink vertices, (k — 2)r ancestor vertices and exactly one
common-ancestor vertex. Thus by the explosive property of T,

[Sk o]z, = Q(n" (Inn)F=2)7).
Fix H ¢ G- \Sk,» and fix a labelling V3,...,V, on H. Again by the explosive property
[H]p, = O(n|AO(ﬁ)|(lnn)lAl(ﬁ)H’l). (10)

Hence if [Ag(H)| < r — 1 then [H]r, = 0([Sk.,]) and so we would be done. Thus we
may assume that Ag(H) = r and it will suffice to show that A;(H) < (k — 2)r. Consider
the path labelled V* = (vi,...,vi). We know v} is a sink vertex and not fused with any
other vertex otherwise we would have Ao(H) < r. If vertex v’ is fused with another vertex,
it must be a vertex on a different path to avoid a cycle, and so vj and vj_y,...,v] would
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become common-ancestors. Thus if v; is fused to another vertex there are at most (kK —j — 1)
ancestor vertices in path V;. Hence if A1(H) = (k — 2)r then we must have only fused the
source vertices of each path but this means that H € Sj, and so we are done. |

By exploiting only the explosive property of binary and (whp) of split trees we prove
the moments result for both classes at once. In particular observe that Theorems 2 and 4
are both implied by taking Proposition 10 along with the lemmas proving binary trees are
explosive and split trees are whp explosive.

» Proposition 10. Suppose T,, is explosive. Let s, = s¢.(R(0,T,)) be the r-th cumulant of
R(o,T,). Then forr > 2,

Ay = Drr,rTlle(Tn) + O(TLU‘(TTL))

Proof sketch. The proof proceeds by induction on r with r = 2, the variance, as the base
case. The variance calculation is also a simpler version of the calculations for higher r and
so illustrates the key steps we use for the inductive step.

We give a rough idea of these steps. The variance (and higher centralised moments) can
be written as a sum over indicator random variables for a subpermutation occuring on a set
of |o| nodes. Almost all terms in this sum are zero or negligible. Firstly if the indicators
concern disjoint sets of vertices they are independent and because we calculate centralised
moments these terms drop away. This leaves only terms in the sum in which the nodes of
indicator variables overlap. We group the terms by how the vertices in these sets overlap
and the results about numbers of embeddings then show most groups are negligible.

For the variance only one group is non-negligible and so we will be done at this step. In
the inductive step the centralised r-th moment has only one ‘new’ group (not occuring in
smaller moment calculations) which is non-negligible as well as non-negligible groups which
appeared in smaller cumulants for j < r. This occurs in such a way that we can prove this
new group approximates the r-th cumulant. |
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—— Abstract

In a companion article dedicated to the enumeration aspects, we showed how to obtain closed
form formulas for the generating functions of walks, bridges, meanders, and excursions avoiding
any fixed word (a pattern p). The autocorrelation polynomial of this forbidden pattern p (as
introduced by Guibas and Odlyzko in 1981, in the context of regular expressions) plays a crucial
role. In this article, we get the asymptotics of these walks. We also introduce a trivariate
generating function (length, final altitude, number of occurrences of p), for which we derive a
closed form. We prove that the number of occurrences of p is normally distributed: This is what
Flajolet and Sedgewick call an instance of Borges’s theorem.

We thus extend and refine the study by Banderier and Flajolet in 2002 on lattice paths,
and we unify several dozens of articles which investigated patterns like peaks, valleys, humps,
etc., in Dyck and Motzkin paths. Our approach relies on methods of analytic combinatorics,
and on a matricial generalization of the kernel method. The situation is much more involved
than in the Banderier-Flajolet work: forbidden patterns lead to a wider zoology of asymptotic
behaviours, and we classify them according to the geometry of a Newton polygon associated with
these constrained walks, and we analyse what are the universal phenomena common to all these
models of lattice paths avoiding a pattern.
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L
N

Figure 1 Some models of self-avoiding walks are encoded by partially directed lattice paths
avoiding a pattern (see [2]). In this article, we analyse the asymptotics of more general walks (any
jumps, any forbidden pattern).

1 Introduction

Combinatorial structures having a rational or an algebraic generating function play a
key role in many fields: computer science (analysis of algorithms involving trees, lists,
words), computational geometry (integer points in polytopes, maps, graph decomposition),
bioinformatics (RNA structure, pattern matching), number theory (integer compositions,
automatic sequences and modular properties, integer solutions of varieties), probability theory
(Markov chains, directed random walks), see e.g. [4,11,22,32]. They are often the trace of a
structure which has a recursive specification in terms of a system of tree-like structures, or
of some functional equation solvable by variants of the kernel method [12].

Since the seminal article by Chomsky and Schiitzenberger on the link between context-free
grammars and algebraic functions [15], which also holds for pushdown automata [30], many
articles encoded and enumerated combinatorial structures via a formal language approach.
See e.g. [20,25, 28] for such an approach on the so-called generalized Dyck languages. The
words generated by these languages are in bijection with directed lattice paths, and in this
article, we try to understand how some of these fundamental objects can be enumerated
when they have the additional constraint to avoid a given pattern. For sure, such a class
of objects can be described as the intersection of a context-free language and a rational
language; therefore, classical closure properties imply that they are directly generated by
another (but huge and clumsy) context-free language. Unfortunately, despite the fact that
the algebraic system associated with the corresponding context-free grammar is in theory
solvable by a resultant computation or by Grobner bases, this leads in practice to equations
which are so big that no current computer could handle them in memory, even for generalized
Dyck languages with only 20 different letters.

In this article, we generalize the asymptotics obtained by Banderier and Flajolet [5] to
lattice paths avoiding a given pattern. As we shall see, the situation is much more involved,
and we build on the explicit formulas that we obtained in our companion article [1]. There,
we introduced a generic way to tackle the question of enumerating words avoiding a given
pattern (for languages generated by pushdown automata) which bypass these intractable
equations. For directed lattice paths, our method allows to handle an arbitrary number
of letters (i.e., allowed steps), up to alphabets of thousands of letters, computationally in
a few minutes. It relies on an analytic combinatorics approach, and also on the kernel
method, which we used in our investigation of enumerative and asymptotic properties of
lattice paths [6-8]. This allows to unify the considerations of many articles which investigated
natural patterns like peaks, valleys, humps, etc., in Dyck and Motzkin words, corresponding
patterns in trees, compositions. .., see e.g. [9,10,13,16,17,19,21,26,27,29].
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Table 1 Summary of our results from [1], which extend the Banderier—Flajolet results
from [5] to lattice paths avoiding a pattern. For the four types of paths and for any set of jumps
encoded by P(u), we give the corresponding generating function of such lattice paths avoiding a
pattern p (of length ¢ and final altitude b). The formulas involve the autocorrelation polynomial
R(t,u) of p, and the small roots u; of the kernel K (t,u) := (1 — tP(u))R(t,u) + t‘u’.

ending anywhere ending at 0

on Z

bridges

e

u; R(t,ui)
BO=-) o &tu)

i=

on N > -
meanders eXCurSiOnS
u c _ L+1 Cc
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2 Definitions and notations

In their paper, Banderier and Flajolet consider the following setting. Let S, the set of steps
(or jumps), be some finite subset of Z that contains at least one negative and at least one
positive number. A lattice path with steps from S is a finite word w = [v1,va,...,v,] in
which all letters belong to S, visualized as a directed polygonal line in the plane, which starts
in the origin and is formed by successive appending of vectors (1,v1), (1,v2),...,(1,v,). The
letters that form the path w = [v1, ve, ..., v,] are referred to as its steps. The length of w, to
be denoted by |w], is the number of steps in w. The final altitude of w, to be denoted by
h(w), is the sum of all steps in w, that is v; +ve + ... + vy,.

Under this setting, it is usual to consider two restrictions: that the whole path is (weakly)

above the z-axis, and that it has final altitude 0 (equivalently, terminating at the z-axis).

Consequently, one considers four classes of lattice paths:

1. A walk is any path as described above.

2. A bridge is a path that terminates at the x-axis.

3. A meander is a path that stays (weakly) above the z-axis.
4

. An excursion is a path that stays (weakly) above the z-axis and terminates at the z-axis.

In the generating functions, the variable ¢ corresponds to the length of a path, and the
variable u to its final altitude. P(u) is the characteristic polynomial of the set of steps S,
defined by P(u) = ) .su®. The smallest (negative) number in S is denoted by —c, and the
largest (positive) number in S is denoted by d: that is!, if one orders the terms of P(u) by

the powers of u, one has P(u) = u=¢+u®? +...+ufs-1 +ud with S = {—c¢, s, ..., 5)s8]-1,d}-

The drift of the walk is given by the quantity P’(1).

1 Some weights (or probabilities, or multiplicities) could be associated with each jump, but we omit them
in this article for clarity. All the proofs would be similar.
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3 Lattice paths with forbidden patterns and the autocorrelation
polynomial

We consider lattice paths with step set S that avoid a certain pattern, that is, an a priori
fixed path p = [a1, as, ..., as]. To be precise, we define an occurrence of p in a lattice path w
as a substring of w which coincides with p. If there is no occurrence of p in w, we say that w
avoids p. For example, the path [1,2,3,1,2] has two occurrences of [1,2], but it avoids [2, 1].

Before we state our results, we introduce some notations.

A presuffiz of p is a non-empty string that occurs in p both as a prefix and as a suffix.
In particular, the whole word p is a (trivial) presuffix of itself. If p has one or several
non-trivial presuffixes, we say that p exhibits an autocorrelation phenomenon. For example,
for the pattern p = [1,1,2,1,2] we have no autocorrelation. In contrast, the pattern
p=1[1,1,2,3,1,1,2,3,1, 1] has three non-trivial presuffixes: [1], [1,1], and [1, 1,2, 3,1, 1], and
thus in this case we have autocorrelation.

While analysing the Boyer—Moore string searching algorithm and properties of periodic
words, Guibas and Odlyzko [23] introduced in 1981 what turns out to be one of the key
characters of our article, the autocorrelation polynomial? of the pattern p: For any given
word p, let Q be the set of its presuffixes; the autocorrelation polynomial of p is

R(t,u) = Zt“ﬂuh@, (1)

qeQ

where ¢ denotes the complement of ¢ in p (i.e. ¢¢ = p) and h(q) the final altitude of a walk
made of the steps of g.

For example, consider the pattern p = [1,1,2,3,1,1,2,3,1,1]. Its four presuffixes produce
four terms of R(t,u) as follows:

q lal | h(@)

(1] 9 15

(1,1] 8 14

(1,1,2,3,1,1] 4 7
(1,1,2,3,1,1,2,3,1,1] | 0

Therefore, for this p we have R(t,u) = 1 + t*u” + t3u* + t%u!5. Notice that if for some p no
autocorrelation occurs, then we have Q = {p} and therefore R(t,u) = 1.

Finally, we define the kernel of a lattice path avoiding some pattern p as the following
Laurent polynomial:

K(t,u) := (1 —tP(u))R(t,u) + t/Plu P, (2)

Also, in our case it can be shown that each root u = u(t) of K(t,u) = 0 is either small
(i.e., limy_,ou(t) = 0) or large (i.e., limy_,o |u(t)] = +00). The small roots are denoted by
Ui, ..., u.. We will also refer to them as the small branches.

Now we can state the enumeration results. Recall that ¢ is the variable for the length of
a path, and w is the variable for its final altitude.

» Theorem 1. Let S be a set of steps, and let p be a pattern with steps from S. Denote £ = |p|,
b= h(p). Let R(t,u) be the autocorrelation polynomial of the pattern p. Let uq, ..., u. be the

2 A similar notion also appears in the work of Schiitzenberger on synchronizing words (31].
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X, 9 X, 1 Xy 9 X,
1] [1,2] [1,2,1] [1,2,1,2]
1 l\ 1 )

1
—-1,2
-1
2

Figure 2 The automaton for the jumps S = {—1,1,2} and the pattern p = [1,2,1,2, —1]. Any
walk avoiding a given pattern p is associated with a similar automaton. It is in fact a pushdown
automaton, in order to follow the positivity constraint. The matricial kernel method leads to the
formulas of Theorem 1 for the corresponding generating functions, without having to solve a big
algebraic system.

small roots of the kernel K(t,u), as defined in (2). Then (under one additional constraint
detailed in the proof), the generating functions of walks, bridges, meanders and excursions
avoiding the pattern p are given by:

1
T 1-tP() + /Rt 1)’

W(t) (3)

e

u; t) R(t,u;
B(t)z—;uigt;fff(tﬂw))’ ;

c

M0 = B T - w(o). ©

i=1

(— )C+1 c ) . e
E(t) _ { lt Hi:l Uz(t) ’tfb > , (6)

—1)ctt c .
( tljtg [[ioguwi(t) ifb=—c.

Proof. We refer to our companion article [1] for the proofs and the complete bivariate
generating functions. The kernel K (¢,u) is in fact the determinant of (I — tA(u))~!, where
A(u) is the transition matrix encoding the stack automaton associated with the constrained
walk (see Figure 2 below). The formulas then follow from an extension of the kernel method
to matrix equations. (In fact, we presented above the simplified formulas for M and E,
when p is what we call a pseudomeander, i.e. a lattice path which does not cross the z-axis,
except, possibly, at its last step. If this is not the case, then we may have more than ¢ small
roots.) <

» Remark. Notice that for these four classes of lattice paths, forbidding a pattern of length 1
or using symbolic weights for the jumps recovers the formulas from Banderier and Flajolet [5].
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4 Asymptotics of excursions avoiding a given pattern

The aim of this section is to characterize the asymptotics of the number of walks with
jumps S avoiding a given pattern p.

» Lemma 2 (Location of the dominant singularity). The dominant singularity (i.e. the nearest
from zero) of B(t) and E(t) is p, the smallest real positive number where a small branch
meets a large branch. (The branches refer to the solutions of K(t,u) =0, as defined in (2)).

Proof. Lattice paths avoiding a given pattern can be generated by a pushdown automaton
(see Figure 2). Accordingly, they can be generated by a context-free grammar, and their
generating functions therefore satisfy a “positive” system of algebraic equations (see [15]).
Therefore, the asympotic number of words of length n in such languages is of the form
Cp~"™n®. When the system is not strongly connected, « is either an integer (if p is a pole),
either a dyadic number (if one has an iterated square root Puiseux singularity at p), as proven
by Banderier and Drmota in [4]. For excursions, one has a strongly connected dependency
graph (see Figure 2); the dominant singularity p (or, possibly, the dominant singularities)
thus behaves like a square root. What is more, the cycle lemma (see the discussion on this
in [5]) gives a correspondence between excursions and bridges, which implies that E(t) and
B(t) have the same radius of convergence (this still holds when there is a forbidden pattern).

Now, because of the product formula (6) for excursions, one (or several) of the small
branches have to follow this square root Puiseux behaviour. By Pringsheim’s theorem, this
has to be at a place 0 < p < 1; the geometry of the branches implies (see Table 2) that its
location is where a large branch meets a small branch (because if the branching point comes
from the intersection of small branches only, then their product will be regular). Therefore,
p has to be the smallest real positive number where a small branch meets a large branch. <«

» Remark. p is also the radius of convergence of meanders with negative or zero drift. For
meanders with positive drift, the dominant pole of 1/K (¢, 1) will be the radius of convergence.

In order to avoid pathological cases, we now focus on generic walks.

» Definition 3 (Generic walks). We call a constrained walk model “generic” if the following
three properties hold.
Property 1. The generating functions B(t), M (t) and E(t) are algebraic, not rational.
Property 2. They have a unique domininant singularity.
Property 3. No large negative branch (i.e. a branch such that lim, o+ u(z) = —00) meets
a small negative branch at p.

These three properties are very natural; we now comment more on them:

For Property 1, it can be the case that the forbidden pattern leads to a degenerated model,
in the sense that it is no more involving any stack and then we have words generated by
a regular automaton (then, the generating functions are rational and the asymptotics are
well understood). Example: S = {—1,1} and p =[1,—-1] or p = [-1, —1].

For Property 2, it is proven in [3] that multiple dominant singularities appear if and only
if the ged of the pairwise differences of the jumps is not 1. In this case, the asymptotics
are obtained via [8, Theorem 8.8].

For Property 3, we conjecture that it always holds. We have a proof for many classes of
walks, but some remaining cases are tricky as it is possible to exhibit cases where one
small negative branch meets a large negative branch, at some p’ > p: This is e.g. the case
for § ={-2,-1,0,1,2} and p = [0,1, —2]. Moreover, it is also possible that two small
negative branches meet at p: This is e.g. the case for § = {—2,1} and p =[1,-2,1, —2].
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Table 2 Plot of the real branches of the kernel equation K(¢,u) = 0, for several pattern p. This
illustrates the diversity of behaviours. In all the examples, the set of jumps is S = {-2,-1,0, 1, 2},
and the pattern p is indicated. Note that due to a theorem of Pélya—Fatou—Carlson [14] on pure
algebraic functions with integer coeflicients (and therefore for generic walks), the first crossing
between a small and large branch is at 0 < p <1 (i.e. p =1 or any other root of ¢t — t*, cannot be

the dominant singularity).

Rl

ES
'

-4

-05

p= [0705717727070] p= [715727717727717721 b= [71772771571572771]
4 1 4
3 3
1 1
4 -3 2 - l)\/\ 2 3 a4 1 -05 05 1 4 -3 2 U\/\ 2 3 a4
-l -1
. (-\ )
4 o "
p= [—17_1707_17_1701 p= [_27_2707 _27 _270} b= [_27_1715_27_171]
L 4 4
3 3
4 -3 2 | ()W a2 (}\_\/_7/——3——.1 4 -3 B | ()W"ﬂ
-1 -1 -1
p=1[2,2-1,2,2—1] p=1[2,-1,-1,2,—1,—1] p=1[2,-1,-1,2,—1,1]
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(0, —b)

-l <b< —c —c<b<d d<b<dl

Figure 3 The three possibilities for the Newton polygon of the kernel K (¢, u) (the list is exhaustive
if R(t,u) = 1). Each dot (i, j) corresponds to a monomial t'u? of K. The slopes of the convex hull
segments on the left give the Puiseux behaviour at 0 of the small and large roots u; and vj.

We observe that the behaviour of real branches of K (¢,u) = 0 is much more complicated
and diverse than that in the Banderier—Flajolet study. To recall, in their case there are always
exactly two real positive branches (one small branch w; and one large branch v;), and they
meet at a singularity point (¢,u) = (p, 7), where u = 7 is the only positive number such that
P’(7) = 0. In contrast, in our case we may have additional positive branches — even when
the autocorrelation is trivial. Table 2 illustrates that we always have a small branch and one
large branch whose shape in general resembles that of w; U v; from Banderier—Flajolet.

In one sense, the forbidden pattern gives a perturbation of the Banderier—Flajolet geometry
of branches, and adds additional branches. A rigorous version of this intuition can be obtained
by playing with a Boltzmann weight/Gibbs measure (like in statistical mechanics): moving
the parameter v in a continuous way from 1 to 0 in the generating function F'(¢,u,v) in the
next section gives the explanation of these phenomena.

More information about these branches (on their Puiseux expansions) can be derived
from the Newton polygon associated with the kernel (see [18] for a crisp presentation of the
theory of Newton polygons for Puiseux expansion).

Equipped with all this information on the roots, and the way they cross, we can derive
the following asymptotic results. Note that we use the notations K;(t, u) for (0, K)(¢,u), and
Kuu(t,u) for (02K)(t,u). We start with asymptotics of walks on Z with a forbidden pattern.

» Theorem 4 (Asymptotics of walks on Z). Let px be the smallest positive root of K(t,1).
For any generic model, the asymptotic number of walks of length n is:

Wiy ~ —prKi(prc, 1) R(pr, 1)pg” -

Proof. This follows from the partial fraction decomposition of W (t) = RD <

» Theorem 5 (Asymptotics of excursions). Assume that we have a generic walk avoiding
a pattern p which is a pseudomeander. Let Y (t) := (—=1)"tug(t) - - - u.(t). The number of
excursions of size n satisfies

Ki(p, 1
t(p,1) _nfs/zpfn'

E,~Y _
YO (o)

Proof. Since the walk is generic, Y (t) is analytic for |¢| < p. Thus the singular behaviour of
u1(t) determines the singularity and the local behaviour of E(t). We obtain:

B ~ ()~ Y (o)) e T 1L <
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» Theorem 6 (Asymptotics of bridges). Assume that we have a generic walk avoiding a
pattern p. The number of bridges of size n satisfies

R(paT) Kt(pv 1) 'n—1/2p—n.

B, ~ —
TKi(p,7) \| 2mpKuu(p, 1)

Proof. We know from Lemma 2 that B(¢) and E(t) have the same radius of convergence.
Thus, the singular behaviour of u;(¢) determines the singularity and the local behaviour of
B(t). We have therefore

Rt w(8) ui(t)
Ki(t,uq(t)) ui(t)

B(t) ~

and plugging the singular expansion of u; into this formula yields the result. |

» Theorem 7 (Asymptotics of meanders). Let px be the smallest positive root of K(t,1) (as
in Theorem 4). Assume that the walk is generic and that p is a pseudomeander. Then the
asymptotics of the coefficients of the meander generating function

c

MGz)=1—-uwi(t)Y(O)R(t,1)/K(t,1) with Y (t) := H(l —u; (1))

=2
is given by
M, NR(p,l)Y(p) 2 _n—1/2p—n (fOT’ oK :p),
ﬂ-pKt(pa I)Kuu(p7 1)

Y(px)R(px,1)
Mn ~N—— NP n or - ’
prKi(px,1) Pr (for px < p)

R(p, )Y (p) | pKi(p,1) 55 _

Mn ~ 4 ) ‘n /2 n - - '
K(p,1) '\ 2nKuu(p, 1) P (for pr > p)

Proof. To prove the first assertion, observe that px = p is equivalent to 7 = 1. The dominant
singularity of the generating function M (t) = (1 — uy(¢))Y (t)R(¢,1)/K (¢, 1) is at px = p
and it originates from a simple zero in the denominator K (¢,u) and from u;. The singular

expansion from u; (t) at p gives (we use k() := —m):

p

M(t) ~ R(p,1)Y (p)r(p)

Kuu(p:1) - VKi(p, 1) Kuu(p, 1) P

In the case px < p we have 7 # 1 and thus K(p,1) > 0. Hence the generating function
has the dominant singularity px which comes from the kernel only. This implies

Mt)~Y K R K,l R\PK ) 7.

(t) ~Y(px)R(pK, 1)K(p )17t/pK
In the last case, px > p, u; has a square-root type singularity before K (t,1) becomes
singular. Singularity analysis thus gives the last claim of the theorem, via the following
Puiseux expansion at the dominant singularity p

)~ a10p)+ SR R - <

10:9

M@ml)(l t)‘”2_ R(p, )Y (p)v2 (1_75)—1/2.
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Caveat: We are aware that several constants in these theorems can be further simplified,
but we kept them like this in order to help the reader to follow the proofs (just sketched
here, due to the page limit).

The theorems above for excursions and meanders are stated when the pattern p is a
pseudomeander; there is a similar result for any pattern, but the proof goes through a wider
disjunction of cases to handle, as then the closed form for the generating function is no more
the same. We will handle this in the full version of this article.

These asymptotics also allow to get results on limit laws, as presented in the next section.

5 Limit law for the number of occurrences of a given pattern

Our approach also allows to count the number of occurrences of a pattern in paths. As usual,
an occurrence of p in w is any substring of w that coincides with p, and when we count
them we do not require that the occurrences will be disjoint. For example, the number of
occurrences of 11 in 1111 is 3. We use the same notations than in Section 3. Then one has

» Theorem 8 (Gaussian limit laws for occurrences). Let X,, be the random variable which
counts the number of occurrences of a pattern in a generic walk, bridge, meander, excursion
model. Then X, has a Gaussian limiting distribution with E[X,] = un+O(1) and Var[X,] =
a?n + O(1) for some constants u > 0 and o > 0:

1
Vn
Proof (sketch). The proof relies on the Gaussian limit laws for positive algebraic systems
from [4, Theorem 9], which itself comes from following the dependency in the graph associated

(X — E[X,,]) = A(0,02).

with the system, and applying Hwang’s quasi-power theorem to each component. In this
process, some positive variance conditions have to be checked on the formulas given by an
equivalent of Theorem 1, with the additional variable v counting the number of occurrences
of the pattern, and where the corresponding trivariate kernel is

K(t,u,v) :=det(I —tA) = (1 —0)((1 — tP(u))R(t,u) + t‘u®) + v(1 — tP(u)). (7)

This comes from the associated automaton (as illustrated in Figure 4), and its adjacency
matrix A. Note that for v = 0 we get the kernel from the avoidance case (see equation (2)),
and for v =1 we get 1 — tP (which is, as expected, the kernel from [5]).

To show the relation (7), we use a method adapted from [22, p. 60]. Let W = W (¢, u,v)
and W, = Wp(t,u,v) be the generating functions of all words and words ending with p,
respectively, where v counts the number of occurrences of p. We show the following two

identities:
L+WtP =W — W, + v 'W,, (8)
Wttub = v 'W,R — (R — 1)W,. (9)

This system is readily solved and gives W as a rational function with denominator the right-
hand side of (7). Since it is an irreducible polynomial, with degree ¢ in ¢, this denominator
times a polynomial factor Q(¢,u,v) has to be equal to det(I — tA). In fact, Q(¢,u,v) = 1.
Indeed, an inspection of the degrees of the product shows that they cannot be higher than the
degrees of the determinant of I — tA, and multiplying the denominator by a non constant @
would contradict this. Now, setting v = 1 gives that 1 —¢P = det(I —tA) = (1 —tP)Q(t, u, 1)
and thus @ = 1. This shows (7).
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[ =1 2
= X3 1 X, Ut w u

[1,2,-1] [1,2-1,1]

-1 u w u?y

Figure 4 Pushdown automaton for the set of jumps & = {—1,1,2} and the pattern p =
[1,2,—1,1,2]. In dashed red we marked the arrow from the last state (X,—1) labelled by the last
letter of the pattern (a¢). Marking this transition with v leads to formulas involving the kernel
K (t,u,v) = det(I —tA) as given in Equation (7), where A is the adjacency matrix of this automaton.

To show (8), take a word and add a letter to it. If the resulting word does not end with p,
it is counted by W — W,; if it does, it is counted by v~'W,. To show (9), take a word w
and add the pattern p to it. This creates a number j > 1 of new occurrences of p. The
path wp can be written in j ways as w'r, where w’ ends with a new occurence of p and r is
an autocorrelation factor, or j — 1 ways if we impose that r # . It is therefore counted with
a factor v + -+ v7 by W,R and with a factor v + -+ + v/~ by (R — 1)W,, and the result
follows. |

6 Conclusion

In this article, we presented a unifying way which gives the asymptotics of all families of
lattice paths with a forbidden pattern, and we proved that the number of occurrences of a
given pattern is normally distributed. The same approach would, for instance, allow to do
the asymptotics of walks having exactly m occurrences of a given pattern, or to consider
patterns which are no longer a word but a regular expression.

It is also nice that our approach gives a method (let us call it the vectorial kernel method) to
solve in an efficient way the question of the enumeration and asymptotics of words generated
by a pushdown automaton (or words belonging to the intersection of an algebraic language
and a rational language). What is more, it is possible to use our functional equation approach
to analyse the intersection of two algebraic languages. Note that testing if this intersection is
empty is known to be an undecidable problem, even for deterministic context-free grammars
(see e.g. [24]), so we cannot expect too much from a generic method in this case. However,
we can specify a little bit more the type of system of functional equations we get: indeed
this problem is related to automata with two stacks, which, in turn, are known to have the
same power as a Turing machine; the evolution of these two stacks corresponds to lattice
paths in the quarter plane (with steps of arbitrary length), the complexity of the problem is
reflected by the fact that one can then get generating functions which are no more algebraic,
D-finite, or differentially-algebraic, and we do not expect some universal nice results here,
but a wider zoo of behaviours.

However, no doubt that all these cases will be new instances of what Flajolet and
Sedgewick called Borges’s Theorem: Any pattern which is not forbidden by design will appear
a linear number of times in large enough structures, with Gaussian fluctuations.

For sure, it is more a metatheorem, a natural credo, so it is always worthwhile to establish
this claim rigorously. Naturally, may it be with tools of probability theory or of analytic
combinatorics, there is always some technical conditions to check to ensure this claim. In
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this article, our closed form expressions for the generating functions were one of the keys,
together with the universal behaviour of the small branches. This allowed us to prove this
Gaussian behaviour for the number of occurrences of any given pattern. Year after year, this
claim is established for more and more combinatorial structures (it was done for patterns in
Markov chains, trees, maps, permutations, context-free grammars, and now... lattice paths!).

Let us end with the passage of Flajolet and Sedgewick [22, p. 61] which explains where
Borges’s Theorem comes from:

This property is sometimes called “Borges’s Theorem” as a tribute to the famous
Argentinian writer Jorge Luis Borges (1899-1986) who, in his essay The Library of
Babel, describes a library so huge as to contain:

“Everything: the minutely detailed history of the future, the archangels’ autobio-
graphies, the faithful catalogues of the Library, thousands and thousands of false
catalogues, the demonstration of the fallacy of those catalogues, the demonstration
of the fallacy of the true catalogue, the Gnostic gospel of Basilides, the commentary
on that gospel, the commentary on the commentary on that gospel, the true story
of your death, the translation of every book in all languages, the interpolations of
every book in all books.”
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Polya urns are urns where at each unit of time a ball is drawn and is replaced with some
other balls according to its colour. We introduce a more general model: The replacement rule
depends on the colour of the drawn ball and the value of the time (modp). We discuss some
intriguing properties of the differential operators associated to the generating functions encoding
the evolution of these urns. The initial non-linear partial differential equation indeed leads to
linear differential equations and we prove that the moment generating functions are D-finite. For
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state of the urns at time n). When the time goes to infinity, we show that these periodic Pélya
urns follow a rich variety of behaviours: their asymptotic fluctuations are described by a family of
distributions, the generalized Gamma distributions, which can also be seen as powers of Gamma
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Periodic Pélya Urns and an Application to Young Tableaux

1 Periodic Pélya urns

Pdélya urns were introduced in a simplified version by George Pélya and his PhD student
Florian Eggenberger in [7,8,27], with applications to disease spreading and conflagrations.
They constitute a powerful model, still widely used: see e.g. Rivest’s recent work on auditing
elections [28], or the analysis of deanonymization in Bitcoin’s peer-to-peer network [9]. They
are well-studied objects in combinatorial and probabilistic literature [2,11,22], and offer
fascinatingly rich links with numerous objects like random recursive trees, m-ary search trees,
branching random walks (see e.g. [3,6,15,16,30]). In this paper we introduce a variation
which offers new links with another important combinatorial structure: Young tableaux. We
solve the enumeration problem of this new model, derive the limit law for the evolution of
the urn, and give some applications.

In the Pdélya urn model, one starts with an urn with by black balls and wy white balls at
time 0. At every discrete time step one ball is drawn uniformly at random. After inspecting
its colour it is returned to the urn. If the ball is black, a black balls and b white balls are
added; if the ball is white, ¢ black balls and d white balls are added (where a,b,¢,d € N are
non-negative integers). This process can be described by the so-called replacement matrix:

M:(“ b>7 a,b,c,d € N.
c d

We call an urn and its associated replacement matrix balanced if K :=a+b=c+d. In
other words, in every step the same number K of balls is added to the urn. This results in a
deterministic number of balls after n steps: bg + wg + Kn balls.

Now, we introduce a more general model which has rich combinatorial, probabilistic, and
analytic properties.

» Definition 1. A periodic Pélya wrn of period p with replacement matrices My, Mo, ..., M,
is a variant of a Pélya urn in which the replacement matrix My, is used at steps np + k. Such
a model is called balanced if each of its replacement matrices is balanced.

In this article, we illustrate the aforementioned rich properties on the following model
(the results for other values of the parameters are similar to the case we now handle in detail).

» Definition 2. We call a Young—Pdlya urn the periodic Pélya urn of period 2 with re-

1 11
O) for every odd step, and Ms := < ) for every even

placement matrices M; := ( 0 1 0 2

step.

Let us describe the state of the urn after n steps by pairs (number of black balls, number
of white balls), starting with by = 1 black ball and wg = 1 white ball shown in Figure 1.
In the first step the matrix M; is used and gives the two states (2,1), and (1,2). In the
second step, matrix Ms is used, in the third step, matrix M; is used again, in the fourth
step, matrix Ma, etc. Thus, the possible states are (3,2),(2,3), and (1,4), at time 2, and
(4,2),(3,3),(2,4), and (1,5), at time 3.

In fact, each of these states may be reached in different ways, and such a sequence of
transitions is called a history. Each history comes with weight one. Implicitly, they induce
a probability measure on the states at step n. So, let B,, and W,, be random variables for
the number of black and white balls after n steps, respectively. As our model is balanced,
By, + W, is a deterministic process, reflecting the identity B, + W, = by + wo +n + | %].
So, from now on, we concentrate our analysis on B,.
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Hy =2y

Hy, = 2%y + xy?

Hy = 223y + 22%y3 4 229

8

Hj = 62y 4 823> + 8x2y* + 8xy/°

Figure 1 The evolution of a Young—Pdlya urn with one initial black and one initial white ball.
Black arrows mark that a black ball was drawn, dashed arrows mark that a white ball was drawn.
Straight arrows indicate that the replacement matrix M; was used, curly arrows show that the
replacement matrix M2 was used. The number below each node is the number of possible transitions
to reach such a state. In this article we give a formula for H,, (which encodes all the possible states
of the urn at time n) and their asymptotic behaviour.

For the classical model of a single balanced Pélya urn, the limit law of the random variable
B,, is fully known: The possible limit laws include a rich variety of distributions. To name a
few, let us mention the uniform distribution [10], the normal distribution [3], and the Beta
and Mittag-Leffler distributions [15]. Periodic Pélya urns (which include the classical model)
lead to an even larger variety of distributions involving a product of generalized Gamma
distributions [31].

» Definition 3. The generalized Gamma distribution GenGamma(c, 8) with real parameters
a, B > 0 is defined by the density function (having support (0, +00))

) . BaeL exp(fzﬁ)
flasa,5) = P 2P,

where T is the classical Gamma function I'(z) := [~ t*~ ! exp(—t) dt.

» Remark. Let I'(a) be the Gamma distribution! of parameter o > 0, given by its density

>~ 1 exp(—x)

I(a)

g(wia) = =

Then, one has T'(«) £ GenGammal(a, 1) and, for r > 0, the distribution of the r-th power of
a random variable distributed according to I'(«) is T'(«)" £ GenGammal(a/r, 1/7).

Our main results are the enumeration result from Theorem 5, the application to Young
tableaux in Theorem 7, and the following result (and its generalization in Theorem 6):

» Theorem 4. The normalized random variable #7573 of the number of black balls in a

Young—Pdlya urn converges in law to a generalized Gamma distribution:

2% B,
R N GenGamma (1, 3) .
n

1 Caveat: It is traditional to use the same letter for both the I' function and the I' distribution. Also,
some authors add a second parameter to the distribution I', which is set to 1 here.
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We give a proof of this result in Section 3. Let us first mention some articles where this
distribution has already appeared before:

in Janson [17], for the analysis of the area of the supremum process of the Brownian
motion,

in Pekoz, Rollin, and Ross [25], as distributions of processes on walks, trees, urns, and
preferential attachments in graphs (they also consider what they call a Pélya urn with
immigration, which is a special case of a periodic Pdlya urn),

in Khodabin and Ahmadabadi [19] following a tradition to generalize special functions by
adding parameters in order to capture several probability distributions, such as e.g. the
normal, Rayleigh, and half-normal distribution, as well as the MeijerG function (see also
the addendum of [17], mentioning a dozen of other generalizations of special functions).

In the next section we translate the evolution process into the language of generating
functions by encoding the dynamics of this process into partial differential equations.

2 A functional equation for periodic Pdlya urns

Let hy, e be the number of histories of a periodic Pélya urn after n steps with k& black
balls and ¢ white balls, with an initial state of by black balls and wg white balls, and with
replacement matrices M; for the odd steps and M, for the even steps. We define the
polynomials

)= hngezy

k,£>0

Note that these are indeed polynomials as there are just a finite number of histories after n
steps. We collect all these histories in the trivariate exponential generating function

H(z,y,z ZH acy

n>0

In particular, we get for the first 3 terms of H(x,y, z) the expansion (compare Figure 1)

2
H(z,y,2) = wy + (25 + 2y) 2 + (2zy* + 227" + 22°9°) % +...

Observe that the polynomials H,(z,y) are homogeneous, as we have a balanced urn model.
Now it is our goal to derive a partial differential equation describing the evolution of the
periodic Pélya urn model. For a comprehensive introduction to the method we refer to [10].
In order to capture the periodic behaviour we split the generating function H (z,y, z) into
odd and even steps. We define

2n+1

(z,y,2 ZHgn x,y) 2n) and (z,y,2 ZH2n+1 x,y) ( n 1)
n>0 n>0

such that H(z,y,z) = He(x,y,2) + Ho(z,y,2). Next, we associate to the replacement
matrices My and M, from Definition 2 the differential operators D; and Ds, respectively.
We get

Dy = 220, + y*0, and Dy := 2*ydx + y°0,,

where 0, and 0, are defined as the partial derivatives 3 and 7, respectively. These model
the evolution of the urn. For example, in the term z29,, the derlvative 0, represents drawing
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a black ball and the multiplication by 22 returning the black ball and an additional black
ball into the urn. The other terms have analogous interpretations.
With these operators we are able to link odd and even steps with the following system

0. H,(x,y,2) = D1Hc(x,y,2) and 0. H.(x,y,2) = DaH,(x,y, 2). (1)

Note that the derivative d, models the evolution in time. This system of partial differential
equations naturally corresponds to recurrences at the level of coefficients h,, 1 ¢, and vice

versa. This philosophy is well explained in the symbolic method part of [12] and see also [10].

As a next step we want to eliminate the y variable in these equations. This is possible as
the number of balls in each round and the number of black and white balls are connected
due to the fact that we are dealing with balanced urns. First, as observed previously, one has

number of balls after n steps = by + wg + n + {gJ . (2)
Therefore, for any z¥y‘2™ appearing in H(z,y,z) with by = wo = 1 we have
3 3 1
k+£:2+7n (if n is even) and k+€=2+?n—§(ifnisodd).

This translates directly into

VO H, (2,9, 2) + YO, He (2,9, 2) = 2H(2,,2) + 5 20 H (2,4, ),
g

3 3
10, Ho(2,y, 2) + yOyHo(x,y,2) = §Ho(x, Yy, z) + 523zHo(x,y, z).

Finally, combining (1) and (3), we eliminate 0, H. and 0, H,. After that it is legitimate to
insert y = 1 as there appears no differentiation with respect to y anymore. As the urns are
balanced, the exponents of y and z in each monomial are bound (see Equation (2)), so we are
losing no information on the trivariate generating functions by setting y = 1. Hence, from
now on we use the notation H(z, z), H.(z, 2), and H,(z, z) instead of H(z,1,2), He(x,1,2),
and H,(x,1, z), respectively. All of this leads to our first main enumeration theorem:

» Theorem 5 (Linear differential equations and hypergeometric expressions for histories). The
generating functions describing the 2-periodic Young—Pdlya urn at even and odd time satisfy
the following system of differential equations:

0, Ho(z,2) = x(x — 1)0: Ho(x, 2) + gzazHo(m, z) + gHo(m, z),
(4)
0.Hy(x,2) = x(x — 1)0, He(z, 2) + gzﬁzHe(z, z) +2H.(x, z).

Moreover, all these functions satisfy linear differential equations (they are D-finite, see
e.g. [12, Appendiz B.J] for more on this notion), which in return implies that H = H. + H,
satisfies the equation L.H(x,z) = 0, where L is a differential operator of order 3 in 0., and

then one has the hypergeometric closed forms for hy, = [z"|H(1, z):
n n 2
. 3”% if n is even, (5)
3"F(%+1142()2§3(;§+7/6) if n is odd.

Alternatively, this sequence satisfies h(n +2) = 2h(n+1) + $(9n? + 21n + 12)h(n). This
sequence is not found in the OEIS?, we added it there, it is now A293653, and it starts like
this: 1,2,6,30,180, 1440, 12960, 142560, 1710720, 23950080, 359251200, . . .

2 On-Line Encyclopedia of Integer Sequences, https://oeis.org.
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In the next section we will use Equations (4) to iteratively derive the moments of the
distribution of black balls after n steps.

3 Moments of periodic Pélya urns

In this section, we give a proof via the method of moments of Theorem 4 stated in the
introduction. Let m,(n) be the r-th factorial moment of the distribution of black balls after
n steps, i.e.

my(n) :=E(B,(B,—1)--- (B, —7r+1)).
Expressing them in terms of the generating function H (z, z), it holds that

[2"] 5 H ()|
[27]H (1, 2)

z=1

my(n) =

Splitting them into odd and even moments, we have access to these quantities via the partial
differential equation (4). As a first step we compute h,, := [z"|H(1, z), the total number
of histories after n steps. We substitute £ = 1, which makes the equation independent of
the derivative with respect to z. Then, the idea is to transform (4) into two independent
differential equations for H.(1,z) and H,(1l,z). This is achieved by differentiating the
equations with respect to z and substituting the other one to eliminate H.(1, z) or H,(1, 2),
respectively. This decouples the system, but increases the degree of differentiation by 1. We
get

(922 —4) 92H.(1,2) + 3920, H.(1,2) + 24H.(1,2) = 0,
(92° —4) 92H,(1,2) + 3920.H,(1, z) + 21H,(1, z) = 0.

In this case it is easy to extract the underlying recurrence relations and solve them explicitly.
This also leads to the closed forms (5) for h,,, from which it is easy to compute the asymptotic
number of histories for n — oco. Interestingly, the first two terms in the asymptotic expansion
are the same for odd and even number of steps, only the third ones differ. We get

hyy = n!w% (;)nnl/ﬁ (1 4O (i)) .

As a next step we compute the mean. Therefore, we differentiate (4) once with respect
to x, substitute x = 1, decouple the system, derive the recurrence relations of the coefficients,
and solve them. Note again that the factor (x — 1) prevents higher derivatives from appearing
and is therefore crucial for this method. After normalization by h, we get
PO (544)

o T(5+3)
8°/°1(3)” (n+1)r(5+8)

o r(5+5)

if n is even,
my(n) =

if n is odd.

For the asymptotic mean we discover again the same phenomenon that the first two terms in
the asymptotic expansion are equal for odd and even n.

Differentiating (4) to higher orders allows to derive higher moments in a mechanical way
(this however requires further details, which will be included in the expanded version of this
article). In general we get the closed form for the r-th factorial moment

me(n) = o F(Fg(;é)nzr/?’ (1 +0 (;)) . (6)
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Therefore we see that the moments E (B:") of the rescaled random variable B := 223/3 n’g}g
converge for n to infinity to the limit
r(c+1
my = 7(3 i 3). (7)
r(3)

Note that one has m; /") = (%)1/6 (1+ 0(1)) for large r, so the following sum diverges:

Dm0 = oo, (8)
r>0

Therefore, a result by Carleman (see [5, pp. 189-220] or [33, p. 330])® implies that there
exists a unique distribution (let us call it D) with such moments m,..

Furthermore, by the asymptotic result from Equation (6) there exist an ng > 0 and
constants a, and b, independent of n such that a, < m,(n) < b., for all n > ng. Thus,
by the limit theorem of Fréchet and Shohat [13]* there exists a limit distribution (which
therefore has to be D) to which a subsequence of our rescaled random variables B} converge
to. And as we know via Carleman’s criterion above that D is uniquely determined by its
moments, it is in fact the full sequence of B} which converges to D.

Now it is easy to check that if X ~ GenGamma(d, p) is a generalized Gamma distributed
random variable (as defined in Definition 3), then it is a distribution determined by its
moments, which are given by E(X") =T (%)/F (%)

In conclusion, the structure of m, in Formula (7) implies that the normalized random
variable B} of the number of black balls in a Young—Pélya urn converges to GenGamma (1, 3) .
This completes the proof of Theorem 4. |

The same approach allows us to study the distribution of black balls for the urn with

. 1 0 1 /
replacement matrices My = My = --- = M, = <0 1) and M, = (0 1 +£>. We call

this model the Young—Pdlya urn of period p and parameter £.

» Theorem 6. The renormalized distribution of black balls in the Young—Pdlya urn of period p
and parameter ¢ is asymptotically a distribution, which we call ProdGenGammal(p, ¢, by, wp),
defined as the following product of independent distributions:

5 B -1
plj&- 7 n—g =N Beta(bo, wo) H GenGammal(by +wo +p +i,p + £) 9)
i=0

with 6 = p/(p+ £), and where Beta(bg, wq) is as usual the law with support [0,1] and density
I'(bo+wo) xbo*l(l _ x)w(wl
I'(bo)T'(wo) ’

Sketch. This follows from the following r-th (factorial) moment computation:

bo+wo+p+r+i

(p+0)" Dby + 1)L (bo + wo) Tp © (T) ' ( <1>)
E(B,) = Tl "
(BT) P T(bo)T(bo + wo + 1) E) F(%) n +0 n) )’

Note that there is no typo in Formula 8: if the support of the density is [0, +oo[ the moments in the
sum have index r and exponent —1/(2r), while they have index 2r and exponent —1/(2r) if the support
is | — oo, 4o0l.

As a funny coincidence, Fréchet and Shohat mention in [13] that the generalized Gamma distribution
with parameter p > 1/2 is uniquely characterized by its moments.
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which in turn characterizes the ProdGenGamma distribution. Indeed, if for some independent
random variables X, Y, Z, one has E(X") = E(Y")E(Z") (and if Y and Z are determined by

their moments), then X L£yz. <

This is consistent with our results on the Young—Pélya urn introduced in Section 1.
Indeed, there one has wg = by = 1,p = 2,¢ = 1, and therefore the renormalized distribution
of black balls -2 B,/ n® is asymptotically Unif(0, 1) - GenGamma(4, 3) = GenGamma (1, 3).

We will now see what are the implications of this result on an apparently unrelated topic:
Young tableaux.

4 Urns, trees, and Young tableaux

As predicted by Anatoly Vershik in [32], the 21st century should see a lot of challenges and
advances on the links of probability theory with (algebraic) combinatorics. A key role is
played here by Young tableaux®, because of their ubiquity in representation theory. Many
results on their asymptotic shape have been collected, but very few results are known on
their asymptotic content when the shape is fixed (see e.g. the works by Pittel and Romik,
Angel et al., Marchal [1,24,26,29], who have studied the distribution of the values of the
cells in random rectangular or staircase Young tableaux, while the case of Young tableaux
with a more general shape seems to be very intricate). It is therefore pleasant that our work
on periodic Pélya urns allows us to get advances on the case of a triangular shape, with any
slope.

For any fixed integers n, ¢, p > 1, we introduce the quantity N := pfn(n+1)/2. We define
a triangular Young tableau of slope —¢/p and of size N as a classical Young tableau with N
cells with length n¢ and height np such that the first p rows (from the bottom) have length
nf, the next p lines have length (n — 1)¢ and so on (see Figure 2). We now study what is
the typical value of its lower right corner (with the French convention for drawing Young
tableaux, see [21] but take however care that on page 2 therein, Macdonald advises readers
preferring the French convention to “read this book upside down in a mirror™!).

It could be expected (e.g. via the Greene-Nijenhuis—-Wilf hook walk algorithm for gener-
ating Young tableaux, see [14]) that the entries near the hypotenuse should be N — o(N).
Can we expect a more precise description of these o(IN) fluctuations? Our result on periodic
urns enables us to exhibit the right critical exponent, and the limit law in the corner:

» Theorem 7. Choose a uniform random triangular Young tableau Y of slope —€/p and
size N =pln(n+1)/2 and put § = p/(p+{). Let X,, be the entry of the lower right. Then
(N — X,,)/n'*? converges in law to the same limiting distribution as the number of black balls
in the periodic Young—Pdlya urn with initial conditions wg = ¢, by = p and with replacement

10 1 14
matrices My = -+ = M,_1 = <0 1) and M, = <0 14 £>’ i.e. we have the convergence
in law, as n goes to infinity:
S N-X
2% nTSH £, ProdGenGamma(p, ¢, by, wp).

(Recall that ProdGenGamma is defined by Formula 9.)

5 A Young tableau of size n is an array with columns of (weakly) decreasing height, in which each cell is
labelled, and where the labels run from 1 to n and are strictly increasing along rows from left to right
and columns from bottom to top, see Figure 2. We refer to [21] for a thorough discussion on these
objects.
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» Remark. The simplest case / = p = 1 relates to the Young—Pdlya urn model which we
analysed in the previous sections.

Sketch of proof. We first establish a link between Young tableaux and linear extensions of
trees. Then we will be able to conclude via a link between these trees and periodic Pélya
urns. Let us start with Figure 2, which describes the main characters of this proof.

The bottom part of Figure 2 presents two trees (the “big” tree T, which contains the
“small” tree S). More precisely, we define the rooted planar tree S as follows

The left-most branch of & has nf 4 1 vertices, which we call v1,vs, ..., ve41, Where vy is

the root and v,¢41 is the left-most leaf of the tree.

For 2 < k <n —1, the vertex vgy has p + 1 children.

The vertex v,y has p — 1 children.

All other vertices v; (for j < nf,j # k{) have exactly one child.

Now, define 7 as the “big” tree obtained from the “small” tree S by adding a vertex vg
as the father of v; and adding N + 1 — n(p + ¢) children to vy (see Figure 2). Remark that
the number of vertices of T is equal to 1 + the number of cells of ). Moreover, the hook
length of each cell in the first row (from the bottom) of Y is equal to the hook length of the
corresponding vertex in the left-most branch of S.

Let us now introduce a linear extension E7 of T, i.e. a bijection from the set of vertices
of T to {0,1,...,N} such that Er(u) < Ey(u') whenever u is an ancestor of v’. A key
result, which will be proved in the expanded version of this abstract, is the following: if Ey
is a uniformly random linear extension of 7, then X,, (the entry of the lower right corner in
a uniformly random Young tableau with shape )’) has the same law as E7(vne):

X é ET(UWL()- (10)

What is more, recall that 7 was obtained from S by adding a root and some children
to this root. Therefore, one can obtain a linear extension of the “big” tree T from a linear
extension of the “small” tree S by a simple insertion procedure. This allows us to construct
a uniformly random linear extension E7 of 7 and a uniformly random linear extension Eg

of § such that

2(p+0)

nlp (N — Er(vne)) — (nl+p — Es(vne))| — 0 (in probability).

So, to summarize, we have now

Er(vne) £ Es(vpe) + deterministic quantity + smaller order error terms. (11)

The last step (which we just state here, see our forthcoming long version for its full proof)
is that

Es(vne) £ distribution of periodic Pélya urn + deterministic quantity. (12)

Indeed, more precisely N — Es(v,¢) has the same law as the number of black balls in a
periodic urn after (n — 1)p steps (an urn with period p, with adding parameter ¢, and with
initial conditions wy = ¢ and by = p). Thus, our results on periodic urns from Section 3 and
the conjunction of Equations (10), (11), and (12) gives the convergence in law for X,, which
we wanted to prove. <
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4155|6172
3144|160 |71||P
22127145|58
1812513243146 |57|59 |68
17(19(26|30|40|52|56 |63 ||P
12114120(29(38|39|51 |62
10(21(28|35|50(53|54(65|67|70

Figure 2 In this section, we see that there is a relation between Young tableaux with a given
periodic shape, some trees, and the periodic Young—Pélya urns. The lower right corner of these
Young tableaux is thus following the same generalized Gamma distribution we proved for urns.
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5 Conclusion and further work

In this article, we introduced Polya urns with periodic replacements, and showed that they can
be exactly solved with generating function techniques, and that the initial non-linear equation
encoding their dynamics leads to linear (D-finite) moment generating functions, which we
identify as a product of generalized Gamma distributions. Note that [20,23] involve the
asymptotics of a related process (by grouping p units of time at once of our periodic Pélya
urns). This related process is therefore “smoothing” the irregularities created by our periodic
model, and allows us to connect with the usual famous key quantities for urns, such as the
quotient of eigenvalues of the substitution matrix, etc. Our approach has the advantage to
describe each unit of time (and not just what happens after “averaging” p units of time at
once), giving more asymptotic terms, and also exact enumeration.

In the full version of this work we will consider arbitrary periodic balanced urn models, and
their relationship with Young tableaux. It remains a challenge to understand the asymptotic
landscape of Young tableaux, even if it could be globally expected that they behave like a
Gaussian free field, like for many other random surfaces [18]. As a first step, understanding the
fluctuations and the universality of the critical exponent at the corner could help to get a
more global picture. Note that our results on the lower right corner directly imply similar
results on the upper right corner: just use our formulae by exchanging ¢ and p, i.e. for a
slope corresponding
to the complementary angle to 90°. Thus the critical exponent for the upper right corner is
2—4¢. In fact, it is a nice surprise that there is even more structure: there is a duality between
the limit laws X and X' of these two corners and we get the factorization as independent
random variables (up to renormalization and slight modifications of the boundary conditions)

XX £ T'(by). Similar factorizations of the exponential law, which is a particular case of the
Gamma distribution, have appeared recently in relation with functionals of Lévy processes,
following [4].
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1 Introduction

We study the power series coefficients of rational functions of the form F(xy,...,z4) =
1/Q(x1,...,x4) where Q is a symmetric multilinear function with Q(0) # 0. Let

F(x)= @ = Z arXx",

rezd

converging in some polydisk D C C? Often one focuses on the diagonal coefficients
0p := ap,..n, Whose univariate generating function diagp(z) := >, 0,2" satisfies a linear
differential equation with polynomial coefficients, but may be transcendental. A number of
questions are natural, including nonnegativity (are all coefficients nonnegative), eventual
nonnegativity (all but finitely many coefficients nonnegative), diagonal extraction (computing
diag from @), diagonal asymptotics, multivariate asymptotics and phase transitions in the
asymptotics of {a,}.

The positivity (nonnegativity) question is the most classical, dating back at least to
Szegd’s work in [26]. The techniques, some of which are indicated in the next section, used
in the literature are diverse and include integral methods and special functions, positivity
preserving operators, combinatorial identities, computer algebra such as cylindrical algebraic
decomposition, or determinantal methods. Contrasting to these methods are analytic
combinatorial several-variable methods (ACSV) as developed in [20]. These are typically
asymptotic, rather than exact, and therefore less useful for proving classical positivity
statements, though they can be used to disprove them. Their chief advantages are their
broad applicability and, increasingly, the level to which they have been automated. Our
aim in this paper is to apply ACSV methods to a number of previously studied families of
rational coefficient sequences, thereby extending what is known as well as illuminating the
relative advantages of each method.

1.1 Previously studied instances

Let My denote the class of symmetric functions of d variables that are multilinear (degree 1
in each variable). This class of generating functions F'(x) := 1/Q(x) where Q € M, includes
a great number of previously studied cases, some of which we now review. Here and in the
following, we use d for the number of variables and boldface x,y, z, etc., for vectors of length
d of integer, real or complex numbers. When d is small we use x,y, z,w for x1,x2, 3, 4.
Let ey = ek q denote the k™" elementary symmetric function of d variables, the sum of all
distinct & element products from the set of d variables. An equivalent description of the class
My is that it contains all linear combinations of {ej 4 : 0 < k < d}.
The Askey-Gasper rational function is

1
l—o—y—2z+4dayz’

Az, y,z) = (1)
which, in the previous notation, is A(x) = F(x) when d =3 and Q = 1 — e; + 4es. Gillis,
Reznick and Zeilberger [11] deduce positivity of A from positivity of a 4-variate extension
due to Koornwinder [15], for which they give a short elementary proof using a positivity
preserving operation. Gillis, Reznick and Zeilberger also provide an elementary proof of the
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stronger result by Askey and Gasper [3] that A® is positive for 3 > (v/17 — 3)/2 ~ 0.56, by
deriving a recurrence relation for the coefficients that makes positivity apparent.
Specific functions in M, that have shown up in the literature include the Szegé rational
function
1
es(l—xz,1—y,1—21—w)

S(z,y,z,w) =

(2)

as well as the Lewy-Askey function

1

L =
(2,9, 2,w) ea(l—mz,1—y,1—21—w)’

(3)

which is a rescaled version of 1/Q(x) with d =4 and Q = 1 —e; + Ze3. Szegd [26] proved that
(2) is positive. In fact, he showed that e;_BLd(l—x) is nonnegative if 8 > 1/2. His proof relates
the power series coefficients to integrals of products of Bessel functions and, among other
ingredients, employs the Gegenbauer—Sonine addition theorem. Scott and Sokal [22] establish
a vast and powerful generalization of this result by showing that, if T is the spanning-tree
polynomial of a connected series-parallel graph, then T A (1 — x) is nonnegative if 8 > 1/2.
In the simplest non-trivial case, if G is a d-cycle, then Tg = eq_1,q, thus recovering Szegd’s
result. Relaxing the condition on 5, Scott and Sokal further extend their results to spanning-
tree polynomials of general connected graphs. They do so by realizing that Kirchhoff’s
matrix-tree theorem implies that these polynomials can be expressed as determinants, and
by proving that determinants of this kind are nonnegative. As another consequence of
this determinantal nonnegativity, Scott and Sokal conclude that (3) is nonnegative, thus
answering a question originating with Lewy [2] (with positivity replaced by nonnegativity).
Kauers and Zeilberger [14] show that positivity of the Lewy-Askey rational function (3)
would follow from positivity of the four variable function
1

K = . 4
($7y,2,’lU) 1761%’2634’464 ( )

However, the conjectured positivity (or even nonnegativity) of (4) remains open.

As noted above, egfl’d(l — x) is nonnegative if 8 > 1/2. The asymptotics of e,;g(l - Xx)
are computed in [5] for (k,d) = (2,3). In the cone 2(rs + rt + st) > r? + s% + 2, the
coefficient a, 5 ; is asymptotically positive when 8 > 1/2 = (d — k)/2 and not when § < 1/2.
A conjecture of Scott and Sokal that remains open in both directions is that, for general
k and d, the condition 8 > (d — k)/2 is necessary and sufficient for nonnegativity of the
coefficients of e,;g( 1 —x).

Gillis, Reznick and Zeilberger [11] consider the family

- 1
71—61—&-06(1

(5)

of rational functions, where c is a real parameter. When ¢ < 0, the coefficients are trivially
positive, therefore it is usual to assume ¢ > 0. Gillis, Reznick and Zeilberger show that F. 3
has nonnegative coefficients if ¢ < 4 (and this condition is shown to be necessary in [23]),
but they conjecture that the threshold for d > 4 has a different form, namely that F; ;4 has
nonnegative coefficients if and only if ¢ < d!. Tt is claimed in [11], but the proof is omitted
due to its length, that nonnegativity of Fjj 4 is implied by nonnegativity of the diagonal
power series coefficients. In the cases d = 4, 5,6, Kauers [13] proved nonnegativity of these
diagonal coefficients by applying cylindrical algebraic decomposition (CAD) to the respective
recurrences. On the other hand, it is suggested in [25] that the diagonal coefficients are
eventually positive if ¢ < (d — 1)471.

a1, 24) -
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1.2 Previous questions and results on diagonals

The diagonal generating function diagy and the sequence 6,, := a,, .., it generates have
received special attention. One reason is that the question of multivariate asymptotics in
the diagonal direction is simply stated, whereas the question of asymptotics in all possible
directions requires discussion of different possible phase regimes, a notion of uniformity over
directions, degeneracies when the coordinates are not of comparable magnitudes, and so
forth. Another reason is that there are effective methods for determining diagy from @,
transferring the problem to the familiar univariate realm.

We briefly recall the theory of diagonal extraction. A d-variate power series F' is said to
be D-finite if the formal derivatives {0, F : r € (ZT)%} form a finite dimensional vector space
over C[x]. In one variable, this is equivalent to F satisfying a linear differential equation
with polynomial coefficients,

k i

d
ZQi(z)dziF =0, ¢ €Clz].

=0

» Proposition 1 (D-finite closure under diagonals [17]). Let F(z) be a D-finite power series.
Then diag(z) := ), 0,2" is D-finite, where 6y, := an, ... n-

When F is a rational function and d = 2, it was known that diag is algebraic (and thus
D-finite) at least by the late 1960’s [10, 12], and in special cases by Pélya in the 1920’s [21].
In the rational function F(z,y) = P(z,y)/Q(z,y) one substitutes y = 1/ and computes a
residue integral to extract the constant coefficient. The basis for Lipshitz’ proof was the
realization that the complex integration can be viewed as purely formal. With the advent of
computer algebra this formal D-module computation was automated, with an early package
in Macaulay and more widely used modern implementations in Magma, Mathematica and
Maple. Due to advances in software and processor speed, these computations are often
completable on functions arising in applications. Christol [8] was the first to show that
diagonals of rational functions are D-finite.

The following relationship between D-finiteness of a univariate function and the existence
of a polynomial recursion satisfied by its coefficient sequence is the result of translating a
formal differential equation into a relation among the coefficients.

» Proposition 2. The series f(z) =, <, an2"™ is D-finite if and only if it is polynomially
recursive, meaning that there is a k > 0 and there are polynomials pg, ..., px, not all zero,
such that for all but finitely many n,

k
> pi(n)f(n+i)=0.
i=0
Let f be a D-finite power series in one variable. If f has positive finite radius of convergence
and integer coefficients, then it is a so-called G-function and has well behaved asymptotics
according to following result.

» Proposition 3 (Asymptotics of G-Function Coefficients). Suppose f is D-finite with finite
radius of convergence and integer coefficients annihilated by a minimal order linear differential
operator L with polynomial coefficients. Then L has only regular singular points in the
Frobenius sense. Consequently, the coefficients {an} are given asymptotically by a formula

Qan ~ Z Canﬁa p;n(log n)ka (6)
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where the sum is over quadruples (Ce,ba, pa,ka) as a Tanges over a finite set A with the
following properties. The base p, is an algebraic number, a root of the leading polynomial
coefficient of L. The B, are rational and for each value of p, can be determined as roots
of an explicit polynomial constructed from p, and L. The log powers k, are nonnegative
integers, zero unless for fived po there exist two values of By differing by an integer (including
multiplicities in the construction of B,). The Cy are not in general closed form analytic
expressions, but may be determined rigorously to any desired accuracy.

Proof. The discussion in [18, page 37] gives references to several published results that

together establish this proposition; see also Flajolet and Sedgewick [9, Section VII. 9].

Determination of all rational and algebraic numbers other than C,, is known to be effective. <«

Because there are computational methods for the study of diagonals, it is of interest to
reduce positivity questions to those involving only diagonals. For the Gillis-Reznick-Zeilberger
class F, 4, such a result is conjectured.

» Conjecture 4 ([11]). For d > 4, the following three statements are equivalent.
(i) e<d!

(ii) The diagonal coefficients of F, 4 are nonnegative

(iii) All coefficients of F. q are nonnegative

To be precise, (iii) = (i) = (4) is trivial (look at d7); nonnegativity of all coefficients of
F, 4 holds for some interval ¢ € [0, ¢max], therefore the conjecture comes down to nonnegativity
of Fyg 4. A proof for (ii) = (ii4) in the case ¢ = d! is claimed in [11] but omitted from the
paper due to length. This question is generalized in [25] to all of M.

» Question 5 ([25, Question 1.1 and following]). For @ € Mg and F = 1/Q, under what
conditions does nonnegativity of the coefficients of diagy imply nonnegativity of all coefficients
of F?

More specifically, with nonnegativity in place of positivity, the authors of that paper
wonder whether positivity of F' is equivalent to positivity of diagy together with positivity
of F(x1,...,24-1,0). They prove that this is true for d = 2 and, with additional evidence,
conjecture this to be true for d = 3 as well. Combined with [23, Conjecture 1] and [25,
Conjecture 3.3], we obtain the following explicit predictions on the diagonal coefficients.

» Conjecture 6. Let F = 1/Q where Q =1 — e1 + aes + bes, which is, up to rescaling, the
general element of Ms. Then diagy is nonnegative if and only if

6(1 — a) a<ag
b<<2-3a+2(1-a)*? ay<a<l (7)
—a3 a>1,

where ag ~ —1.81 is characterized by 6(1 — ag) = 2 — 3ag + 2(1 — ag)>/?.

1.3 Present results

In the present work we use ACSV to answer asymptotic versions of these questions. Aside
from computing special cases, the main new results are (1) simplification for diagonals with
symmetric denominators via the Grace-Walsh-Szegé Theorem (Lemma 15 below); (2) an
easy further simplification for the Gillis-Reznick-Zeilberger class (Lemma 18 below); and
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(3) a topological computation to explain the drop in magnitude of coefficients at critical
parameter values (Theorem 22 below).

The first special case we look at is the diagonal of the general element of M3, corresponding
to Conjecture 6.

» Theorem 7. Let Q =1 —e; +aep +bes, let F =1/Q =" a,2" and let 6, = ay,..., be
the diagonal coefficients of F'. Then §, is eventually positive when

—9a a< -3
b<{2-3a+2(1-a)*? -3<a<1 (8)
—a? a>1

while, when the inequality is reversed, d,, attains an infinite number of positive and negative
values.

Theorem 7 is obtained by examining asymptotic regimes, captured in the following result.

» Theorem 8. Let Q, F, and d,, be as in Theorem 7. Assuming that b is not equal to the

piecewise function in Equation (8),
1 1
. 1+0(-1]), 9
2\/§(12x+ax2)) ( (n>> ©

73" |1 - 2ax — bx?

Op = .

Z < n ’ 1—azx
zEE

where E consists of the minimal modulus roots of the polynomial Q(z,z,x) = 1 — 3x + 3ax? +

bx3.

The situation for eventual positivity on the diagonal when equality holds in Equation (8) is
more delicate. When a < —3 it follows from seeing that there are two diagonal minimal points,
(r,r,7) and (—r, —r, —r), with a greater constant at the positive point. When —3 < a < 1, it
follows from a dominant positive real cone point. When a = —3 a quadratically degenerate
smooth point at (—1/3, —1/3, —1/3) may be shown via rigorous numerical diagonal extraction
to dominate the cone point at (1/3,1/3,1/3), leading to alternation. When a = 1, a, = 1.
Finally, when a > 1, there are three smooth points on the unit circle, with nonnegativity
conjectured because the positive real point is degenerate and should dominate.

Our second set of results concern the diagonal of the general element of the GRZ rational
function F, 4. Let

e = ci(d) == (d — 1)L, (10)
The following corresponds to Conjecture 4.

» Theorem 9. Let d > 4. Then the diagonal coefficients of F. 4 are eventually positive when
c < ¢, and contain an infinite number of positive and negative values when ¢ > c,. When
¢ < ¢4, there is a conical neighborhood N of the diagonal such that a,. > 0 for all but finitely
many 7€ N.

Again, the result is obtained through an explicit asymptotic analysis.

» Theorem 10. Let d,, be the diagonal coefficients of Fi q. Then when c # cx,

e (e () ) (o ()

where E consists of the minimal modulus roots of the polynomial 1/F, 4(z,...,x) =1 —dz +

Cl‘d.
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These theorems are proven in Section 4, using ACSV smooth point methods summarized
in Section 2, however the case ¢ = ¢, for the GRZ rational function requires the more delicate
results of Section 5.

1.4 Exponential drop and further results

In the GRZ family, for even values of d > 4 the exponential growth rate of the coefficients
drops at the special value ¢ = (d — 1)4~!. This special value, and the corresponding drop
in exponential growth, may be identified for each fixed d from the differential equation
annihilating the diagonal. For example, when d = 4 an annihilating differential equation for
the diagonal of F. 4 is computed by D-module integration in the Mathematica package of
Koutschan [16] producing the annihilating operator £, of order 3 and maximum coefficient
degree 8, such that Ldiagr , = 0:

L=22(c*2* +4c32% + 6622 + dez — 2562 + 1)(3cz — 1)%92

+32(3cz — 1)(6¢°2° + 152 + 8¢32% — 6c22% — 384c2? — 6¢z + 3842 — 1)0?

+ (cz 4+ 1)(63c°2° — 3c*2* — 66¢%2% + 18¢22% + T20c2? + 19¢z — 8162 + 1)0,

+9¢52% — 3¢ — 6¢*2% + 18¢%2% — 360c2 2 + 13¢?2 — 384cz + ¢ — 24. (11)
When ¢ = 27, all coefficients in (11) acquire enough zeros at z = 1/81 that the quantity

(812 —1)* may be factored out of the entire operator, leaving the following operator of order 3
and maximum degree 4:

Lo7 :=2%(812% + 142 + 1) 02 + 32(1622% + 21z + 1) 9?
+ (212 4+1)(272 4+ 1)0. + 3(27z + 1). (12)

Asymptotics for d,, may be extracted via the methodology described in Proposition 3. In
the special case d = 4, ¢ = 27, the recursion may be found on the OEIS (entry A125143) and
identifies {5, } as the Almkvist—Zudilin numbers® from [1, sequence (4.12)(4)]. The known
asymptotic formula implies that |,|'/™ — 9. However, as ¢ # 27 approaches 27 from either
side, we have

lim lim |6,/ = 81;

c—27 n—oo

in other words, the growth rate at ¢ = 27 drops suddenly from 81 to 9. The occurrence of
a phase change at (d — 1)?~! for all d and drop in exponential rate for even d > 4 had not
previously been proved. The special role of the case ¢ = (d — 1)?~! was observed in [25,
Example 4.4] and claimed to agree with intuition from hypergeometric functions. We verify
this, first by identifying the singularity from an ACSV point of view and then by checking
that this singularity indeed produces the observed dimension drop.

» Theorem 11 (exponential growth approaching criticality). For all d > 2,
lim lim sup |6, |/ =d —1.

C=Cx n—oo

» Theorem 12 (dimension drop at criticality). When ¢ = ¢, and d > 4 is even,

limsup |8,/ < d —1.

n—oo

Theorem 12 is proved in Section 5.

5 That these are the diagonals of the rational function Fy74 was observed in [24], where it is further
conjectured that the coefficients of Fa7 4 satisfy very strong congruences.
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2 ACSV

In this section we describe the basic setup for ACSV and state some existing results.
Definitions for the topological and geometric quantities used below can be found in Pemantle
and Wilson [20]. Throughout this section let F'(z) = P(z)/Q(z) = )., arz" denote a
rational series in d variables, with P and () co-prime polynomials. Assume that F' has a
(finite) positive radius of convergence; that is, Q(0) # 0 and P/Q is not a polynomial. Let
V:={z € C?: Q(z) = 0} denote the singular variety for ' and let M = (C*)%\ V where
C* = C\ {0}. Coefficients a, are extracted via the multivariate Cauchy formula

ar = ﬁ/rz_”F(z)d?Z7 (13)

where dz/z denotes the holomorphic logarithmic volume form (dzy/z1) A+ A(dzq/zq) and T
denotes a small torus (a product of sufficiently small circles about the origin in each coordinate,
so that the product of the corresponding disks is disjoint from V). The fundamental insight
of ACSV is that the integral depends only on the homology class of T in Hy(M). Therefore,
one tries to replace T by some homologous chain C over which the integral is easier, typically
via some combination of residue reductions and saddle point estimates.

A direction of asymptotics is an element & € (RP%)T; that is, a projective vector in
the positive orthant. If r € (R%)* we write £ to denote the representative r/[r| of the
projective equivalence class containing r, where |r| = |r|; := 71 + - - + rgq. Given a Whitney
stratification of V into smooth manifolds, the critical set crit(t) for a direction T is the set
of z € V such that t is orthogonal to the tangent space of the stratum of z in V. If z is a
smooth point of V and @ is square-free, this means t should be parallel to the logarithmic
gradient (210Q/0z1,...,240Q/0z4). A minimal point for direction ¥ is a point z € crit(¥)
such that the open polydisk D(z) := {w : |w;| < |z;| V1 < j < d} does not intersect V. The
minimal point z is called strictly minimal if the closed polydisk D(z) intersects V only at z.

For any B € R, let T(B) = {w : |w;| = exp(B;) V1 < j < d} denote the torus of
points with log modulus vector 8. The amoeba of Q(z) is the image of V under the map
Relog(z) = (log|z1],...,log|z4|), while the height of a point z is hy(z) = —r - Relog(z).
Except in Section 5, all ACSV computations are based on the following result.

» Theorem 13 (smooth point formula). Fiz F = P/Q =) _a,2" and vector r € (R)* in
direction 7. Assume there exists B € R? such that the following two hypotheses hold.

1 Finite critical points on the torus. The set E := T(B) N crit(v) is finite, nonempty
and contains only minimal smooth points.

2 Quadratic nondegeneracy. At each z € E fix k = k(2) such 0Q/0z,(z) # 0 and let
2k = g(215- -y Zky - -, 2q) be a smooth local parametrization of z, on V as a function of
{zj 7 #k}. We assume that the Hessian determinant Hyz of second partial derivatives
of g (wleiel U, wdewd) with respect to the 8; at the origin is non-zero for each z € E.

Then there exists a closed neighborhood N of & in (R)™ on which all the above hypotheses
hold and, for any r with 7 in this neighborhood,

_ (1—d)/2 -1/2 P(Z) (1-d)/2 _—p —d/2 _—p
ar = (2m) ZGZEdet’Hk(z) —zk((?Q/azk.)(z)rk z +O(rk z ) . (14)

» Remark. A number of other formulae for a, are equivalent to this one and hold under the
same hypotheses. An explicit formula for Hy in terms of partial derivatives of @ is given



Y. Baryshnikov, S. Melczer, R. Pemantle, and A. Straub

in [18, Theorem 54]. The following coordinate-free formula for the constants involved in
terms of the complexified Gaussian curvature K at a smooth point z € V is given in [20,
(9.5.2)] as

ay = (2m) D213 " K (2) 72 [V1egQ(2)| 7 P(z) |02 27

zce B

+0 (I[=*227) (15)

Proof. Assume first that log |w| is the unique minimizer of r - x on the boundary of the log
domain of convergence (this being a component of the complement of the amoeba). Under no
assumptions on E or K, Theorem 9.3.2 of [20] writes the multivariate Cauchy integral 13 as
the integral of a residue form w over an intersection cycle, C. Taking into account that F is
finite, and assuming an extra hypothesis that r is a proper direction (see [5, Definition 2.3]),
Theorem 9.4.2 of [20] identifies C as a sum of quasi-local cycles near the points of E. For
each such z, if Q) /0z; and det Hj, do not vanish, Theorem 9.2.7 of [20] identifies the integral
as the corresponding summand in (14). Nonvanishing of Hy, is equivalent to nonvanishing of
K, leading to the coordinate-free formula (15), which may be found in [20, Theorem 9.3.7].
This proves the theorem under an extra hypothesis on the amoeba boundary.

To remove the properness hypothesis, consider the intersection cycle C obtained from
expanding the torus T(B — er) inside the domain of convergence of F' to a torus T (B + er).
The construction in [20, Section A4] gives a compact (d — 1)-chain representing a relative
cycle in Hy_1(VTe,V7¢); that is, a chain of maximum height ¢+ ¢ with maximum boundary
height ¢ — €. Applying the downward gradient flow of hs on V for arbitrarily small time,
we arrive again at a chain satisfying the conclusions of [20, Theorem 9.4.2]. Because the
deformed chain has nonvanishing boundary, one must add a term for the chain swept out by
the deformation applied to this boundary, but the elements of this chain have height at most
¢ — ¢ so the resulting integral will be within the error term above. <

» Corollary 14. Assume the hypotheses of Theorem 13, and fix a vector v in direction 7.
(i) If E = {z} for some z in the positive real orthant in C? and the leading constant of
Fquation (14) is positive, then there exists a neighbourhood of T such that all but finitely
many coefficients {a,: 7€ N} are positive.
(ii) If E = {z} for some z such that 2 := H;izl Z;)J is positive real and the leading constant
of Equation (14) is positive, then all but finitely many coefficients a,~ are positive.
(iii) If E does not contain a point z with 2 positive real and the sum in Equation (14) is
not identically zero, then infinitely many coefficients any are positive and infinitely
many any are negative.

» Remark. When E contains a point in the positive real orthant but it is not a singleton,
the corollary does not provide information as to eventual positivity.

Proof. Conclusions (i) and (ii) follow immediately from (14) because the sum is a single
positive term.

For conclusion (iii), grouping the elements of E by conjugate pairs we note that up to
scaling by z"Vn%? the asymptotic leading term of a, has the form

|E|
l, = Z a; cos(2m0;n + B;),
i=1
where each 0;, a;, §5; is real, and 6; € (0,1). If r,, is any sequence satisfying a linear recurrence
relation with constant coefficients, and r,, = O(1/n), then Bell and Gerhold [6, Section 3]
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show that I, > r, infinitely often. Since the modulus of the error term in Equation (14) can
be bounded by a linear recurrence sequence with growth O(1/n), we see that a,. is positive
infinitely often. Repeating the argument with —I,, shows that a,. is negative infinitely
often. <

Any computer algebra system can compute the set of smooth critical points in crit(f)
by solving the d — 1 equations (Vieg@)(z) || T together with the equation Q(z) = 0, where
Vieg@ = (210Q/0z1, . ..,240Q/0zq). Identifying which points in crit are minimal is more
difficult, although still effective [19]. For our cases, we can use results about symmetric
functions to help with the computations. For any polynomial @ in d variables, let 6% denote
the codiagonal: the univariate polynomial defined by §%(z) = Q(z,...,z).

» Lemma 15 (polynomials in M, have diagonal minimal points). Let F' = 1/Q with Q € M.
Let = be a zero of 6% of minimal modulus. Then x:= (x,...,x) is a minimal point for F in
crit(l,...,1).

This follows directly from the classical Grace-Walsh-Szegé Theorem, a modern proof of
which is contained in the following.

Proof. Let ai,...,a; be the roots of §¢, where k < d is the common degree of Q and §%
and |aq| is minimal among {|e;| : j < k}. For any € > 0, the polynomial

has no zeros in the polydisk D centered at the origin whose radii are a3 — . The sym-
metrization of M (see [7]) is defined to be the multilinear symmetric function m such that
m(z,...,x) = M(z,...,z). In our case M(z,...,z) = §9(z), and it immediately follows
that m = Q. By the Borcea-Brindén symmetrization lemma (see [7, Theorem 2.1]), the
polynomial @ has no zeros in the polydisk D. We conclude that the zero x of @) is a minimal
point of F'. |

3 Symmetric multilinear functions of three variables

In this section we determine the diagonal asymptotics for general QQ = 1—e; +aes+beg € Ms.
Taking the coefficient of e; to be 1 loses no generality because of the rescaling x; — Az;
which preserves My and affects coefficient asymptotics in a trivial way. In order to use
Theorem 13, we begin by identifying minimal points. Lemma 15 dictates that our search
should be on the diagonal.

To that end, let 6%(z) = Q(x,z,7) = 1 — 3z + 3ax? + bx3. The discriminant of §% is a
positive real multiple of p(a,b) := 4a® — 3a® + 6ab +b*> — 4b = (a — 1+ 3(b—1))% — 4(b—1)3,
and the zero set of 69 is obtained from that of the cubic 4b® = —a? by centering at (1, —1)
and shearing via (a,b) — (a + 3b,b). The discriminant p(a, b) vanishes along the red curve
(solid and dashed) in Figure 1. Let r1(a) and r5(a) denote respectively the upper and lower
branches of the solution to p(a,b) = 0.

» Lemma 16. Let p be a minimal modulus root of §9. Then any critical point of 1/Q on
the torus T(p, p,p) has the form (q,q,q) where §%9(q) = 0.

Proof. Grobner basis computations show nondiagonal critical points to be permutations of
(1 L a(lfa)), occurring when b = a?(a — 2). When a < 1, the only time the positive root

a’a’ a’+b
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[\
w +

—20 +

—30 +

Figure 1 The three regimes defined by Proposition 17, made up of the curves b = —9a, p(a, b) = 0,
and b = —a”. Dashed lines represent the curves where they do not determine positivity of coefficients;
note smoothness in the transitions between regimes.

of 69 () has modulus 1/|a| is the trivial case (a,b) = (1, —1). When b = a?(a —2) and a > 1,
the modulus of the product of the roots of §9(z) equals m and the minimal roots of
§%(x) are a pair of complex conjugates. If this pair has modulus 1/a, then the real root of

Determining asymptotics is thus a matter of determining the minimal modulus roots
of 69(z). The following may be proved by comparing moduli of roots, separating cases
according to the sign of p(a,b).

» Proposition 17. The function 6% has a minimal positive real zero if and only if

—9a a<-3
b<{ri(a) -3<a<l
—a3 a >

This corresponds to the set of points lying on and below the solid curve in Figure 1.

Proof of Theorems 7 and 8: Suppose b is greater than the piecewise expression in the
proposition; then 6% has no minimal positive zero, so the product of the three coordinates
of the minimal points determined above do not lie in the positive orthant. By part (iii) of
Corollary 14, the diagonal coefficients are not eventually positive. Asymptotics of §,, are
determined by Theorem 13, and when b is less than the piecewise expression it can be verified
that the dominant term is positive. |

4 The Gillis-Reznick-Zeilberger classes

Throughout this section, let F = F. 4 = 1/Qcq = 1/(1 — e1 + ceq) and recall that ¢, =
(d — 1)1, Lemma 15 implies that for Q € My, in the diagonal direction, one may find
diagonal minimal points. For F, 4, things are even simpler: all critical points for diagonal
asymptotics are diagonal points.

» Lemma 18. Let Fo. gy =1/Qcq. If z € crit(1,...,1) then z; = z; for all1 <4,j <d.
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Proof. From Q = Qcq = 1 — e + ceq we see that (ViogQ); = —z; — ceq and hence that
(ViogQ)i = (VigQ); if and only if z; = z;. <

» Proposition 19 (Smoothness of F 4 for ¢ # c.). Let F.y = 1/Qcq. If ¢ # cs then V is
smooth. If ¢ = ¢, then V fails to be smooth at the single point z, = (1/(d—1),...,1/(d—1)).
When ¢ = ¢y, the singularity at z, has tangent cone es.

Proof. Checking smoothness of V we observe that for d fixed and ¢ and 1, ..., z4 variable,
vanishing of the gradient of Q). 4 with respect to the = variables implies x; = ceq for all j.
This common value, z, cannot be zero, hence ; = x and ¢ = 2'=4. Vanishing of Qc,q then
implies vanishing of 1 — dz + z, hence x = 1/(d — 1) and ¢ = ¢,. This proves the first two
statements. Setting ¢ = ¢, and x; = 1/(d — 1) + y; centers Q.. 4 at the singularity and
produces a leading term of (d — 1)es(y), proving the third statement. <

4.1 Proof of Theorems 9 and 10 in the case ¢ < c,

When ¢ < 0, the denominator of F¢ 4 is one minus the sum of positive monomials, which
leaves no doubt as to positivity. Assume, therefore, that 0 < ¢ < ¢,. Apply Lemma 15 to

see that if z is a minimum modulus zero of 69 := Q. 4(z,...,z) then (z,...,x) is a minimal
point for F, 4 in the diagonal direction. Apply Lemma 18 to conclude that the set E in
Theorem 13 of minimal critical points on T(|z|, ..., |z|) consists only of points (y, ..., y) such

that y is a root of d9. By part (i) of Corollary 14, it suffices to check that 69 = 1 — dx + cz?
has a unique minimal modulus root p and that p € RT. Thus, the conclusion follows from
the following proposition.

» Proposition 20. For c € (0,c.), the polynomial 69 = 1 — dx + cx?® has a root p € [57 ﬁ}
which is the unique root of §9 of modulus less than 1/(d — 1).

Proof. Checking signs we find that §9(1/d) = ed=% > 0 while 69(1/(d — 1)) = —(d — 1)"* +
e(d—1)"4 < —(d—1)"t +c.(d — 1)¢ = 0, therefore there is at least one root, call it p, of
62 in the interval [1/d,1/(d —1)]. On the other hand, when |z| = 1/(d — 1), we see that
|dz| > |14 c2?| and therefore, by applying Rouché’s theorem to the functions —dz and 1+ ¢z,
we see that 69 has as many zeros on |z| < 1/(d — 1) as does —dz: precisely one root, p. <

4.2 Proof of Theorems 9 and 10 in the case ¢ > c.

Again, by Lemmas 15 and 18, we may apply part (iii) of Corollary 14 to the set E of points
(y,...,y) for all minimal modulus roots y of §¢. The result then reduces to the following
proposition.

» Proposition 21. For ¢ > c,, the set of minimal modulus roots of the polynomial 59 =
1 —dx + cx? contains no point whose d* power is real and positive.

Proof. First, if 2% is real then the imaginary part of 69(z) is equal to the imaginary part of
—dz, hence any root z of §9 with 2% real is itself real.

Next we check that 69 has no positive real roots. Differentiating §%(x) with respect to z
gives the increasing function d(—1 + cz?!) with a unique zero at ¢~'/(¢=1)_ This gives the
location of the minimum of 69 on R*, where the function value is 1—de=1/(d=1) 4 ¢1=d/(d-1) —
1—(d —1)/c"@=1 wwhich is positive because ¢ > (d — 1)?~1.

If d is even, 6% clearly has no negative real roots, hence no real roots at all, finishing the
proof in this case. If d is odd §9 will have a negative real root u, however because d is odd,

the product of the coordinates of (u,...,u) is u? < 0. <
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We conjecture that the roots of minimal modulus when ¢ > ¢, are always a complex
conjugate pair, however this determination does not affect our positivity results.

4.3 Proof of Theorem 11

When ¢ < ¢, we have seen that there is a single real minimal point (pe, ..., p.) in the diagonal
direction and that p. 1 1/(d—1) as ¢ 1 ¢, . The limit from below in Theorem 11 then follows
directly from Theorem 10.

For the limit from above, it suffices to show that in the diagonal direction, for ¢ sufficiently
close to ¢, and greater, F consists of a single diagonal complex conjugate pair ({, ..., ()
and ((e,...,(.), and that (. — 1/(d — 1) as ¢, | c. First, we check that at ¢ = ¢, the unique
minimum modulus root of §¢ is the doubled root at 1/(d —1). For ¢ = c,, the first and third
terms of 69 = 1 — dz + ¢,2? have modulus 1 and 1/(d — 1) when |z| = 1/(d — 1), respectively,
summing to the modulus of the middle term; therefore if 69 (2) = 0 and |z| = 1/(d — 1) then
the third term is positive real. But then the second term must be positive real too, hence the
unique solution of modulus at most 1/(d — 1) is z =1/(d — 1). A quick computation shows
the multiplicity to be precisely 2. We know that for ¢ > ¢, there are no real roots. Therefore,
as c¢ increases from c,, the minimum modulus doubled root splits into two conjugate roots,
which, in a neighborhood of ¢,, are still the only minimum modulus roots.

5 Lacuna computations

Theorem 22 is the subject of forthcoming work [4]. Theorem 12 follows immediately, with
the specifications: d > 4 and even, c =c., k=1, P =1, Q = Qcq, z. = (1/d,...,1/d),
r = (1,...,1), B is the component of the complement of the amoeba of @) containing

(a,...,a) for a < —logd, x. = (—logd,...,—logd), y, = 0 and N taken to be the diagonal.

Proposition 19 guarantees the correct shape for the tangent cone to @ at z,.

» Theorem 22. Suppose F' = P/Q* with P a holomorphic function and Q a real Laurent
polynomial. Fix 7 € RP?, let B be a component of the complement of the amoeba of Q, let
> .ar2" be the Laurent expansion for F convergent for z = exp(x + iy) and © € B. Let
x, € OB be a maximizing point for r-x on OB. Assume that V has a unique singularity
2z, = exp(@s + 1y, ), and that the tangent cone of Q at z transforms by a real linear map to
22— E?;ll z]2 Let N be any closed cone such that x, mazimizes v+ x for all r € N.

If d > 2k is even then there is an € > 0 and a chain T' contained in the set V. :={ze€ V:
|z77| < exp(—r- @ —e|r|) such that

_, P dz
a,»:/rz @7 (16)

In other words, the chain of integration can be slipped below the height of the singular point.

Sketch of proof: Expand the torus T of integration to z, and just beyond. The integral (13)
turns into a residue integral over an intersection cycle swept out by the expanding torus; see,
e.g. [20, Appendix A.4]. For small perturbations Q). of @, the residue cycle is the union of a
sphere surrounding z, and a hyperboloid intersecting the sphere. As Q. — @, this cycle may
be deformed so that the sphere shrinks to a point while the hyperboloid’s neck also constricts
to a point. The hyperboloid may then be folded back on itself so that in a neighborhood of
Z,, the chain vanishes, leaving a chain I' supported below the height of z,. <
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A Appendix A: Maple Code

Maple worksheets going through the calculations discussed above can be found at https:
//github.com/smelczer/SymmetricRationalFunctionsAofA ; we include the main com-
ponent of those worksheets, code giving dominant smooth asymptotics, here for archival
purposes.

smoothASM := proc(G, H, vars, pt)
local N,i,j, M,HES, C, U, lambda, sbs:
N := nops(vars) :

# Get the Hessian determinant of the phase implicitly
for ¢ from 1 to N do for j from 1 to N do
Uli, j] := vars[i] - vars[j] - diff(Q, vars[i], vars[j]) :
od: od:
lambda := z - diff(Q, ) :
for i from 1 to N — 1 do for j from 1 to N — 1 do
if i <> j then M[i,j] :== 1+ 1/lambda - (U[i,j] — U[i, N] = U[j, N] + U[N, N]) :
else M[i,j] :== 2+ 1/lambda - (U[¢,i] —2- Ui, N]+ U[N, N]) :
fi:
od: od:
HES := LinearAlgebra[Determinant](Matrix([seq([seq(M i, j],7 = 1..N — 1)], j = 1.N — 1)])) :

C' := simplify(—G/vars[—1]/diff(H, vars[—1]) - HES"(—1/2) - (2-Pi)"((1 — N)/2));
sbs := seq(vars[j] = pt[j],j = 1..N) :
return eval(1/mul(j,j7 = pt))"n-n"((1 — N)/2) - eval(subs(sbs, C)) :

end:
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—— Abstract

We consider random rooted maps without regard to their genus, with fixed large number of edges,
and address the problem of limiting distributions for six different parameters: vertices, leaves,
loops, root edges, root isthmus, and root vertex degree. Each of these leads to a different limiting
distribution, varying from (discrete) geometric and Poisson distributions to different continuous
ones: Beta, normal, uniform, and an unusual distribution whose moments are characterised by a
recursive triangular array.
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1 Introduction

Rooted maps form a ubiquitous family of combinatorial objects, of considerable importance
in combinatorics, in theoretical physics, and in image processing. They describe the possible
ways to embed graphs into compact oriented surfaces [17].

The present paper focuses on asymptotic enumeration of basic parameters in rooted
maps with no restriction on genus. From a generating function point of view, if the genus of
the maps is not fixed, then the generating function of rooted maps is non-analytic (namely,
convergent only at zero) and often satisfies a Riccati differential equation, in contrast to
planar maps for which analytic (convergent) generating functions abound. The divergent
Riccati equations appear frequently in enumerative combinatorics. For example, at least 39
entries in Sloane’s OEIS [20] were found containing sequences whose generating functions
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Figure 1 Three rooted maps. Each root is marked by an arrow. The two last maps are equal.

satisfy Riccati equations, including some entries related to the families of indecomposable
combinatorial objects, moments of probability distributions, chord diagrams [9, 10, 14],
Feynman diagrams [11], etc. Some of these are closely connected to maps. Indeed, it is known
that rooted maps with no genus restriction also encode different combinatorial families such
as chord diagrams and Feynman diagrams on the one hand, and different fragments of lambda
calculus [5, 21] on the other hand. Thus most asymptotic information obtained on maps can
often be transferred to the aforementioned objects and lead to a better understanding of
them in the corresponding domains.

While the asymptotics and stochastics on planar maps have been extensively studied (see
for example [2, 4, 3, 12, 18]), those on rooted maps with no genus restriction have received
comparatively much less attention in the literature. Of closest connection to our study here is
the paper by Arqués and Béraud [1], which contains several characterisations of the number
of rooted maps and their generating functions. In particular, they give an explicit formula
for the number of maps, expressed as an infinite sum, from which the asymptotic number of
maps with n edges can be deduced (which is (2n + 1)!!). Recently, Carrance [7] obtained
the distribution of genus in bipartite random maps. To our knowledge, no other asymptotic
distribution properties of map statistics have been properly examined so far. Along a different
direction, Flajolet and Noy [14] investigated basic statistics on chord diagrams, and Courtiel
and Yeats [9] studied the distribution of terminal chords.

From an asymptotic point of view, for planar enumeration, as Bender and Richmond
put it in [3]: “The two most successful techniques for obtaining asymptotic information from
functional equations of the sort arising in planar enumeration are Lagrange inversion and the
use of contour integration.” An equally useful analytic technique is the saddle-point method
as large powers of generating functions are ubiquitous in map asymptotics; see [2, 13] for
more detailed information. In contrast, for divergent series, Odlyzko writes in his survey [19]:
“There are few methods for dealing with asymptotics of formal power series, at least when
compared to the wealth of techniques available for studying analytic generating functions."
We show however that a few simple linearizing techniques are very helpful in deriving the
diverse limit laws mentioned in the Abstract; the approaches we use may also be of potential
application to other closely related problems.

For a rigorous definition of a rooted combinatorial map we refer, for example, to [17, 1].
For our purposes in this extended abstract we use a less formal but more intuitive definition.

» Definition 1 (Maps). A map is a connected multigraph endowed with a cyclic ordering of
consecutive half-edges incident to each vertex. Multiple edges and loops are allowed. Around
each vertex, each pair of adjacent half-edges is said to form a corner. If there is only one
half-edge, there is only one corner. A rooted map is a map with a distinguished corner.

Figure 1 shows some examples of rooted maps. Observe that the first two maps are
different since the cyclic ordering is not the same: in the first map, the pendant edge follows
counterclockwise the edge after the root (the corner pointed to by an arrow), while in the
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Figure 2 Left: The small triangles point at every corner of the map. Right: The light-blue line
marks the contour of one face of the map. The double-lined edges are the isthmi of the map. The
only loop of the map is adjacent to the rightmost isthmus, and the vertex incident to this loop has
degree 3.

Table 1 The six map statistics and their limit laws studied in this extended abstract.

Statistics Differential equation Mean ~ Limit law
leaves L=v+2—u)zL+2L*+22°0. L+ 1 Poisson(1)
2(1 —v)0, L
root isthmic parts C = 1+ 2C 4 v2C|,=1C + 22°0,.C 2 Geometric(3)
vertices X=v42X +2X?+2%0.X logn N (logn,logn)

Y =v+vzY +vzY|u=1Y

loops 1 A new law™
P +202%0,Y +v?2(vw —1)8,Y 2" new faw
root edges E=14vzE+4vzE|,=1E + 20220, F %n Beta(1l, %)
D=1+v*2D D|y=1D
root degree +vzD 4 vzDl— n Uniform|0, 2]

+ 202%20,D — 112(1 —0)20,D

second map it precedes in counterclockwise order. In contrast, the last two maps are equal:
although the leaves are at different positions, one can find an isomorphism between the two
maps preserving the vertices, the root and the cyclic orderings around each vertex. The
corners of the leftmost map are displayed in Figure 2 (left), showing all the possible rootings
of this map.

» Definition 2 (Map features). A face can be obtained by starting at some corner, moving
along an incident half-edge, then switching to the next clockwise half-edge and repeating the
procedure until the starting corner is met. A loop is an edge that connects the same vertex.
An isthmus is an edge such that the deletion of this edge increases the number of connected
components of the underlying graph. The degree of a vertex is the number of half-edges
incident to this vertex.

These definitions are illustrated in Figure 2 (right).
Arques and Béraud [1] prove that the generating function of maps M (z) := 2"20 my,z",
where m,, enumerates the number of maps with n edges, satisfies

222M'(2) = (1 — 2)M(2) — 1 — zM(2)?, (1)

a typical Riccati equation whose first few Taylor coefficients read M (z) = 1 + 2z + 2022 +
44423 + 1694424 + - - -

We address in this paper the analysis of the extended equations of (1) for bivariate (and
in one case, trivariate) generating functions M (z,v) := Zn,@o Mo,k 2"0", where m,, , stands
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Figure 3 Left: Root vertex degree. Right: Number of root isthmic parts.
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Figure 4 Left: Number of vertices. Right: Number of root edges.

for the number of maps with n edges and the value of the shape parameter equal to k. We
obtain limit laws for the distributions of six different parameters (see Figures 3 to 5).

We collect the statistics and their limit laws studied here in Table 1 for comparison.
We see that some of the limit laws are discrete (Poisson and Geometric), one of them (the
number of vertices) is Gaussian with a logarithmic mean, which is denoted by A (logn,logn),
and the others are continuous. For the number of root edges, root degree and loops, the
corresponding limit laws are normalized by n, the total number of edges. The distribution of
the number of loops follows a rather unusual limit law (see Figure 5) in the sense that we
can only characterise the limit law by its moment sequence, 7;, which satisfies 7, = 7o, With
Ny, computable only through a recurrence involving 7, _, ; and 1, ;_;. The corresponding
probability density function of this law remains unknown and does not have an explicit
expression at this stage (see Figure 5). Finally, by the bijection from [10] and a known
property of chord diagrams in [14], it is possible to deduce the limit laws for the number of
leaves.

One technique we use several times in our proofs consists in linearising the differential
equations satisfied by the generating functions, by choosing a suitable transformation, inspired
from the resolution of Riccati equations. Once the dominant term is identified, the analysis
for the limit law becomes more or less straightforward. When such a technique fails, we
rely then on the method of moments, which establishes weak convergence by computing
all higher derivatives of M(z,v) at v = 1 and by examining asymptotically the ratios
[2")0F M (2,v)|p=1/[2"]M(2,1) (which correspond to factorial moments of random variable).
Such a procedure also linearises to some extent the more complicated bivariate nature of the
differential equations and facilitates the resolution complexity of the asymptotic problem.
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Figure 5 Left: Joint distribution of root vertex degree and the number of loops. Right: Number
of loops.

map = L or or

-

Figure 6 A symbolic construction of rooted maps.

Structure of the Paper. In Section 2 we derive the nonlinear differential equations satisfied
by the generating functions of the map statistics. Then in Section 3 we sketch the proofs
for the limit laws of five statistics based on generating functions. The Poisson law for the
number of leaves (together with the root face degree and the number of trivial loops) will be
proved by a direct combinatorial approach in the last section.

2 Differential equations for maps

In this section, we derive the differential equations satisfied by the bivariate or trivariate
generating functions with the additional variable(s) marking the shape statistics.

Univariate generating function of maps. Since the Riccati equation (1) lies at the basis
of all other extended equations in Table 1, we give a quick proof of it via the recurrence
satisfied by m,,, the number of maps with n edges (see Figure 6):

My = Lp—o] + Z MEMy 1k + (20 — 1)my, 1, (2)
0<k<n

which then implies the Riccati equation (1).

First, mg = 1 because there is only one map with 0 edges. Then a map with n edges
can be formed either by connecting the roots of two maps (with & and n — k — 1 edges,
respectively) with an isthmus, or by adding an edge to a map with n — 1 edges, connecting
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the root and a corner. The number of possible ways to insert an edge in this way is equal to
2n — 1, because there are 2n — 2 corners in a map of size n — 1, and there are two possible
ways to insert a new edge at the root corner (either before, or after the root). This proves

(2).

Vertices. Consider now the bivariate generating function X (z,v) =3, 15 Tp 2" 0%, where
Tn, 1s equal to the number of rooted maps with n edges and k vertices. Arqués and Béraud [1]
showed that

X(z,v) = v+ 2X(2,0) + 2X (2,v)? + 2220. X (2,v). (3)

This recurrence can be obtained from (2) by noticing that no new vertex is created when we
connect two maps with an isthmus, nor when we add a new root edge to a map. Note that
X (z,v) satisfies another functional equation (see [1])

X(z,v) =v+2X(z,0) X (z,v+ 1),

which seems less useful from an asymptotic point of view.

Root isthmic parts. We count here the root isthmic parts, which are the number of isthmic
constructions used at the root vertex. Note that an isthmic part may not be a bridge because
the additional edge constructor may induce additional connections. Then the bivariate
generating function C(z,v) = Zn,k>0 cn)kz”vk, where ¢;, , enumerates the number of maps
with n edges and k root isthmic parts, satisfies

C(z,v) = 1+ 20(2,v) +v20(2,v)C(2,1) + 2220.C(z,v). (4)

In Figure 6, the number of root isthmic parts only changes whenever two maps are
connected by an isthmus. This yields vzC(z,v)C(z, 1) instead of zC2.

Root edges. Similarly, consider E(z,v) = Zm@o en k2", where e, j counts the number
of rooted maps with n edges and k root edges. Then E(z,v) satisfies

E =1+ vzE +vzE|,—1 E + 2v2%0,E. (5)

This again results from the recurrence (2) and from Figure 6: the non-root edges come from
the bottom map in the isthmic construction, yielding the term vzE(z,v)E(z,1).

Root Degree. Consider the degree of the root vertex. Note that this may be different
from the number of root edges because for the root degree, each loop edge is counted twice,
therefore the degree of the root vertex varies from 0 to 2n. By duality, the distribution of
the root face degree is the same as the distribution of the root vertex degree.

Let D(z,v) =32, ;>0 dp k2"v* denote the bivariate generating function for maps with
variable v marking root degree. Then

D =1+4v*2D +vzD|y=1 D + 2v2%9,D — v*(1 — v)20, D. (6)

In this case, the original construction in Figure 6 is insufficient, and we need to consider
further cases in Figure 7. When an additional edge becomes a loop, it increases the degree
of the root vertex by 2; otherwise, the root degree is increased merely by 1. Note that
the equation (6) is now a bona fide partial differential equation, making the analysis more
difficult.



0. Bodini, J. Courtiel, S. Dovgal, and H.-K. Hwang

map= 1+ or or
[ ]

Figure 7 Symbolic method to count root degree and loops in rooted maps.

Leaves. The differential equation for the bivariate generating function of maps with variable
v marking leaves (see Table 1) can be obtained in a similar way by considering different cases
in the new edge constructor. The number of special leaf corners is equal to the number of
leaves.

Loops. Finally, we look at the number of loops whose enumeration necessitates the con-
sideration of the joint distribution of the number of loops and the number of root edges,
namely, we consider the trivariate generating function Y (z,v,w) = Zn,k,m ynykymz”vk
where y,, 1., denotes the number of rooted maps with n edges, root degree equal to k, and
m loops. Then Y (z,v,w) satisfies a partial differential equation

m
w )

Y =1+ 20Y + 20Y |,—1Y + 22200, Y + 20% (vw — 1)8,Y. (7)

As in the symbolic construction of Figure 7, a new edge becomes a loop only if it is attached
to one of the corners incident to the root vertex. The differential equation (7) is then a
modification of (6) with an additional variable marking the number of loops.

Note that Equation (7) is catalytic with respect to the variable v, i.e. putting v = 1
introduces a new unknown object 9,Y|,=1 to the differential equation. One of the strategies
for dealing with catalytic equations was developed by Bousquet-Mélou and Jehanne [6],
generalising the so-called kernel method and quadratic method. However, their method does
not work in our case because our equation is differentially algebraic.

3 Limit laws

This section describes the techniques we employ to establish the limit laws.

From now on, by a random map (with n edges) we assume that all rooted map with n
edges are equally likely. For notational convention, we use X’ = 9, X to denote derivative
with respect to z. Due to space limit, we give only the sketches of the proofs.

3.1 Transformation into a linear differential equation

For most of the equations in the previous section, it turns out that a transformation similar
to that used for Riccati equations largely simplifies the resolution and leads to solvable
recurrences, which are then suitable for our asymptotic purposes. We begin by solving
the standard Riccati equation (1) and see how a similar idea extends to other differential
equations.

» Proposition 3. The number m,, of maps with n edges satisfies

n _ 2n)!
T(Z—n =2n—-1+0(n"), where ¢, = (27172' =(2n - DI (8)
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Proof. We solve the Riccati equation (1) by considering the transformation

22¢'(2)
¢(2)

for some function ¢(z) with ¢(0) = 1. Substituting this form into the equation (9), we get
the second-order differential equation 222¢" + (52 — 1)¢/ + ¢ = 0. From this equation, the
coefficients ¢,, := [2"]¢(z) satisfy the recurrence ¢, 1 = (2n+1)¢,, which implies the double
factorial form of ¢,, by ¢g = 1.

Moreover, by extracting the coefficient of 2™ in (9), we obtain a relation between the
coefficients my, and ¢p. By the inequality m,, > (2n — 1)m,_1 (see (2)), we then deduce the
asymptotic relation (8). <

M(z) =1+ 9)

» Theorem 4. Let X,, denote the number of vertices in a random rooted map with n edges.
Then X, follows a central limit theorem with logarithmic mean and logarithmic variance:

X, —E(X,)

d
o MO, EX) ~legn, V(X,) ~logn. (10)

Proof. Similar to (9), we define a bivariate generating function S(z,v) =3, 5 sn(v)2" such
that

225’
S b

X(z,v)=v+ S(0) =1.
Substituting this X (z,v) into (3) leads to a linear differential equation from which one can
extract the recurrence

2n+v—-2)2n+v—1)

sn(v) = 2n

Sn—1(v).

We then get an explicit expression for s, (v), from which we deduce, by singularity analysis,
that

2@—1
E Xn _ v—1 1 10 -1
() = Fg v L+ 00 7Y),
and conclude by applying the Quasi-Powers Theorem [13, 15]. |

A finer Poisson(logn + ¢) approximation, for a suitably chosen ¢, is also possible, which
results in a better convergence rate O(logn)~! instead of (logn)~%; see [16] for details.

» Theorem 5. Let C,, denote the number of root isthmic parts in a random rooted map with
n edges. Then,

Ch LI Geometric(%).
Proof. Since C(z,1) = M(z), we use again the substitution (9) and apply it to (4):
22%(pC" +v¢'C) = (1 — (1 +v)2)pC — ¢.

The trick here is to multiply both sides by ¢(2)"~! and set Q(z,v) = ¢(2)?C(z,v). We then
obtain

222Q' = (1— (1 +v)2)Q — ¢".
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Using the recurrence for the normalised coefficients ¢, (v) := ¢, (v)/®, and dominant-term
approximations, we find that the n-th coefficient of @ is proportional to

PN n\v/2 N -1
q”(”)_znlgén(k) +O( ) = g, + 0.

This corresponds to a (shifted by 1) geometric distribution with parameter 1. By the
definition Q(z,v) = ¢(2)"C(z,v), we deduce that the limiting distribution of C,, is also
geometric with parameter 1. <

» Theorem 6. Let E,, denote the number of edges incident to the root vertex in a random
rooted map with n edges. Then E, follows asymptotically a Beta distribution:

% BN Beta(L %)7 (11)
with the density function 1(1 — t)~2 fort e 0,1).
Proof. We use again the substitution E(z,1) = M(z) =1+ 22% in (5), giving
202%(¢E' + ¢'E) = (1 — 202)¢E — ¢.
With Q(z,v) = ¢(2)E(z,v), we then obtain
02°Q" = (1 —2v2)Q — ¢. (12)

This linear differential equation translates into a recurrence for the coefficients ¢, (v) of
Q(z,v), which yields the closed-form expression

ga(®) =200 3 (2?)4—Jvn—j. (13)

0j<n 7
Returning to E(z,v), we see that its coefficients behave asymptotically like ¢, (v). This
implies the Beta limit law (11) for the random variable E,,/n since (2;)4_j ~ (m5)~/? for
large j. <
» Theorem 7. Let D,, denote the degree of the root verter in a random rooted map with n

edges. Then, D,,, divided by the number of edges, converges in law to the uniform distribution
on [0,2]:
D
= 4, Uniform [0, 2] (14)
n
Proof. The substitutions
Q(z,v)
¢(2)
lead to a partial differential equation, which in turn yields the recurrence for the coefficients

gn(v) := [2"]Q(2,v):

4n(v) =v(2n — 1+ v)gn_1 — v*(1 = v)q,_1(v) + Hp.

D(z,1)=M(z) =1+ 22¢/, and D(z,v) =

We then get the exact solution ¢,(v) = ¢,(1 4+ v + --+ + v?"). Accordingly, d,(v) =
[2"]D(z,v) ~ ¢, (v). This implies the uniform limit law (14). <

A more intuitive interpretation of this uniform limit law is given in the next section.
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3.2 Approximation and method of moments

Unlike all previous proofs, we use the method of moments to establish the limiting distribution
of the number of loops. The situation is complicated by the presence of the term involving
0,Y in (7), which introduces higher order derivatives with respect to v at v = 1 when
computing the asymptotic of the moments.

» Theorem 8. Let Y,, denote the total number of loops in a random rooted map with n edges.

Then
Yo i, (15)
n

where L is a continuous law with a computable density on [0, 1].

Proof. First, we show by induction that there exist constants 7, ,, such that as n — oo,
[2"|OFOLY (z,0,w)|,_, |~ T b, k0> 0. (16)

For k = £ = 0 the statement clearly holds. Let y? = [z")0F0L Y (2, v, w)|,_,_, for larger
k,¢ > 0. By translating (7) into the corresponding recurrence for the coeflicients and by
collecting the dominant terms (using the induction hypothesis (16)), we deduce that

g0~ @2n+ )y 4y 4 9kn — 2k)y O 1y

n—1

(k)

n

Accordingly, we are led to the recurrence

M0

= ——(2k 14
) k+ 20+ 1[k>0]( Mg—1,0 + 77k+1,e71)7

for k + ¢ > 0 (provided that we interpret 7, , = 0 when any index becomes negative). In
particular, when ¢ = 0, we obtain the moments of the random variable F,,, the number of
root edges: 7, o = 2,:%, which coincides with the moments of the uniform random variable
Uniform[0, 2]. Finally, it is not complicated to check that the numbers 7, , satisfy the
condition of Hausdorff moment problem, i.e. 7, , uniquely determine the limiting random
variable defined on [0, 1]. <

4 Combinatorics of map statistics

We examine briefly the combinatorial aspect of the map statistics, relying our arguments on
the close connection between maps and chord diagrams (see [8]).

Recall that a chord diagram [14] with n chords is a set of vertices labelled with the
numbers {1,2,...,2n} equipped with a perfect matching. A chord diagram is indecomposable
if it cannot be expressed as a concatenation of two smaller diagrams.

Why the root degree follows a uniform law? We begin with Cori’s bijection [8] between
rooted maps and indecomposable diagrams. In this bijection, each chord connecting labels 4
and j corresponds to matching of the half-edges with labels ¢ and j. The set of half-edges
incident to each vertex of the resulting map corresponds to the set of nodes to the right of
the starting points of the so-called outer chords, i.e. chords that do not lie under any other
chord.

» Proposition 9. There exists a bijection between rooted maps of root degree d with n edges,
and indecomposable diagrams with n + 1 chords such that the vertex d — 2 is matched with
vertex 1.
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Figure 8 Random rooted maps, respectively with 1000 and 20000 edges.

Once this proposition is available, it leads to a simpler and more intuitive proof of
Theorem 7 as follows. In a (not necessarily indecomposable) diagram, the label of the vertex
matched with 1 follows exactly a uniform law on {2,...,2n}. But a diagram is almost surely
an indecomposable diagram (because its cardinality is asymptotically the same); thus the
label of the vertex matched with 1 divided by 2n obeys asymptotically a uniform law on
[0,1] (or Uniform]0, 2] if divided by n as in Theorem 7).

Uniform random generation. Cori’s bijection is also useful for generating random rooted
maps. Uniformly sampling a random diagram can be achieved by adding the chords se-
quentially one after another. If this procedure results in a decomposable diagram, it is
rejected (which occurs with asymptotic probability 0). A successful sampled diagram is then
transformed into a map using Cori’s bijection [8]. Figure 8 shows two instances of random
maps thus generated.

The number of leaves. Another bijection in [10] is useful in proving the Poisson limit law
of the number of leaves. This bijection sends leaves of a map into the isolated chords (namely,
edges connecting vertices k and k + 1) of an indecomposable chord diagram. According
to [14, Theorem 2|, the number of isolated edges in a random chord diagram has a Poisson
distribution with parameter 1. We can then deduce the following theorem.

» Theorem 10. The number of leaves in a random map with n edges follows asymptotically
a Poisson law with parameter 1.

Two dual parameters. We briefly remark that two other parameters, namely root face
degree and the number of trivial loops do not seem easily dealt with by the method of
generating functions because marking them requires additional nested information such
as the degrees of all the faces. However, such parameters can be easily marked in their
corresponding dual maps. Their limit distributions are uniform and Poisson, respectively.
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In this paper we focus on concurrent processes built on synchronization by means of futures. This

concept is an abstraction for processes based on a main execution thread but allowing to delay
some computations. The structure of a general concurrent process is a directed acyclic graph
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For this model we first exhibit an exact and an asymptotic formula for the number of runs of a
given process. The second main contribution is composed of a uniform random sampler algorithm
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1 Introduction

Concurrent processes are logic units running independently in the same environment which
share resources (processing time, file inputs or outputs, etc). To guarantee the good behavior
of a concurrent program (a set of processes), a mechanism of synchronization has to be set
up. For example, synchronization can be used to avoid a process to write in a file currently
read by another process.

To deal with concurrent programs, researchers in the concurrency theory community
formalize the programs in an abstract language called process algebra. Different formalisms
exhibit different properties of concurrent programs. We are mainly interested in the so-
called Calculus of Commaunicating Systems introduced in [18], because of its popularity in
concurrency theory and the simplicity to reason about.

In this context, one of the main goals in concurrency is to check the good behavior of
such programs. A very popular method to do the verification is the model checking: several
logical properties (the specification of the program behavior) are checked for all the possible
runs of the program (see [3] as a reference book).

A common problem in such a method is the combinatorial explosion phenomenon: the
huge number of runs to check. To deal with that explosion, a statistical method has been
introduced: the Monte-Carlo model checking (see [13]). Here, the idea is to check the
specification only for few runs randomly sampled. Thus, the result of the method is not
anymore a proof of good behavior but a statistical certificate.

In this paper we investigate this phenomenon from a combinatorial point of view. We
consider concurrent programs as sets of atomic actions (executed computations) constrained
by a partial order relation: some actions have to finish before others start their computations.
Thus in this setting, a concurrent program can be modeled as a partial order (a.k.a. poset).
Then, its runs (possible execution flows) are its linear extensions (i.e. the total orders
compatible with the partial order) and the combinatorial explosion phenomenon (for a given
family of posets) is the fast growth of the number linear extensions as its number of atomic
actions increases.

The problem of counting the number of linear extensions of a poset is known to be
fP-complete [10]. As a consequence, an analytic approach to study this counting problem
for general posets seems out of reach. We thus limit the difficulty by considering restricted
classes of partial orders. In previous works we dealt with tree-like processes [9], tree-like
processes with non-deterministic choice [8] and Series-Parallel processes [5, 7]. In these
papers, like in the present one, we take the point of view to model a partial order by its
covering directed acyclic graph — DAG — (a.k.a. Hasse diagram). Then a linear extension
becomes an increasing labeling of the covering DAG. Previously this consideration let us to
use symbolic method to specify our models and so to use tools of Analytic Combinatorics
(see [11]).

In the present work we focus on processes built on synchronization by means of futures
or promises (see [4]). This concept is an abstraction for processes based on a main execution
thread but allowing to delay some computations. These computations are run asynchronously
and are represented as an object that can be queried in two ways: finish? to know if the
computation has terminated and get to retrieve the result of the computation (and properly
proceed the synchronization). This quite old principle aroses recently in many programming
languages, especially in the very popular Javascript language (see [1]).

To emphasize these paradigm we consider arch processes: a simplistic model of processes
with futures. An arch process is composed of a main trunk from which start several arches
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Figure 1 The (n, k)-arch process.

(modeling futures). The general shape of such a process is given in the Figure 1. Arch
processes are based on two parameters related to their sizes and their numbers of arches. A
combinatorial and recursive specification (as in [11]) for these increasing labeled structures
seems out of the reach at the moment. As a consequence we present here a different approach
to specify the problem.

For this model we exhibit ezact and asymptotic formula for the number of increasing
labelings.As a second main contribution is the design of two algorithms. The first one
is an uniform random sampler for runs of a given arch process and the second one is an
unranking algorithm which allows to obtain an exhaustive builder of runs. The design of
these algorithms is motivated by the possible applications to (statistical) model checking.

The paper is organized as follows. The next section is devoted to the formal description of
(n, k)-arch processes and gives the solution of the recurrence equation driving their numbers
of runs. In Section 3 we prove the algebraicity of the bivariate generating function, we give a
closed form formula for it and the asymptotic behaviors of the diagonal coefficients of the
functions. Section 4 carefully describes both algorithms.

2 The arch processes and their runs

A concurrent program is seen as a partially ordered set (poset) of atomic actions where the
order relation define the precedence constraints over the executions of the actions.
A run of a concurrent program is a linear extension of the corresponding poset: i.e. a total
order compatible with the partial order relation.

Note that many other models of concurrent program exist but we have chosen to use this
one because it is well-suited to study the combinatorial explosion phenomenon.
We introduce now the model of arch processes, a family of restricted concurrent program
encoding synchronization by means of futures.

» Definition 1. Let n and k be two positive integers with & < n+ 1. The (n, k)-arch process,
denoted by A, k, is built in the following way:
the trunk of the process: a sequence of (n + k) actions aq,...,Qk, T1,. -, Tp_k,Cl, - - -, Ck
and represented in Figure 1 on a semicircle;
the k arches that correspond to the triplets, for all ¢ € {1,...,k}, a; = b; — ¢;.
Thus k is the number of arches in the process, and n is the length (along the trunk) between
both extremities of each arch a; and ¢; (for all 4). There are two extreme cases: when k = n,
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Figure 2 A run of the (5,4)-arch process.

it corresponds to the arch processes that do not contain any node z; in the trunk, and the
case k = n + 1 that corresponds to the case where both the nodes a; and ¢; are merged into
a single node (and thus there is no node z;).

In Figure 1 representing the (n, k)-arch process, the precedence constraints are encoded
with the directed edges such that ¢ — b means that the action a precedes b. We remark
that the (n, k)-arch process contains exactly (n + 2k) actions. Due to the intertwining of
the arches, we immediately observe when k is larger than 1 then the arch processes are
not Series-Parallel processes. Hence the results we exhibited in our papers [6, 7] cannot be
applied in this context.

» Definition 2. An increasing labeling for a concurrent process containing ¢ actions is
a bijection between the integers {1,...,¢} and the actions of the process, satisfying the
following constraint: if an action a precedes an action b then the label associated to a is
smaller than the one related to b.

In Figure 2 we have represented an increasing labeling of the (5,4)-arch process As 4
corresponding to the run (a1, b1, as,as,bs, as,x1,bs, c1,be, o, c3,c4). As one can see, every
directed path (induced by the precedence relation) is increasingly labeled. Our quantitative
goal is to calculate the number of runs for a given arch process.

» Proposition 3. The number of runs of a concurrent process is the number of increasing
labelings of the actions of the process.

Thus, each increasing labeling is in bijection with a single linear extension.

While there is the classical hook-length formula for tree-processes [15, 9] and its general-
ization for Series-Parallel processes [6], to the best of our knowledge, no closed form formula
is known for more general classes of processes. In the rest of the paper, for a given process
A, we denote by o(A) its number of runs.

First, let us easily exhibit a lower bound and an upper bound (in the case k < n + 1) in
order to obtain a first idea for the growth of the numbers of runs for the arch processes. We
remark that a similar approach could be used for the case when k = n+1. We first enumerate
the runs where all the b; nodes are preceded by a, and all of them precede the node ¢;. This
imposes new precedence constraints for the process, and thus its number of runs is a lower
bound for the total number of runs. In this case the b;’s permute without any constraint, i.e.
k! possibilities and then each permutation of the b;’s shuffles with the sequence z1, ..., T, k.
Thus we get the following lower bound for the number of runs of A, j:

k:—i—n—k;)_ nl

O'(An’k) Zk"( 3 —m.
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Figure 3 From left to right, the processes denoted Dy, i, Dn i, Di’k and ﬁik

We now focus on an upper bound for the number of runs of A, ;. Here again we suppose
that all the permutations of the b;’s are possible, but we allow each b; to appear everywhere
between a; and c¢g. This constraint is satisfied by all the runs, but some possibilities are
not valid runs: thus we are computing an upper bound. Once the permutation of the b;’s is
calculated, we shuffle it into the trunk (containing n + k nodes):

- —1)!
G(An,k)§k1<k+”+k 1)(n+2k 1)!

n+k—-1 ) (n+k-1""

A refinement of these ideas for the bounds computation allows to exhibit a recurrence formula
for the value o(A4, x).

» Theorem 4. Let n and k be two integers such that 0 < k <n+ 1. The number (A, k)
of runs of the process Ay 1 is equal to ty j that satisfies:
n+2k—1 n—k

In,k = ftn,kfl +

tn+1,k:71 and tn70 =1. (1)

In order to provide the proof, we first introduce the four processes in Figure 3. Notice that
they are not arch processes. From left to right, the first process, denoted by D, i, is almost
the process A, ;. In fact, the single difference is that D, ; contains exactly one more action,
denoted by ¢, that is preceded by all the other actions. The second process D, . is related
to Dy, 1 in the following way: the precedence relation starting at b; is replaced, instead of
having by — ¢1, it is by — ¢}. Finally, for the two last processes Erll) , and ﬁi) &> it is also the
relations a; — by — ¢; which are modified.

Proof. The extreme case A, o corresponds to a process without any arch: just a trunk.

Obviously it admits a single increasing labeling: it has a single run.
Suppose first that k& < n+1. The number o(A4,, 1) is equal to the number of runs o(D,, 1)

because for all runs, the integer associated to ¢ is inevitably the largest one: 2k +n + 1.

Then, using a inclusion/exclusion principle, we obtain the following formula for the number
(D 1):

o(Dag) = o(Dui) = (0(Dy 1) = oDy 1) ) - (2)

In fact we are focusing on the action preceded by b;. In D, j it corresponds to ¢;. By
modifying it to ¢} in En,k we allow runs where b; appears after c;, thus that are not valid

for Dy, . We remove this number of non-valid runs with a(ﬁ:% B) — a(ﬁi, x)» by playing with

both actions z; and ¢;. To compute o(D,, ), first omit the action b; (and its incoming
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and outgoing edges) ; the remaining process is a (n,k — 1)-arch process, up to renaming,
with added top and bottom actions (a; and ¢}) which do not modify the number of runs
of A, k—1. It remains to insert by in this “almost” A, ;_1, somewhere between a; and cj:
there are (2- (k—1)+n —1) 4+ 2 =2k + n — 1 possibilities. The term (2-(k—1)+n—1)
are the cases where b; is put between as and c¢; and the term 2 corresponds to the cases
where by is either before as or after cx. The process ﬁn,k is similar to the arch process A, i,

—1 —2
there is only an action a; that precedes it, so o(D,, ;) = tn k. Lastly, for the process o(D,, ),
forgetting b; we recognize A, 11 ,—1 up to renaming, so b; can be inserted between z; and
c1: there are n — k possibilities. Finally we obtain the following equation

O'(An,k) =Mn+2k—-1): U(An,k-—l) - U(An,k) +(n—k)- U(An-‘rl,k—l)'

Suppose now that & = n + 1. Here there is no action z; and both the nodes a; and ¢; are
merged into a single node. We can adapt equation (2) and obtain the same recurrence, but via
a small difference in the computation: o(Ax_1x) = 3k-0(Ak—1,k-1) —0(Ak—1k) — (A k—1)-
But since k = n + 1, this recurrence is equal to equation (1) too. |

When £ > n +1, one can think to the arch process A,, i as an arch process where the last
(k—n) actions a,,_; are merged with the first (k —n) actions ¢;. But the recursive formula (1)
does not apply to such models: once k > n+ 1 the recurrence loses its combinatorial meaning.

The next result exhibits a closed form formula for the number of runs of the arch processes.

» Theorem 5. Let n and k be integers such that 0 < k < n -+ 1. The number * of runs of
the (n, k)-arch process is

k: 1

o(Anr) _(2k + n—1)! ;J n—&ﬂ—:_ fir1;|8)
2(k—ij)+n+j+2)
Z H Zj+]+n_k_1)r<2(ki')in+j+3 ’
1<in < <i <k j=1 I (#)
(25/2)~1 if s is even
where par(n,s) = { /m(26+D/2)~1 if s is odd and n is even

(20s=1/2 /)=t if s is odd and n is odd.

Let us recall the double factorial notation: for n € N, n!ll = n-(n—2)!l with Ol! = 1!l =1. We
remark that the ratio of the two I'-functions is related to the central binomial coefficient. The
asymptotic behavior of the sequence does not seem immediate to obtain using this formula.

key-ideas. The formula for o(A, ) is obtained by resolving the recurrence stated in equa-
tion (1). First remark that the calculation of o(A,, ;) requires the values of o(4; ;) in the
triangle such that n < i <n+kand 0 < j <k — (i —n). The formula is computed by
unrolling k times the recurrence. In particular, the index s in the formula corresponds to
the number of times we have used the second term of equation (1), to reach the final term
0(Apts,0). The i; values indicate in which iteration the second terms of equation (1) have
been chosen. They describe the path from (n, k) to (n+s,0). The brute formula obtained in
this way is composed of a product of truncated double factorials that can be written as ratios

! In Theorem 5 we use the convention that the sum over the sequence of i ;’s is equal to 1 when s = 0.
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of double factorial numbers. Finally, by coupling the adequate numerators and denominators
in the product we exhibit several Wallis’s ratios [2] that are easily simplified by using the
@n—-1!I 1 T'(n+3)

I-function: = ——2="
Mo o o T A T (1)

<

By using this closed form formula, or the bivariate recurrence (cf. equation (1)), we easily
compute the first diagonals of the recurrence. The values of a given diagonal correspond to
the class of arch processes with the same number of actions x; in the trunk.

1,12,170, 2940, 60760, 1466640, 40566680, 1266064800, . . . )
1,5,44, 550, 8890, 176120, 4130000, 111856360, . .. )

2,11, 100, 1270, 20720, 413000, 9726640, 264279400, . . . )
3,19, 186, 2474, 41670, 850240, 20386800, 561863960, . . . )

(0(Ak—1.k))kem (0,1} =
(0(Ap.k))ren- =
(0(Agt1,k))ken =

(0(Ags2,k))ken+ =

P

We remark that the first terms of the sequence (o(Ag+1.%))ken~ coincide with the first terms
of the sequence A220433 (shifted by 2) in OEIS 2 . This sequence is related to a specific Alia
algebra and is exhibited in the paper of Khoroshkin and Piontkovski [14]. In their paper, the
exponential univariate generating function naturally appears as an algebraic function. This
motivates us to study in detail the bivariate generating function for (¢, ) and in particular
its diagonals.

3 Algebraic generating functions

Let us associate to the bivariate sequence (t, x)nr the generating function, denoted by
A(z,u), exponential in u and ordinary in z:

t
Az,u) = Z Z—"kz"uk.
n>0,k>0

Recall this series enumerates the increasing labelings of the arch processes, when k <n + 1,
but has no combinatorial meaning beyond this bound.

» Proposition 6. The bivariate generating function A(z,u) is holonomic and satisfies the
following differential equation.

(2zu — 2z —u) %A(z,u)+(zfQ)A(z,u)+z(z+1) %A(z,u)+0(u) =0.

where C(u) is an algebraic function determined by the initial conditions of the equation.

The differential equation can be exhibited since the recursive behavior of (¢, 1) is not disturbed
beyond the bound k& > n + 1.

key-ideas. The differential equation is directly obtained from the recurrence equation (1).

The function C(u) encodes the initial conditions of the equation. The differential equation
satisfied by A(z,u) ensures its holonomicity (cf. [21, 11]). <

2 OEIS corresponds to the On-line Encyclopedia of Integer Sequences: http://oeis.org/.
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It is important to remark that C'(u) is holonomic. In fact we have C(u) = u%A(O, u) +
2A(0,u) and consequently C(u) is holonomic as a specialization of a holonomic bivariate
generating function. A direct computation for C'(u) exhibits the following differential equation

4 (24u® 4+ 3u+1) C(u) — 4u (84 — 3u + 1) %C’(u)

2

d
—2u? (216u? — 151u + 13) —
u( U u+ )du2

C(u)

dS

—2u? (58u® — T5u? + 33u — 2) —

u( U U + 33U )du3
4

—u® (8u® — 15u® 4 12u — 4) %C’(u) —8(3u+1)=0.

C(u)

Note that we prove also that C(u) is solution of an algebraic equation. This fact is really
not obvious from a combinatorial point of view. But it is deduced through the fact that the
function A(0,w) is algebraic:

(8u? — 15u® + 12u — 4) A(0,u)® + (12u® — 12u + 6) A(0, u) — 2u> = 0. (3)

The equation is obtained by a guess and prove approach. Once it has been guessed it remains
to prove it by using the holonomic equation proven in Proposition 6. Thus we get

32 (9u® — 12u + 8) (u — 1)°

+ 48 (36u° — 120u® + 202u* — 199u® + 123u® — 44u + 8) (u — 1)* C(u)

+ (8u® — 150 + 12u—4)° C(u)® = 0.
» Theorem 7. The function A(z,u) is an algebraic function in (z and u) whose annihilating
polynomial has degree 3:

246 (1220 — 182u® — 2u® + 13zu+ 2u — 3z — 1) A(z,u)

+ 627 (8u® — 15u® 4+ 12u — 4) A(z, u)?

+ (8u® — 15u” + 12u — 4) (2* + 62u + 32° — 32 — 1) A(z,u)® = 0.

Note that the choice to use a doubly exponential generating function (in v and z) for (¢, k)
would have made sense and would be holonomic too (closure property of Borel transform). But
it would not be algebraic because of the inappropriate asymptotic expansion (cf. Theorem 9).

Proof. The fact that the initial conditions and a diagonal of A(z, u) are algebraic suggests that
it could also be algebraic as a function of z and u. Applying a bivariate guessing procedure,
we observe that the bivariate function H(z,u) = (u + 1)(2® + 322 + 62u — 32 — 1) A(z,u) is
such that [2"]H (z,u) = 0 for n > 2. Furthermore [27]H (2, u) is algebraic for j = {0, 1,2}.
So, let us calculate these z-extractions. First recall that [2°]A(z,u) satisfies the algebraic
equation (3). In the same vein, [2!]A(z,u) satisfies the algebraic equation

(8u® — 15u® + 12u — 4) f(u)® + 3 (8u® — 15u® + 12u — 4) f(u)?
+3 (8u® — 15u® + 10u — 2) f(u) + 8u® — 15u” + 6u = 0,
and finally [22]A(z,u) satisfies the algebraic equation

(8u® — 150 4+ 12u — 4) f(u)® + (—24u® + 45u® — 36u + 12) f(u)”
+ (=72u® + 135u® — 84u + 18) f(u) — 40u® + T5u® — 36u = 0.
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Thus we obtain

[2°)1H (z,u) = —(1 + u)A(0, u)
[2'H (z,u) = =1+ (u+ 1) ((6u — 3)A(0,u) — [2']A(z, u))

[2%]H (z,u) = (u+1) ((6u — 3)[2']A(z,u) — [2°]A(z,u) + 3A(0,u) + (6u — 4)).
[2=2]H (2, u)

(u+1) (234 322+ 6uz — 32 — 1)
we get a closed form algebraic equation for A(z,u) of degree 27, that obviously cannot fit in

Finally we get A(z,u) = . By using the elimination theory,

the conference paper format. Nevertheless, this equation is not minimal. Simplifying it, we
get a minimal polynomial of degree 3 which annihilates A(z,u):

(8u® — 15u® 4+ 12u — 4) (2° + 32% + 62u — 3z — 1) A(z,u)*
+62% (8u® — 15u* + 12u — 4) A(z,u)?
+6 (12zu® — 182u” — 2u® + 132u+ 2u — 3z — 1) A(z,u) +2 = 0.

A direct proof by recurrence confirms the validity of this equation. <

We remark in the previous section that the diagonals of the function A(z,u) are of
particular interest because they define subclasses of arch processes with a fixed number of x;
actions covered by all the arches. In order to extract the generating functions of this subclass,
we could use the Cauchy formula to compute [u°]A(z/u,u) and so on; we would keep the
holonomicity property of the sequences but not their algebraicity. So, we prefer to define
the generating function B(z,u) = A(z/u,u). A similar proof as for the case A(z,u) can be
done to prove the algebraicity of B(z,u). In particular, it exhibits the following algebraic
equation satisfied by B(z,u)

(9u® +12u — 4) (2° + 32> + 6u — 3z — 1) B(z, u)® + 622 (9u® +12u — 4) B(z,u)?
+6 (18u2 — 18u? + 6uz + 9u — 32 — 1) B(z,u) + 2 (6u —1)> =0

In particular, B(0,u) is associated to the sequence (¢ )k, [2']B(z,u) corresponds to the
sequence (tx—1x)r and so on. By specializing z = 0 in the latter algebraic equation then
by resolving it through the Viete-Descartes approach for the resolution of cubic equation
(detailed in the paper [19]), we obtain the following closed form formula corresponding to
the branch that is analytic in O:

1—3u 1 6u—1 173u—%u2
cos | = arccos

B(0 =V2 | —
(0.u) = V2 1—3u— 2u? 3 V2(1 — 3u) 1—3u

Even if the way we represented B(0,u) could suggest a singularity when the argument of the
arccos function is equal to 1, the function admits an analytic continuation up to its dominant

2
singularity p : the solution of 1 — 3u — %ug = 0, thus corresponding to p = 3 (\/§ . 1).
Furthermore, by studying the global generating function B(z,u), we obtain its singular

expansion.

» Lemma 8. Near the singularity when u tends to p, the function B(z,u) satisfies

B(z,u) e a(z) + \/l% +o ((P - U)_1/2> )

with a(z) and b(2) two functions independent from w.
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By using this result we deduce the asymptotic behaviors of the diagonal coefficients of A(z,u).
» Theorem 9. Let i be a given integer greater than —1, and k tend to infinity:

—k

p IR}
thoik ~ Vi — k! with (\/i— 1) and v; = <> .
k+i,k oo Y \/E Yo = \/771' Y \/Q 1 Yo

This theorem is a direct consequence of Lemma 8. The (vy;); can be deduced by asymptotic
matching (using an Ansatz).

Finally, by computing [z!]B(z,u) with the algebraic equation it satisfies, we prove that
its second derivative is solution of the algebraic equation exhibited in OEIS A220433.

4  Uniform random generation of runs

We now introduce an algorithm to uniformly sample runs of a given arch process A,, ;. Our
approach is based on the recursive equations (1) and (2) for the sequence (t, ). Here we
deal with the cases k < n and avoid the limit case k = n + 1. Although the latter limit case
satisfies this equation too, its proof is based on another combinatorial approach, and so the
construction of a run cannot be directly deduced form the combinatorial approach proposed
for the cases k < n. Of course, a simple adaptation of the algorithm presented below would
allow to sample in Aj_1 x, but the lack of space prevent us to present it here.

Our algorithm is a recursive generation algorithm. But since the objects are not specified
in a classical Analytic Combinatorics way, we cannot use the results of [12]. As usual for
recursive generation, the first step consists in the computation and the memorization of the
value t,, 1, and all the intermediate values (¢; ;) needed for the calculation of ¢, k.

» Proposition 10. In order to compute the value t, j, it is sufficient to calculate the values
in the bi-dimensional set {t; ; | n<i<n+kand0<j<k—(i—n)}. This computation
is done with O (k2) arithmetic operations.

Recall that the coefficient computations are done only once for a given pair (n, k), and then
many runs can be drawn uniformly for A, ; by using the recursive generation algorithm.

Let us present the way we exploit the recurrence equation (2) to design the sampling

method. The main problem that we encounter is the presence of a minus sign in the recurrence

equation. Let us rewrite it in a slightly different way: o(Dn ) + cr(Dn k) = 0(Dn k) + (Do p)

Recall that the structures under consideration are depicted in Figure 3. We mtroduce

the classes of increasingly labeled structures from Dn,kaﬁn’kaﬁn,k and ﬁm &, respectively

-1 = -2

denoted by I, k., I,, ., In,x and I,, ;.. Remark that the number of runs of A,, . is equal to |1, x|,

where the function | - | corresponds to the cardinality of the considered class. Obviously the
-1 - )

equation on the cardinalities can be written directly on the classes I,y U I, = In U,

-1
(since their intersections are empty: I, ; and [,, , are distinct even if they are isomorphic).
-1

Thus, we consider the problem of sampling the class I, U I,, , where we bijectively replace
. =1 . . .

the runs belonging to I,, , by runs of I, ; (which can be performed recursively during

the sampling procedure). The Algorithm SAMPLING(n, k) is based on the correspondence

-1

depicted in the Figure 3 and its adaptation presented above on the classes I, U I, ;. In

each case the algorithm completes a recursively drawn run and applies some renammg on
21

the actions of that run. Then, it inserts the action b; according to the cases I, k\In ks Lok

or Imk. In the specific case In,k., instead of b1, it is the action by that is inserted and the

. . .. . . =1
renaming occurs in a similar fashion to obtain a run of I, ;. from the one of I, ;
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Algorithm 1 Uniform random sample for I, j.

1: function SAMPLING(n, k)

2 if £ =0 then

3 return (z1,Ta,...,T,)

4: r:=RAND_INT(0,2-t, 5 —1) > a uniform integer between 0 and 2 - ¢, — 1 in r
5: if r < [I,, | then > generation in I, x
6 U := SAMPLING(n, k — 1)

7 poi=147//tn k-1 > The position of the new b to insert
8 if py, > pg, then > generation in f}hk
9: Rename z; by aj ; and each x; with ¢ > 1 by x;_1

10: Insert by at position p;, ; and ¢ at the end of U

11: else > generation in Tn)k\f}%k
12: In U, rename each a; (resp. ¢; and b;) by a; 1 (resp. ¢; 41 and b;11)

13: Rename x,,_41 by 1

14: Insert by at position p, ; and ay at the head of U

15 else > generation in Ti,k
16: U := SAMPLING(n + 1,k — 1)

17: pp:=2+(r—(n+2k-1) 'tn,k—l)//tn+1,k—1

18: Rename z,, by b and x,,_r12 by ¢; ; and each x; with ¢ > py by z;_;

19: Insert a; at the head of U
20: return U

Line 4 and 17 : the binary operator // denotes the Euclidean division.
The position of an action in a run is its arrival number (from 1 to the number of actions).

» Theorem 11. The Algorithm SAMPLING(n, k) builds uniformly at random a run of A, i
in k recursive calls, once the coefficients computations and memorizations have been done.

Since each object of I,, j is sampled in two distinct ways, the uniform sampling in I,, U T;’ &
induces the uniform sampling of I,, j.

Focus on the run of As 4 depicted in Figure 2: (aq,b1, a2, as, b3, aq,x1,ba, c1, b2, c2, 3, Ca).
It is either obtained from a (renamed) run of f5174: (a1, b1,a9,as,bs, x1, T2, c1,ba, C2, c3) With
pp = 8 (Line 8 of the algorithm). Or it is built from (aq, as, be, as, x1,bs, 2, b1, 1, 2, c3) of
1_5’4\1_5’4, with p, =1 (Line 11). But it cannot be built from a run of 7;4.

In Figure 4, we have uniformly sampled 1000 runs for A1000,1000 and we have represented
in blue points every pair (k,n) corresponding to an increasing sub-structure from A, j that
has been built during the algorithm (k for abscissa and n for ordinate). Only around 4.78-10%
sub-structures have been built among the 50 - 10* inside the red lines which are calculated
for the value £1000,1000. At the beginning n ~ k and the if branch on Line 5 is preferred
(instead of the else one on Line 15) because the number of z; actions is too small. After
some recursive calls, the number of x; actions has increased and then both branches of
the algorithm are taken with probabilities of the same order. Recall that the constants ~y;
(cf. Theorem 9) are evolving with an exponential growth. Finally, we observe that only a
small number of diagonals are necessary for the samplings. Since the diagonals (¢, ;) for
increasing sequences (n;); and (k;); follow P-recurrences (cf. [16]), a lazy calculation of the
terms of the necessary diagonals that envelop the blue points would allow to minimize the
pre-computations of Proposition 10.

We close this section with the presentation of an unranking algorithm for the construction
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Figure 4 The terms t; ; needed for the sampling of 1000 runs of A1g00,1000-

of the runs of a given arch process A,, . This type of algorithm has been developed during
the 70’s by Nijenhuis and Wilf [20] and introduced in the context of Analytic Combinatorics
by Martinez and Molinero [17]. Our algorithm is based on a bijection between the set of
integers {0,...,%,r — 1} and the set of runs of A, ;. Here again we restrict ourselves to the
values k < n. As usual for unranking algorithms, the first step consists in the computation
and the memorization of the values of a sequence. But compared to the uniform random
sampling, here we need more information than the one given by the sequence (t, k).

To be able to reconstruct the run associated to a given rank, we need to know the position
of the action z; in the recusively drawn run in order to decide if the action b; appears before
or after it. First suppose k¥ < n and let ¢,, x » be the number of runs in A,, ; whose action z;
appears at position £. Let us denote by I,, 1 ¢ the associated combinatorial class. We obtain
directly a constructive recurrence for the sequence.

tage =L —=2)thp—10-2+ (N —k) tnp1k—10-1 and tn01=1; thoe>1 =0.
» Proposition 12. The computation of t, ¢ is done with O (kQ) arithmetic operations.
The UNRANKING algorithm computes a run given its rank in the following total order:

o€ Inki,and B € Inps, AN do <1,

a is built recursively from I,, x—1,;—2 and
B is built recursively from Ip41 k—1,i—1

o, B € Ink 1,2 (resp. Int1k-1,i-1) and
o, Bo inducing a, 8 satisfy ap <p,5-1 Po-

(64 —<n k 6 iff. or O[7ﬁ € In,k,i A

or a, B E In,k,i A

The run example of Figure 2 has rank 479 among the 1270 runs of As 4. Note that in the
case k = n (at the end there is no x1) the algorithm is easily extended by considering the
position of b; as the one of x;.

» Theorem 13. The Algorithm UNRANKING(n, k,r) builds the r-th run of A, i in k recursive
calls, once the coefficient memorizations ty, ke, for all € such that k+1 <{<2k+1 (and
the necessary n and k), have been done.

Note that the implementation of both algorithms can be much more efficient than the
pseudocode exhibited above. Actually, only the absolute positions of the b; actions are
important in a run, because all other actions have their positions determined by the positions
of the b; actions. However, such implementations are much more cryptic to read, and so we
preferred to present here easy-to-read algorithms.
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Algorithm 2 Unranking for I, .

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

1
2
3
4
5:
6
7
8
9

: function UNRANKING(n, k,7)
l=k+1
while » > 0 do
ri=r =tk
(=041
return Cons(n, k, £, r)
: function Cons(n, k, ¢, r)
if £k =0 then
return (z1,za,...,T,)
if r<({—2)-t,,-1,4—2 then > generation in I, x_1 ¢—2
=71 % tn k—1,0-2
U :=Cons(n,k—1,0—2,rr)
ppi=1471//tn k—1,0-2 > The position of the new b to insert
In U, rename each a; (resp. ¢; and b;) by a;11 (resp. ¢; 41 and b;41)
Rename x,,_x1+1 by 1
Insert by at position p; ; and a; at the head of U
else > generation in I 41 kx—1,0-1
ri=r— (f — 2) . tn,k_17[_2
rri=1" % tni1k—1.0-1
U:=Cons(n+1,k—1,£—1,rr)
Poi=2+71"//thi1 k1,01
Rename x,, by b1 and x,_j42 by ¢1 ; and each x; with i > p, by z;_1
Insert a; at the head of U
return U

Line 11 and 19 : the binary operator % denotes the Euclidean division remainder.
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—— Abstract

We study I(T"), the number of inversions in a tree T' with its vertices labeled uniformly at
random. We first show that the cumulants of I(7) have explicit formulas. Then we consider
X, the normalized version of I(T),), for a sequence of trees T,,. For fixed T,’s, we prove a
sufficient condition for X,, to converge in distribution. For T, being split trees [6], we show
that X,, converges to the unique solution of a distributional equation. Finally, when T;,’s are
conditional Galton—Watson trees, we show that X, converges to a random variable defined in
terms of Brownian excursions. Our results generalize and extend previous work by Panholzer
and Seitz [20].
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1 Introduction

1.1 Inversions in a fixed tree

Let 01, ...,0, be a permutation of {1,...,n}. If i < j and 0; > o, then the pair (o, 0;)
is called an inversion. The concept of inversions was introduced by Cramer [5] (1750) due
to its connection with solving linear equations. More recently, the study of inversions has
been motivated by its applications in the analysis of sorting algorithms ([15, Section 5.1]).
Many authors, e.g., Feller [7, pp. 256], have shown that the number of inversions in uniform
random permutations has a central limit theorem.

The concept of inversions can be generalized as follows. Consider an unlabeled rooted
tree 1" on node set V. Let p denote the root. Write uw < v if w is a proper ancestor of v, i.e.,
the unique path from p to v passes through u and u # v. Write u < v if u is an ancestor of
v, L.e., either u < v or uw = v. Given a bijection A : V' — {1,...,|V|} (a node labeling), define
the number of inversions

def
I(Tv )‘) = Z 1/\(u)>>\(v)~

u<v

Note that if T is a path, then I(T, \) is nothing but the number of inversions in a permutation.
Our main object of study is the random variable I(T'), defined by I(T) = I(T, \) where X is
chosen uniformly at random from the set of bijections from V to {1,...,|V]|}.

The enumeration of trees with a fixed number of inversions has been studied by Mallows
and Riordan [16] and Gessel et al. [9] using the so called inversions polynomial. While
analyzing linear probing hashing, Flajolet et al. [8] noticed that the numbers of inversions in
Cayley trees with uniform random labeling converges to an Airy distribution. Panholzer and
Seitz [20] showed that this is true for conditional Galton-Watson trees, which encompasses
the case of Cayley trees.

For a node v, let 2, denote the size of the subtree rooted at v. The following representation
of I(T) is the basis of most of our results:

» Lemma 1. Let T be a fized tree. Then

(=Y 7,

veV
where {Z, }yev are independent random variables, and Z, ~ Unif{0,1,...,z, — 1}.

We will generally be concerned with the centralized number of inversions, i.e., I(T') —
E [I(T)]. For any u < v we have P{A(u) > A(v)} = 1/2. Let h(v) denote the depth of v, i.e.,
the distance from v to the root p. It immediately follows that,

u<<v

where Y(T') def >, h(v) is called the total path length (or internal path length) of T.

Let s, = 2,(X) denote the k-th cumulant of a random variable X (provided it exists);
thus 50 (X) = E[X] and »»(X) = Var (X). We now define YTy (T), the k-total common
ancestors of T', which allows us to generalize (1.1) to higher cumulants of I(T"). For k nodes
v1,..., 0 (not necessarily distinct), let ¢(v,...,vg) be the number of ancestors that they
share, i.e.,

c(vl,...,vk)déf HueV:iu<v,u<wvg,...,u<uvg}.
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We define
def
Te(T)E D clvr,... o),
V1y.-+,Vk

where the sum is over all ordered k-tuples of nodes in the tree. For a single node v,
h(v) = ¢(v) — 1, since v itself is counted in ¢(v). So Y(T) = T1(T) — |V]; i.e., we recover the
usual notion of total path length. Using Lemma 1, it is easy to show the following:
» Theorem 2. Let T be a fized tree. Let 3, (I(T)) be the k-th cumulant of I(T). Then
1 1
E[I(T)] = = (I(T)) = 51(T) = S (4:(T) = V),

Var (I(T)) = »2(I(T)) = %(Tz(T) - V),

and, more generally, for k > 1,

B
o1 (I(T) =0, s (I(T)) = %(Tzk(T) =1V
where By, denotes the k-th Bernoulli number. Moreover, I(T') has the moment generating
function
Zyt 1
E [ tI(T)} _ e
¢ H zp(et — 1)’

veV
and for the centralized variable we have the estimate

E [et(I(T)—IE[I(T)])] < exp(%f Z('z” — 1)2) < exp(%tz Z zi) = exp<§t2TQ(T)>, teR.

veT veT

1.2 Inversions in sequences of trees

The total path length Y(T) has been studied for random trees like split trees [3] and
conditional Galton—Watson trees [1, Corollary 9]. This leads us to focus on the deviation

X, = I(Tn) ;(E)[[(Tn)] ,

under some appropriate scaling s(n), for a sequence of (random or fixed) trees T,.

Fixed trees
The following theorem follows easily from Theorem 2:

» Theorem 3. Let T, be a sequence of fixed trees on n nodes. Let

n

TQ(Tn)
Assume that for all k > 1,
TQk(Tn)
for some sequence (Car). Then there exists a unique distribution X with

B
so—1(X) =0, o (X) = 272;@1«, k>1,

such that X, -5 X and, moreover, E [e"Xn] = E [e'*] < oo for every t € R.

15:3
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» Example 4. When P, is a path of n nodes, we have for fixed k > 1

1
Ti(Py) ~ ——nT
w(Pu) ~ g
Thus Yo (P,)/Y2(Py)¥ — s = 0 for k > 2. So by Theorem 3, X,, converges to a normal
distribution, and we recover the central limit law for inversions in permutations. Also, the

vertices have subtree sizes 1,...,n and so we also recover from Theorem 2 the moment
generating function []j_, (e’ —1)/(j(e" — 1)) [22, 17].

Other examples where Theorem 2 can be easily applied include complete b-ary trees and
stars (a star is a tree containing only a root and leaves).

Random trees

We move on to random trees. We consider generating a random tree 7T, and, conditioning
on T, labeling its nodes uniformly at random. The relation (1.1) is maintained for random
trees:

E[I(T,)] =E[E[(T) | T.]) = 5E[T(T)].

The deviation of I(T,) from its mean can be taken to mean two different things. Consider
for some scaling function s(n),
Y. — I(Tn) —E [I(Tn) ‘ Tn] _ I(Tn) — %T(Tn)
= =
s(n) s(n)
Then X,, and Y,, each measure the deviation of I(T},), unconditionally and conditionally.
They are related by the identity

Xp =Y, + Wi /2, (1.2)

where

Y(T,) — E[Y(T,)]
s(n) '
In the case of fixed trees W,, = 0 and X,, = Y,,, but for random trees we consider the
sequences separately.

W, =

Split trees

The first class of random trees which we study are split trees. They were introduced by
Devroye [6] to encompass many families of trees that are frequently used in algorithm analysis,
e.g., binary search trees, m-ary search trees, digital search trees, etc.

A split tree can be constructed as follows. Consider a rooted infinite b-ary tree where each
node is a bucket of finite capacity s. We place n balls at the root, and the balls individually
trickle down the tree in a random fashion until no bucket is above capacity. Each node
draws a split vector V = (Vi,...,V,) from a common distribution, where V; describes the
probability that a ball passing through the node continues to the ith child. The trickle-down
procedure is defined precisely in Section 2. Any node u such that the subtree rooted at u
contains no balls is then removed, and we consider the resulting tree T,,.

In the context of split trees we differentiate between I(T;,) (the number of inversions on
nodes), and 1(T},) (the number of inversions on balls). In the former case, the nodes (buckets)
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are given labels, while in the latter the individual balls are given labels. For balls (1, (2,
write 1 < Ps if the node containing (57 is a proper ancestor of the node containing fs; if
(51, B2 are contained in the same node we do not compare their labels. Define

ITo) = D Lag)sass):

B1<B2

Similarly define T(T},) as the total path length on balls, i.e., the sum of the depth of all balls.

And let

- o Y(T,) - E |Y(T,
X, = 7 S“/n:I(Tn)_SOT(Tn)/27 W, — (7) E[ (T )].(1'3)

n n n

Here s¢ is a fixed integer denoting the number of balls in any internal node, and we have
X, = Y, + soW, /2 (justified in Section 2). The following theorem gives the limiting
distributions of the random vector (Xn, Y,, Wn) In a longer version of this paper [4], we also
have a similar result for (X,,,Y,, W,,) under stronger assumptions. Note that the concepts
are identical for any class of split trees where each node holds exactly one ball, such as binary
search trees and digital search trees.

Let do denote the Mallows metric, also called the minimal ¢ metric (defined in Section
2). Let M&Q be the set of probability measures on R? with zero mean and finite second
moment.

» Theorem 5. Let T, be a split tree and let V = (V1,...,V4) be a split vector. Define

b b
1
p=-> EVilnV], and DIV)=-=-> ViV
i=1 ‘
Assume that P{3i: V; =1} <1 and s > 0. Let (X,Y, W) be the unique solution in M3,

for the system of ﬁ:z:ed -point equations

- “ -
Z ViX® 4 Z U+ 3 D)
X
= ZVY“+Z U —1/2)  |. (1.4)
W
ZVZW(” +14+D(V)
- i=1 u
Here (Vi,...,V3), Uy,...,Us,, (X0, 7D W<1) ®) W) are independent,
with U ~ Unif[0,1] for j = 1,...,so, and (Xﬁ R ,W,j) (X, Y, W) fori=1,...,b.
Then the sequence (X, Y, Wn) defined in (1.3) converges to (X, Y, W) in dy and in moment

generating function within a neighborhood of the origin.

The proof of Theorem 5 uses the contraction method, introduced by Résler [21] for finding
the total path length of binary search trees. The technique has been applied to d-dimensional
quad trees by Neininger and Riischendorf [19] and to split trees in general by Broutin and
Holmgren [3].

15:5
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Conditional Galton—Watson trees

A conditional Galton—Watson tree T;, is a Galton—Watson tree conditioned on having n
nodes, which we define in details in Section 3. It generalizes many uniform random tree
models, e.g., Cayley trees, Catalan trees, binary trees, b-ary trees, and Motzkin trees. For a
comprehensive survey, see Janson [12].

Aldous [1] showed that many asymptotic properties of conditional Galton—Watson trees,
such as the height and the total path length, can be derived from properties of Brownian
excursions. Our analysis of inversions follows a similar route. In particular, we relate I(7T},)
to the Brownian snake studied by e.g., Janson and Marckert [14].

In the context of Galton-Watson trees, Aldous [1, Corollary 9] showed that n=3/27(T;,)
converges to an Airy distribution. We will see that the standard deviation of I(T},) — 3Y(T5,)
is of order n®/* < n3/2, which by the decomposition (1.2) implies that n~3/2I(T},) converges
to the same Airy distribution, recovering one of the main results of Panholzer and Seitz [20,
Theorem 5.3]. Our contribution for conditional Galton-Watson trees is a detailed analysis of
Y,, under the scaling function s(n) = n%/%.

Let e(s),s € [0,1] be the random path of a standard Brownian excursion, and define
C(s,t) défC’(t, s) déf?minsgugt e(u) for 0 <s <t <1.

We define a random variable, see [11],

nd:ef C(s,t)ds dt = 4/ min e(u). (1.5)
[0,1]2 0<s<t<] sSust

» Theorem 6. Suppose T, is a conditional Galton—Watson tree with offspring distribution &

such that E[£] = 1, Var (§) = 02 € (0,00), and E [e*¢] < oo for some o > 0, and define

Yo = /4

Then we have

d def

Y, —Y = (1.6)

1
I ./\/'7
V120 Vi
where N is a standard normal random variable, independent from the random variable n
defined in (1.5). Moreover, E [e"¥"] — E [e'Y] < oo for all fized t € R.

In the rest of the paper, we outline the proofs of our main results, Theorem 5 and 6. The
proofs of Theorem 2 and 3 are omitted. The details of the proofs can be found in the longer
version of this paper [4].

2 A sequence of split trees

In this section we outline how one can apply the contraction method to prove Theorem 5.
We will now define split trees introduced by Devroye [6]. The random split tree T, has
parameters b, s, g, 51, V and n. The integers b, s, sg, s1 are required to satisfy the inequalities

2<b, 0<s, 0<s9<s, 0<bsg<s+1-—sg. (2.1)

and V = (Vq,...,V}) is a random non-negative vector with E?Zl V; = 1. Consider an infinite
b-ary tree U. The split tree T;, is constructed by distributing n balls (pieces of information)
among nodes of U. For a node u, let n, be the number of balls stored in the subtree rooted
at u. Once n, are all decided, we take T}, to be the largest subtree of ¢/ such that n, > 0
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for all u € T,,. Let the split vector V € [0,1]” be as before. Let V,, = (Vi.1, ..., Vup) be the
independent copy of V assigned to u. Let uq,...,u, be the child nodes of u. Conditioning
on n, and V,, if n, <'s, then n,, = 0 for all 4; if n,, > s, then

(Mg - oy Mgy ) ~ Mult(n — so — bs1, Vi1, - -+, Vo) + (81,81, -+, 81)5

where Mult denotes multinomial distribution, and b, s, sg, s; are integers satisfying (2.1).
Note that Zle Ny, < n (hence the “splitting”). Naturally for the root p, n, = n. Thus the
distribution of (14, Vu)uev ) is completely defined.

Once all n balls have been placed in U, we obtain T,, by deleting all nodes u such that the
subtree rooted at w contains no balls. Note that an internal node of T,, contains exactly sg
balls, while a leaf contains a random amount in {1,...,s}. We assume, as previous authors,
that P{3i:V; =1} < 1. We can assume that V has a permutation invariant distribution
without loss of generahty, since a uniform random permutation of subtree order does not
change the number of inversions.

2.1 Outline

Recall that in (1.3), we define X, Y, and W,,. Let i = (n1,...,np) denote the vector of the
(random) number of balls in each of the b subtrees of the root. Broutin and Holmgren [3]
showed that, conditioning on 7z,

Wn i Xb: niWn- + n—3So +ﬁn(ﬁ)7 ﬁn(ﬁ) déf _ [’Y } Zzb: [T )}

n n

We derive similar recursions for X,, and Y;,. Conditioning on 7, I(T},) satisfies the
recursion

where Z » denotes the number of inversions involving balls contained in the root p. Therefore,
still conditioning on 7, we have

b A
- d ni ¢ Zp
Xn—é ;Xn"f'?—i"‘

I
3|3
Do

3

where we use that
E[1(m) 1 T.] = 3@, (2.2)

It follows also from (2.2) that X, =Y, + %"Wn and

b A
-~ qd NG ~ Z, syn—sg
D O T S

AofA 2018
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It is not difficult to see that

L2
HU1+"'+U507

= |

where Uy, ..., Us, are independent and uniformly distributed in [0, 1]. Broutin and Holmgren
3] have shown that D, (7) =% D(V), where

b b
1
p=-Y E[VilnV], and D)= ;ZViani.
i=1 i=1
Together with (ny/n,...,ny/n) == (Vi,...,V;) (by the law of large number), we arrive at
the fixed-point equations (1.4) presented in Theorem 5.
For a random vector X € R, let || X | be the Euclidean norm of X. Let || X||, L JE [||X||2].

Recall that M§ , denotes the set of probability measures on R? with zero mean and finite
second moment. The Mallows metric on M§ , is defined by

do(v, \) =inf {|| X =Y |, : X ~ A\ Y ~v}.

Using the contraction method, Broutin and Holmgren [3] proved that W, LN W, the unique
solution of the last equation of (1.4) in Mg ,.

We can apply the same contraction method to show that the vector (Xn, Y,, Wn) N
(X,Y,W), the unique solution of (1.4) in M%)Q. Assume that the independent vectors
(X(i), Y@, W(i)), i =1,...,bshare some common distribution 1 € M3 ,. Let F(u) € M,
be the distribution of the random vector given by the right hand side of (1.4). Using a
coupling argument, we can show that for all v, A € M?)’Q,

do(F(v), F(\)) < eda(v, ),

where ¢ € (0,1) is a constant. Thus F is a contraction and by Banach’s fixed point theorem,
(1.4) must have a unique solution (X,Y, W) € ./\/1872. Finally, we can use a similar coupling
argument to show that (X, Yy, W,) LN (X,Y,W).

Note that in [4], instead of carrying out the above argument in details, we actually used
a result by Neininger [18] which gives us a shortcut.

3 A sequence of conditional Galton—Watson trees

Let ¢ be a random variable with E[¢(] = 1, Var £ = 02 < oo, and E [eo‘q < oo for some
a > 0, (The last condition is used in the proof below, but is presumably not necessary.) Let
G¢ be a (possibly infinite) Galton-Watson tree with offspring distribution &. The conditional
Galton—Watson tree TS on n nodes is given by

]P’{T,f =T} = }P’{G§ =T | G® has n nodes }

for any rooted tree T on n nodes. The assumption E [{] = 1 is justified by noting that if ¢ is
such that P{¢ =i} = cf'P{¢ =i} for all i > 0 then TS and T are identically distributed;
hence it is typically possible to replace an offspring distribution ¢ by an equivalent one with
mean 1, see [12, Sec. 4].

We fix some ¢ and drop it from the notation, writing T}, = T%.
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In a fixed tree T with root p and n total nodes, for each node v # p let Q, ~
Unif(—1/2,1/2), all independent, and let @, = 0. For each node v define

®, % Y Qu, andlet JI)E Y @,

u<v veT

In other words, ®,, is the sum of @), for all v on the path from the root to u. For each v # p
also define Z, = |(Q, + 1/2)2,], where z, denotes the size of the subtree rooted at v. Then
Z, is uniform in {0,1,...,2, — 1}, and by Lemma 1, the quantity

1)E S (2, - E[Z)
vEp

is equal in distribution to the centralized number of inversions in the tree T, ignoring
inversions involving p. The main part (1.6) of Theorem 6 will follow from arguing that for a
conditional Galton—Watson tree T,,,

J(Tn) i> déf 1
nb/4 V120

Indeed, under the coupling of @, and Z, above,

Z@ =33 Qu= ZQu 3 1—ZQM

v o wulv v:u<v

Z(Z ff+1) <n+I*(Tp),

u#p

ViN. (3.1)

and similarly J(T},) > I*(T,,) — n. As p contributes at most n inversions to I(T5,), it follows
from the triangle inequality that |J(T},) — (I(T},) — T(T},)/2)| < 2n = o(n®/*). Thus (3.1),
once proved, will imply that

def 1(T) = Y(T)/2 _

J(Tn) d
Yo = no/4 =o(1) no/4

—Y.

The quantity J(T,,) and the limiting distribution (3.1) have been considered by several
authors. In the interest of keeping this section self-contained, we will now outline the proof
of (3.1) which relies on the concept of a discrete snake, a random curve which under proper

rescaling converges to a Brownian snake, a curve related to a standard Brownian excursion.

This convergence was shown by Gittenberger [10], and later in more generality by Janson
and Marckert [14], whose notation we use.

Define f : {0,...,2(n — 1)} — V by saying that f(¢) is the location of a depth-first
search (under some ﬁxed ordering of nodes) at stage 4, with f(0) = f(2(n — 1)) = p. Also
define V,,(¢) = d(p, f(i)) where d denotes distance. The process V;, (i) is called the depth-first
walk, the Harris walk or the tour of T,,. For non-integer values t, V,,(t) is given by linearly
interpolating adjacent values. See Figure 1.

Finally, define R, (%) def ® ;) to be the value at the vertex visited after i steps. For

non-integer values ¢, R, (t) is defined by linearly interpolating the integer values. Also define

R, (t) by R, (t) défRn(t) when ¢ € {0,1,...,2n}, and

= def Rn(LtD’ if Vn(LtJ)>Vn([t1)a
Ra([t]), it Va(lt]) < Va([t]).

15:9
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/)N Wa(t)
V121

V11 V21

1011

O

5(6 vy Vg

Figure 1 The depth-first walk V;,(t) of a fixed tree.

7

L A

In other words, Ry, (t) takes the value of node f([t]) or f([t]), whichever is further from the
root. We can recover J(T},) from R, (t) via

2(n—1) _

2J(T,) = /0 R, (t)dt.

Indeed, for each non-root node v there are precisely two unit intervals during which R, (t)
draws its value from v, namely the two unit intervals during which the parent edge of v is
being traversed. Now, since @, ~ Unif(—1/2,1/2) we have |R,, (i) — R, (i — 1)| < 1/2 for all

t >0 and
J(Tn) 1 /2(n—1) - 1 /2(1’7,—1) 1/ /l
= ()t = —— R, (t)dt+O(n~Y*) = n(8)ds+o(1),
n5/A ~ opd/4 ), Ra(t) M54 J, (t)dt+0(n="/7) " (s)ds+o(1)

where 7,,(s) < n= V4R, (2(n — 1)s). Also normalize v, (s) % n=1/2V,,(2(n — 1)s). Theorem 2
of [14] (see also [10]) states that (7, vy) N (r,v) in C[0,1] x C[0,1], with r, v to be defined
shortly.

Before defining r and v, we will briefly motivate what they ought to be. Firstly, as
the offspring distribution £ of T;, satisfies E[{] = 1, we expect the tour V;, to be roughly
a random walk with zero-mean increments, conditioned to be non-negative and return to
the origin at time 2(n — 1), and the limiting law v ought to be a Brownian excursion (up to
a constant scale factor). Secondly, consider a node v and the path p = ug,uy ..., uq = u,
where d is the depth of u. We can define a random walk ®,(t) for t =0,...,d by ®,(0) =0
and @, (t) = 22:1 Q. for t > 0, noting that ®, = ®,(d). Under rescaling, the random
walk ®@,,(t) will behave like Brownian motion. For any two nodes u1,us with last common
ancestor at depth m, the processes ®,,,,®,, agree for t = 0, ..., m, while any subsequent
increments are independent. Hence Cov(®,,, ®,,) = cm for some constant ¢ > 0. Now, for
any 4,7 € {0,...,2(n — 1)}, the nodes f(i), f(j) at depths V,, (i), V,,(j) have last common
ancestor f(k), where k is such that V,,(k) is minimal in the range i < k < j. Hence 7(s)
should be normally distributed with variance given by v(s), and the covariance of r(s), r(t)
proportional to ming<,<¢ v(uw).

We now define , v precisely. If Var &€ = o2, then v(s) % 20~e(s), where e(s) is a standard
Brownian excursion, as shown by Aldous [1, 2]. Conditioning on v, we define r as a centered
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Gaussian process on [0, 1] with

1 1
— 1mi = — <t.
1 srgn&rgltv(u) 1 C(s,t), s<t

Cov(r(s),r(t) |v) = 5

The constant 1/12 appears as the variance of the random increments @,. Again, Theorem 2
of [14] states that (r,, v,) N (r,v) in C[0,1]2. We conclude that

. J(TL) lr o d lr def
lim 7—/0 o (t)dt + (1)—)/0 (t)dt =Y.

n— 00 n5/4

This integral is the object of study in [13], wherein it is shown that

1
Ydéf/ nard L
it i

where N is a standard normal variable, n is given by

n= / C(s,t)ds dt,
[0,1]2

and 1, NV are independent. The odd moments of Y are zero, as this is the case for N, and by
[13, Theorem 1.1], for k > 0

) (2k!)y/7
E[Y?] = (120)F 2009721 ((5k — 1)/2) """

where a; = 1 and for k > 2,

k—1
ar, = 2(5k — 4)(5k — 6)ar_1 + »_ aiax_;.
=1

In particular ([13, Theorem 1.2]),

1 2728

E[Y*] ~ (120)F 5

(2k)1/2(1063)72k/4(2k)%-2]@7

as k — oo, where = 0.981038.... Further analysis of the moments of n and Y, including
the moment generating function and tail estimates, can be found in [13].
The last bit of Theorem 6 which remains to be proved is that E [¢"*"] — E [¢""] for all

fixed t € R. Since we have already shown Y, N Y, we can apply the Vitali convergence

tYn,

theorem once we have shown that the sequence e**» is uniformly integrable. See Section 5.1

of [4] for details.
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—— Abstract

We study a random walk that prefers to use unvisited edges in the context of random cubic
graphs, i.e., graphs chosen uniformly at random from the set of 3-regular graphs. We establish
asymptotically correct estimates for the vertex and edge cover times, these being nlogn and
%nlogn respectively.
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1 Introduction

Our aim in this paper is to analyse a variation on the simple random walk that may tend to
speed up the cover time of a connected graph. A simple random walk on a graph is a walk
which repeatedly moves from its currently occupied vertex v to one of its neighbours, chosen
uniformly at random. The vertex cover time Ty (G) of a simple random walk on a graph G
is the expected number of steps needed to visit each vertex of GG, defined as the maximum
over all starting vertices. Feige [9, 10] showed that for any graph G on n vertices,

4 3

(1= o(1))nlogn < Teoy(G) < (1+ o(1)) 5=n’.

When G is chosen uniformly at random from the set of d-regular graphs, Cooper and Frieze

[6] showed that w.h.p.* G is such that T}oy (G) is asymptotically equal to ;EZ:;;nlog n.

In recent years, variations of the simple random walk have been introduced with the aim

of achieving faster cover times. In this paper we do this by choosing to walk along unvisited
edges whenever possible. This variation is just one of several possible approaches which
include non-backtracking walks, see Alon, Benjamini, Lubetzky and Sodin [3], or walks that
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are biased toward low degree vertices, see Cooper, Frieze and Petti [8], or any number of
other ideas.

The papers [4], [13] describe the random walk model considered here, which uses unvisited
edges when available at the currently occupied vertex. If there are unvisited edges incident
with the current vertex, the walk picks one u.a.r.> and makes a transition along this edge. If
there are no unvisited edges incident with the current vertex, the walk moves to a random
neighbour. In [4] this walk was called an unvisited edge process (or edge-process), and in
[13], a greedy random walk. We use the name biased random walk for the same process. For
random d-regular graphs where d = 2k (d even), it was shown in [4] that the biased random
walk has vertex cover time ©(n), which is best possible up to a constant. The paper also
gives an upper bound of O(nw) for the edge cover time. The w factor comes from the fact
that cycles of length at most w exist w.h.p. In [7], the constant for the vertex cover time was
shown to be d/2.

» Theorem 1. Let d > 4 be even and suppose G is chosen u.a.r. from the set of d-
reqular graphs. W.h.p., G is such that the vertex cover time of the biased random walk is°®
TYu(G) =~ dn /2.

This is faster than any of the other random graph models mentioned here by a factor of logn,
and the biased random walk generally performs well on even-degree graphs. Orenshtein and
Shinkar [13, Lemma 2.9] showed that in an even-degree graph, the biased random walk has
cover time at most that of the simple random walk plus the number of edges in the graph.
Briefly, this is because there are at most two vertices incident to an odd number of unvisited
edges at any time. In the random setting this means that the most likely scenario is that
traversing an unvisited (random) edge will bring the walk to a vertex incident to at least one
more unvisited edge, and the walk will find a large number of unvisited edges in succession.
This is no longer true in odd-degree graphs. The paper [4] included experimental data for the
performance of red-blue walks on odd degree regular graphs. Namely, for d = 3 the vertex
cover time is ©(nlogn) and decreases rapidly with increasing d.

Random walks have applications in networks where each vertex only has local information,
e.g. each vertex knows only of its immediate neighbours. For example, random walks provide
efficient routing algorithms in Wireless Sensor Networks [15]. The vertex cover time measures
the expected number of steps needed to spread information to each vertex of the network. A
drawback of biased random walks in general applications is that it requires O(]|E|) additional
memory usage, but in networks with independently acting agents, the additional memory for
each agent is O(A) where A denotes the maximum degree of the network.

1.1 Our results

Let G = (V, E) be a connected cubic (i.e. 3-regular) (multi)graph on an even number n of
vertices. Consider the following random walk process, called a biased random walk. Initially
color all edges red, and pick a starting vertex vg. At any time, if the walk occupies a vertex
incident to at least one red edge, then the walk traverses one of those red edges chosen
uniformly at random, and re-colors it blue. If no such edge is available, the walk traverses
a blue edge chosen uniformly at random. For s € {1,...,n} let Cy(s) denote the number
of steps taken by the walk until it has visited s vertices, and similarly let C'g(t) denote the
number of steps taken to visit ¢ € {1,...,3n/2} edges.

5 We use w.a.r. for uniformly at random.
5 We say that an = by, if limay, /b, = 1.
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We will let G be a random graph, and we use E¢ (X) to denote the expectation of X
with the underlying graph G fixed. Note that a cubic graph on n vertices contains exactly
3n/2 edges.

» Theorem 2. Let s,t be such that n —nlog™'n < s <n and (1- log™? n)%” <t <3n/2.
Let € > 0 also be fixed. Suppose G is chosen uniformly at random from the set of cubic
graphs on n vertices. Then w.h.p., G is connected and

6 (Cv(s) = (1 epntog (=" ) + ofnlogn) 1)
Eq (Cg(t)) = <2 + 5) nlog (371_3;“) + o(nlogn). (2)

Here a = b £ ¢ is taken to mean a € [b — ¢, b+ ¢|. Note in particular that this shows that
the expected vertex and edge cover times are asymptotically nlogn and %nlogn w.h.p.,
respectively. The same statement is true with the word “graphs” replaced by “configuration
multigraphs” (defined in Section 3). Thus, taking s =n and ¢ = 3n/2 we have the following
corollary.

» Corollary 3. Suppose G is chosen uniformly at random from the set of cubic graphs on n
vertices. W.h.p., G is such that the vertex cover time Tk, (G) of G is asymptotically equal
to nlogn and the edge cover time TE,,(G) is asymptotically equal to %nlog n.

Cooper and Frieze [6] showed that w.h.p. the vertex cover time for a simple random walk
on a random d-regular graph on n vertices is asymptotically equal to nlogn The
argument there also shows that the edge cover time of a random d-regular graph on n vertices
is asymptotically equal to QE = 2§nlogn For d = 3 these values are 2nlogn and 3nlogn
respectively and are to be compared with nlogn and 3 snlogn. For a non-backtracking random
walk, Cooper and Frieze [7] show that the vertex and edge cover times are asymptotically
nlogn and %nlogn respectively. Interestingly, these values coincide with the results in
Corollary 3.

1.2 OQutlook

Our proof relies on the fact that the set of vertices incident to exactly one unvisited edge
coincides with the set of vertices visited exactly once by the biased random walk, modulo the
head and tail of the walk. This is no longer true when d > 5, and additional analysis would
be required to extend the method to larger degrees. We expect the walk to behave similarly
for higher degrees and conjecture that Corollary 3 generalizes to Tyqy (Ga) ~ - 2n logn and
TE(Gq) ~ 5Td- 2)nlogn for the random d-regular graph G, for any odd d > 3.

For fixed graphs, the behaviour of the greedy random walk is not well understood. See
[13] for a list of open problems, including questions regarding transience and recurrence on
infinite lattices.

2  Qutline proof of Theorem 2

We will choose the multigraph G according to the configuration model. Each vertex v of G
is associated with a set P(v) of 3 configuration points. We set P = U, P(v) and generate G
by choosing a pairing g of P uniformly at random. The pairing p is exposed along with the
biased random walk. See Section 3 for more details on the configuration model.

16:3
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Starting at a uniformly random configuration point z; € P, we define Wy = (z1). Given
a walk Wy = (z1, 22, ..., Tar41), the walk proceeds as follows. Set xogt2 = u(x2g41), thus
exposing the value of p(xogy1) if not previously exposed. If xorio belongs to a vertex
v which is incident to some red edge (other than (zox11,Zar12) which is now recoloured
blue), the walk chooses one of the red edges uniformly at random, setting xox13 to be the
corresponding configuration point. Otherwise, zo 13 is chosen uniformly at random from
P(v). Set Wiy1 = (x1,...,Tak+3). We will refer to 21 and zor41 (and the vertices to which
they belong) as the tail and head of Wy, respectively. We will also refer to {1, 22, ..., Zop+1}
as the points of P that have been wvisited.

Define partial edge and vertex cover times

Cg(t) = min{k : W}, spans t edges}, (3)
Cy (t) = min{k : W}, spans t vertices}. (4)

We will mainly be concerned with the partial edge cover time, and write C(t) = Cg(t) from
this point on.
Fort e {1,2,..., 37”} we define a subsequence of walks by

W(t) = Wouy—1 = (x1,22,. .., Togq1) (5)

where k is the smallest integer such that |{z1, z2,...,Z2r11}| = 2t — 1. In other words, W (¢)
denotes the walk up to the point when 2¢ — 1 of the members of P have been visited. Thus
throughout the paper:
Time t is measured by the number of edges ¢ that have been visited at least once.
The parameter 6 = 0(¢) is given by the equation
3n
t=(1-0)—. (6)
2
d(t) is important as a measure of how close we are to the edge cover time.
The walk length k is measured by the number of steps taken so far. Equation (5) relates
t and k.

A cubic graph G chosen u.a.r. is connected w.h.p. (this follows from Lemma 8 (i) below)
and we will implicitly condition on this in what follows. The bulk of the paper will be spent
proving the following lemma.

3n

» Lemma 4. For any fized e > 0 and (1 —log 2 n)32 <t < 21,

E(C(t)) = (‘;’ + e) nlog <3n—3;t+1) + o(nlogn) M)

N < g<n,
gn = ° =

for n large enough. Furthermore, for n —

(1—€)n10g< )gE(CV(s)) < (1+¢)nlog (”) (8)

n—s+1 n—s+1

Expectations in Lemma 4 are taken over the full probability space. In particular, if G denotes
the set of graphs,

gnlog (3371) ~E(C(t)) ! Z Ec (C(1)).

n—2t+1 _@Geg
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We can strengthen Lemma 4 to stating that almost every G satisfies E¢ (C(t)) =~ E (C(¢)),
and similarly for Cy (s) (proof omitted in this extended abstract). Theorem 2 will then
follow.

An essential part of the proof of Lemma 4 is a set of recurrences for the random variables
X;(t), where X;(t) is the number of vertices incident with ¢ = 0,1, 2,3 untraversed edges at
time t, t =1,2,...,3n/2 (note that the graph contains exactly 3n/2 edges). Ignoring in this
extended abstract the set X5 (t), which can only contain the tail vertex, the recurrences are

B (Xa(t 4+ 1) | W) = Xs(t) — 5o ©
B+ 1) W) = Xa(r) - 5 200 3 (10)

S 3n—2t+1 3m—2+1

and we have X((t) = n — X;(t) — X2(t) — X3(t). These recurrences suggest that at time
t=(1—0)2 with § = o(1) we have X (t) ~ 3nd and X3(t) ~ nd/?, and this is proven in
the full paper version.

We will argue that for most of the process, it takes approximately 3n/(3n — 2t + 1) steps
of the walk to increase time by one. As the process finishes at time 3n/2 we see that the
edge cover time should be approximately

3n/2

~

3n 3
inlog n,

p 3n—2t+1

as claimed in Corollary 3.
Given that X3(t) ~ nd®/?, we would expect X3(t) to be zero when ¢ is smaller than n~
or equivalently, when 3n/2 — t is less than n'/3. Thus we would expect that vertex cover

2/3

time to be
n/2—nt/3
3 /22: 37n~nlo n
2o Bn—ary1 BT

as claimed in Corollary 3. In this extended abstract we omit further details in calculating
the vertex cover time.
We separate the proof of Lemma 4 into phases. Define

1 1

0~ Joglogn’ 1 =log 2% n, dy =log?n, d3 =n"2/*log*n and §, = n"log'' n
and set
3n .
ti=(1-6)% fori=0,1,2.34 (11)

The first phase, in which the first ¢; edges are discovered, will not contribute significantly
to the cover time.

» Lemma 5. Let 6, = log_l/2 n and ty = (1 — 51)%, Then

E (C(t1)) = o(nlogn).

Between times ¢; and t4 we bound the time taken between discovering new edges. The proof,
in Section 6, will be split into the ranges t; <t <t3 and t3 <t < ty.

16:5
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» Lemma 6. Let e > 0. Fort; <t <ty andn large enough,

E(C(t+1)— C(t)) = (3+¢)

n
I .
E— + O(logn)

Note that because 3% —t; = O(d1n), the O(logn) term only contributes an amount
O(ndy logn) = o(nlogn) to the the edge cover time.
Finally, the following lemma shows that the final log'! n edges can be found in time

o(nlogn).
» Lemma 7. Fort >ty and n large enough,
E (C(t) — C(ts)) = o(nlogn).

We note now that Lemma 4 follows from Lemmas 5, 6 and 7.

3  Structural properties of random cubic graphs

The random cubic graph is chosen according to the configuration model, introduced by
Bollobés [5]. Each vertex v € [n] is associated with a set P(v) of 3 configuration points,
and we let P = U, P(v). We choose u.a.r. a perfect matching p of the points in P. Each
& induces a multigraph G on [n] in which u is adjacent to v if and only if u(z) € P(v) for
some z € P(u), allowing parallel edges and self-loops. Here we collect some properties of
random cubic graphs, chosen according to the configuration model. Any simple cubic graph
is equally likely to be chosen under this model.

» Lemma 8. Let G denote the random cubic graph on vertex set [n], chosen according to
the configuration model. Let w tend to infinity arbitrarily slowly with n. Its value will always
be small enough so that where necessary, it is dominated by other quantities that also go to
infinity with n. Then w.h.p.,

(i) In absolute value, the second largest eigenvalue of the transition matrixz for a simple

random walk on G is at most 0.99.
(i) G contains at most w3® cycles of length at most w,
(iii) The probability that G is simple is Q(1).

Friedman [11] showed that for any ¢ > 0, the second largest eigenvalue of the transition
matrix is at most 21/2/3 + & w.h.p., which gives (i). Property (ii) follows from the Markov
inequality, given that the expected number of cycles of length &k < w can be bounded by
O(3%). For the proof of (iii) see Frieze and Karonski [12], Theorem 10.3. Note that (iii)
implies that any property which holds w.h.p. for a configuration multigraph chosen u.a.r.,
also holds w.h.p. for a simple cubic graph chosen u.a.r.

Let G(t) denote the random graph formed by the edges visited by W(t). Let X;(¢)
denote the set of vertices incident to i red edges in G(t) for i = 0,1,2,3. Let X(¢) =
X1(t) U X2(t) U X5(t). Let G*(t) denote the graph obtained from G(t) by contracting the set
X (t) into a single vertex, retaining all edges. Define A*(t) to be the second largest eigenvalue
of the transition matrix for a simple random walk on G*(¢).

We note that if ' is a graph obtained from G by contracting a set of vertices, retaining
all edges, then A(T") < A(G), see [2, Corollary 3.27]. This implies that A*(t) = A(G*(¢)) <
A(G) <€ 0.99 for all ¢. Initially, for small ¢, we find that w.h.p. G*(¢) consists of a single
vertex. In this case there is no second eigenvalue and we take A*(¢) = 0. This is in line with
the fact that a random walk on a one vertex graph is always in the steady state, as the only
possible probability measure on a singleton is the trivial measure.
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4 Hitting times for simple random walks

We are interested in calculating E (C(t 4+ 1) — C(t)), i.e. the expected time taken between
discovering the tth and the (¢ + 1)th edge. Between the two discoveries, the biased random
walk can be coupled to a simple random walk on the graph induced by W (¢) which ends as
soon as it hits a vertex of X. We will be able to calculate the hitting time as a consequence
of X having a special structure as in the following definition.

» Definition 9. Let G = (V, E) be a cubic graph. A set S C V is a root set of order ¢
if (i) |S] > ¢°, (i) the number of edges with both endpoints in S is between |S|/2 and
(1/2 + £73)|S|, and (iii) there are at most |S|/¢> paths of length at most ¢ between vertices
of S that contain no edges between a pair of vertices in S.

Root sets of large order may be thought of as sets that contain an almost-perfect matching,
and most of whose vertices are otherwise separated by a large distance. We can calculate the
expected hitting time for such sets.

» Lemma 10. Let w tend to infinity arbitrarily slowly with n. Suppose G is a cubic graph
on n vertices with positive eigenvalue gap, containing at most w3* cycles of length at most w.
If S is a root set of order w, then the expected hitting time of S for a simple random walk
starting at a uniformly chosen vertex is

3n

E(H(S) ~ g7

5  The structure of X

Eventually the biased random walk will spend the majority of its time at vertices in X, i.e.

vertices with no red incident edges. To bound the cover time, we will bound the time taken
to hit X = X; U X U X3, which may be thought of as the boundary of X.

Let Wy, k > 0 denote the biased random walk after 2k + 1 walk steps have been taken.

Say that a fixed finite walk W is feasible if Pr{W}, = W} > 0 for some k > 0, and fix a
feasible walk . Let t be the time associated with W as indicated in (5). Let Y denote
the subset of vertices in X;(¢) that were visited and left exactly once by W. Note that
[YAX;] <1, as the tail vo and head v, of the walk are the only vertices which may be in
X, after being visited twice and then only when vy = v. Indeed, the first time a vertex v is
visited, a feasible walk must enter and exit v via distinct edges. Color all vertices of Y green.
We can write Y = X1 (¢) \ {vo}.

Given a feasible walk W define a green bridge to be a part of the walk starting and
ending in V' \ Y, with any internal vertices being in Y. Note also that it is not necessary for
a green bridge to contain any vertices of Y. Form the contracted walk (W) by replacing any
green bridge by a single green edge between the two endpoints of the bridge, with the walk
orientation intact. Let [W] denote the pair of (contracted walk, set), [W] = ((W),Y"), noting
that (W) contains no vertex of Y.

We define an equivalence relation on the set of feasible walks by saying that W ~ W' if
and only if [W] = [W’]. See Figure 1. Thus the only way that W, W’ differ is as to where
the vertices in Y are placed on the green bridges.

» Lemma 11. Let k > 0 and suppose W is such that Pr{W, =W} > 0. If [W] = ((W),Y)
and (W) contains ¢ green edges, then
1 1
Pri{W, =W | [Wi] = W]} T

where (a)p =ala—1)---(a—b+1).
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oXy oY eX,

Figure 1 Two equivalent walks, and a visual representation of their equivalence class. Numbers
represent order of traversal. Unvisited edges and vertices are not displayed, and edges visited exactly
once are dashed. Lemma 11 shows that the walks are equiprobable.

We can now view the biased random walk as a walk on the equivalence class [W(¢)].
Any time a green edge in [W(t)] is visited, the probability that the edge corresponds to a
nontrivial path in a randomly chosen W (t) € [W(t)] is about X;(t)/®(t), where ®(t) denotes
the number of green edges in W (t). This provides a precise recursion for E (®(t)) similar to
those for X1 (t), X3(t), which we use to prove the following. Recall dg = 1/loglogn. W.h.p.,

| X1 ()] ~3nd when § < 4y, (12)
|X3(t)| ~n6*? when § < 4y, (13)
®(t) > n(6p0)*/? when &5 < 6§ < 4. (14)

Suppose d3 < 0 < 1. As Xq(t) = o(®(t)), when W (t) € [W(t)] is chosen uniformly at
random, the vertices of X (t) are sprinkled into the much larger set of green edges, and are
expected to be spread far apart. This will imply that X;(¢) is a root set of order w, and as
X1 (t) makes up almost all of X (¢) by (12), the latter is also a root set of order w. When
§ < n~2/3, the same technique can be applied with a little more work.
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6 Calculating the cover time

6.1 Early stages

With ¢, = (1 — log™/? n)3%, we show that E(C(t;)) = o(nlogn). Suppose W(t) =
(71, 22,...,70,_1) for some t and k > 1. If 29,1 € P(X(t)) then o), = pu(w2x_1) is uniformly
random inside P(X (t)), and since C(t + 1) = C(t) + 1 in the event of g, € P(X2 U X3), we

have
E(C(t+1)—Ct) <1+E(C(t+1) —C(t) | zor € P(X1))Pr{zor € P(X1)},  (15)

We use the following theorem of Ajtai, Koml6s and Szemerédi [1] to bound the expected
change when x9, € P(X71).

» Theorem 12. Let G = (V, E) be a d-regular graph on n vertices, and suppose that each of
the eigenvalues of the adjacency matrix with the exception of the first eigenvalue are at most
Ac (in absolute value). Let Z be a set of cn vertices of G. Then for every £, the number of
walks of length ¢ in G which avoid Z does not exceed (1 — c)n((1 — c)d + chg).

The set Z of Theorem 12 is fixed. In our case the exit vertex u of the red walk is chosen
randomly from X (¢). This follows from the way the red walk constructs the graph in the
configuration model. The subsequent walk now begins at vertex u and continues until it hits
a vertex of Y,, = X1(¢) \ {u} (or more precisely Y, U Xs(t)). Because the exit vertex u is
random, the set B, =Y, U X5(t) U X3(t) differs for each possible exit vertex u € X;(t). To
apply Theorem 12, we split X (¢) into two disjoint sets A, A’ of (almost) equal size. For
u € A, instead of considering the number of steps needed to hit B,, we can upper bound
this by the number of steps needed to hit B’ = A’ U X5 U X3.

Let Z(¥) be a simple random walk of length ¢ starting from a uniformly chosen vertex of
A. Thus Z(¢) could be any of |A|3¢ uniformly chosen random walks. Let ¢ = |B’|/n. The
probability p, that a randomly chosen walk of length ¢ starting from A has avoided B’ is at
most

1 ; _2(1—¢)n ‘

pe < W(l —on(3(l —c) +cAg)" < W((l — )+ N,
where A < .99 (see Lemma 8) is the absolute value of the second largest eigenvalue of the
transition matrix of Z. Thus

, 2l—-con 1
S <2 0 S el ey 1o
As |B’| = |X1]/2 + | X3], we have
E(C(t+1) - C(t) | 221 € P(X,1 (1)) = O ( X1(|”(;<|lﬁ'>|§(3|)> | (17)

Using (12), (13), and other bounds for | X7 (¢)|, | X5(t)],

t1

E(C(t1) =Y E(C(t) - C(t—1)) = o(nlogn).

t=1

Details are omitted in this extended abstract.
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6.2 Later Stages

We will now use Lemmas 10 and 11, together with Definition 9 and equations (12) — (14).
For t = (1 —6)22 with § < &, = log™'/?n we set w = w(t) = log(—logd) and define the
events (with X () = X1(¢) U Xa(t) U X3(¢))

A(t) = {|X1(t) — 3nd| = O(w™'on)}, (18)
B(t) = {X(t) is a root set of order w}. (19)

and set £(t) = A(t) N B(t). As a consequence of Lemma 10, equation (16) and the fact that
E (X (t)) = 3n — 2t + o(3n — 2t), we have

n
3n — 2t

E(C(t+1) - Ct) = (3+e) Pr{&(t)}+0 < ) Pr {%} +0(logn). (20)

n
3n — 2t
Here the O(logn) and € terms account for the number of steps needed to take for the random
walk Markov chain to mix to within variation distance ¢ of the stationary distribution ,
at which time we apply Lemma 10. Here we rely on A*(t) < 0.99. In the event of £(t) we
use the fact that X () = Q(3n — 2t), which follows from (13) and the well-known hitting
time bound ﬁ% (see e.g. Jerrum and Sinclair [14]) to conclude that the hitting time is
O(n/(3n — 2t)).

The bound (12) for | X;(¢)| implies that A(t) occurs w.h.p. for any fixed ¢t > ¢; and we
will prove that B(t) also occurs w.h.p. Lemma 6 will follow. The relatively simple proof of

Lemma 7 is sketched at the end.

» Lemma 13. Fizt and let § = (3n—2t)/3n. If 6, =log™/?n > > 6, = n='log' n then,
Pri{€®)} =1-o0(1).

Proof. Fix some t,d with t; <t < t3. Expose [W(¢)]. Asin (12) and (14), w.h.p.,

B(t) > (606)%n, (21)
|X1(t)] = 30n + O(w™ton). (22)

As already remarked, this shows that Pr{A(t)} = 1—o(1). By (13), w.h.p. X3(t) = né3/? =
o(X1(t)). We can now show that X (t) = X1(¢) U X2(t) U X3(t) is a root set of order w w.h.p.
Here w is chosen to satisfy (25) below.

Let E: denote the set of ¢t edges discovered by the walk, and Ef the set of (random) edges
yet to be discovered. The number of edges inside X (t) is given by

e(X (1)) = |E| + |E(X1 U Xz) N Ey| (23)
where |Ef| = (X1 +2X5 +3X3)/2, so

Xl o) = 'i;' +0(w™?)

|
Ef| =
| t | 9
for w? = 0(561/2).
We bound the number of paths of length at most w between vertices of X; on edges of
E;, showing that the number is O(|X;|/w?). Note that such paths include E(X1) N E;, so
that the bound implies |E(X;) N Ey| = O(| X1|/w?).
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Let u,v € X3. Suppose u is placed on some green edge f1. There are at most 3“ green
edges at distance at most w from f1, so as v is placed in a random green edge,

Pr {d(u,v) < w} = O (?;:) —0 (n(;’;m) .

So the expected number of pairs u,v € X; at distance at most w is bounded by

Z Pr{d(u,v) <w} =0 <m> = O(n551/253/23w) = o(|X1|/w?), (24)

u,v€E X1

if we choose
W3 =0 ((50 /5)1/2) . (25)

w.h.p. the number of paths is O(|X;|/w?®) by the Markov inequality. This shows that X (¢)
is a root set of order w w.h.p.

We show in the full paper version that w.h.p., £(¢3) holds with enough room to spare so
that £(¢t) must hold for t5 <t < 4. <

For t > t4, we use the bound

1 n
EC(t+1)—C() < 1= |Y(t)|’

see e.g. Jerrum and Sinclair [14], to conclude that E (C'(3n/2) — C(t4)) = o(nlogn).

—— References

1 Miklés Ajtai, Janos Komlés, and Endre Szemerédi. Deterministic simulation in LOG-
SPACE. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA, pages 132-140. ACM, 1987.
doi:10.1145/28395.28410.

2 David Aldous and James Allen Fill. Reversible markov chains and random walks on graphs,
2002. Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.
edu/~aldous/RWG/book.html.

3 Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random
walks mix faster. Communications in Contemporary Mathematics, 09(04):585-603, 2007.
doi:10.1142/S0219199707002551.

4 Petra Berenbrink, Colin Cooper, and Tom Friedetzky. Random walks which prefer unvis-
ited edges: Exploring high girth even degree expanders in linear time. Random Struct.
Algorithms, 46(1):36-54, 2015. doi:10.1002/rsa.20504.

5 Béla Bollobés. A probabilistic proof of an asymptotic formula for the number of labelled reg-
ular graphs. Eur. J. Comb., 1(4):311-316, 1980. doi:10.1016/50195-6698(80)80030-8.

6  Colin Cooper and Alan M. Frieze. The cover time of random regular graphs. SIAM J.
Discrete Math., 18(4):7287740, 2005. doi:10.1137/50895480103428478.

7  Colin Cooper and Alan M. Frieze. Vacant sets and vacant nets: Component structures
induced by a random walk. SIAM J. Discrete Math., 30(1):166-205, 2016. doi:10.1137/
14097937X.

8 Colin Cooper, Alan M. Frieze, and Samantha Petti. The cover time of a biased random walk
on Gy, p. In Markus E. Nebel and Stephan G. Wagner, editors, Proceedings of the Fifteenth
Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2018, New Orleans, LA,
USA, January 8-9, 2018., pages 158-167. STAM, 2018. doi:10.1137/1.9781611975062. 14.

16:11

AofA 2018


http://dx.doi.org/10.1145/28395.28410
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://dx.doi.org/10.1142/S0219199707002551
http://dx.doi.org/10.1002/rsa.20504
http://dx.doi.org/10.1016/S0195-6698(80)80030-8
http://dx.doi.org/10.1137/S0895480103428478
http://dx.doi.org/10.1137/14097937X
http://dx.doi.org/10.1137/14097937X
http://dx.doi.org/10.1137/1.9781611975062.14

16:12

Cover Time of Biased Random Walk

10

11

12

13

14

15

Uriel Feige. A tight lower bound on the cover time for random walks on graphs. Random
Struct. Algorithms, 6(4):433-438, 1995. doi:10.1002/rsa.3240060406.

Uriel Feige. A tight upper bound on the cover time for random walks on graphs. Random
Struct. Algorithms, 6(1):51-54, 1995. doi:10.1002/rsa.3240060106.

Joel Friedman. A proof of Alon’s second eigenvalue conjecture. In Proceedings of the
Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC 03, pages 720-724,
New York, NY, USA, 2003. ACM. doi:10.1145/780542.780646.

Alan M. Frieze and Michal Karonski. Introduction to Random Graphs. Cambridge Univer-
sity Press, Cambridge, UK, 2015. doi:10.1017/CB09781316339831.011.

Tal Orenshtein and Igor Shinkar. Greedy random walk. Combinatorics, Probability &
Computing, 23(2):269-289, 2014. doi:10.1017/50963548313000552.

Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Inf. Comput., 82(1):93-133, 1989. doi:10.1016/0890-5401(89)
90067-9.

Hui Tian, Hong Shen, and Teruo Matsuzawa. RandomWalk routing for wireless sensor
networks. In Sixth International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT 2005), 5-8 December 2005, Dalian, China, pages
196-200. IEEE Computer Society, 2005. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue. jsp?punumber=10544, doi:10.1109/PDCAT.2005.193.


http://dx.doi.org/10.1002/rsa.3240060406
http://dx.doi.org/10.1002/rsa.3240060106
http://dx.doi.org/10.1145/780542.780646
http://dx.doi.org/10.1017/CBO9781316339831.011
http://dx.doi.org/10.1017/S0963548313000552
http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10544
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10544
http://dx.doi.org/10.1109/PDCAT.2005.193

The Genus of the Erdos-Rényi Random Graph and
the Fragile Genus Property

Chris Dowden'

Institute of Discrete Mathematics, Graz University of Technology, 8010 Graz, Austria
dowden@math.tugraz.at

Mihyun Kang?
Institute of Discrete Mathematics, Graz University of Technology, 8010 Graz, Austria
kang@math.tugraz.at

Michael Krivelevich?

School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv 6997801, Israel
krivelev@post.tau.ac.il

—— Abstract

We investigate the genus g(n, m) of the Erdds-Rényi random graph G(n, m), providing a thorough
description of how this relates to the function m = m(n), and finding that there is different
behaviour depending on which ‘region’ m falls into.

Existing results are known for when m is at most % +0(n?/?) and when m is at least w (nH%)

for j € N, and so we focus on intermediate cases.

In particular, we show that g(n,m) = (1 + o(1))% whp (with high probability) when n <
m = n't°W: that g(n,m) = (1 + o(1))u(A)m whp for a given function p(\) when m ~ An for
A > 1:and that g(n,m) = (1 + 0(1))% whp when m = § + s for n?3 < s < n.

We then also show that the genus of fixed graphs can increase dramatically if a small number
of random edges are added. Given any connected graph with bounded maximum degree, we find
that the addition of en edges will whp result in a graph with genus Q(n), even when € is an

arbitrarily small constant! We thus call this the ‘fragile genus’ property.
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1 Introduction

1.1 Background and motivation

The Erdés-Rényi random graph G(n,m) (taken uniformly at random from the set of all
labelled graphs with vertex set [n] = {1,2,...,n} and exactly m edges) and the binomial
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random graph G, , (the graph on [n] where every edge occurs independently at random
with probability p) have been a source of fascination for many decades, producing numerous
exciting results (see, for example, [3], [5], and [6]).

In this work, we are interested in the genus of a graph. A graph is said to have genus g if
this is the minimum number of handles that must be attached to a sphere in order to be
able to embed the graph without any crossing edges. Hence, the simplest case when g =0
corresponds to planar graphs.

The genus is one of the most fundamental properties of a graph, and plays an important
role in a number of applications and algorithms (e.g. colouring problems and the manufacture
of electrical circuits). It is naturally intriguing to consider the genus of a random graph, and
such matters are also related to random graphs on surfaces (see, for example, Question 8.13
of [7] and Section 9 of [4]).

The genus of the binomial random graph G, , was first studied in [1], and it was shown
that this is (1 + 0(1))% with high probability (whp for short, meaning with probability
tending to 1 as n — oo — see Definition 7) if p?(1 — p?) > M. A particularly notable
consequence of this result (by taking p = 1) is that the classical uniform random graph G(n)
(taken uniformly at random from the set of all labelled graphs on [n]) must then have genus
(1+ o(1))2: whp.

As noted in [1], results for the genus of G,, , can be transferred into analogous results for
the genus g(n,m) of G(n,m). Taking into account the work in both [1] and [16] (the latter
of which deals with a substantially wider range for p), these show that g(n,m) = (1+0(1))%
whp when m = O(n?) and that g(n,m) = (1 + o(1)) whp when n!'T77 < m < n!t7
for j e N.

Separately, important work has also been carried out to determine the probability that

jm
2(j+2)

G(n,m) is planar (i.e. has zero genus) when m is comparatively small. In particular, it is
n

now well-known that G(n,m) is planar whp when m < 2 — w (n?/3) (see [14]) and that
lim inf P[G(n, m) is planar] > 0 when m = 2 + O (n?/3) (see [14], and see [15] for exact
limiting probabilities).

It is our aim here to now bridge the gap between the m > n' T and m = 5+0 (nz/g)
results. We provide a thorough description of this intermediate region, finding that there is
different behaviour depending on whether (i) n < m = n'+°M_ (i) m ~ An for A > 1, or
(iii) m = 2 + s for s > 0 satisfying n?/3 < s < n.

We then turn our attention to a related problem, concerning the genus of a graph that is
partially random. Here, we take an arbitrary connected graph H with bounded maximum
degree, and examine the supergraph G formed by adding some random edges to H (this
type of model is sometimes called ‘smoothed analysis’ or a ‘randomly perturbed’ graph, see
e.g. [2], [8], [9], and [11]).

Rather surprisingly, we find that G will whp have high genus, even if H has low genus
and the number of random edges added is relatively small. We thus call this the ‘fragile

genus’ property.

1.2 Main results and techniques

The main contributions of this paper are two-fold. Firstly, we obtain a complete picture of
g(n,m) for all values of m by producing precise results for the previously uncharted regions.
Secondly, we then initiate the study of how the genus of a fixed graph is affected when
random edges are added, discovering the fragile genus property.
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We now present our main results in detail. In the first of these, we consider g(n,m)
for the region when n < m = n'*°() (e.g. this would be the case for a function such as
m = nlnn). Note that this is not an area that is covered by existing work. However, we
obtain the following tight bounds:

» Theorem 1. Let m = m(n) satisfy n < m = n'T°W) . Then with high probability

(1=o(1))F < g(n.m) <

SE

Perhaps the most obvious gap in previous knowledge concerns the case when m is linear
in n, but above the threshold for planarity. We show that the genus behaves smoothly in
this region:

» Theorem 2. Let m(n) ~ An for some fized \ > % Then with high probability
g(n,m) = (14 o(1))u(X)m,

where
1 72 1 1
- 2 —2X\r - 1 _
1) 4A2; (@A) +2( A)

is a strictly positive, monotonically increasing, continuous function satisfying p(\) — 0 as

A= % and p(X) — 3 as A — oo.

One of the most fascinating areas of study in random graphs has been the behaviour of
G(n,m) when m is close to %, as many important features have been found to emerge around
this key point. Here, we examine in detail the slightly supercritical regime when m = 5 + s
for s > 0 satisfying n?/® < s < n (i.e. precisely the region between the planarity threshold
and the linear case dealt with in Theorem 2), showing exactly how the genus grows:

» Theorem 3. Let m(n) = 2 + s(n), where s = s(n) satisfies s > 0 for all n and n*? <

s € n. Then with high probability

gln,m) = (1+ 0(1))£.
’ 3n?

All these results are summarised in Table 1, which gives an exciting picture of how the
genus g = g(n,m) behaves as m grows. In particular, it is intriguing to see that the ratio of
g to m increases from 0 to % until m becomes superlinear in n, after which it then decreases
from % to %.
Our proofs typically utilise Euler’s formula. Given a graph G, this states that the genus

g(@G) satisfies
9(G) = 3(e(G) ~ 1G] = F(G) +K(G) +1), (1)

where e(G) is the number of edges of G, |G| is the number of vertices of G, f(G) is the
number of faces of G when embedded on a surface of minimal genus (i.e. a sphere to which
g(G) handles have been attached), and «(G) is the number of components of G.

Consequently, our results often involve first establishing new bounds for the number of
faces of G(n,m) (for instance, via the number of short cycles).

For the proof of Theorem 3, in order to attain the required level of accuracy, we note
that we actually find it better to deal directly with the 2-core of G(n,m), rather than with
the entire graph.
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Table 1 A summary of g := g(n,m).

m = @(n2) g=(1+ 0(1))% whp See [16]
T < m o< n'tT g=(1+ 0(1))% whp See [16]
m=0 (n”%) (1 +0(1)) g=tim See [16]

< g < (1+0(1) 55 whp
n < m=n'te® (1-0(1)% <g <% whp Theorem 1
m~An, A>3 g = (1+o(1))p(A)m whp, Theorem 2

andu(A)—)%asA—)oo
m= g+, 9= (1+0(1)55z whp Theorem 3
s>0and n?® < s<n
m— 2 ~en?/? limp—oo P(g =0) =r(c) € (0,1), || See [14]
where 7(c) - 1 as ¢ —» —©
and r(c) - 0 as ¢ — o
m< 5 —w (n2/3) g =0 whp See [14]

We now turn our attention to our final main result, which concerns the fragile genus
property. Here, we take an arbitrary connected graph H with bounded maximum degree,
and a random graph R on the same vertex set, and we consider the genus g(G) of the graph
G = H U R. We make an interesting discovery, finding that g(G) will whp be rather large,
even if H and R are both planar:

» Theorem 4. Let A be a fized constant, and let H = H(n,A) be a connected graph with n
vertices and mazimum degree at most A. Let k = k(n) — oo as n — oo, and let R = R(n, k)

be a random graph on V(H) consisting of exactly k edges chosen uniformly at random from
(VD). Let G = G(n, A k) = HU R. Then with high probability

9(G) = © (max {g(H),k}).

The proof of Theorem 4 exploits a result from [10] for decomposing the base graph H into
various pieces. We construct a particular minor of G where each of these pieces is condensed
into a vertex (note that the genus of G is at least the genus of any of its minors), and we
find that we can obtain our result by applying Theorem 2 to this minor.

The remainder of the paper is structured as follows: in Section 2, we state the relevant
terminology, notation, and key facts; in Section 3, we focus on g(n,m), proving Theorem 1
and providing sketch-proofs of Theorem 2 and Theorem 3; in Section 4, we present the fragile
genus property, giving a sketch-proof of Theorem 4; and finally, in Section 5, we discuss the
contiguity of G(n) and G(n,m) with random graph models of given genus.
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Figure 1 An embedding with faces of length six and four.

2 Preliminaries and notation

In this section, we provide details of the notation and definitions that will be used throughout,
and then also present two results concerning the equivalence of G,, , and G(n, m).

Let us first note that we shall always take n and m = m(n) to be integers satisfying
n > 0 and m > 0, even if this is not always explicitly stated.

We start with the definitions of the standard random graph models:

» Definition 5. We shall let G(n,m) denote a graph taken uniformly at random from the
set of all labelled graphs on the vertex set [n] := {1,2,...,n} with exactly m edges.

We shall let G, , denote a graph on [n] where every edge occurs independently at random
with probability p, and we shall use G(n) to denote G,, 1 (i.e. a graph taken uniformly at
random from the set of all labelled graphs on [n]).

Next, we state the notation to be used for various key characteristics:

» Definition 6. Given a graph G, we shall use g(G) to denote the genus of G, k(G) to
denote the number of components of G, and f(G) to denote the number of faces of G when
embedded on a surface of genus g(G).

We also define g(n,m) := g(G(n,m)), (n,m) := k(G(n,m)), and f(n,m) := f(G(n,m)).

Given a particular embedding of a graph, we shall use the length of a face to mean the
number of edges with a side in the face, counting an edge twice if both sides are in the face
(for example, the embedding shown in Figure 1 has one face of length 6 and one face of
length 4).

We now also provide details of our order notation:

» Definition 7. Given non-negative functions a(n) and b(n), we shall use the following
notation:
a(n) = Q(b(n)) means there exists a constant ¢ > 0 such that a(n) > ¢b(n) for all large n;
a(n) = O(b(n)) means there exists a constant C' such that a(n) < Cb(n) for all large n;
a(n) = O(b(n)) means a(n) = Q(b(n)) and a(n) = O(b(n));
a(n) = w(b(n)) or a( ) > b(n) means that, given any constant K, we have ‘;gz; > K for

all large n (i.e. 3 a —>ooasn—>oo)

a(n)

a(n) = o(b(n)) or ( ) < b(n) means that, given any constant € > 0, we have 7+ <€

for all large n (i.e. bgng — 0asn— o0);

a(n) ~ b(n) means a(n) = (1 + o(1))b(n).

We shall say that a random event X,, happens with high probability (whp) if P(X,,) — 1
as n — oo. Given a non-negative random variable a(n) and a non-negative function b(n),
we adapt the above deterministic definitions by replacing ‘for all large n’ with ‘whp’. For
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example, a(n) = o(b(n)) whp or a(n) < b(n) whp means that, given any constant € > 0, we
()

Z(Z) < € whp.

We shall always take all asymptotics to be as n — oo, even if this is not always explicitly

stated.

have

We shall shortly present the two aforementioned equivalence results for G, , and G(n,m).
However, we first require the following definition:

» Definition 8. We say that a property is monotone increasing if whenever an edge is added
to a graph with the property, then the resulting graph also has the property. Similarly, we
say that a property is monotone decreasing if whenever an edge is deleted from a graph
with the property, then the resulting graph also has the property. We say that a property is
monotone if it is either monotone increasing or monotone decreasing.

We may now state the main equivalence result:

m

» Theorem 9 (see, for example, Proposition 1.15 of [6]). Given m = m(n), letp = p(n) = o
2
Then if a monotone property holds whp for Gy, p, it also holds whp for G(n,m).

Note that, for any function x = z(n), the property that g(G) < x is monotone, as is the
property that g(G) > z.

Unfortunately, the same cannot be said if we replace ¢(G) with f(G), the number of
faces of G when embedded on a surface of minimal genus. For instance, let C;~ denote the
graph formed be adding one edge to Cy, let K, denote the graph formed be removing one
edge from K5, and note that we have f (Cy) =2, f (C) =3, f (K5 ) =6, and f (K5) =5
(observe that the first three graphs are planar, while K5 has genus one). Hence, adding an
edge can actually increase or decrease (or have no impact on) f(G).

However, the function g(G) — e(G) is certainly monotone decreasing (one way to see this
is to note that Euler’s formula gives f(G) — e(G) = k(G) + 1 — |G| — 2¢9(G), and x(G) and
g(G) are clearly monotone decreasing and monotone increasing, respectively). Using this,
we may in fact still apply Theorem 9 to derive a useful equivalence result for the number of
faces:

» Corollary 10. Let m = m(n) — 0o as n — oo, let p = p(n) = (Tm), and suppose © = x(n)
2
is a function such that f (Gnp) < x whp. Then

fln,m) < x4+ o(m) whp.

Proof. We are required to show that, given any constant € > 0, we have f(n,m) < x 4+ em
whp.

Note that e (G, ;) has variance (3)p(1 —p) < m, and hence has standard deviation at
most m'/2, which is o(m) since m — oo. Thus, since e (G,,) has expectation exactly m, it
follows that, given any constant € > 0, we have e (G, ;) > (1 — €)m whp. Therefore, since
f(Ghnp) <z whp, we then have f (G, ) —e(Gpp) <z — (1 — €¢)m whp.

Now recall our observation that f(G)—e(G) is a monotone decreasing function, from which
it follows that the property that a graph satisfies f(G) — e(G) < x — (1 — €)m is monotone
increasing. Hence, we may apply Theorem 9, thus obtaining f(n,m) —m <z — (1 —€)m
whp, i.e. f(n,m) <z + em whp, as desired. <
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3 The genus of G(n,m)

In this section, we provide an illustration of some of the techniques employed in the exploration
of g(n,m) by proving Theorem 1, which will involve first obtaining bounds on f(n,m) in

Lemma 11 and Corollary 12. We then also give sketch-proofs of Theorem 2 and Theorem 3.

» Lemma 11. Let m = m(n) satisfy both m — oo as n — 0o and m <K n'ts for some fixed
j €N. Then

f(n,m) < (1+ 0@))3,%771 whp.

Proof. We will use the G, , model with p = %, and show that the number of faces is
2

at most (1 + 0(1))%(3)1) whp (we will then be done, by an application of Corollary 10).

Thus, we are required to show that, given any constant € > 0, the number of faces is at most
(1+6)533 (5)p why.

We will follow a similar argument to that used in the proof of Theorem 1.2 of [16], which
involves showing that whp G, , will have few short cycles, and hence few small faces, and
hence few faces in total.

Note that the expected number of cycles in G = G, , of length at most j 4 1 is

N

J+1 n\ il J+1 nipi Jj+1 4

S (g = LA < Yoy

‘ i=1 i=1

(j + 1) max {np, (np)’ ™'} (since either np < 1 or np > 1)
= O (max {np, (np)’™'})

= O ((np) max {1, (np)’})

2+1
nm _ n°I
= o(n’p) (since 1< nand np = W K —5 = ni) )
n
2
Thus, by Markov’s inequality, we can say that whp G has no more than ﬁe(g)p cycles

of length at most j + 1.

Let us now consider an embedding of G. Note that the statement of this lemma is
certainly true if G is acyclic (since then there is only one face), so we may assume that G is
not acyclic, in which case every face of the embedding must contain a cycle.

Let f’ denote the number of faces in this embedding with length at most j + 1. Then
every such face must contain a cycle of length at most j + 1, and every such cycle can only
be included in at most two faces. Hence, whp we have

, 1 n
< Me@p. (2)

Now let f denote the total number of faces in this embedding, and observe that

2e(G) > Bf+(G+A(f-Ff) = G+2f -G -1f.

17:7
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Thus, we have

2 j—1 2

[ < j+2e(G)+j+2f’ < me(GHf’
< ine(G)+ji26(g>p whp by (2)
N T
— a+os25(3)r
and so we are done. <

We now obtain our aforementioned corollary, which gives a useful bound on the number
of faces f(n,m) when m < n'to).

» Corollary 12. Let m = m(n) satisfy both m — co as n — oo and m < n*t°(). Then
fn,m) = o(m) whp.

Proof. We are required to show that, given any constant € > 0, we have f(n,m) < em whp.

We may simply choose a value j € N such that j > 20t _ 2, in which case < 15_6.

Then, by Lemma 11, we have

2
Jjt2

2
1 h
Flnm) < (L4 5m whp
€

< (1+6)1+e

= em,

m

and so we are done. <
We may now easily derive Theorem 1:
Proof of Theorem 1. The upper bound holds for all m — we simply use Euler’s formula
1
g(n,m) = E(m —n— f(n,m)+ k(n,m) +1)
from (1), and observe that n > x(n,m) and f(n,m) > 1.
The lower bound also follows from Euler’s formula, using n = o(m) and f(n,m) = o(m)
whp by Corollary 12. <
Theorem 2 is obtained similarly:
Sketch of Proof of Theorem 2. The proof again utilises Euler’s formula and Corollary 12.
For Theorem 1, the role of the number of components k(n,m) was insignificant, since we
had m > n > k(n,m). However, since we now have m = O(n), this time we find that we do

require accurate information on x(n,m), and we extract this from Theorem 6.12 of [3]. <«

The proof of Theorem 3 is more intricate:
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Figure 2 An embedding with two large faces.

Sketch of Proof of Theorem 3. Recall that the proof of Lemma 11 involved bounding the
number of small faces via calculations on the number of short cycles. Clearly, this may
greatly over-estimate the number of small faces if there are actually many large faces that
consist of a short cycle with large trees rooted on the cycle (see Figure 2).

Consequently, in order to achieve the desired level of accuracy for Theorem 3, much of the
proof will this time involve working directly with the 2-core of the giant component instead
of with the entire graph (note that whp this determines the overall genus, and also alleviates
any need to compute the number of components).

Thus, we shall proceed towards an application of Euler’s formula for the 2-core of the
giant component, which will involve us first needing to establish bounds for the number of
faces in the 2-core of the giant.

Our strategy here is to begin by examining the number of ‘short’ cycles in G(n, m) that
also satisfy some additional properties; then to use this to bound the number of such cycles
in the giant component; then (by careful consideration of the additional properties) to bound
the total number of short cycles in the giant component (and hence in the 2-core of the
giant); then to use this to bound the number of short faces in the 2-core of the giant; and
then, finally, to separately bound the number of large faces in the 2-core of the giant (via
the number of edges).

We start by utilising work from [13] on cycles in G(n,m). For our region when m = % + s
for s > 0 satisfying n?/® < s < n, results are given here concerning the number of cycles
in G(n,m) that both (a) have length at most *, for fixed i € N, and (b) satisfy certain
technical properties involving the neighbouring vertices and the trees rooted on the cycles.

In particular, it is shown that the number of these cycles tends in probability to a random
variable that has a Poisson distribution with mean A(7), for a given monotonically increasing
function A, and hence that the number of such cycles is concentrated around A(%).

We extend this latter result to cover the case when i(n) is a function of n, as long as i(n)
grows sufficiently slowly.

Next, we construct a specific function i(n) with i(n) — oo for which A(i(n)) also grows
very slowly. For this function, we manage to show that the number of cycles in G(n, m) of

i(n)n
s

The key factor here is that s3 > n?.

We then move to the giant component of G(n,m). By utilising further useful results
from [13], we are able to show that whp all cycles of length at most l(”% in the giant
component will actually satisfy all of the various technical properties.

length at most

n2

with the aforementioned technical properties is still only o (SS ) whp.

17:9

AofA 2018



17:10

The Genus of the Erd6s-Rényi Random Graph and the Fragile Genus Property

s

Thus, we find that the total number of cycles of length at most in the giant
component of G(n,m) (or, equivalently, in the 2-core of the giant component) must be
0 (Z—Z) whp. Hence, the number of faces of length at most {n in the 2-core of the giant

must be o (Z—z) whp too.
We then consider the number of faces of length at least @ in the 2-core of the giant.

By results from [12] and [13], the number of edges in the 2-core of the giant is known to be

n

C] (ﬁ> whp, and so the number of such faces can only be O (ﬁ) whp. Crucially, our

earlier work to ensure that i(n) — oo then implies that this is o (Z—Z .
Hence, putting everything together, we find that the total number of faces in the 2-core

3

of the giant is also o (;—2) whp.

We then finish with an appropriate application of Euler’s formula, using existing results
from [12] and [13] on the number of vertices and edges in the 2-core of the giant. Note
that our bound for the number of faces is sufficiently precise to achieve the desired level of

accuracy. <

4 The fragile genus property

In this section, we provide a sketch-proof of Theorem 4, which shows that the genus of any
given connected graph with bounded degree can increase dramatically if a small number of
random edges are added.

Sketch of Proof of Theorem 4. Note that adding an edge can only increase the genus by
at most one, so we certainly have g(G) < g(H) + k < 2max {g(H), k}. Also, we clearly have
g(G) > g(H). Hence, it just remains to show that g(G) > Q(k) whp.

The result for liminf,,_, % > % can be obtained simply by applying our results on the
genus of G(n,m) to R (with m = k), and so we may assume that k < n, say.

Our proof involves contracting carefully chosen identically-sized pieces of the graph (we
use ‘piece’ to mean a connected subgraph) into ‘super-vertices’ — note that this cannot increase
the genus. We then show that the uniform random graph induced by these super-vertices
and the random edges will whp be sufficiently dense for us to be able to apply Theorem 2.

We start by splitting the base graph H into t = ©(k) connected pieces V1, Va,..., W
(hence our earlier assumption that k = O(n)), plus a few (o(n)) vertices that do not belong
to any of these pieces.

Using a decomposition result from [10], we may select the pieces in such a way that we

have
5nA2 10nA3
A <Vl < A (3)
for all 4, and so
k k

Let us note that the value of ¢ has been carefully arranged here. It will be crucial for our
later calculations that we have ¢ = Q(k), but also that % is not too large.

As mentioned, we shall wish to condense pieces of our graph into super-vertices. However,
rather than contracting the entire pieces Vi, Vs, ..., V4, for each ¢ we instead select a connected
subpiece U; C V; with size |U;| = s := min, |V;|. This will be important to ensure uniformity,
so that we can later apply Theorem 2.
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Us D .

Vi =Us
Figure 3 A graph G and the corresponding graph I'.

We then contract each of these subpieces Uy, Us, ..., U;, and ignore any vertices not in
these subpieces. Formally, this means that we define an auxiliary random graph I'" with
vertex set [t], where two vertices ¢, j € [t] are connected by an edge if and only if there is an
edge of R going between U; and U; (see Figure 3, where thick lines denote the edges of R
— note in particular that this example has no edge in I' between vertex 1 and vertex 3, as
there is no edge in G between U; and Us).

Observe that I' is a minor of G, and hence that g(G) > ¢g(I"). Thus, since we deliberately
chose t to be large enough that ¢t = Q(k) (recall (4)), it will suffice to show that g(T") = Q(¢)
whp.

Note that the number of edges in I" is not equal to k, since we only include edges between
our chosen subpieces, and we only include at most one edge for each such pair U;, U;.

In order to obtain a bound for e(T"), we consider the edges of R one-by-one (in a random
order). Note that e(T") is then precisely equal to the number of edges of R which satisfy the
two properties that

(a) the edge lies between a vertex of U; and a vertex of U; for i # j;

and (b) no previous edges of R lie between these same two sets U; and U;.

Observe that the probability that an edge of R satisfies both (a) and (b) is always at least
((6) —(k—1)) s
(3)

since there are at least (;) — (k — 1) ways to choose a pair U;, U; which do not already have

an edge of R between them, and then s ways to choose a vertex from U;, and s ways to
choose a vertex from Uj.

By (3) and (4), this probability is at least (1 — o0(1))xz, and so we can certainly say that
whp at least 522 of the k edges of R will satisfy conditions (a) and (b). Thus, e(I') > >
whp.

Crucially, the fact that we chose t so that ¢ < ¢ % (recall (4)) consequently means that
we have e(I") >t whp.

We then let T'* be the random graph formed by considering just ¢ (randomly chosen)

edges of I'. Since each set U; had exactly the same number of vertices, this graph I'* is in
fact a uniform random graph with ¢ vertices and ¢ edges. Thus, by Theorem 2, we have
g(I'*) = O(¢) whp, and so ¢g(I") = Q(t) whp, as required. <

Note that Theorem 4 implies the remarkable fact that whp G = H U R will have Q(n)
genus even if H is a planar graph and k = en for some very small (but positive) e! We thus
call this the ‘fragile genus’ property.
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Let us conclude this section by also remarking that for lim sup,, , .o % < %, the restriction

on the maximum degree in Theorem 4 is essential, since otherwise we could take H to
be a star (note that whp the random graph R would consist only of trees and unicyclic
components, and would consequently be outerplanar, and so the overall graph G would then
have genus zero).

5 Discussion

As mentioned in the introduction, one of our motivations for studying the genus of G(n, m)
comes from recent work on random graphs on surfaces. In particular, one may define Sy (n)
to be a graph taken uniformly at random from the set of all labelled graphs on [n] with genus
at most g, and Sg(n, m) to be a graph taken uniformly at random from the set of all labelled
graphs on [n] with exactly m edges and with genus at most g. It is then natural to ask when
these graphs will be contiguous with G(n) and G(n,m).

It immediately follows from the work in [1] that G(n) and S,(n) are certainly contiguous
for any g(n) satisfying g(n) > (1 + e)’;—z for any € > 0 (and also for some g(n) satisfying
g(n) =1+ 0(1))’2%21), since G(n) will have genus at most (1 + 0(1))% whp.

Conversely, G(n) and Sq4(n) are certainly not contiguous for any g(n) satisfying g(n) <
(1- e)g—i for any € > 0 (and also not for some g(n) satisfying g(n) = (1 + 0(1))3—2), since
there is then a discrepancy with respect to the property of having genus greater than g (note
P[Sy(n) has genus > g] = 0, by definition, but P[{G(n) has genus > g] = 1 as n — 00).

By the same arguments, similarly precise results for the contiguity of G(n, m) and Sg(n,m)
for the various different regions of m can now also be obtained.
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Maximal Independent Sets and Maximal Matchings in Subcritical Graph Classes

1 Introduction

In this extended abstract we consider labelled, loopless and simple graphs only. For a graph
G = (V(G), E(G)), a subset J of V(G) is said to be independent if, for any pair of vertices x
and y contained in J, the edge {z,y} does not belong to E(G). An independent set J of a
graph G is said to be mazimal if any other vertex of G that is not contained in J is adjacent
to at least one vertex of J. A subset N of the edge set E(G) is called a matching if every
vertex x of G is incident to at most one edge of N. A matching N is called mazimal if it
cannot be extended to a bigger matching by adding an edge from E(G) \ N.

The purpose of this paper is to enumerate maximal independent sets and maximal
matchings (by means of symbolic methods) and to study their size distribution (using
complex analytic tools) in certain classes of graphs including trees, cactus graphs, outerplanar
graphs and series-parallel graphs. For simplicity we will only consider vertex labelled graphs,
thus making the combinatorial analysis as well as the analytic one considerably simpler.
However, in principle it is also possible to consider unlabelled graphs. We use the concept
of generating function in order to follow the classical connectivity-decomposition scheme,
first starting with the rooted blocks, i.e. maximal 2-connected components, then going to
the level of rooted connected graphs and finally to general (not necessarily connected and
unrooted) graphs.

Let G denote a proper class of vertex labelled graphs, which means that the vertices of
a graph with n vertices are labelled with the labels {1,2,...,n}. We denote by G, the set
of graphs in G with n vertices. For a graph G € G we denote by I(G) the set of maximal
independent sets of G and by

I, = |J I1(G) x {G}

Geg,

the system of all maximal independent sets of graphs of size n. More precisely, every maximal
independent set J is indexed by the corresponding graph, this is formally done by taking
pairs (J, G). Similarly, we denote by M (G) the set of maximal matchings of G and by

M, = | M(@G)x{G}
Geg,

the system of all maximal matchings of graphs of size n.

In this extended abstract, we present precise enumerative results on Z,, and M,,. In
particular, we will apply our method to two important graph families: Cayley trees and
series-parallel graphs. In principle our results can be extended to other graph classes that
have a so-called subcritical analytic structure, we will make this more precise in Subsection 2.3
(for instance, cactus graphs and outerplanar graphs also satisfy this analytic scheme). For
the mentioned graph classes we have the following universal structure in the asymptotic
enumeration formula for the number of graphs on n vertices, for n large enough:

5/2[)7”71!,

gn = |Gn| ~cn”
where ¢ > 0 and p is the radius of convergence of the (exponential) generating function
G(z) = EnZO gn% associated to the graph class under study. The first result is an asymptotic
estimate for both |Z,| and |M,,|:
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» Theorem 1. Let G either be the class of vertex labelled trees, cactus graphs, outerplanar
graphs or series-parallel graphs, and let p be the radius of convergence of the generating
function G(z) associated to G. Then we have

|Z,| ~ A1 n ™% 2p" 0! and  |My| ~ Aan =52 p3mnl,
where A1, Aa, p1, p2 are positve constants with 0 < p1 < p and 0 < pa < p.

As a direct corollary we obtain:

» Corollary 2. Let G be as in Theorem 1 and let AlL, be the average number of maximal
independent sets in a graph of size n in G and AM,, be the average number of matchings in
a graph of size n in G. Then it holds that

_ |7

Al, =— ~C-a" and AMn:M
In gn

NDan

where C, D, a, B are positive constants and « and B are larger than 1.

The second main result concerns the distribution of the respective size of maximal
independent sets and matchings. The following theorem shows that the limiting distribution
follows a central limit theorem with linear expectation and variance:

» Theorem 3. Let G either be the class of vertex labelled trees, cactus graphs, outerplanar
graphs or series-parallel graphs. Furthermore, let ST,, denote the size of a uniformly randomly
chosen mazimal independent set in T,, and SM, the size of a uniformly randomly chosen
matching in M,,. Then,

E[SI,] = un+ O(1), Var[SI,] = oin+ O(1),
E[SM,] = An+O(1), Var[SM,] = o3n+ O(1),

for some constants u, A > 0 and 02,02 > 0. Moreover, SI,, and M1, satisfy a central limit
theorem:

I, — E[S]
51, — E[SL,] 4 N(0,1) and

d SM, —E[SM,] 4
Var[S1T,] Var[SM,]

— N(0,1).

Apart for constants C' and D in Corollary 2, all the other appearing constants can be
computed explicitly to any degree of precision. The following table lists some of them:

| Fomi T R
Trees 1.273864 | 0.463922 || 1.313080 | 0.285910
Cactus graphs 1.282413 | 0.429472 || 1.371652 | 0.268268

Series-parallel graphs || 1.430394 | 0.269206 || 1.470167 | 0.254122

Let us mention that in [13], Meir and Moon obtained the estimate of Theorem 1 and the
expectation in Theorem 3 for maximal independent sets in Cayley trees, plane trees and
binary trees. Our contribution generalises their work, providing a precise limiting distribution
for the size of maximal independent sets in Cayley trees.

Finally, let us briefly discuss the extremal versions of those problems. In the literature,
one can find two such directions. One of them, started by Wilf [17] who was motivated by
the design of an algorithm to compute the chromatic number, consists in characterising the
extremal instances of a given family of graphs containing the maximum number of maximal
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independent sets (see [9], [15] and [18]), as well as maximum independent sets (see [19] and
[12]). Furthermore, the maximum number of both maximal matchings [10] and maximum
matchings [11] have been treated. The other direction consists in bounding the size of a
maximum matching in a graph [3]. However, the problems discussed in this extended abstract
seem to be of a different nature.

It is worth noticing that in [3], the authors also give tight bounds on the size of a maximal
matching in 3-connected planar graphs and in graphs with bounded maximum degree.

Structure of the extended abstract

Section 2 introduces the necessary background, namely the language of generating functions
and how they apply to graph decompositions in terms of their connectivity, as well as the
analytic concepts needed in the context of subcritical graph classes. Later, in Section 3 we
obtain a system of functional equations encoding maximal independent sets in subcritical
graph classes. We then analyse it using complex analytic tools in Subsection 3.2. And in
Section 4 we apply our results to the families of Cayley trees and series-parallel graphs. The
reader will finally find the analoguous scheme for maximal matchings in an appendix at the
end of the extended abstract.

2 Preliminaries

2.1 Generating functions

We follow the notation from [6]. A labelled combinatorial class is a set A together with a
size measure, such that if n > 0, then the set of elements of size n, denoted by A, is finite.
Each element a of A, is built from n atoms (typically, vertices in graph classes) assembled
in a certain way, the atoms bearing distinct labels in the set {1,...,n}. We always assume
that a combinatorial class is stable under graph isomorphism, namely, a € A if and only if
all graphs a’ isomorphic to a are also elements of A.

In enumerative problems, it is often useful to use the exponential generating function
(shortly the EGF) associated to the labelled class A:

A(z) == Z |AT|JCn, [z"]A(x) = [An|

n! n!
n>0

In our setting, we use the (exponential) variable z to encode vertices.

We can root the elements of a class A by distinguishing one of the items and discounting it,
which means that we reduce the size function by 1. Since we assume that our combinatorial
class is stable under graph isomorphism, this procedure can be performed by taking the item
with the largest label as the root. The corresponding new rooted class will be denoted by A°.
Since every element of A correponds uniquely to an element of A°, but the corresponding
term x"/n! in the generating function is replaced by #"~!/(n — 1)! (for an element of size
n), the correponding generating function satisfies

A°(z) = A'(z).

Similarly, we can consider a pointed structure 4°® by distinguishing one of the items without
discounting it. Since there are n different ways of choosing an item (for an element of size n),
the corresponding term z™/n! in the generating function is replaced by nz™/n! = 2™ /(n — 1)!
which leads to the relation

A*(x) = xA'(x).
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Finally, we will deal with the set construction of classes: given a labelled combinatorial
structure A, the set construction Set(.A) takes all possible sets of elements in A. The
corresponding generating function is then exp ((A(z)), where A(x) is the generating function
associated to A.

2.2 Graph decompositions

A block of a graph G is a maximal 2-connected subgraph of G. A graph class G is said to be
block-stable if it contains the graph e, the unique connected graph with two labelled vertices,
and satisfies that a connected graph G belongs to G if and only if any one of its blocks is in
G. The class G is also said to be connected component-stable when any graph G is in G if
and only if all connected components of G belong to G. For a graph class G, we denote by
C and B the families of connected and 2-connected graphs in G, respectively. In particular,
if G is a block-stable and connected-component stable class of graphs, then the following
combinatorial decomposition holds:

G = Set(C), C* = e x Set(B°oC*).

The previous formulas read as follows: first, each graph in G is a set of elements in C.
Secondly, a pointed connected graph in C*® can be decomposed as the root vertex, and a set
of pointed blocks (the ones incident with the root vertex) where we substitute on each vertex
a rooted connected graph. See [1, 4, 8] for details. These expressions translate into equations
of EGF in the following way:

G(z) = exp(C(a)), C*(2) = exp(B°(C*(x)).

See [16] for further results on graph decompositions and connectivity on graphs.

2.3 Asymptotics for subcritical graph classes

We call a block-stable and vertex labelled graph class subcritial if nB”(n) > 1, where 7
denotes the radius of convergence of B(x). In particular this is satisfied if B”(x) — oo as
x — n—. Cayley trees, cactus graphs, outerplanar graphs and series-parallel graphs are
subcritical. The main analytic property of subcritical graph classes is that they have many
universal asymptotic behaviours, see [2, 5, 14, 7].

In our context, we will just use the fact that the property nB”(n) > 1 ensures that the
functional equation C®(x) = zexp(B°(C*(x))) has solution C*(z) that has a squareroot
singularty at its radius of convergence p and, thus, a local expansion of the form

C*(z) = 2C'(z) = ¢y + ¢, <1‘Z>1/2+c2 <1”;> + ¢ (1z)3/2+... : (1)

where p is given by p = gOe_B/(EO) and 0 < ¢, = C*(p) < n is given by the equation
coB"(¢y) = 1. Furthermore ¢; < 0. Note that the singular behaviour of B(z) at its radius of
convergence 1) is irrelevant for the singular behaviour of C*(z) = zC’(z), we only make use
of the (analytic) behaviour of B’(z) around x = ¢, < 7.

From (1), and if we assume that the class is also connected component-stable, it follows
that C(x) and G(x) = e“® have the following singular behaviour around their common
radius of convergence p:

3/2
C(x):CO+CQ<1_%)+CS<1_% +oeey

G(x):90+92<17%)+gg(1fﬂ)3/2+...,

P
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where c3 and g3 are positive. If we further assume that £ = p is the only singularity on
the circle of convergence |z| = p which is satisfied for all our cases, and for proper positive
constants ¢/, ¢”, it then follows that (see for instance [6])

IC| = n! [z C(x) ~ ¢n™%2p™"n! and  |Gn| = n![z"] C(z) ~ ¢'n~%/2p 0l

3 Counting in block-stable graph classes

In this section, we consider block-stable vertex labelled graph classes and set up functional
equations for counting maximal independent subsets and maximal matchings. We use the
notation B for the family of 2-connected blocks in a block-stable graph class G and C for the
family of connected graphs in G.

3.1 Maximal independent sets in block-stable graph classes

A coloured block is a pair (I,b) consisting of a block b € B together with a distinguished
independent set I of b (note that I can be any independent set of b and not only a maximal
one). Let B(x,yo0,y1,y2) be the generating function enumerating coloured-blocks, where
the variable z marks vertices. The extra variables encodes the following: yg corresponds to
vertices of I, y; corresponds to vertices adjacent to a vertex in I (i.e. at distance one from I),
and yo corresponds to all other vertices, that is to vertices at distance at least two from I.
Similarly, a pointed coloured block is a pair (I,b°) consisting of a pointed block b° € B°
together with a distinguished independent set I of b. Let B; = B;(z,%0,¥y1,y2) be the
generating function counting pointed coloured blocks, where the pointed vertex is at distance
exactly i from I, for ¢ € {0,1}, and at distance at least 2 (case ¢ = 2). In those cases, the
pointed-vertex must neither be encoded by z or by any y;, for i € {0,1,2}. Hence,

B, = % : g—i, for i € {0,1,2}.
A coloured graph (J,g) is a pair consisting of a connected graph g € C and of a mazimal
independent set J of g. We can define pointed coloured graphs similarly to coloured blocks.
Let C = C(x,yo,y1) be the generating function counting coloured-graphs, where yo and y;
have the same meaning as in coloured blocks. For i € {0, 1}, let C; = C;(x,yo,y1) be the
generating functions enumerating pointed coloured-graphs, for which the pointed vertex is at
distance ezactly ¢ from J. Those two generating functions are given by

1 oC
;= —-—, fori e {0,1}. 2
=G frie (0.1) 2)
We finally need an auxiliary class. A special pointed coloured-graph is a pair (J, g°) where
J is an independent set of g which becomes maximal when adding the pointed vertex to J.
In other words, a special pointed coloured-graph is obtained from a coloured-graph pointed
at a vertex in J by removing it from J. We denote the corresponding counting formula
by Ca(z,y0,y1). Finally, observe that given a coloured-graph (J,g), the independent set J
together with the vertices of g at distance one from J define a partition of V' (g). Hence, the
following equalities hold:
oc _ Y% 870 y1 0C

9z~ z Oy + = o = 10Co + 11 Ch. (3)

Obviously we also have

G('TvyOa yl) = eXp(O(ma y07y1))7
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o
D l ':if;

Figure 1 Left is a connected series-parallel graph with a maximal independent set I (vertices

circled in red) and pointed at a vertex at distance one from I. Right is its block-decomposition.

Pointed vertices are coloured in white.

where G(z,yo0,y1) denotes the corresponding generating function of coloured graphs in G.

The following lemma describes connected structures in terms of their block-decomposition
(see Figure 1 for an example). Thus, if we know B(z,yo,y1,y2) (or just B;(z,yo,y1,y2), for
each i € {0,1,2}), then we can determine 2¢

9o (2,90,y1) and consequently C(x,yo,y1) and
G(l’, Yo, yl)

» Lemma 4. With the above notations, the following system of equations holds:

Co = exp(Bo(x,y0Co, y1(C1 + C2),y1C1)),
C1 = (exp(Bi1(z,yoCo, y1(C1 + C2),11C1)) — 1) - Ca, (4)
Co = exp(Ba(x, 40Co, y1(C1 + C2),y1C1)).

Proof. Let us start by finding an expression for Cy and let (I, g°) be a pointed coloured-graph
whose pointed vertex is in I. Following the decomposition of graphs into blocks, observe that
the pointed vertex of g° determines a set of pointed coloured-blocks (J;,b9) (withi=1,...,k
for a certain k) for which the root of each by belongs to J;, i.e. coloured-blocks with the
pointed vertex in J; (and hence, counted by Bg). Observe that the independent sets J; can be
extended to I by pasting pointed coloured-graphs on each of their vertices (and completing
the graph to ¢°).

Without loss of generality, let us now fix a j € {1,...,k} and analyse the pair (J;,b?).

Jr%yg
First, to every vertex of b5 in J; must be attached a coloured-graph (L, h°) whose root is in

L, i.e. a coloured-graph counted by Cy. In terms of generating functions, this translates to
the substitution of yo by yoCo. Second, to each vertex of b] at distance one from J;, the
root of the pointed coloured-graph (L, h°) attached to it can either be at distance one or
more from L. This then translates to the substitution of y; by y;1(Cy + Cs). Finally, if a
vertex of b7 is at distance at least two from J;, then the root of the coloured-graph (L, h°)
attached to it must be at distance one from L, as we need to extend the independent set
to a maximal one. This translates to the substitution of ys by y;C; and the first equation
of (4) holds. The study of Cj is obtained following the exact same arguments as in Cj.

Let us finally discuss the equation for Cy. Assume that (I, g°) is a pointed coloured-graph
and that (J;,b7) (for i = 1,...,k) are the pointed coloured-blocks incident with the pointed
vertex of ¢°. In particular, for each ¢ € {1,...,k} the pointed vertex of b is either at
distance one or at least two from J;. Nevertheless, observe that there exists at least one of
the pointed-blocks (J;, b;) whose pointed vertex is at distance one from J;. This gives us
that

C, = exp21(Bl(x, Y0Co, y1(C1 + C2),y1C1)) - exp(Ba(, yoCo, y1(C1 + C2),41C1))
= Cy (exp(Bi(z,y0Co, y1(C1 + C2),11C1)) — 1).

Which concludes the argument. <
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3.2 Asymptotic Analysis

We study next the analytic structure of the solutions of the systems (4) and (9) provided
that the functions B; behave in a proper way that is similar to the behaviour of B(z) in the
case of sub-critical graph classes. Under these hypothesis (see Lemma 5) it is then very easy
to prove Theorems 1 and 3 which will be done at the end of this subsection. For the sake of
brevity we only discuss the system (4), the analysis of (9) runs along the same lines.

First we note that the functions B;(x,yo, y1,y2) are actually functions in three variables
since a monomial m"ygoy’fly§2 can only appear if kg + k1 + ky = n, that is, we have
Bi(x,y0,y1,y2) = Bi(1, 2y0, Ty1, y2) or equivalently B;(z,yo,y1,y2)
= Bi(zy2,Y0/Y2,y1/y2,1). However, it is more convenient to work with all four variables
Z, Y0, Y1, Y2. If Yo, y1, Y2 are positive real numbers then the function = — B(z, yo,y1,¥y2) is a
power series with non-negative coefficients. Hence the radius of convergence of this function
coincides with its dominant singularity in . We will denote this radius of convergence by
R(yo,y1,y2). Similarly for the solution functions Cy, Cy, Cs of the System (4) we denote by
pi(Yo,91), i =0, 1,2, the radius of convergence with respect to x when yg,y; are positive real
numbers.

» Lemma 5. Suppose that the function R(yo,y1,Yy2) extends to an analytic function
R(yo,y1,y2) for a sufficiently small neighbourhood around the positive real numbers. Fur-
thermore assume that for all positive real numbers yo, y1,y2 we have
m OB ) )
im —(z, Yo, y1, =00
= R(Y0,y1,y2)— 32/,2 yo- v, b2
for at least one of the i € {0,1,2}. Then the solutions Cy, C1,Ca of the system (4) have the
property that the functions p;(yo,y1), ¢ =0, 1,2, coincide and extend to an analytic function
(Yo, y1) for a sufficiently small neighbourhood around the positive real numbers. Moreover,
the dominant singularity is of squareroot type and we have a local expansion of the form

1/2
Ci(z,y0,91) = ¢io(yo,y1) + ci,1 (Yo, y1) (1 - m)

) (©)
+¢i2(Yo, 1) (1 - m) +

where ¢;1(yo,y1) < 0 (for positive real yo,y1) and that extends to sufficiently small neigh-
bourhood in x,yo,y1 around the positive real numbers.

Proof. We recall some basic facts on (positive) systems of functional equations that are
taken from [4]. Suppose that we have a system of three equations of the form

C = F(x)C’ D’ E)7
D = G(m7 C7D7E)7
E = H(x7 C7D7E)’

in unknown functions C' = C(z), D = D(x), E = E(z), where F,G, H are power series with
non-negative coefficients. We also assume that the system is strongly connected which means
that no subsystem can be solved before solving the whole system. We set

1-Fc —Fp —Fg
—He —Hp 1-Hg

the functional determinant of the system {C' — F =0, D — G =0, E — H =0} and let r be
the spectral radius of the Jacobian matrix of the right hand-side of the system of equations.
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Note that » = 1 implies that A = 0. We also assume that there is a unique non-negative
solution C'(0), D(0), E(0) for x = 0 with the property that r < 1, which also shows that
A # 0. Thus by iteration, the solution for z = 0 extends to power series solutions C(z),
D(xz), E(x) with non-negative coefficients and a positive radius of convergence. By the
strongly connectedness assumption, this radius of convergence p is the same for all three
solutions functions C(z), D(z), E(x). By the theory given in [4], this radius of convergence
is determined by the condition r = 1 provided that we are still working within the region of
convergence of F', G, and H. The condition r = 1 can be also witnessed by the condition
A = 0 or equivalently by the condition

FpGpHc+FrGcH GrpH FrpH FpG
AF =Gy T aoan (ot T GoFo)ams) T 0=Foi—ap) — - (7)

Note that the left hand-side is smaller than 1 for x =0 and C = C(0), D = D(0), E = E(0)
and is strictly increasing in x. Thus, in order to find p we just have to find the value for
which the left hand-side hits the value 1. If we are still inside the region of convergence of F,
G, and H, then it follows that the solution functions C(x), D(z), E(x) have a squareroot
singularity of the form (1) at z = p;.

In our special situation all the above assumptions concerning positivity, strongly connec-
tedness etc. are satisfied. Now let us also observe that B o0 implies that Fo — 00, since

F(z) = exp(Bo(z,y0C,y1(D + E),y1 D) and By = 1 BB (note the two different meanings of

Yo). Similar observations hold for Gp and H. Thus ‘it is clear that (7) is satisfied inside
the region of convergence of F', G and H. We recall the fact that the left hand-side of (7) is
smaller than 1 for z = 0 and strictly increasing in z. |

Finally we show that under the hypothesis of Lemma 5, it is immediate to deduce our
main results Theorem 1 and Theorem 3: from (6) and (3) it follows that C(x,yo,y1) can be
represented as

T

3/2
X
C(x,yo, =c , +c , 1—— | +e¢ , 1—- — e
( Yo 1/1) o(yo y1) 2(:Uo y1)( P (yo,yl)) 3(:Uo yl)( pl(yo,yl))

where ¢3(yo,y1) > 0 for positive real yo,y1. Thus, if we set yo = y1 = 1 and p1(1,1) = py,
then we have

3/2
C(2,1,1) = co(1,1) + c2(1, 1) (1 - x) +es(1,1) (1 - x) TR
1 P1
and consequently

Gl 1,1) = YO IT S = exp(C(a,1,1))

n>0

— go(1,1) + ga(1, 1) (1 - /i) +gs(1,1) (1 - ;“"1)3/2 4

This directly implies Theorem 1 for the case of maximal independent sets by standard
singularity analysis (see [6]). We just have to observe that zo = p = p(1,1) is the only
singularity on the circle of convergence. However, this follows from the fact that there exists
graphs of all sizes n > 1.

AofA 2018
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Finally, if we set y; = 1 then we have

ZTL
G(z,y0,1) = Y Elyg ™) |Zal —; = exp(C(x, 40, 1))

n>0

. " 3/2
:go(y071)+92(90v1) <1 ,01(3/071)) +g3(171) (1p1<y071)> 4+ ..

Hence, a direct application of [4, Theorem 2.35] implies a central limit theorem of the
proposed form, as well as the asymptotic expansions for the expected value and variance.
This proves Theorem 3 for the case of maximal independent sets.

What remains is to check condition (5). We work this out in details for trees and series-
parallel graphs in Section 4. The other cases (cactus graphs and outerplanar graphs) can
be handled in a similar way and this will be covered in the paper version of this extended
abstract.

4 Applications

Our first application concerns the most basic subcritical graph class, namely Cayley trees.
We note that the case of maximal independent sets was already discussed in [13]. We will
then deal with the class of series-parallel graphs.

4.1 Maximal independent sets in trees

In both structures (maximal independent sets and maximal matchings), we proceed following
the block-decomposition of trees, and we explicitly give the generating functions By, B
and Bs. Notice that in a tree, blocks are reduced to single edges. The computations of the
constants given in Table 1 are obtained by computing the branch point of the corresponding
system, using the explicit expressions for By, By and Bs.

We first give the generating functions counting the rooted blocks carrying an independent
set. From the possible choices of an independent set in a single edge, namely B(z, yo,y1, y2) =
2
5 (2y0y1 + yg), we obtain that

By = zy1, By = xyo, Bs = zys.

Thus, the following property holds:

So Lemma 5 applies in the case of maximal independent sets in trees, which completes the
proof.

4.2 Maximal independent sets in series-parallel graphs

We are now concerned with the generating functions of the labelled series-parallel graphs
carrying a maximal independent set. As above, the vertices of the graphs carrying an
independent set I are said to be of type ¢ (i € {0,1}), when they are at distance i from I,
and of type 2 otherwise. We will now explicit the classical decomposition of graphs in terms
of networks.
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Series-parallel networks

A series-parallel network D;; is a labelled graph with an oriented edge ij that is distinguished
and whose endpoints, called the poles, are unlabeled and respectively of type ¢ and j. Observe
that by symmetry D;; = Dj;, so we can restrict the range of the pairs of indexes ij to
the set {00,01,02,11,12,22}. The network D;; is either the single rooted edge e;;, where
eo1 = e22 = y and e;; = 0 otherwise, a series network counted by the generating function
Si;, or a parallel network counted by the generating function P;;. We then specify those
generating functions via the following positive system of 18 equations and 18 unknowns:

D;; = e;; + Sij + Py,
Sij = Diowyo(Doj — Soj) + (Dir + Dig)xyi (D1 — Sij) + (Diayr + Dizy2)x(Daj — Saj),
Poo = eXpZ2(SOO)7
Po1 = yexpsq(Sor + Soz) + exp>(So1) + exps; (So1) expsi (Soz),
Pz = exp4(So2),
Pri1 = exp>,(S11) + exp>1(S11)(y exp(2512 + S22) + expx4 (2512 + S22))
+(1+y) exp21(512)2 exp(Saa),
Pry = yexp>(S12) exp(Saz) + expso(Si2) + expsq(S12) expsi(Sa22),
Py = yexpsq(Sa2) + expso(Saz).

In order to proceed further, we eliminate D;; from this system to obtain a posit-
ive and strongly connected system of equations for S;; = Si;(x,y,v0,y1,y2) and P;; =
P;;(x,v,Y0,Y1,Y2), where the right hand-side consists of entire functions (note that for the
equations defining S;;, the term D;; — Si; = e;; +F;

;> which makes the whole system positive).

Thus, all functions have a common singular behaviour that is (again) of squareroot type:

1/2
X

Sij( » Y0, Y1,Y2) = S0;i5\Y, Yo s + 81:44 (Y, Yo ,2<1—> 4+

o) o1 2) g (40,91, 2) P(Ys Yo, Y1, Y2)

and

1/2
x
Pij (2,9, 90, Y1, Y2) = Posij (Ys Yo, Y1, Y2) + P13i5 (Y, Yo, Y1, Y2) (1 - fww) +oeey

where 51,35 (Y, Yo, y1,%2) < 0 and p1,i;(y, Yo, y1,y2) < 0 for positive y, yo,y1, y2-

2-connected series-parallel graphs

The next step is to relate these network generating functions with the generating function
B(z,y,90,Y1,y2) of independent sets in 2-connected series parallel graphs. Note that an
added variable y takes into account the number of edges. In the (usual) counting procedure
for series parallel graphs, we have the property that %—]3 = %2 exp(S(z,y)), where S(x,y)
denotes the generating function of series networks (similarly to the above). The combinatorial
property behind this relation is that an edge-rooted series-parallel graph (that corresponds
to the generating function %—5) can be seen as a series-parallel network between the two
vertices of the root-edge, consisisting of this edge and a collection of series-networks between
the two vertices.
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In our present situation we have a similar property, namely

0B
En = 2yoy1 exp(So1 + So2) +

2
x
71/3 exp(Sa2) + 2 y1y2 exp>1(S12) exp(Sa2)

2

+ ?y% (exp(511 + 2S12 =+ SQQ) — 26Xp(512 + 522) + eXp(SQQ)) .

This is immediate by considering all possible situation for the rooted edge. Observe that,

despite the negative terms, %—5 is in fact a positive function of the generating functions {S;;}.

Hence, %—f has also a squareroot singularity:

0B

1/2
xT
Fy:bO(y7yO>y17y2)+b1(y7y07y17y2) (1_)> T ’

R(y7 Yo, Y1, Y2

where b1 (y, Yo, y1,y2) < 0 for positive y,yo,y1, y2. Next, by applying the proof method of

[4, Lemma 2.28], we can integrate %—5 with respect to y and then take the derivative with

respect to yo and obtain the same kind of squareroot singularity for g—i

0B T 1/2
— = b10(¥Y, Y0, Y1,Y2) + b1,1(Y, Yo, Y1, Y2 (1> +o
9o (¥:30,91,2) 30,31, 32) R(Y,90,Y1,Y2) ’
and consequently the following representation of %2]23 :
0

0’B
5 = b2 ) ) ’ 1-
o 1(¥: Y0, Y1, 42) (

T >—1/2+b ( "
= 2,1\Y, Y0, Y1, Y2 Ty
R(ya yOvylva)

which implies that (5) holds for ¢ = 0. This completes the proof for maximal independent
sets in series-parallel graphs.

—— References

1  Frangois Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial species and tree-like
structures, volume 67. Cambridge University Press, 1998.

2 Nicla Bernasconi, Konstantinos Panagiotou, and Angelika Steger. The degree sequence
of random graphs from subcritical classes. Combinatorics, Probability and Computing,
18(5):647-681, 2009.

3  Therese Biedl, Erik D. Demaine, Christian A. Duncan, Rudolf Fleischer, and Stephen G.
Kobourov. Tight bounds on maximal and maximum matchings. Discrete Mathematics,
285:7-15, 2004.

4  Michael Drmota. Random trees: an interplay between combinatorics and probability. Spring-
erWienNew York, 2009.

5  Michael Drmota, Eric Fusy, Mihyun Kang, Veronika Kraus, and Juanjo Rué. Asymptotic
study of subcritical graph classes. SIAM J. Discrete Math., 25(4):1615-1651, 2011.

6 Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University
Press, 2009.

7 Agelos Georgakopoulos and Stephan Wagner. Limits of subcritical random graphs and
random graphs with excluded minors. Available on-line on arXiv:1512.03572.

8 Tan P. Goulden and David M. Jackson. Combinatorial enumeration. A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1983.

9 Jerold R. Griggs, Charles M. Grinstead, and David R. Guichard. The number of maximal
independent sets in a connected graph. Discrete Mathematics, 68:211-220, 1988.



M. Drmota, L. Ramos, C. Requilé, and J. Rué

10  Joanna Gérska and Zdzistaw Skupien. Trees with maximum number of maximal matchings.

Discrete Mathematics, 307:1367-1377, 2007.

11  Clemens Heuberger and Stephan Wagner. The number of maximum matchings in a tree.

Discrete Mathematics, 311(21):2512-2542, 2011.

12 Min-Jen Jou and Gerard J. Chang. The number of maximum independent sets in graphs.

Taiwanese Journal of Mathematics, 4(4):685-695, 2000.

13 Amram Meir and John W. Moon. On maximal independent sets of nodes in trees. Journal
of Graph Theory, 12(2):265-283, 1988.

14 Konstantinos Panagiotou, Benedikt Stufler, and Kerstin Weller. Scaling limits of random
graphs from subcritical classes. Ann. Probab., 44(5):3291-3334, 09 2016. doi:10.1214/
15-A0P1048.

15 Bruce E. Sagan. A note on independent sets in trees. SIAM Journal on Algebraic Discrete
Methods, 1(1):105-108, 1988.

16  William T. Tutte. Connectivity in graphs, volume 285. University of Toronto Press, 1966.

17  Herbert S. Wilf. The number of maximal independent sets in a tree. SIAM Journal on
Algebraic Discrete Methods, 7(1):125-130, 1986.

18 Iwona Wloch. Trees with extremal numbers of maximal independent sets including the set
of leaves. Discrete Mathematics, 308:4768-4772, 2008.

19  Jennifer Zito. The structure and maximum number of maximum independent sets in trees.

Journal of Graph Theory, 15(2):207-221, 1991.

A Maximal matchings

A.1 Maximal matchings in block-stable classes of graphs

In this subsection we deal with the case of maximal matchings. Most of the definitions and
concepts are the natural analogues of the ones developed in the case of maximal independent
sets. Hence, we will skip unnecessary repetitions.

A matched block is a triple (I, M,b) with a block b € B, a matching M in b, and an
independent set I of b, and where no element of [ is incident to an edge in M. In other
words, we split the set of vertices of b in three disjoint subsets: matched vertices, vertices
in I, and the rest. A pointed matched block is a triple (I, M,b°), where b° € B° and M
and I are respectively a matching and an independent set of b, and where again no element
of I is incident to any edge in M. Let B(w, 2o, 21, 22) be the generating function counting
matched blocks, where the variable z marks vertices, zo marks vertices in I, z; marks vertices
matched by M, and 2, the remaining ones. For i € {0,1,2}, let B; = B;(x, 20, 21, 22) be the
generating function counting pointed matched blocks where the pointed vertex is either in I,
is incident with M or none of the previous cases. In particular,

— 1 0B

B; = , for i € {0,1,2}.

z 0z
A matched graph is a triple (I, M, g) consisting of a connected graph g in C C G, a
matching M of g, and an independent set I C V(g) \ V(M). Similarly, a pointed matched
graph is a triple (M, I,g°) where now ¢° is a pointed graph. Let C(x, zo, 21, 22) be the
generating function counting matched graphs, where x, zg, 21 and zo respectively mark
vertices, vertices incident with I, vertices incident with M, and the rest of the vertices.
Notice that when zo = 0, C := C(, 29, 21) = C(x, 20, 21, 0) encodes matched graphs where
M is maximal. For each i € {0, 1,2}, let us define the following generating function
61‘ = 61(7,‘, 20, Zl) = l . gﬁ(x, 20, 2170).
Zq

18:13

AofA 2018


http://dx.doi.org/10.1214/15-AOP1048
http://dx.doi.org/10.1214/15-AOP1048

18:14

Maximal Independent Sets and Maximal Matchings in Subcritical Graph Classes

Observe then that C counts pointed matched graphs, where the matching is maximal and
the pointed vertex belongs to the independent set, C; counts pointed matched graphs, where
the matching is maximal and the pointed vertex belongs to the matching, whereas C's counts
pointed matched graphs, where the matching is not necessarily maximal and the pointed
vertex does not belong to either the independent set or the matching. In the latter case, the
matching is maximal except for possibly the pointed vertex, which might be unmatched and
adjacent to other unmatched vertices. In particular, this implies that the generating function
of pairs of connected graphs and maximal matchings is given by

% = 2060 + 2161. (8)

The main idea behind this encoding of the problem is that vertices in the independent set I
play the role of vertices that will not be matched in the block decomposition. In particular,
we exploit independence in order to ensure that the matching cannot be extended. On the
other hand, the set of vertices that are unmatched and not in I will be matched by an
attached block of the decomposition.

The following lemma relates all the previous generating functions. Note that the generating
functions C(x, 2o, 21,0) and G(z, 29, 21) = exp(C(z, 20, 21)) directly follow from the solution
of the next system.

» Lemma 6. The following equalities hold:

go :?(PLEO(%Z&@OvZL62,ZL61)),
C1 =2 Bi(x,20C0, 2102, 21Ch), 9)
CQ :EXP(BQ((E,Z()C(),210272101)).

Proof. Let (M,1,g°) be a pointed matched graph, with pointed vertex v. Suppose first that
v € I, i.e. the case counted by Cj. It therefore is the pointed vertex of a (possibly empty)
set of adjacent pointed blocks (I, Mj,b7), in which v € I}, and is not adjacent to any other
pointed block. This means that all the pointed blocks adjacent to v are counted by By.
Suppose next that v € V(M), i.e. the case counted by C;. Then the edge of M incident with
v must belong to a single pointed block whose pointed vertex (v) is incident to an edge of
the respective matching. Hence, attached to v are this one block together with any number
(possibly null) of pointed blocks counted by B, since v is already incident to an edge of
a matching. Suppose finally that we are in the case counted by Cy. Then v is neither in
I nor in V(M). Therefore, any block attached to it must not have its pointed vertex in
an independent set or incident to and edge of a matching. This means that v belongs to a
(possibly empty) set of blocks counted by Bs.

Let now {(I;, M;,b9) : i =1,...k} be the pointed blocks in the decomposition of (M, I, ¢°)
and fix a j € {1,...k}. Then using the same arguments as just above, we see that to a vertex
in I; must be attached a pointed matched graph counted by C), to a vertex in V(M,) one
counted by Cy and to any other vertex must be attached a pointed matched graph counted
by C1, as we need to extend the matching to maximality. <

A.2 Maximal matchings in trees
Observe that in this case B(z, 29, 21, 22) = % (22022 + 22 + z%), which gives
F():.TZQ, El =Xz, Egzx(zo—sz).

Hence, we are in a similar situation as above and Lemma 5 applies. This completes the proof
for maximal matchings in trees.
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A.3 Maximal matchings in series-parallel graphs

We proceed similarly to Subsection 4.2. Let G be a series-parallel graph with a matching M
and an independent set I such that TNV (M) = (. A vertex v of G is said to be of type 0
when v € I, of type 1 when v € V(M) and of type 2 otherwise.

Series-parallel networks

Let D;j(x,y, 20, 21, 22) be the exponential generating function counting matchings in series-
parallel networks whose poles are of type i and j. As before, observe that D;; = D;; and
for ij € {00,01,02,11, 12,22}, define S;; and P;; to be the generating functions counting
matchings in networks that are respectively series and parallel.

The following system of 18 equations and 18 unknowns holds:

Di; = e;j + Sij + Pij,

Sij = (Dio — Sio)xz0Doj + (Di1 — Si1)xz1Daj + (D2 — Si2)x(21 D15 + 22Daj),
Poo = exp>5(Soo),

Po1 = So1(y exp(Soz) + exp>1(So2)),

Poo = yexpx1(S02) + expx2(S02),

Piy = (yS11 + (1 +y)STy) exp(Sa2) + (y + S11) exps (S22),

Pra = S12(y exp(S22) + exp>;(522)),

Pyy = yexps1(S22) + expso(S22),

where this time eg2 = €11 = e22 = y and e;; = 0.

2-connected series-parallel graphs

It remains to check the relevent analytic properties of
B(z,y, 20, 21, #2) in order to assure that Lemma 5 can be applied. Eliminating D;; from the
above system, we again get a positive and strongly connected system of equations for the
set of generating functions {S;;, P;;}, where the right hand-side consists of entire functions.
In particular, the functions S;; and P;; all have a common singular behaviour that is of
squareroot type.

And we have that

0B
o = 222021801 exp(Soz) + 222022 exp(Soz) + 2221 20512 exp(Saz)
a? a? 2
t5% exp(S22) + 5 A (S11 + Sy + 1) exp(Saz).

Finally, using the very same arguments as in the case of maximal independent sets, we
show that (5) is satisfied in the context of maximal matchings in series-parallel graphs. Thus
completing the proof.

18:15

AofA 2018






The Number of Double Triangles in Random
Planar Maps

Michael Drmota’
TU Wien, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstrasse 8-10, 1040
Vienna, Austria
michael.drmota@tuwien.ac.at
https://orcid.org/0000-0002-6876-6569

Guan-Ru Yu?

TU Wien, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstrasse 8-10, 1040
Vienna, Austria

guan-ru.yu@Qtuwien.ac.at

—— Abstract
The purpose of this paper is to provide a central limit theorem for the number of occurrences of
double triangles in random planar maps. This is the first result of this kind that goes beyond face
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1 Introduction

A planar map is a connected planar graph (loops and multiple edges are allowed) embedded
into the plane up to homeomorphism. A map is rooted if a vertex v is chosen from the map
and a half-edge e is chosen from all the edges incident to v, and called the root vertex and
root edge, respectively. Moreover, a planar map separates the plane into several connected
regions called faces. The root face in a rooted map is the face which is on the left side of e
(sometimes the root face is defined as the right side of e, but this does not make a principle
difference). Without loss of generality we may assume that the root face is the infinite (or
outer) face, in particular the root edge e is then adjacent to the outside face. In this paper,
all maps we consider are rooted and planar. By convenience we also include the trivial map
that consists just of one vertex and one face (which are also rooted). It is well known that
2-3"(%)
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c =P -

O c -

-
|-

Figure 1 Degenerate cases of double triangles that are represented as bold edges.

follows we assume that for any fixed n every map with n edges is equally likely. Hence every
parameter of rooted planar maps can be considered as a random variable related to random
planar maps with n edges.

The main goal of this paper is to prove the following theorem:

» Theorem 1. The number X,, of edges with valency 3 faces on both sides in a random
planar map with n edges satisfies a central limit law, i.e.,

X, — E[X,]

Var[Xn}1/2 — N(0,1), (1)

where E[X,)] = pn + O(1) and Var[X,,] = 0?n + O(1), and p, o are positive constants.

» Remark. We cannot derive a simple analytic expression p and o since our analysis is
implicitly based on an infinite system of equations. So they are definitely hard to compute,
even in an approximate sense.

In an slight abuse of notation we will call the occurrence of an edge with valency 3 faces
on both sides a double triangle. Namely there are some degenerate cases as Figure 1 shows
(in the first case we identify vertices a and ¢ and then also the edges ab and be so that we
havee two double triangles between two triangles; in the second case, we identify vertices b
and d and then the edges ab and ad so that a bridge represents a double triangle).

The background of this result is a widely believed conjecture that the number of pattern
occurrences in planar maps (and many related graph classes) obeys a central limit theorem.
For (general) planar maps there are only very few results in this direction, see [7, 4] for the
number of faces of given valency or [9] for triangulation patterns in 2-connects triangulations
and quadrangulations patterns in simple quadrangulations. We also want to mention that
the expected number of occurrences of a given pattern in a random planar map with n edges
is asymptotically linear: E X,, ~ cn for some constant ¢ > 0. This follows from the fact
that random planar maps have a Benjamini-Schramm limit, see [8, 1, 10, 11]. As mentioned
before it is expected that X, satisfies a central limit theorem in all cases. However, it seems
that this is out of reach at the moment. Even the simplest case beyond face-pattern that
is considered in this paper requires a thorough and delicate analysis for the combinatorial
part as well as for the analytic part. We use an approach that is in principle close to that of
[7], namely we use generating functions, set up a system of catalytic functional equations
(Section 2) and finally provide a proper analytic extension of the classical Quadratic Method
[3, 12] (Section 3).
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2 Combinatorics

Our goal is to set up a recursive structure of planar maps that is suitable to take occurrence
of double triangles into account. For this purpose we distinguish between three different
cases: the initial case (a map without any edge, denoted by ), the bridgeable case (maps,
where the root edge is a bridge, denoted by D)) and the non-bridgeable case (maps, where
the root edge is not a bridge, denoted by D(™):

D=e+D® 4 DM,
We let D(z,u,w) be the ordinary generating function

D(z,u,w) = E dn,klz"usz,
n,k,£>0

where d,, 1 ¢ is the number of planar maps with n edges, valency & on its root face and ¢
edges that represent double triangles, where edges on the root face are not considered. For
the sake of brevity, we denote D(z,u,w) by D and D(z,1,w) by D(1). (The same rule will
be applied to other generating functions.)

Clearly, the initial case corresponds to the generating function 1 and the bridgeable case
to zu2D?. The non-bridgeable case is split into two different classes: Dy denotes the class
where the second face (the face on the right side of the root edge) has valency not equal to 3
and D, denotes the class where the second face has valency 3. This means that we have
D =1+ zu?D? + Dy + Dy, where Dy and Dy, are the corresponding generating functions
of Dy and Dy, respectively.

» Lemma 2. The generating functions D = D(z,u,w), Dy = Dy(z,u,w), and Dy =
Dy (z,u,w) satisfy the following system of equations:

D =1+ z2u*D*+ Dy + Dy,
D(1) —uD
1—u

Dy =zu"' (D —1—u[u']D)

Dy = zu zut (D —1—ufu']D), (2)

+(w—-1)- [zQuD + (w+1) (2u”"' Dy — 2[u']Dy) — 2°u(w — 1)DDy

Dy (1) —uDy

—(w—1) (;;2 —2°Dp(1) — 2*u™? (Dy — u[u'] Dy — u2[u2]D>)) ] :

» Remark. If w = 1 the system collapses to the well-known catalytic equation for the
generating function M (z,u) = D(z,u,1) of planar maps:

M(z,1) — uM(z,u)

M(z,u) =1+ 2u>M(z,u)* + zu T
—u

(3)

Proof. We have already discussed the first equation of (2). Thus, we can concentrate on the
non-bridgeable case. Here we relate the original map with the resulting map, where we have
removed the root edge. Actually it is more transparent to consider the reverse process of
adding a new root edge that cuts across the root face. This operation separates the root face
into two faces. For instance, there are five possible situations of cutting across a root face of
valency 4 as Figure 2 shows, and which have the following effect to the variable u:

ut = z2(u® +ut ud 4.
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Figure 2 Cutting-across-process.

a-edge

second

root edge root face | “groo

[-edge

Figure 3 Definition of the a and S-edge and face.

When we consider Dy, we have to discount the case where the second face has valency 3.
In the cutting-across-process, we take out the situation that the new-appearing second face
has valency 3. The corresponding effect with the root face of valency r is

—zu" b ifr > 2

’I"H r+1 r 2 1
w AT T uT )+ ifr=0or 1.

So the corresponding generating function of Dy is given by

D(1) —uD

T —zu™" (D-1-[u']D).

DD‘ =zu

Next, we consider maps whose second face is of valency 3 and whose generating function is
Dy. We introduce some notations. When the second face has valency 3, the edges following
the root edge in clockwise order are called the a-edge and the S-edge. One side of the a-edge
is the second face, we call the face on the other side the a-face. Similar to the a-face, the
B-face is the face incident to the S-edge. Note that the a-face and the S-face might coincide
(see Figure 3).

For describing the class D, we consider four different cases: both the a-face and the
B-edge are equal to the root face (denoted by Dg’ﬂ ), only the a-face is equal to the root face
(denoted by Dg), only the f-face is equal to the root face (denoted by ’Dé) and neither the
a-face nor the f-face is equal to the root face (denoted by D) (see Figure 4). Thus, we
have Dy = DZP + D2 + DE + D

The maps corresponding to the class Dg'ﬂ can be divided into a triangle and three maps.
Thus, we have D&F = 2343 D3,

The maps corresponding to the class D and Dg can be divided into a map and a map
stuck together with a triangle attached to an edge (see the left part of Figure 5). The
structure of a map stuck together with a triangle attached to an edge has either the property
that this edge corresponds to a double triangle or not (see the right of Figure 5).

If this edge is (resp. is not) a double triangle, we can think of it as adding two edges to a
map which belong to Dy (resp. Dy ). The effect of these two additional edges is that the
number of edges increased by 2 and the valency of the outside (root) face increased by 1.
Hence, DZ = D@ = 2%u (wDD + ng) D.
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0D

Figure 4 Four different cases of Dy..

H 06 6lee

Figure 5 A map in D or Dg can be divided into a map and a map stuck together with a triangle
at an edge. This edge corresponds to a double triangle or not.

For the fourth class D we need to consider three different cases. The first one is when

the a-edge is different from the S-edge but the a-face equals to the S-face (denoted by Dg).

The second one is when the a-edge is different from the -edge and the a-face is different

from the -face (denoted by Dg). The third one is when the a-edge equals to the S-edge.

In this case, both the a-face and the -face are equal to the second face (denoted by Dg)

(see Figure 6). By definition we have D> = DY + DZ + DY.
When we deal with the maps in DY, the a- face coincides with the S-face if both of them

have valency 3, in particular, both the a-edge and the [-edge represent double triangles.

Therefore, we have to take care of the valency of the a-face and of the p-face. For this
purpose we consider the so-called “border-(a,3)-path”, that starts from the a-edge, goes
clockwise along the border of the a-face and finishes at the S-edge but dones not include the
a-edge nor the S-edge. We distinguish between three different cases by considering the length

of the border-(«,)-path (denoted by |(«, 5)]): |( B)=0,|(a,8)] =1and |(cr, B)] > 2.

The corresponding sets of maps are denoted by D Dgl, and ®U> respectively, see Figure

7. From the above relation, we have D = DUO + Dt + DU>z and (similar to the above
considerations) they can be further decomposed which leads to the following relations:

Dgo =2"uD [w” (w[u'] Dy + [u']Dy) + (D(1) — [u']D)],
Dgl =23w?(wDy + Dy + 2u’D?) + 2% (D(1) — 1) (D — 1), (4)

D(l)_UD—z(D—l)—zuD>,

Dp>* =2*D(1) (zu —

The proof is given in the Appendix A.1.
Next, Dg is the class of maps that combines maps and an edge inside a loop. The edge

inside the loop is a double triangle. Thus, we have Di = 22uwD.

Finally, we discuss the class DZ. By distinguishing whether the a-face and the S-face
have valency 3 we have to consider four different situations: neither the a-face nor the [-face
has valency 3 (denoted by DY), only the S-face has valency 3 (denoted by Dg), only the
a-face has valency 3 (denotea by DZ) and both the a-face and the S-face have valency 3

(denoted by DZ¥): DE = DE + D + Dg + DR’
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S

Figure 6 Three different cases of Dp.

e

Figure 7 Three different cases of the length of the border-(«,3)-path of the maps in @g.

When we study the class ’DS, we need to build up maps, where the second face has
valency 3 and neither the a-face nor the S-face has valency 3. We start with Dy and do
the cutting across process that adds an edge starting from the end point of the root edge of
the map. In cutting across process (see Figure 2) we always keep the second face valency
different from 3 and the outside face valency greater than 1 (in order to make sure that the
new a-edge and the new (S-edge exist). In a second step we add an edge to complete the
construction (see the left of Figure 8).

We have to be careful in the cutting across process. For example, if the root face valency
equals r before we start the process, we have to avoid the case, where the root face valency
would get » — 1 in cutting across process. This means that the cases r = 0, 1,2 have to be
considered separately. If 7 = 0 or r = 1 the root face valency r — 1 in cutting across process
can not appear, and when r = 2 the resulting root face of valency r — 1 =1 is also excluded.
The effect on the variable u is therefore

—zu™ 1l ifr>3

r r+1 r 2 1 1
—
A L A o VA SR VAl S T 1) +{0 Jifr=0or1 or 2.

After adding an edge in second step we obtain the following relations for the corresponding
generating function: DY is

1—wu

DE = zu~? <ZUM — zuDy (1) — zu™" (Dy — u[u']Dy — u2[u2]D¢)> .

By using similar ideas (by using Dy instead) and by observing that the new S-edge will
be a double triangle (see the right of Figure 8) we obtain

DD(l) — ’U/DD

D? = zu 1w ( 2u
= ( 1—u

— zuDp (1) — zu™" (D — u[u'] Dy — u2[u2]D|>)> .

By symmetry we have DZ = Dg.

In order to describe the class Dg’ﬁ we need to adjust both the root face and the face (we
call this face clockwise-face) on the right of the clockwise-edge have valency 3 (see Figure 9),
where the clockwise-edge is the edge in clockwise direction of the root edge on the outside
face. Suppose that Dy is the class of maps, where both the root face and the clockwise-face
have valency 3, we have DZ? = zu~1w?Dgs.



M. Drmota and G.-R. Yu

."—3_\ | "’—3\ ,
D93 D-H-3

Figure 8 Construction of a map contained in Dg and DQ respectively.
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Figure 9 Definition of clockwise-edge and clockwise-face. Relation between Dy and D;*B.

The class Dy is a subclass of D.. Hence, we can get Dy by eliminating some cases
of D.. When we consider the clockwise-edge and the clockwise-face of D, we have five
different cases. The first three cases where the clockwise-edge is not a bridge, and first, where
the clockwise-face has valency 3, second, where the clockwise-face has valency not equal to
3 and third, where the clockwise-face is equal to the second face. In the fourth case the
clockwise-edge is a bridge and in the last the clockwise-edge does not exist (see Figure 10).

The first case of Dy is precisely Dgs.

The second case of D, (clockwise-face has valency not equal to 3) corresponds precisely
to the first step of the construction of D@ in Figure 8. Hence, the corresponding generating
function is given by -

Dy (1) —uDyp
b 1—u

z — zuDp (1) — zu™" (D — u[u'] Dy — w?[W?]Dy)

The only difference to DY is the factor zu™tw.

In the third case of Dy we have to consider several subcases that lead to the following
generating function:

Zu*wD[u'] Dy + 2*u*D[u'|Dy + z*uwDy + 2*uDy + 2°u®D?.

In the fourth case of Dy the second face has valency 3 and the clockwise-edge is a bridge.

Thus, it corresponds to the generating function zu?DDy.

Finally, in the last case the root face valency equals 1 and the second face has valency 3.

Consequently its corresponding generating function is u[u!]Dy.
Summing up, the generating function of Dy is given by

Dy = Dy — 2u>DDy — ufu'] Dy

- (ZUDD(l) —uDy

- —2uDy (1) — zu™" (Dy — u[u']|Dy — uZ[uz]D>)>

- (ZQUQD[UI]DDg + 22u*wD[ut| Dy + z2uDD; + 22uwDy + 2*uD?).

By collecting all these parts and by applying some simplifications (that are described in
the Appendix A.2) we obtain the third equation of the system (2). <

19:7

AofA 2018
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IgeE

In order to analyze the system of equations (2) we apply a 2-step procedure that is in
principle close to that of [7]. In the first step we eliminate the terms [u!]D, [u!]Dy, and
[u?] Dy so that the system (2) is transferred into a catalytic system of equations that will be
solved then in a second step.

Figure 10 Five different cases of Dy.

3 Asymptotic analysis

» Lemma 3. Suppose that D = D(z,u,w), Dy = Dy (2,u,w), and Dy = Dy (z,u,w) are the
solution functions of the system (2). Then there exist analytic functions K;;(z,w, zo, 21, T2)
(for |z| < 1, o] <2, |21] <2, |22 <2, and |w — 1| < n for some sufficiently smalln > 0),
1€40,1,2}, j € {1,2} such that for j € {1,2}
[’U,j]D(Z,’u,,’w) = KO,]' (Z,U), D(Za ]_,’LU), D% (Zv 1, w)v DI>(Zv ].,’IU)) y

[Uj]le(Z,U,w) = Kl,j (vaa D(Za 1,7.1)), D%(Za 17 ’lU), D|>(Z, law)) 3

[w/]Dp (2, u,w) = Ky ; (z,w, D(z,1,w), Dy (2,1,w), Dy (2, 1,w)) )
Proof. We rewrite the system (2) into an equivalent one. We substitute in all instances
Dy =Dy —zu (D —1—ufu']D) and Dy = Dy + zu~' (D — 1 — u[u']D) so that we obtain
a system of the form
D(1) —uD

D=1+ zu’D?>+ Dy + Dy, Dy =zu .
— U

) D2:(w_1)Ha (5)
where H is equal to
22uD + (w4 1) <zu1 (D — u[u']Ds) + 2*u™? (D — 1 — u[u']D — w?[u?]D) >

Ds(1) — D D(1)-D
220 2(1) 2_23u() _ 3

+(w—1)<_22UDD2—23D(D_1_“[u1]D)_ 1—u L—wu

+ 2*u™? (D2 — ufu']Ds — w?[u]Ds) + 2w (D — 1 — u[u']D — v’ [u’]D — u*[u’]D) )

Next we consider the functions D, Dy, Dy as power series in u:

D=1+ ngue, D, = deul, Dy = Zduul,

>1 >1 0>1

and rewrite the system (5) into an infinite system of equations:

£—2 =2
dy = ZZdjdg_Q_j +2zD(1) — ZZ d; + (w— 1)[uZ]H,
j=0 j=0
-2
dyo=2D(1) - 2> dj, (6)
§=0

dog¢ = (w— 1)[uZ]H,
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where £ > 1, do := 1, and [u’]H is equal to

-2 (=2
22do—1 + (w+1)(2da 41 + 22dps2) + (w — 1) [— 22 Z dida i — 2° Z dide—;
i=0 i=0

-1 ¢
- 22 <D2(1) - Zd2,i> -2 (D(l) - Zdi> + 22da py0 + 22dis |-
i=0

=0
Note that we have not substituted D(1), D;(1), and Da(1).
substitutions yo = devt, Y1 = dl’wz, Yoo = duvé, ¢=1,2,... (and yo,0 = 1) for some
parameter v > 0 to rewrite (6) to

In a final step we use the

£—2 =2
Yoo = 202 Zyo)jyo’g_g_j + 2D(1)v* — 20? Zywve—Q—j + (w — 1)Hy, (7)
=0 =0
-2
yre = 2D’ — 20> yo 07, gy = (w— 1)Hy,
=0

where

Hy = 2*vyo -1 + (w+ 1) (20 2041 + 220 Yo ,042)

-2 -2
2 3 2 -2 3,—3
+(w—1) l -z E Y0,iY2,6—1—i — % E Y0,:Y0,6—i T 27V “Y2,042 + 27V “Yo,0+3
i—0 i=0

-1 ¢
— 22 (’UeDz(l) —v Z yg,ive_l_i> — 23 (veD(l) - Z ywvé—i) ] .
i=0 =0

Now we counsider D(1), D1(1), and Dy(1) as new variables zg, x1, and x5 and rewrite the
system (7) into a new system

-2 02
2 ¢ 2 0—2—j )
Yoo = 202> Yo You—2—j + 2mov’ — 207D o ;v 4 (w — 1) Hy, (8)
Jj=0 Jj=0
-2
¢ 2 0—2—j )
Y16 = ZToV" — 2V Zywv 7, Yoo = (w— 1)Hy,
J=0

where fI@ results from H, by this substitution. The solution functions y; ¢ = vy; ¢(2, w, xo, 21,
x9) are now considered as functions in z,w, zg, 21,22 and in a next step we will show that
these functions are actually analytic in these variables (in a certain range). Of course, if we
have proved this assertion then we can obtain, for example,

de = de(z,w) = yoe(z,w, D(z,1,w), D1(z,1,w), Da(z, 1,w))v™*

as an analytic function in z,w, D(z,1,w), D1(z,1,w), Da(z, 1, w). This also proves the lemma
after re-substituting Dy and Dy in terms of D, Dy, and Ds.

The idea of solving (8) is to consider it as a fixed point equation in a complete metric
space and to solve it with the help of Banach’s fixed point theorem. For this purpose we
have to adjust the parameter v > 0 so that the right hand side of (8) is a contraction. More
precisely we set yo = (yo,¢)e>1, Y1 = (W1,0)e>1, Y2 = (y2,0)e>1, and y = (yo,y1,y2) and
consider the ¢! norm |y|l1 = |lyollx + [|¥1/l1 + lly2]l1, where

Iyl = lyiel, 5 €{0,1,2}.

>1
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19:10 The Number of Double Triangles in Random Planar Maps

Furthermore we define the mapping T : ¢1(C)? — ¢1(C)? by T(y) = (To(y), T1(y), T2(y)),

where
(-2 (-2
To(y) = | zv° Zyo,ij,Z—Q—j + zzgv’ — 207 Z Yo v + (w - 1)H, ;
) =0 .
(-2
Ti(y) = | zzov’ — 20 Zyo,jve_Z_] , Ta(y) = ((w— 1)Hz)521 ,
J=0 >1

where z,w are considered as complex parameters and v > 0 will be chosen in a proper way.
Clearly, a fixed point of T is a solution of (8).
By definition it follows that

v | I+ V2
2T
—v 0 1—vw

2
ITo(y)llx < v*|2[ (1 + [lyoll)™ +

jw—1]

2l (1 + llyolly)

1
Po (Il ol ol b ol s . Byl o ).

2

T <
[T1(y)[1 < T

20| + 12l (1 +lyoll1)

1—w

w—1
ITa(y)y < 2= 1

IN

1
Po (Il ok o ool ol Il el v 1= ).

where Py is some polynomial with non-negative coefficients. Similarly we get

'U2 z
[To(y) — To(z)[1 < <U2Z| 2+ [lyolls + llzofl1) + 5 _|?|}> yo — zollx

|lw—1] = 1
+TP0 2], zol, [21]s [z2] lyoll1, [yallr, [[y2]l1s v, 1—o ly -z,

v? |2
HYO —Zlo

ITy(y) = Tu(@) s = 1—

[ T2(y) — Ta(z)[1 <

|lw—1]| ~ 1
Po { 2], lzol, [l [zl Iyollu, Iyallss ly2lly, v, 5= ) Iy = 2l

where Py is another polynomial with non-negative coefficients.

Thus, given upper bounds Z, Xy, X1, X5, and Y for |z|, |zol|, |z1], |z2|, and ||y]||1 it is
easy to choose v > 0 and 1 > 0 such that for |w — 1] < 7 the mapping T maps the set
{y € (1(C)? : |ly|]1 < Y} into itself and is a contraction, too. This shows that (8) has
a unique solution that can be obtained as the uniform limit of the iterations T*(0). By
definition it is clear that all components of T* (0) are analytic functions in z,w, zg, 1, T2.
Hence, the limits are analytic, too. This completes the proof of the lemma. |

We now go back to the original system (2) and substitute [u!]D, [u']Dy, and [u?] Dy by
the analytic functions K;; given by Lemma 3 so that it can be rewritten as

D= 1—|—zu2D2+DDg + Dy,
DD‘ = Ql(z,u,w,D,D(l),DDg,DDg(l),DD,DD(l)),
Dy = QQ(ZauawaDaD(l)ﬂDDéaDﬁ(l)aDDaDD(l))
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with proper functions @1, Q2. This is a catalytic system of three equations. In order to
make our analysis a little bit easier we eliminate D and D(1) by using the first equation. By
substituting D (and similarly D(1)) by

1 \/1 —4zu2(1+ Dy + Dy)

D pr—
2zu?

in the second and the third equation we finally obtain a system of two equations that we
represent in the form

Pl(zauawaDpé’DDé(l)aDDaDD(l)) =0, PQ(ZvuawaDDévaﬁ(l)vavDD(l)) =0

for proper functions P, P (that are by the way non-linear in Dy, Dy (1), Dy, D (1)).
We recall now a method by Bousquet-Mélou and Jehanne [2] on catalytic equations of
the form

P(z,u, M(z,u), M1(z)) =0,

where M;(z) is usually M(z,1) or M(z,0) and P = P(z,u,xo,21) is usually a polynomial
(however, the method also works with proper regularity conditions for P). The first step is
to find functions u(z), y(z), and f(z) that satisfy the system of equations

07
Pu(z,u(z),y(z),f(z)) =0, (9)
0,

where P, and P, denote the partial derivatives 2—5 and g—;, respectively. Then we can set

M;(z) = f(2) and can recover M (z,u) — if necessary — from the equation
P(z,u, M(z,u), f(z)) = 0. (10)

This method generalizes the classical Quadratic Method and can be extended in various ways.
It is also possible to guarantee unique power series solutions etc., for details we refer to [2].

We emphasize here some further extensions. First we can directly add a parameter
w or several parameters w = (wq,...,w;) into the equation without any change of the
method. From P(z,u,w, M(z,u,w), M1(z,w)) = 0 we, thus, obtain the solutions M (z, w)
and M (z,u, w).

It was shown in [7] and [6] that the solution function M (z) of a catalytic equation (10)
that is singular at z = p has usually a singularity of the form

3/2
z
M) =)+ 1) (1-2) 1)
where g(z) and h(z) are analytic at z = p. This is in particular true for the generating
function M(z, 1) that counts planar maps and is the solution of the catalytic equation (3):

182 — 14 (1 —122)3/2

M(z,1) = 5422

Here p = 1/12 is the radius of convergence of M(z,1). Since M(z,1) = D(z,1,1) it also
follows that D(z,1,1) and consequently the functions Dy (z,1,1) and Dy (2,1, 1) have the
same kind of singularity at z = 1/12. What we show next (and which is actually the main
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property that will be used to prove the central limit theorem) is that we have the same kind
of singular behavior if we add some parameters. In particular we will show that D(z, 1, w)
can be represented as

3/2
z
D(z,1,w) = gp(z,w) + hp(z,w) (1 — ) , (12)
p(w)
where gp, hp and p are analytic at z = 1/12 and w = 1.
We will first consider one catalytic equation and will then generalize it to a system.

» Lemma 4. Suppose that M (z,u,w) and M;(z,w) are the solutions of the catalytic equation
P(z,u,w, M(z,u,w), M1(z,w)) = 0, where the function P(z,u,w,xq,21) s analytic and
Mi(z,1) has a singularity at z = po of form (11) with g(po) # 0, h(po) # 0 such that for
z = po, u=ug, o = M(po,uo,1), 21 = My(po,1), and w = 1 we have®

P=0, P,=0, Py, =0, Py #0, PuyuPuu=P;

Tou"*
Furthermore, let z = p(w), u = ug(w), g = 2o(W), 1 = x1(W) for w close to 1 be defined
by p(1) = po, uo(1) = uo, xo(1) = M(po,uo,1), x1(1) = M1(po, 1) and by the system
P=0, P,=0, P, =0, Py Pu=DP

Tou*

Then for w close to 1 the function Mi(z,w) has a local singular representation of the form

L\ 32
Mi(z,w) =g(z,w) + h(z, w) <1 - p()> , (13)

w

where g(z,w), h(z,w) are analytic at z = py and w = 1 and satisfy g(po,1) = g(po) # 0,

h(po,1) = h(po) # 0.

The Proof is an adaption of the methods of [7]. The essential step is to represent (with the
help of the Weierstrass preparation theorem) the function P locally around z = pg, u = uy,
Lo = M(p07u07 1)? Ty = Ml(pOa 1)7 and w =1 by

P(z,u,w,x0,71) = K(z,u, W, zo, 1) ((ajo - G(z,u,w, a:l))2 — H(z,u,w,xl))) ,

where all appearing functions are analytic and we have K (po, ug, 1, M (po, uo, 1), M1(po, 1)) #
0, G(po,uo,1, M1(po,1)) = M(po,uo,1) and H(pg,ug,1, M1(po,1)) = 0. The system (9)
translates into a smaller system of the form H(z, w,u(z,w), f(z,w)) =0, H,(z, w, u(z, w),
f(z,w)) = 0 which is suitable to extract the singular behavior of the form (13). In particular
the condition Py,q,Puu = P, is equivalent to H,,, = 0. Now we proceed as in [7], observe
the singular expansion for Mj(z, w) of the form (13) and by comparing it with (11) we also
get the properties g(po, 1) = g(po) # 0, h(po, 1) = h(po) # 0.

In the case of a system of two catalytic equations P; = 0, P, = 0 (in unknown functions
M(z,u,w), Mq(z,w), N(z,u,w), N1(z,w)) we apply an elimination procedure to reduce it
to a single catalytic equation so that Lemma 4 can be applied. We consider first the second
equation and replace M (z,u,w), M1(z,w) by two new variables vg, v1:

PQ(Z,’LL,W,'U(),’Ul,N,Nl) =0

3 The notation P, denotes the partial derivative with respect to  — and similarly for partial derivatives
with respect to other variables or for higher order derivatives.
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and solve this catalytic equation in order to obtain solution functions N = N(z,u, w,vg, v1)
and Ny = Wl(z, w,vg,v1). Then we substitute these solutions into the first equation and
obtain a single catalytic equation for M = M (z,u, w), My = M;(z,w):

Py(z,u,w, M, My, N(z,u,w, M, M), Ni(z,w, M, M;)) = 0.

Finally we apply Lemma 4 and obtain the proposed singular representation. The only thing
that has to be checked is that P nn P2 yu 7# P227Nu and P, n, # 0 so that the functions
N = N(z,u,w,vg,v1) and Ny = N1(2, W, vp,v;) are analytic in the region of interest. In our
special situation this is easy to check. With this method we obtain singular representations
for Dy (z,1,w) and Dy (2,1,w) and consequently (12) for D(z, 1,w).

The Proof of Theorem 1 is now almost immediate. Let Y;, denote the number of edges
in a random planar map with n edges that represent double triangles but are not on the root
face. Then we have

D(z.1,w) =Y M,E[w"]z",

n>0

where M,, = [2"]M(z,1) denotes the number of planar maps with n edges. By a direct
application of [5, Theorem 2.35] it follows that Y;, satisfies a central limit theorem of the form
(1) with expected value and variance asymptotically proportional to n. The only difference
between X,, and Y,, is the number of edges on the root face that represent a double triangle.
However, if X, and Y,, are different then the root face has valency 3 which means that the
difference between X,, and Y,, is at most 3. Hence, the central limit theorem (as well as
asymptotics for expected value and variance) of Y,, transfers directly into a corresponding
central limit theorem for X,, which completes the proof of Theorem 1.
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A  Appendix
A.1 Proof of the relations (4)

In the first part of the Appendix, we present a proper decomposition of the sets Dgo, Dgl,

and @Lizz that translate into the system (4).

In order to represent Dy (and consequently the generating function of DZ°) which
corresponds to the case |(a,3)| = 0, the main argument will focus on the valency of the
a-face (that equals to that of the S-face) which depends on the outside (root) face valency
of the map between (or inside) the a-edge and the -edge. If this map has root face
valency 1, then the a-face has valency 3 which means the a-edge and the S-edge are both
double triangles. Moreover, in case this map has root face valency 1, if this map belongs
to D (the second face has valency 3), then the root edge of this map will become a
double triangle after putting this map into the chink between the a-edge and the (-edge
and vice versa. Therefore, we have z3uDw? (w[u']Dy + [u]Dy). Contrarily, if this map
has root face valency not equal to 1, then the valency of the a-face is not equal to 3,
it corresponds to z3uD (D(1) — [u]D). Thus, the corresponding generating function is
Dp° = 2%uD [w? (w[u!'] Dy + [u']Dy) + (D(1) — [u!]D)] .

It |(a, B)| = 1 which corresponds to the class Dgl the border-(«,8)-path is just an edge
and the valency of the a-face (and of the S-face) is three (because of the a-edge, the f-edge
and the border-(a,3)-path) plus the outside (root) face valency of the map inside this triangle.

If the map inside the triangle has no edge (which means the corresponding generating
function of the map is 1), then the a-face has valency 3 which means that both the «-
edge and the S-edge represent double triangles. And whether the edge that equals to the
border-(«,)-path corresponds to a double triangle or not depends on the other incident
face of this edge. The face on the other side may or may not have valency 3 and also may
equal to the outside face (see the above case of Figure 11). Hence this part corresponds to
2 w?(wDy + Dy + zu?D?). If the map (inside the triangle) has some edges (corresponding
to the generating function D(1) — 1), then the valency of a-face is not equal to 3 which
means that neither the a-edge nor the S-edge correspond to a double triangle, and the edge
that equals to the border-(«,8)-path must not correspond to a double triangle. We also
have to distinguish between three different coases fo the other incident face (see the below
case of Figure 11). This part corresponds to 23 (D(1) — 1) (D + Dy + zu®D?) which can
be simplified to 2% (D(1) — 1) (D — 1) by the first equation of (2). Summing up we get the
corresponding generating function of D' as follows:

Dgl = szQ(wD\> + Dy + ZUQDQ) + 2° (D(1) =1)(D —1).

Finally ZDE22 is easier to describe, since the a-face (that is equal to the S-face) has
valency not equal to 3. So we do not have to care about whether the a-edge and the S-edge
are double triangles. We can directly decompose the map into two parts: one is a map with
second face valency greater than 3 (the length of the border-(«,3)-path greater than 2 and
plus the root edge), the other one is a map with plus edges (see Figure 12).
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DL
DD

Figure 11 Decomposition of Dﬁlz In the first (upper) case the the map (inside the triangle) has
no edge, whereas in the second (below) case this map is non-trivial. In both case we have the right

side face of the border-(«,3)-path is different to the root face and its valency is either equal to 3 or
not, or it equals the root face.

@Q@%

2

Figure 12 Decompose a map that belongs to DL;Z into two parts.

The first map class can be counted with the help of a cutting across process (see Figure
2) where we have take out the situation where the new-appearing second face has valency 1
or 2. The corresponding effect to u” is

0 yifr>1

r r+1 r 2 1\ r4+1 r
u = zuT w4 ut ut) — 2(u +u)+{zu0 fr—0

D(1)—uD
1

which leads to zu —2z(D — 1) — zuD. After combining this with a map plus two
edges (which is counted by z2D(1)) we have,

D(1) — uD

o —z(D—l)—zuD>

which completes the proof of (4).

A.2 Simplification of the representation of D,

In the second part of the Appendix we prove that Dy can be simplified into the form that is
given in (2).
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After collecting all parts of Dy that are described in the Proof of Lemma 2 we obtain

Dy = 22uD? + 22%uD (wDD + ng)
+ 2%uD [w? (w[u'] Dy + [u'lDy) + (D(1) — [u']D)]
+ 2°w?(wDp + Dy + zu*>D?) + 2° (D(1) — 1) (D — 1)

+ 22D(1) (zuD(l)__uUD —2(D—-1)— zuD) + 22uwD
+zu”t (zuw — zuDy (1) — zu™" (Dy — ufu'|Dy — uz[u2]DDg))

Dy (1) —uD
+ 2zu" w (zu'>(1)u'> —zuDp (1) — zu™" (D — u[u'] Dy — uz[uz]D>)>
—u

+ zu'w? Dy — 22uw? DDy — zw?[u'] Dy

Dy (1) —uD
— zu” tw? (zub(l)ub — zuDp (1) — zu™" (D — u[u'] Dy — u2[u2]D|>)>
—u

— z2w* (2*uD[u']Dy + z*uwDu'| Dy + 2°Dy + z*wDy + z°u’D?) .

We use the first two terms of the 2°9 line and the first three terms of the 3™ line to cancel
the last line. We also cancel the third term of the 29 line and the third term of the 4" line.
Moreover, we cancel part of the last term of the 3" line and the second term of the 4" line.

Dy = 23u?D3 + 22uD (wD|> + ng) + 2%uD (wD|> + D,?g)
D(1) —uD

— 2uD[u)D — 23(D — 1) + 22D(1) <zu e

> + 22uwD

Dy (1) —uD
+zut (ZUW — zuDy (1) — zu™" (Dy — ufu'|Dy — u2[u2]DD;))
+ 220" w <ZUW> — zuDp (1) — zu™" (D — u[u'] Dy — u2[u2]D|>)>

+ zu'w? Dy — 22uw? DDy — 2zw?[u'] Dy

Dy (1) —uD
— zu~tw? <Z1L>(1)uD — zuDp (1) — zu™" (D — u[u'] Dy — uz[uQ]DD)) .
—u

We now rewrite D, according to the appearing power of w and separate as follows:

DD = AQ +wA1 +UJ2A2
=A0—|—A1 +A2+(IU—1)A1+(U)2—1)A2
= (A0+A1 +A2)+ (ﬂ)— 1) (Al + (U/+1)A2)

where Ag, Ay, Az are explicit functions in z,u, D, Dy, Dy, [u']D, [u?]D, [ul]DDg, [UQ]DDg,
[Ul]DD, [U/Q]DD.

In order to show that this representation can be simplified to the form in (2) we first
have to show that Ag + A; + Ay = zu™" (D — 1 — u[u']D). By summing up the expressions
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of Ag + A1 + As (and cancelling already two terms) we get

24 D? 4+ 2*uD (Dy + Dy) + 2*uD (D + Dy)
D(1) —uD

— 2uD[u)D — 23(D — 1) + 22D(1) (zu T

) + 22uD

+zu”t (ZUIW — zuDy (1) — zu™" (Dy — u[u']Dy — ug[u2]D¢)>
+zu™! (zuDD(?_UUDD — zuDp (1) — zu™" (D> —u[u'] Dy — U2[U2]D|>)>

+2u Dy — 2*uDDy — z[u']Dy.
Now by using the relation Dy + Dy =D — 1 — 2u?D?, we can deduce two properties:

Fi: [u']Dy + [u']|Dy = [u'](D — 1 - 2u*D?) = [u']D,
o [uZ]DI> + [UQ]D,?g = [uQ](D —1—2zu?D?) = [uQ]D — 2.

We combine the 3" and 4" line by applying F; and F» and use the last term of it to cancel
2% in the 2°¢ line. Then, applying the relation D = 1 + zu?D? + Dy + Dy in the 15¢ line,
we obtain

Z*uD(D — 1) + 2°uD (D + Dy)
D(1) —uD

1—u

— 23uD[u!)D — 2°D + 22 D(1) <zu ) + 2%uD

suD(1) —uD + zu*D? — zuD(1)?
1—u
+ 2u ' Dy — 2>uDDy — z[u']Dy.

+z

—2*u"? (D — 1 - 2u*D? — u[u']D — v*[u®]D)

We cancel some terms from 1%, 274 and 4*". Next, We introduce the notation K :=

zu%}“D and use it in the 2°¢ and 3™ line:

22uD? 4 ZQUDDDg — 2uD[u!)D — 2°D 4+ 2?D(1)K
—2*°D(1) 4+ 2u™ 'K — 2*(uD + D(1))K — z*u? (D — 1 — zu*D* — u[u'|D — v*[u*]D)
+ 2u™ Dy — 2[u']Dy.

After canceling some terms from the first two lines and applying Dy, = D —1 — zu®>D? — Dy,
in the 3'¢ line we obtain

Z2*uD? + z*uDDy — z*uD[u']|D — 2°D
—2’D(1) + 2u 'K — 2*uDK — 2*u™? (D — 1 — zu*D? — u[u']D — v*[u*]D)
+zu” (D =1 - 2u”D* — Dy) — 2([u']D — [u']Dy).

We apply Dy = K — zu™*(D — 1 — u[u']D) in the 1°* and 3" line and apply [u']Dy =
WK —[u']zu™t (D — 1 — u[u']D) = [u']K — 2[u*]D in the 3¢, After simplifying we obtain

22uD? — 22D(1) 4+ zu™ 'K 4+ z2u™ (D — 1 — 2u°D? — K) — 2([u']D — [u']K).
We replace now K by D — 1 — zu?D? and apply [u']K = [u']D so that we have

22uD? — 22D(1) + zu™' (D — 1 — zu®D?)
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which reduces to zu~1(D — 1 — zuD(1)).
Finally we observe that we have relation

D(1) —uD

[u']D = [u'](1 + 2u*D? + zu 1
—u

which implies that we actually end up with
Ag+ A1+ Ay =zu" (D -1 —2uD(1)) = zu™ (D — 1 — u[u']D)

as proposed.

Finally we apply some simplifications to A; and As. Recall that the second term of Dy
is (w—1) (A1 + (w + 1)As). It is clear that

Ay = 22°uDDy + 2*uD + 2zu~'P(Dy)

Ay = 2u' Dy — 22uDDy — 2[u] Dy — 2u™ ' P(Dy)

where

D[>(].) — uD[>

i—a —zuDp(1) — zu™" (D — u[u'] Dy — uz[UQ}DD)) .

P(Dy) = <zu
After canceling some terms we finally get that A; + (w + 1)As is equal to
22uD + (w+1) (zu' Dy — 2[u']Dy) — 2*u(w — 1)DDy. — 2u™ ' (w — 1)P(Dy)

which completes the proof.
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—— Abstract

Several recent papers in the literature have addressed the analysis of the cost P, q of partial
match search for a given fixed query q —that has s out of K specified coordinates— in different
multidimensional data structures. Indeed, detailed asymptotic estimates for the main term in the

expected cost P, q = E{P, q} in standard and relaxed K-d trees are known (for any dimension
K and any number s of specified coordinates), as well as stronger distributional results on P, g
for standard 2-d trees and 2-dimensional quadtrees. In this work we derive a precise asymptotic
estimate for the main order term of P, q in quadtrees, for any values of K and s, 0 < s < K,
under the assumption that the limit of P, q/n® when n — oo exists, where « is the exponent of
n in the expected cost of a random partial match query with s specified coordinates in a random
K-dimensional quadtree.
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1 Introduction

One of the fundamental features of any hierarchical multidimensional data structure such as
quadtrees is to efficiently support partial match (PM) queries. These queries are as follows.
Given a collection F' of K-dimensional (K > 2) tuples of the form x = (xg,...,xx_1), with
each z; (0 < ¢ < K) belonging to a totally ordered domain D;, and a query q = (qo, - - -, ¢x—1)
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such that ¢; € D; U{x} (0 <i < K), the goal of a PM query is to find all those tuples in F'
such that x; matches ¢; whenever ¢; # *. Coordinates such that ¢; # % are called specified,
otherwise they are called unspecified; we assume that the number s of specified coordinates
satisfies 0 < s < K.

The average-case analysis of PM queries in random quadtrees and other multidimensional
data structures has a long history. In the case of quadtrees, a fundamental milestone was
the paper by Flajolet, Gonnet, Puech, and Robson [7] where the authors proved that the
expected cost of random PM queries with s specified coordinates in random K-dimensional
quadtrees of n nodes is S, k n(s/K) 4 [ o.t. for some constant Bs.i; and o = as/K) the
unique real solution in [0, 1] of the indicial equation

(a+2)%(a+ 1)K = 2K, (1)

The exponent « turns out to be exactly the same as in the expected cost of random PM
queries in standard K-d trees. It was not until 2003 that Chern and Hwang [2] obtained an
explicit expression for 3, i, for general s and K, this is:

- 1 [ — )
ﬂs,K = (2K—s — 1)F(O¢ ¥ l)K—sI‘(a + 2)8 2<1]'_£K F(—Oéj) ’ (2)

for 0 < s < K and K > 2 and where I is the Gamma function and the «;’s are the roots
of equation (1) and a = a3 > R(ag) > --- > R(ak). Note that Chern and Hwang [2] used
the indicial equation for o + 1 so they gave a formula for 8, k as a function of a; =a; +1,
j=1,...,K -1

In 2011 fixed PM queries were studied for the first time in 2-dimensional quadtrees by
Curien and Joseph [3] where the authors computed the expected cost E{P, q} of a fixed
PM query in 2-dimensional quadtrees. In particular, they showed that if q = (g, *), then
Pog=E{Pnq} ~1vi2-(¢-(1— q))oz/2 -n®, where a = a(1/2) = (/17 — 3)/2 is the same
exponent as in the expected cost for random PM queries [7], and v 2 = ;ﬁ%%
The asymptotic distribution was obtained for this particular case by Broutin, Neininger and
Sulzbach in 2012 [1].

In this work, we extend the results of [3] to give a precise asymptotic estimate of the
expected cost of a fixed PM query in random K-dimensional quadtrees, for general K and s.
In particular, we show that this cost is of the form

a/2

Vs K - H (1 — qi) -n%+lot,
iqi Fx
where v, i is a constant that depends on s, K and the particular query q and o = «a(s/K)
is the same as for random PM queries (see above).

The paper is organised as follows. In Section 2 we give some preliminaries. We explain
our methodology in Section 3 through the simplest case K = 2 (Subsection 3.1). We continue
with the general case of arbitrary s and K (Subsection 3.2). To complete the analysis one
needs to solve an integral equation; that is the subject of Subsection 3.3. Section 4 contains
some final remarks as well as some future lines of work.

2 Preliminaries

Let F be a collection of n multidimensional records, each one endowed with a K-dimensional
key x = (xo,...,ZKx_1), with coordinate z; drawn from a totally ordered domain D;. For
convenience, here we will assume that, for all 0 < j < K, D; = [0, 1].
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Figure 1 A 2-dimensional quadtree of file F = {A, B,C, D, E, F, G} and the partition that it
induces of the space. In this example Fog = {G}, Fo1 = {B,C, E} and Fo. = {B,C, E,G}.

00011011

TR

» Definition 1. A quadtree T of size n is a 2K-ary tree storing a collection F of n K-
dimensional records. T is either empty (when n = 0) or each one of its n nodes holds a key
from F, such that the root node of T stores a record with key x and pointers to 2% subtrees,
that hold the remaining n — 1 records of F'. Every subtree of T, let say Ty, is associated to
a bitstring w = wow; ... wx_1 € {0,1}% in such a way that T, is a quadtree, and for any
key y € Ty, it holds that y; < z; if w; =0and y; > z; ifw; =1, forall 0 < j < K.

Any quadtree of size n induces a partition of the domain into (2% — 1)n + 1 regions, each
corresponding to a leaf (or equivalently empty subtree) in the quadtree. An example of a
quadtree and the partition of the space that it induces is shown in Figure 1. To build a
quadtree starting from an empty tree, each insertion of a new record with key x follows a
path from the root to a leaf; at each step, we compare x and the key at the current node
to determine in which of the 2% subtrees the insertion should continue recursively, and the
process ends when a leaf is reached and it is replaced by a new node containing x and 2%
empty subtrees. The region associated to the substituted leaf is called the bounding box of
the subtree rooted at x. Following the same convention used for the names of the subtrees,
we will denote by By, the bounding boxes of subtrees Ty, associated to the tree rooted at x
and by Fy the subset of data points of F' that fall inside By, .

Consider a string v over the alphabet 3 = {0, 1, *}. We define as £(v) the set of binary
strings matching v; that is, where each occurrence of the symbol * stands for a 0 or a 1. For
instance, £(001) = {001}, £(0x1) = {001,011} and £(1%%00) = {10000, 10100, 11000, 11100}.
With this notation let us define the following extension of the notion of bounding box

B, U Buw.
weL(v)

Likewise Fy is the union of the (disjoint) Fy’s with w matching v. For example, in two
dimensions B, = [0, 1]? is the bounding box of the root of the quadtree, Fy, is the subset of
all those keys with first coordinate smaller than the first coordinate of the root, that is, the
ones stored in Tpy and Tpy (see Figure 1).

To perform a PM search with query q, the quadtree is recursively explored as follows.
First, we check whether the root x matches q or not, to report it in the former case. Then,
we make recursive calls in all the 25 —° subtrees T, such that the first s bits of w are such
that w; = 0 whenever ¢; # * and ¢; < x;, and w; = 1 whenever ¢; # * and ¢; > x;, 0 < i < s,
and the remaining K — s bits can be either 0 or 1.

One key observation about the PM search in quadtrees (or similar data structures) is

that, except for eventual matches, only the relative ranks of the coordinates matter. Let
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us call the rank vector of a query q the vector r(q) = (rg,...,rx—1) such that r; = =, if
¢; = *, and r; is the number of records x in the collection F' such that x; < ¢; (0 <r; <n),
if g; # *. Then for any two given queries q and q’ with equal rank vectors r(q) = r(q’) the
PM procedure described above will visit exactly the same set of nodes of the tree. In our
analysis, we shall be using rank vectors instead of the queries themselves (as done in [6]) and
consider, for instance, the cost P, , of a PM query with given rank vector r in a random
quadtree of size n. The probability model for random quadtrees that we will use throughout
this work is that the tree is built by inserting in any order n keys drawn independently at
random (coordinate by coordinate) from a continuous distribution. For the sake of simplicity,
we can safely assume that the distribution is Uniform(0,1). Because of the symmetry of the
model we can also assume that the s specified coordinates of q are the first s coordinates,
0 < s < K, and therefore that q = (qo, .-, qs—1,%,...,%) and r = (70, ..., Ts—1,%,...,*).
We shall write hence q = (qo, - . .,qs—1) and r = (ro,71,...,7s—1) with the convention that
the implicit K — s remaining components are all *’s.

3 Analysis

Our goal in this section is to find the expected cost P, = E{P,,r}, measured as the number
of visited nodes, of a PM query with a fixed rank vector r in a random quadtree of n nodes.

In order to show our methodology and to give some intuition on the problem we are
going to start our analysis with the easiest case K = 2 in Subsection 3.1. Afterwards, in
Subsection 3.2, we analyze the general case.

In both subsections we are going to obtain a recurrence for P, ,. Then, in order to solve
the general recurrence, we translate it into an integral equation whose solution will give us
the leading term in the asymptotic estimate for P, . The solution of the integral equation is
given in Subsection 3.3.

3.1 Thecase K =2

Given a 2-dimensional quadtree T, its root splits the space into four rectangles: By (south-
west of the root), By (north-west of the root), Big (south-east of the root) and Bi;
(north-east of the root). These four rectangles are the corresponding bounding bozes of the
four subtrees Tog, To1, T10 and T11 from Definition 1. Recall also that By, = Bgg U Bg1 and
B,y = Bgo U By are, respectively, the rectangles west and south of the root. For any string
u € {0,1,*}2, the number of data points in B, (equivalently, the cardinality of F,) will be
denoted Ny. For a random quadtree the N,’s are random variables.

Let us now address the recurrence for P, ,, and to simplify let us write P, ,,,, asr = (rg, *).
The basis of recursion is trivially Py, = 0. If n > 0, let j = (jo, j1) be the rank vector of the
root. Since q contains only one specified coordinate, the relation between jy and rg determines
whether the query intersects either By, or Bi,. If rg < jg, then the query intersects Byx;
otherwise it intersects Bi.. In our recurrence for P, ,, the value jo = Nox = |Fo«| run
from ry to n — 1, leading to a non-empty intersection of By, and the query, or from 0 to
ro — 1, leading to a non-empty intersection of By, and the query. Because of the randomness
assumptions, each possible value of Ny, has probability 1/n and hence this factor will weight
the expected cost of the PM query conditioned to My, = jo.

The number of data points in By, is jo by definition, and the number of data points
in By, is n — 1 — jo. If the query intersects By, then the rank of the query with respect
to By is still rg, but if it intersects Bi, then its rank with respect to By, is 79 — 1 — jo-
So the contribution to P, ,, coming from the recursive traversal of By, involves a set of jg
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Figure 2 A partial match in a two-dimensional quadtree. The first diagram shows the case
ro < jo, the second one the case jo < ro and the third one how the east-west symmetry converts the
second case into the first one.

points and the rank of the query is rg while the contribution coming from Bj, involves a set
n — 1 — jp points and, because of the symmetry P, ., = P, n—r,, the rank of the query is
n — ro. Hence, we can reduce the case jy < rg to the case rg < jg, see Figure 2.

In the general case we would have to consider 2° regions B, described by bitstrings
W = wp - Ws_1 * - --*, where each w; is 0 or 1 depending on whether r; < j; or not; as we
consider all possible j, the query will intersect these 2° different regions, and we will be able
to use these “east-west” symmetry considerations to reduce their analysis to the analysis of
one of them, say, Bog...0x...x-

Let us come back to K = 2. The region By, is the union of the two bounding boxes Byg
and By (in general we will consider regions By, that contain 25~* bounding boxes) and
our goal is to use further symmetries to reduce the analysis of the cost of traversing both
bounding boxes to the analysis of just traversing one of them, say, Byg-

Let Qj,.r, be the contribution to the expected cost of a PM query due to the recursive
call in Typ, when the query has rank ry in the first coordinate and given that there are
jo > 1o nodes to the west of the root.

Suppose that Ngg = ngg. The rank vector of the query in the recursive call to Tgg will be

(7o, %), and the contribution to the expected cost will then be P, So it only remains to

00,70 "
determine: a) the probability that Ny = ngo, given the rank vector of the root j and, b) the
probability that the rank vector of the query with respect to Byg is (fg, *). Let us define
the subsets of data points F), and the corresponding bounding boxes B, like F, and By,

but with respect to the given query, instead of the root. The value 7y is the number of data

points in the intersection between Bog and By, see Figure 2. We will use R gy := |Foo N [, |-

In general, (i) := 0+ 17 so using this convention, we can also write Ny = jo and
|F<’0>| = ro. Conditioned on the sizes of Fyo, Fyoy and F<’0>7 the random variable R ) obeys
a hypergeometric distribution:

() (i 70)
)

Now if we look at the contribution to the expected cost due to the traversal of Ty, we

Pr {Rm) = 7o | Noo = noo, Nioy = Jo, [Fioy| = 7“0} =

have that AMy; = jo — noo and the rank of the query with respect to Bgy is (rg — 7o, *).

The fact that the second coordinate is unspecified allow us to do the analysis above with
no1 instead of ngg and we would have obtained symmetric formulas. We can exploit this
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north-south symmetry that will give us a factor of 2. Taking into account the visit to the
root and our discussion so far we can write

9 ro—1 n—1
Pory =1+ n (Z Qn-1-jo,n—ro + Z Qjo.ro | 3)
Jo=0 Jo=To

where, for ng, > r, we have

Jo ro n00Y (Jo—no0
Qjo,ro = Z Pr {Noo = noo | Noy = jo} Z (Wlﬁomf{)). (4)

To complete the recurrence for P, ,, we need only to obtain the probability that Noo = ngo,
conditioned on M0> = jo. Since N, (1) can take any value in [0..n— 1] with identical probability,
the number of points in Byg will take any value between 0 and jo with identical probability
1/(jo + 1). Plugging this probability and (4) into (3) yields to the desired recurrence for
Prry-

An asymptotic estimate of the main term of P, ,, follows by deriving an integral equation

noo=0 fo=0

for f(z0) := limy oo Pn zon/n™ and solving that integral equation. We give the details of
the derivation of the integral equation in the case of K = 2 in Lemma 4.

3.2 The general case

Let r = (rg,71,...,7s—1) be the query rank vector and let j = (jo,...,js—1) be the first s
coordinates of the rank vector for the root of the random quadtree. Thus we have that j;
is the value of |Fj5| = Nyy. These K strings of the form (i) constitute a “basis” in the
sense that we can obtain any region By by complementation (B,ij.x-1-i = Bi...x \ B(j)) and
intersection of the appropriate B ’s.

Like we did for K = 2 our goal is to use the symmetries of the problem to reduce the
whole analysis to the analysis of the contribution to the total cost of one particular subtree,
namely, Tps. Again, call Q5 the contribution of the recursive call in Tps, conditioned to
r; < j; for all i, 0 < i < s. This condition guarantees that the PM search will recursively
continue in that subtree.

Then, because of the K — s symmetries on unspecified coordinates (like the north-south
symmetry of the case K = 2) and because of the s symmetries for specified coordinates (like
the east-west symmetry when K = 2), we can express P, , in terms of Qj,’s. In particular,
considering all the possibilities for j gives a factor 1/n®, and a summation over all bitstrings
w of length s to cover the cases where the query intersects By,. Finally the factor 2%—*
stems from the 2X~* bounding boxes that each B, contains. Hence,

2K—s

s DD D Q) (5)

we{0,1}° Jjo Js—1

P,r=1+

where the summation ranges are r; < j; <n—1ifw; =0,and 0 < j;, <r; — 1 if w; =1, and
the rank vectors ji, = (j§, .- ., Jje_q) and rl, = (r(,...,75_1) are defined as follows: if w; =0
then j! = j; and 7} = r;, otherwise if w; =1 then j/ =n —1—j; and r, = n — r;.

For any i, 0 < i < K, we will denote 07 the string 0+ ~%, that is, a string of length K
consisting of ¢ zeros, followed by K — i *’s.

The method to obtain a formula for @5, consists of the following steps: 1) First we use
Lemma 5 to obtain the probability distribution of the number of data points Nps in the



A. Duch, G. Lau, and C. Martinez

“corner” hyperrectangle, by intersecting the sets Fioy, Fi1y, - .., Fis—1), with sizes jo, ...,
Jjs—1, respectively. This will be expressed by s — 1 “hypergeometric” sums that will give
us the probability that Mo = £; 2) Given that the last K — s coordinates are unspecified,
and conditioned on j; = Ny, 0 < i < s, all the potential sizes of Ny = [Fiyy|, s <i < K,
are equiprobable. This will be expressed by K — s “uniform” sums that will allow us to
derive the probability distribution for Myx, and 3) Now conditioning on Ngx = |Fyx|, and
given r we intersect Fox with each of F<’O>, F<’1>, cee F{Si1>
rox = (fo,...,7s—1). We will denote R ;) = [Fox N F;| the random variable that gives the
i-th component of rox. As in the case K = 2, the probability distribution of the R;’s is
hypergeometric and it will lead to s additional “hypergeometric” sums.

Nos - g;}

s—1
N()K = f[{, /\ |F(/i>| = Ti} X PgK’roK. (6)

=0

to obtain the components of

Therefore the general formula for Q. is:

Js—1 s—1 0,
Qj,r: ZPI‘{NOSKS /\N(l)jl} X Z Pr{NoK :EK
=0

£s=0 L =0

s—1
X Z Pr { /\ R<l> = 72
LPs—1)

I‘OK:(fo,.. =0

We can expand this last expression as:

N e e
Qr= 2, Z( @ ) )

s=0 £2=0 jl js—l
l Lr—1
1 = 1
X FR O —
ls+1 P z; b 1+1 Z
s+1=0 Lr=0

Lx Arg (ZK) (jo—éK> L Ars_1 (ZK )( J1—lK )

Z & j’(“]o—fo Z == ;::1177«571 PZKv(va--JA’s—l)’ (7)
fo=0 () Fo_1=0 ()

T0

Ts—1

where we have used x A y = min(z, y) to stress the intersections that are involved in each
case, e.g. 7; ranges from 0 to £x A r; since the number of data points is given by |Fyx N F(’i> l;
with |F0K‘ :N()K = KK and F(,i) =T;.

To derive the integral equation corresponding to the recurrence above we can use arguments
similar to those in the case K = 2. We give all the details of this derivation, as well as other
necessary technical lemmas in Apprendix A.

» Lemma 2. If f(20,...,25—1) = lim,, % exists, with a = «a(s/K) the solution of
the indicial equation (1) and z; = lim,oori/n, 0 < z; < 1, for all i, 0 < i < s, then
f(z0,...,25—1) is the unique solution of

Fooreosr2e 1) = (aL)K_S - {

we(041)

/ / f(‘PwO(Zo,Uo),u-,(Pws1(23_1,Us_1))
IW()(ZU) st,l(zs—l)

: (wwo (uo) - ~ww51(u51))a dus—y - duo}7 (8)

where Iy(z) = [0, 2], I1(2) = [2,1], Yo(u) =1 —u, ¥1(u) = u, wo(z,u) = (1 —2)/(1 —u) and
p1(z,u) = z/u, which satisfies the following boundary conditions:

20:7
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1. f(z0y...,25—1) is symmetric on all variables, that is, for any i and j,
F(20s s Ziy ooy 2y ooy Zom1) = F(20, 0o 2o ey Zin e ooy Zs—1)-

2. For any z; € (0,1), 0 <i < s, f is symmetric with respect to the axis z; = 1/2, that is,
f(zoyeeosziyenyzsm1) = f(20, -, L— 24y 000y 251).

3. Foranyi, 0<1i<s,

lim f(z0,...,2i...,25—1) = lim f(z0,...,2i,...,25-1) = 0.
Z’L—>O zi—1—

1 1 1
/ / / f(Z()’...,Zsfl)dZO...dZS,I :55,1('
0 0 0

Proof. We will follow a procedure similar to the one in the proof of Lemma 4, which covers
the case K = 2.

The steps that we will give to obtain the integral equation for general K are:
1. Apply Lemma 6 to (7) s times in the s hypergeometric sums (the last sums over the #;’s)

2. Convert the K — s uniform sums (the middle sums over the ¢;’s, s < i < K) into the
corresponding integral by passing to the limit. That gives K — s factors 1/(a + 1).

3. Apply Lemma 7 once to the first s — 1 hypergeometric sums (over the ¢;’s, 2 < i < s).

4. Convert all the sums in (5) into integrals by passing to the limit.

Here, we use ¢; to denote the values that the random variables Ng: can take, like we did in
subsection 3.2, and in particular in (6) and successive.

Defining f(%o, cee TT”) = P, r/n®, where « is the solution of the indicial equation for

quadtrees, we get:

G Z Z( )((’3:1)4").._(‘231)((55)15}31))

s=0 £2=0 Js—1

L L1
1 - 1
y oL »
ly+1 o lrg_1+1 0

EKZ () Go ) EKZ () CATE) pe, By (e
, , e,

#0=0 (ig) fo_1=0 () tx lx "

Hence, defining ug = lim, oo (¢;/n) for s < i < K, z; = lim,00(r;/n) and u; =
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lim,, o0 (ji/n) for 0 < i < K and applying Lemma 6 s times:

s—1 n Ls—1\ (n—1—Cs_1
. Qjir ! ( (311550) ( ‘. )( Jeo1—Es ))
lim —= = lim e =
n—oo MY n— oo Z Z ( " ) ( 1)

£=0 £2=0 Js—1
Ls L1
LI o S S To T )(LK)
X£s+1éz;0 £K1+120f(j0"" o\
sH1= =
Js—1 ]o) (n 1-— ]o) (185_1) (nf1fes_1)
— J1—¢ Ls Js—1—4s
o nh—>ngo Z Z < ( oh ) : e (@71)1
£:=0 £2=0 J1 Js—1
Ups UnK —
Xi o / ™ 1f(ﬁ,...,ZS_l)uS‘KduOK...duos+1
Uos Jo Upk—-1 Jo (27} Us—1

= (i) G enEy)
i 33 (e )

£s=0 £2=0
0 2371) Uos
X — ... .
f(’u,07 b uS—l (O[+ 1)K75

Replacing ugs by £s/n and applying Lemma 7 once to the first s — 1 hypergeometric sums

we obtain:
Q; 1 2 z gl
lim X — (70 5‘1) o 9
oo A (a—l—l)K_Sf u’ " ey 11)“ ©)

Finally, introduce the following notation: Iy(z) = [0, 2], I1(2) = [2,1], vo(z,u) = (1—2)/(1—u)
and p1(z,u) = z/u. Plugging (9) into (5)) and passing to the limit (the fourth step in the
procedure that we have described) yields the stated integral equation. <

Conditions 1 and 2 in the lemma follow from the combinatorics of the problem. By
symmetry, P,, = P, for any permutation r’ of the rank vector r. Likewise, if r =

/
(roy..sTiy...,rs—1) and v’ = (rg,...,7—1,n — 1, Ti41,...,7s—1) then P, = P, . Con-
dition 3 needs an inductive argument in the number of non-extreme (z; # 0 and z; # 1)
coordinates. When all specified coordinates are extreme,say, zg = 21 = ... = 2,1 = 0 we

must have f = 0; indeed, it is very easy to prove that P, «, .0y = o(n ) We do not give
here a complete and detailed analysis when sy < s specified coordinates are extreme; the
computations and the reasoning is analogous to that carried out in [6] for K-d trees. Last
but not least, Condition 4 follows by summing the expected cost P, , over all possible rank
vectors r and dividing by (n+1)%: it must yield the known expected cost of a random partial
match query 85 xkn® + o(n®). In terms of f, we must integrate f in the domain [0, 1]°
obtain f, k. For a detailed justification the reader can refer to [6]: it is straightforward to
adapt the discussion there to the case of quadtrees.

3.3 Solving the integral equation

From the integral equation (8) in Lemma 2 we can obtain an equivalent partial differential
equation (PDE) by application of the differential operators

2
(1) = 21~ %) g%+l ~ VgL —alat
J

20:9
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Indeed, if we define the operator

1
du;

1
R (R N ki
Zi ]

?

zi dv;
(1 —zi)a+l/(; f(zo,...,zi_l,vi,zi_,_l,...,zs_lm

then the integral equation (8) in Lemma 2 can be written as

f= <a_2H>KS Io(Ly(- -+ (Ls—2(f) -+ ),

using the changes of variables u; := z;/u; and v; := (1 — 2;)/(1 — u;).
Then, as

Bi(13(9) = Wily) = (25— 1) 3% — 209

it follows that

2

K—s
a—|—1> Po(@1(- - (Paa(To(La -+ (Lsa(f) ) - -)-

q)O(CDl(' - ((I)sfl(f)) .. ) = <
Now, since ®;’s and ¥;’s commute — ®,(P;(9)) = €,;(P;(9)), ¥i(¥,(9)) = ¥;(¥,;(g)) — and
Q,(V;(g)) = ¥;(Pi(g)) for any i # j, we can manipulate the equation above to get

K—s
<I>o(<1>1(---(<1>51(f))-~-)=< 2 ) Bo(U (- (Tar(f)- )

a+1

or

2

K—s
a+1> \Iloollllo-nollls_l)(f):(), (10)

(Cboo@lo---oq)s_l— (
which is the sought PDE, succintely expressed in terms of the linear differential operators ®;
and ¥;, 2 =0,...,s— 1.

The resulting PDE is homogeneous and linear, hence it is natural to try to solve it
by separation of variables. The shape of equation (10) also cries out to try a solution in
separated variables. Therefore, we will assume that the solution to the integral equation (8)
is a function: f(zo,21,...,25-1) = ¢o(20) - d1(21) -+ Ps—1(25—1)-

Given that the function f is symmetric with respect to any permutation of its arguments,
we can also safely assume that all the functions ¢q, ¢1, -+, ¢s_1 are the same function ¢.
Rather than working with the PDE itself, we may use our assumption to rewrite equation (8)
as:

b(z0) - Bz1) - dzer) = ((}jl)K H ( / o(172) - wdu,

+ /1 qb(zi)uf“dui). (11)

If ¢ is a solution of the following equation

é(2) = (aL)K (/{)Z¢(i_z)(1 u)adu+/:¢(2)uadu>, (12)
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then it would be a solution of equation (11). As shown in [4],

a—+1

3(2) = p(=(1 - 2))""", 5=( : )K;S,

is such a solution, where y is an arbitrary constant and we have discarded additional terms
in the general solution based on symmetry considerations.
Because the exponent « is a solution to the indicial equation (1) it follows that § = § +1

and hence the solution to (8) is:
s—1 9
flz05. s 2s—1) = Vs, K - H(Zz(]- - Zi))a/ )
i=0
where v g is a constant that depends on s and K only. To finish our derivation and to
obtain the value of v5 g we replace f by the expression above in Condition 4 of Lemma 2
and we get:

Vs K (/01 (2(1— z))a/2d2>s = Vs K <W)S = Bs,K,

so we can use the expression for 85 x in Equation (2) to find an explicit formula for v k.

To argue unicity of the solution, we should begin noticing that the linear homogeneous
PDE satisfied by the function f has all real-analytic coefficients in the domain (0, 1)*, because
the coefficients of the operators ¥; and ®; are analytic too in that domain and the PDE
results from the composition of such operators.

Moreover, the highest derivative in the PDE is 025f/022---022_, and its coefficient
[To<;cs 2i(1 = 2) is clearly always positive in (0,1)%, hence, the PDE is elliptic. Then, by
Holmgren’s theorem, any solution is real-analytic; and from Cauchy-Kovalevskaya theorem
it follows that it must be unique, since this last theorem guarantees that there is a unique
real-analytic solution (see for instance [8, 11]). Altogether, these results tell us that the
solution that we have found, starting from the ansatz that it admitted a representation in
separable variables, is unique.

It remains to verify by direct substitution that P,, = f(r/n)n
currence (5) replacing the independent term by o(1), which is the error resulting from

@ is a solution of re-

approximating the summations by integrals. With this our main result follows.

» Theorem 3. Iflim, Pur erists then the expected cost P,y of a PM query with given

no

rank vector r such that r; = zn + o(n) for some z; € (0,1), 0 < i < s, in a random
K-dimensional quadtree of size n is

s—1 /2
Py =vsk (H zi(1— 22)> n% 4+ o(n?),
=0

where « is the unique solution in (0,1) of

(a+2)°(a+ 1)K =258,

- 1 o —ay)
YK T 0K=s “1)T(a + 1)E—T(a/2 + 1)% 2<1J1K P(=ay)

and the a;’s, with o = aq > R(ag) > -+ > R(ak), are the roots of the indicial equation
abowve.
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Figure 3 Variation of the exponent a(s/K) (top-left), 8(s, K) for K € {8, 16,32} (top-right) and
v(s, K) for K € {30,32,36} (bottom-left), as well as v(s, K) for all 6 < K < 18 (bottom-right).

Figure 3 depicts how the exponent a = a(s/K), and the constants 8(s, K) and v(s, K)
vary with respect to s and K. In all cases, the z-axis is s/K to ease the comparison — « is
a function of s/K alone, but 5 and v depend on both s and K. In the graphs for §(s, K)
and v(s, K) we have drawn three curves in each case, corresponding to K = 8 (red), K = 16
(black) and K = 32 (blue) in the graph for 5(s, K), and K = 30 (red), K = 32 (black) and
K = 36 (blue) in the graph for v(s, K). Moreover in the graph of «(s/K) we have also
plotted 1 — s/K (dashed line) for reference. For fixed K, (s, K) is a convex function with a
minimum close to s = K/2 but slowly shifted to the right. Likewise, for fixed K, v(s, K) is
a bell-shaped function with a single global maximum near s = K/2 but also slightly shifted
to the right (v(s, K) is not defined for s = K). If we denote v*(K) = maxo<s<x v(s, K) the
graph shows that v*(K) grows with K. On the other hand, the graph and further numerical
computations suggest that there is a limiting curve S (z) = limg o (|2 K |, K) that is a
lower bound for any §(s, K) as K — oo.

When s = 0 (no coordinate is specified), we have a(0) = (0, K) = v(0, K) = 1, despite
all these constant are not well defined when s = 0. Notice that for s = 0 the partial match
degenerates to a full traversal of the quadtree and visits its n nodes.

In the opposite situation, when all coordinates are specified, s = K, # and v are undefined,
and (1) = 0. The expected cost of a partial match is not ©(1) = ©(n°) but O(logn) as it is
actually an exact search.

4  Conclusions and Future Work

Our main result, Theorem 3, gives the main order term of the expected cost P, , of a PM
search with a fixed query of rank vector q, for quadtrees of any dimension K and any number
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of specified coordinates. It can be easily translated to an equivalent result in terms of the
coordinates ¢; of the query, namely,

a/2

Prnq=Vsk- H (1 —q) -n® +lo.t.
1:qi Fx

under the assumption of uniformity of the coordinates of the data points (see, for instance,
).

We show that quadtrees behave qualitatively as standard and relaxed K-d trees [6]. There
we conjectured that the form of the expected cost of a PM search with fixed query would
have the same “shape” for a wide variety of multidimensional data structures, excluding
those producing very balanced partitions of the space (e.g., quadtries, squarish K-d trees).
Duch and Lau [5] have disproved the conjecture, in its broadest terms, as it does not apply to
locally balanced K-d trees. However, it seems that the conjecture might hold for hierarchical
multidimensional data structures where: 1) no balancing of subtrees occurs; 2) the partition
at each node follows a fixed rule independent of the current data point.

From the methodological viewpoint, we systematically exploit the many symmetries that
appear in the problem to simplify its formulation and to make its mathematical manipulation
feasible.

Several open problems remain. To begin with, the existence of lim,, .o %, which has
been rigorously proved for K = 2 in [3] (also in [1]); our result in that case coincides with
the previous ones. We are currently working in the proof of the existence of the required
limit for general K; meanwhile, our results follow from the — yet unproven — assumption
that such limit exists. We shall mention that there is compelling evidence that this is the
case. On the other hand, the existence of a limiting distribution for P, , /n® has been shown
only for the case of standard 2-d trees and 2-dimensional quadtrees, but not for other data
structures or larger dimensions, and this is a question worth of further study.

Another goal for future research, more technical in nature but also more ambitious, is
to develop tools that would allow a straightforward, (semi-)automatic derivation of the
recurrences or distributional equations, the proof of the existence of the limiting distribution,
the corresponding integral equations for the expectation and other higher order moments, etc.
This kind of techniques would ease the obtainment of results, such as the ones in previous
literature and the ones in this paper, for many other multidimensional data structures and it
might also open the door for “universality” results such as the ones conjectured in [6].
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A  Technical Lemmas

» Lemma 4. If f(z) = lim, 00 IZ"C;T exists, with o = «(1/2) the solution of the indicial

equation (1) when s =1 and K =2, and z =lim,,_,7/n, 0 < z < 1, then

f(z)—aL(/ozf(i: )(1—u)“du+/lf(z)u°‘du>. (13)

z

The symmetry Py r, = Ppn_r, implies that in general f(z) = f(1 — 2z) and in particular

f(% 1 u
standard 2d-trees (see [4}]).
Proof. Let f(ro/n) := P,.,/n®. Then we have that

Pa, b,* b a\“
P (1)1
n a/\n
and therefore, substituting into (4)

Gy 30 3 (LD (1o (1)
o 3 > (B ()

noo 0 T0 0

from where it follows that equation (13) is the same as the one for

The last sum is the expected value of a function of a hypergeometric random variable.
Passing to the limit when n — oo, Lemma 6 allows us to exchange the expected value
and the function. Therefore passing to the limit when n — oo, with z = lim, . (r/n),
Uox = limy, 00 (Jo /M), woo = limy, 00 (n00/n), and assuming that f is real analytic in Lemma 6
we can apply it to get:

Q; 1 [% sugyg z u 1 o z

. Jo,To 00 0% a a

lim —>—= = — f ( Ugodugy = fl— )ugoduoo
n—oo N Uox Jo U Uox UOO Uox Jo U

1 Z\ o
= a+1f(u7*)“0*'

and similarly

n—1—7jo,n—r 1 1-uo. 1-—
lim Q 1=jo, e A f<71 i )ugod'l.too

n—00 ne 1 — uox
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Since jo =0 = wug« =0, jo =179 = ug+ = 20 and in the limit jo =rg—1 = wug« =
20, jo=n—1 = wup. =1 and % — dugs replacing in (3) and passing to the limit we
obtain this integral equation:

20 1 1— 20 1—wupx
flz) = 2/ f( )/ ugydugodugs
1 u
1 2 0
+ 2/ f( 0 ) / ugodu()oduo*
z0 U/O* U/O* 0

S| 1— 2o\ (1 — gy )@t /1 1 20\ U
—9 ( ) dug, + 2 ( ) LEI N
/0 17u0*f 1 — ugs a+1 Uox 20 uo*f Ugx/ @+ 1 o

Replacing now in (3)), passing to the limit n — oo and, to simplify, replacing ugs by u we

get the integral equation (13) in the statement of the Lemma. |

» Lemma 5. Given a random K dimensional quadtree with n data points the conditional
probability that Nox = L given that Ny = ngy for 0 <i < K —1 is:

K-1 NGyK-2 n(2)y M(1) (51) (n*1*$1)
o . 2/ \n(y—£2
Ay =nof= 30303 (e
i=0 Lg_1=0  £3=0£3=0 n(1)
14 n—1—¢ lr— n—1—fx_ Cp— n—1—fx_
()G () G o 202 (6 e )
Nt S —5 . (14)
(ray) () (e )
Proof. In the base case K = 2 given n, Ny = No. = ng. and Nqy = Nyg = nuo, the
probability that the intersection of the rectangles B(gy = Bo. and By = B.o contains
ly = mngg nodes is the probability of having ¢35 = ngg successes in n.g draws without
replacement from a population of size n — 1 that contains ng, successes. It is n — 1 instead of
n because the root cannot be in the intersections. Therefore the distribution is hypergeometric:

NOo* n—1—ng«
(n((;o) ( 71,*0777,(;]0 )
(o)
N %0
Assume that the lemma is true for K dimensions. We can do the inductive step based on

writing the intersection of K + 1 sets as an intersection of K sets followed by the intersection
of two sets:

PI' {N()K = eK

Pr{Noo = noo | Nox = nos, Naog = nuo} =

K K-1
mF*iO*K—i = ( m F*iO*K—i) mF*KOZF()K*mF*KO:FoK+1.
i=0 =0

Taking into account all the possible values of Ny« ,, we have:

K
/\ N*iO*K—i = NyiguK—i

=0

PI‘ {N0K+1 = NpK+1

N K—104 K-1
Z (PI‘ {N()K* = TLOK*| /\ N*iO*K—i = n*iO*Ki}

MoK , =0 1=0

x Pr {N0K+1 = NpK+1

NOK* = nok*,N*Ko = n*KO}>

n—1 K—1 (noK* )( n—l-ngk, )
n n —n,
E Pr NOK* = NpK 4 /\ N*iO*K—i = NyiguK—i X offtt n*_Klo oft! 5

ngyk ,=0 1=0 (n*Ko)
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applying the inductive hypothesis (14) (adding a * to the end of each string) completes the
proof. Notice that we have used ¢; instead of ngi,x—i and n;y = n,ig.x-1-: in the statement
of the theorem. <

» Lemma 6. Given a random two dimensional quadtree let Nos, N.g and Nyg be respectively
the random variables of the number of nodes west, south and south-west of the root. If f is
a real analytic function [9] in (0,1), limy, 00 Nox /N = Ugs and limy, o0 /N = Uwo, where
Ugx, Uxo € (0,1), then

nh_)H;OE {f(j\f;o> ‘./\/'o* = nox, Nao = n*o} = nh—{%o % <(ng;)((7::0) 230) f(no)>

noo=0 MNx0
G e ) oo
- Jim 3 (Q;;O) (%)
= f(uoxtx0)- (15)

Proof. For simplicity, in the hypergeometric probability formulas we have replaced n — 1 by
n as in the limit they are the same.

Since f is real analytic all derivatives of f exist in (0,1) and we can write, for some
xo € (0, 1),

Zalx_xo g;z() ro) k.

Since the series on the right side converges we can use the linearity of expectations:

2 - 33 ({icsortm 21

Therefore we only need to prove the lemma for f(z) = z*. If X,, ,, v is a hypergeometric
random variable with parameters n, m, and N then [10]:

E {Xs,m,N} = %E {(Xn—1m-1,n-1+ 1)k_1} .

Based on that it is easy to prove by induction that for every k € N there are integers ¢y ;,
with ¢ = 1, such that:

k k nimt
E{XE  n}=) Chi i
=0

Therefore if f(z) = z*:
E{f(j\ﬁzo> ’No* = ngw, Nuo = Tl*o} =E {Noo ‘No* = Ngs, Nao = n*o}

nk

& ,
_ Zz Ockl O:«Ll*o zk: nO*n;O
nink
i=0
In the last sum the only term that does not go to zero as n — oo is the last one, where ¢ = k.
Given that ¢ = 1, we have:

k k
K gL 5 .
. N . E . ng %0
lim E< =Ny, = nos, Nag = nuo ¢ = lim —2 = lim * * =uk u¥,.
% |”Vo 045 /Vx0 0 0+ U0
n—o0 mn n—oo n n—oo n n

That proves the lemma for f(x) = z*. <
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The lemma can be generalised to any dimension K using mathematical induction on
the number of dimensions, again assuming that the function f is real analytic (in several
variables).

» Lemma 7. Given a random quadtree let Ny be the random variable of the number of data
points that have their i-th coordinate less than the i-th coordinate of the root and the rest of
the coordinates undetermined and let Nox be the random variable of the size of the cuboid
where all the coordinates have values lower than the respective coordinates of the root. If f is
real analytic in (0,1)%, lim, o0 ngy/n = u; for 0 <i < K, where u; € (0,1), then

JLH;OE{ & /\N< —n<} f(KH>

i=0
Proof. The base case K = 2 has been proved. Assume that the lemma is true for K
dimensions. Then:

K
lim E {f (NOK“ )
n— 00 n o

/\N*iO*K—i = n*z‘o*Ki}
K n

OK+1
/\N*iO*K—i = NyigxK—i f( n )

=0

n—oo
nyk+1=0

n—1
= lim Z Pr {N0K+1 = NpK+1

n—1 n—1 K-1
lim E E Pr NoK* = nOK*| /\ N*io*K—i = NyiguK—i
n—roo

nyk+1=0nyk =0 1=0

x Pr {NOK+1 = NgK+1

Nok+1
NOK*:'nOK*vN*KO:n*KO}f( )

n

n—1 K—-1
= lim E Pr{ Mok, = noK*| /\ Nigsk—i = Nyiguk—i
n—oo

nox =0 i=0

Nox+1
XE{f( 0 )|NOK*:nOK*7N*K0:n*KO}
= 1 Pr{ A, N, lim 010
= n]_{l’;o Z » T 0K« = MK 4 ’ /\ %10 K —i = NyiguK—i X f(nl—{r;c m)
MoK +=
. . NK Ny K
nh*)l’lé.loE {f(nlggo (2_10) /\ N iQuK—i—10 = MyigeK—i— 10}

Replacing n — 1 by n, because in the limit they are equivalent, and using the induction
hypothesis (adding 0 at the end of each string) we have:

K-1
. NyigeK—i—109 \ NyKQ
/\ N*iO*K—i = NyigxK—1i = f lim H
! n—oo n

K
()
n— 00 n - NyKQ
=0 =0

K ) ) K
=1l IT=5) = (T o)
i=0 i=0

<

» Lemma 8. The real function f(x) = x*(1 — z)* is real analytic, i. e. it is infinitely
differentiable and agrees with its Taylor series, in the interval (0,1) for any real number a.

20:17

AofA 2018



20:18 Fixed Partial Match Queries in Quadtrees

Proof. By the binomial series, or Newton’s generalized binomial theorem, fi(x) = (1 — z)®
is real analytic in (—1,1) and fo(z) = 2% = (1 + (2 — 1))* is real analytic in (0,2). Therefore
their product, f(z), is real analytic in (0, 1). <
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1 Introduction

Let X,, denote the (random) number of comparisons when sorting n distinct numbers using
the algorithm QuickSort. Clearly Xy = 0, and for n > 1 we have the recurrence relation

X0 £ Xy, 1+ Xy +n—1,

where £ denotes equality in law (i.e., in distribution); X £x +; the random variable U, is
uniformly distributed on {1,...,n}; and U,, Xo, ..., Xn—1, X§,..., X_; are all independent.
It is well known that

EX,=2(n+1)H, —4n,

where H,, is the nth harmonic number H,, := >_;'_; k! and (from a simple exact expression)

that Var X, = (14 o(1))(7 — %)n2 To study distributional asymptotics, we first center

and scale X, as follows:
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Using the Wasserstein de-metric, Rosler [8] proved that Z,, converges to Z weakly as n — oo.
Using a martingale argument, Régnier [7] proved that the slightly renormalized nLHZn
converges to Z in LP for every finite p, and thus in distribution; equivalently, the same
conclusions hold for Z,,. The random variable Z has everywhere finite moment generating
function with EZ = 0 and VarZ =7 — (2772 / 3). Moreover, Z satisfies the distributional

identity
ZEUZ+(1-U)Z" +g(U).

On the right, Z* £ Z; U is uniformly distributed on (0,1); U, Z, Z* are independent; and
g(u) :==2ulnwu+2(1 —w)In(l —u) + 1.

Further, the distributional identity together with the condition that EZ (exists and) vanishes
characterizes the limiting Quicksort distribution; this was first shown by Résler [8] under
the additional condition that Var Z < oo, and later in full by Fill and Janson [1].

Fill and Janson [2] derived basic properties of the limiting QuickSort distribution £(Z).
In particular, they proved that £(Z) has a (unique) continuous density f which is everywhere
positive and infinitely differentiable, and for every k > 0 that f*) is bounded and enjoys
superpolynomial decay in both tails, that is, for each p > 0 and k > 0 there exists a finite
constant C), ;, such that ’f(k) ()| < Cp k|| for all z € R.

In this paper, we study asymptotics of f(—z) and f(z) as © — co. Janson [3] concerned
himself with the corresponding asymptotics for the distribution function F' and wrote this:
“Using non-rigorous methods from applied mathematics (assuming an as yet unverified
regularity hypothesis), Knessl and Szpankowski [4] found very precise asymptotics of both
the left tail and the right tail.” Janson specifies these Knessl-Szpankowski asymptotics for F
in his equations (1.6)—(1.7). But Knessl and Szpankowski actually did more, producing
asymptotics for f, which were integrated by Janson to get corresponding asymptotics for F'.
We utilize the same abbreviation v := (2 — t15) ! as Janson [3]. With the same constant c;
as in (1.6) of [3], the density analogues of (1.6) (omitting the middle expression) and (1.7)
of [3] are that, as x — oo, Knessl and Szpankowski [4] find

f(—z) = exp [—e’”“ﬁo(l) (1)
for the left tail and
f(z) =exp[—zInz —zlnlnz + (1 +1n2)z + o(x)] (2)

for the right tail.

We will come as close to these non-rigorous results for the density as Janson [3] does
for the distribution function and we also obtain corresponding asymptotic upper bounds
for absolute values of derivatives of the density. Although our asymptotics for f imply the
asymptotics for F' in Janson’s Theorem 1.1, it is important to note that in the case of upper
bounds (but not lower bounds) we use his results in the proofs of ours.

The next two theorems are our main results.

» Theorem 1.1. Let v := (2—25)~1. Asz — oo, the limiting QuickSort density function f
satisfies

exp _ew:v+lnlnw+0(1) < f(—.’E) < exp |:_€'YI+O(1):| 7 (3)

exp[-zlnz —zlnlnz + O(z)] < f(z) < exp[—zInz + O(z)]. (4)
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» Theorem 1.2. Given an integer k > 0, as x — oo the k™ derivative of the limiting
QuickSort density function f satisfies

‘fw)(_x)‘ < exp [_ew+0<1>} , (5)
‘f(k) (x)‘ < exp[—zlnz + O(x)]. (6)

» Remark. The non-rigorous arguments of Knessl and Szpankowski [4] suggest that the
following asymptotics as & — oo obtained by repeated formal differentiation of (1)—(2) are
correct for every k > 0:

FO (—z) = exp [_ewm+c3+o(1)} : (7)
8 (z) = (=) *exp[-zInz —zInlnz + (1 4+ In2)z + o(z)]. (8)

But these remain conjectures for now. Unfortunately, for £ > 1 we don’t even know how
to identify rigorously the asymptotic signs of f*)(Fxz)! Concerning k = 1, it has long been
conjectured that f is unimodal. This would of course imply that f/(—x) > 0 and f/(z) <0
for sufficiently large x.

As already mentioned, Fill and Janson [2] proved that or each p > 0 and k > 0 there
exists a finite constant Cp, j, such that | f*¥)(z)| < Cpx|2|™P for all € R. Our technique for
proving the upper bounds in Theorems 1.1 and 1.2 is to use explicit bounds on the constants
C, := Cy 1, together with the Landau-Kolmogorov inequality (see, for example, [9]).

Our extended abstract is organized as follows. In Section 2 we deal with preliminaries: We
restate (to render this extended abstract self-contained) the asymptotic results of Janson [3,
Theorem 1.1], bound Cj, explicitly in terms of k, review the Landau-Kolmogorov inequality,
and recall an integral equation for f that is the starting point for our lower-bound results. In
Section 3 we establish the left-tail upper bounds on |f*)| for k& > 0 claimed in (3) and (5). In

Section 4, we establish the right-tail upper bounds on |f*)| for & > 0 claimed in (4) and (6).

Sections 5 and 6 derive the stated lower bounds on the left and right tails, respectively, of f
using an iterative approach similar to that of Janson [3] for the distribution function.

2 Preliminaries

2.1 Janson’s asymptotic bounds on F

The upper bounds in the following main Theorem 1.1 of Janson [3] are used in our proof of
the upper bounds in our Theorems 1.1 and 1.2.

» Proposition 2.1. Let v := (2 — 15)~ . As z — oo, the limiting QuickSort distribution
function F' satisfies

exp _67$+1n1n$+o(1) < F(_m) < exp |:—e'YZD+O(1):| s (9)

exp[—zlnz —zInlnz + O(x)] <1 — F(z) < exp[—zInz + O(x)]. (10)

2.2 Explicit constant bounds for absolute derivatives
We also make use of the following two results extracted from [2, Theorem 2.1 and (3.3)].

» Lemma 2.2. Let ¢ denote the characteristic function corresponding to f. Then for every
real p > 0 we have

l6(t)] < 20°F6P|¢|P for all ¢ € R.
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» Lemma 2.3. For every integer k > 0 we have

1 oo
suplF )| < 5o [ et jotolar

zeR =—00
Using these two results, it is now easy to bound f(¥).
» Proposition 2.4. For every integer k > 0 we have

sup |f(k)(x)| < 2k2+10k+17.
zER
Proof. For every integer k > 0 we have

sup | fF)(2)] < i/ 1" ()] dt

T€R = 2 t—=—

1 : "
o [ /| MO / _ |¢><t>|dt1

1 / 2(k+2)2+6(k+2)t72dt+/ ] dt
27 [t]>1 [t]<1

1

s

IA

IN

E24+10k+16 + 1 < 2k2+10k+17
k+1| — ’
as desired. <

2.3 Landau—-Kolmogorov inequality

For an overview of the Landau-Kolmogorov inequality, see [6, Chapter 1]. Here we state
a version of the inequality well-suited to our purposes; see [5] and [9, display (21) and the
display following (17)].

» Lemma 2.5. Let n > 2, and suppose h : (0,00) — R has n derivatives. If h and h™
are both bounded, then for 1 < k < n so is h'®). Moreover, there exist constants Cn ke (not
depending on h) such that the supremum norm || - || satisfies

IR < e I FM IREF, 1 <k <
Further, for 1 <k <mn/2 the best constants ¢y}, satisfy

2

2 k k

2.4 An integral equation for f

Fill and Janson [2, Theorem 4.1 and (4.2)] produced an integral equation satisfied by f,
namely,

flo)= [ _ zeRf(Z)f<x —glw) =1~ W) Lz au (11)

u
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3 Left Tail Upper Bound for Absolute Derivatives

The left-tail upper bound (5) in Theorem 1.2 can be written in the equivalent form that, for
each fixed integer k > 0, we have

lim sup (’yw—ln [—ln‘f(k)(—x)u) < 00, (12)

T—0o0

just as Janson’s left-tail upper-bound on F' in (9) can be written

limsup (yz — In[—In F'(—2)]) < oco. (13)

T—r00

In this section we prove (5) = (12) in the strengthened form LHS(3.1) < LHS(3.2), for which
the following proposition is clearly sufficient.

» Proposition 3.1. For each fized k > 0 we have

lim sup (— In [— In ’f(k)(—z)u +1In[—In F(—:c)}) <0. (14)

T—r00

Proof. Choosing any x and applying the Landau—Kolmogorov inequality Lemma 2.5 to the
function h defined for ¢ > 0 by h(t) := F(—x —t), we find for 0 < k < (n/2) — 1 that

[£09(—a)| < sup |10 (=t)|
t>x
etn 1" 1= [(k+1) /] (n—1) e
< [4(k+1)] [F(—x)] Egg f (—t)u :

For n > 2 we can bound the last supremum using Proposition 2.4 simply by

2(n—1)2+10(n—1)+17 _ 2n2+8n+8 < 27712. (15)

Thus the argument of the limsup in (14) can be bounded above by

k+1 Inag+(k+1)(Tnln2+1Inn)

—nl1—
. n —1In F(—2) ’

with ay, := [€?/(4(k + 1))]**1. Letting n = n(z) — oo with n(x) = o(e?*) and again using
the upper bound from (9), the claimed inequality follows. <

4 Right Tail Upper Bound for Absolute Derivatives

In this section we establish the next proposition, a right-tail analogue of Proposition 3.1,
which [by Janson’s right-tail upper bound on F in (10)] implies the following strengthened
form of (6):

limsup =~ * (arlnx +1n ‘f(k)(m)D <limsup ! (zlnz +1In[l — F(z)]) < cc.

T—0o0 T—>00

» Proposition 4.1. For each fized k > 0 we have

lim sup 2~ <ln ‘f(k)(x)‘ —In[l— F(:c)]) <0. (16)

T—r00
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Proof. Proceeding as in the proof of Proposition 3.1, for any = and any 0 < k < (n/2) — 1
we have

2

9| <[] i Fape sy

(k+1)/n
(k’ +1 t>x :|

7))

)

we again bound the third factor by (15).
Thus the argument of the limsup in (16) can be bounded above by

x_l[%(— In[1 — F(x)]) + Inax + (k4 1)("Tnln2 + Inn)],

again with ay, := [e?/(4(k+1))]**1. Letting n = n(w) satisfy n(z) = w(logz) and n(z) = o(z),
and now using the right-tail lower bound on F' from (10), the claimed inequality follows. <«

5 Left Tail Lower Bound on f

Our iterative approach to finding the left tail lower bound on f is similar to the method
used by Janson [3] for F. The following lemma gives us an inequality that is essential in this
section; as we shall see, it is established from a recurrence inequality. For z > 0 define

me = (_min 7 (@) A1,

z€[—2,0]

» Lemma 5.1. Given € € (0,1/10), let a = a(e) := —g (5 —€) > 0. Then for any integer

2
k > 2 we have

3 2k—2

Miq Z (26 m2a)

We delay the proof of Lemma 5.1 in order to show next how the lemma leads us to the
desired lower bound in (3) on the left tail of f by using the same technique as in [3] for F'.

» Proposition 5.2. As z — 0o we have

lnf(—:c) > _e'ya:+ln1na:+0(1).

Proof. By Lemma 5.1, for z > a we have

2[1/(1]—2 2m/a

> (263m2a) y

ez ez ([2]2) 2 o

provided e is sufficiently small that 2e3msy, < 1. The same as Janson [3], we pick € = 2~ /2

and, setting v = (2 — 15) 7}, get £ = 5 + O(z™!) and

In f(—z) > 2m22+0M) .y (26’ maq)
=1 tom) . (—% Inz +Inmsy, +1n 2)

> 76'yz+ln Inz+0(1)

Now we go back to prove Lemma 5.1:

Proof of Lemma 5.1. By the integral equation (11) satisfied by f (and symmetry in u about
u = 1/2), for arbitrary z and a we have

fhz—w=217ié@f@ﬁ(_z_“_“w‘“‘“”)i@Mw (17)

=0 Uu
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Since f is everywhere positive, we can get a lower bound on f(—z — a) by restricting the
range of integration in (17). Therefore,

L_Héfwv(‘z‘“_QW)_“

=—z u

1/2

f@z—@zzf

u=

_u)y>idydu. (18)

1_ e
272

—z—a—g(w-(1=wy -

We claim that in this integral region, we have —z, which is equivalent

toy+2z < ﬂ%gu(“). Here is a proof. Observe that when € is small enough and u € [3 — £, 3],
we have
—a—gw) _9(5-¢-9(3-%)
1 €
l—wu 2+5
€ 1 €
JsleG -9 _ e ‘21n<1 2¢ )‘
- 1 €
5+ 5 14 1+e
2
> 4e > 2
(1+€)
Also, in this integral region we have y + z < €2. So we conclude that y + z < 7‘11%915").

Next, we claim that 727‘179(2)7(17“)?’ < 0 in this integral region if z is large enough.

—z—a—g(w)—(1—w)y _

Here is a proof. Let —z 49 with § > 0. Then in the integral region we

haveOﬁy—i—z:W. Therefore
1
—a—g(u —a—gl(s5 2 1 1
oot Coss)_ 2 [0
272
2e 4e
< _
1—6‘21n<1 1—|—2e>‘
< 19€2,

where the last inequality can be verified to hold for € < 1/10. That means if we pick z large
enough, for example, z > 20€2, then —2=¢=9M=U=wWy _ __ | § will be negative. It can also
be verified that a > 30€? for e < 1/10.

Now consider € < 1/10, an integer k > 3, z € [(k — 2)a,(k — 1)a], and x = z 4+ a €
[(k — 1)a, ka]. Noting z > a > 30€% > 20€2, by (18) we have

u

2 .
z

f(=2)>2-—-m?.&.2> 2e3m%k71)a.

NN e

Further, for z € [0, (k — 1)a] we have
f(=2) > mg_1)a > 26%my_yy,

since 2¢3 < 1 and M—1)e < 1 by definition. Combine these two facts, we can conclude that
for « € [0, ka] we have f (—x) > 263m%k71)a. This implies the recurrence inequality

3,2
Mka 2 2€ m(kil)a.

The desired inequality follows by iterating:

2k72

22 > (263 'mga) . <

k—2_
)2 1 m2s

Mg > (263
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6 Right Tail Lower Bound on f

Once again we use an iterative approach to derive our right-tail lower bound. The following
key lemma is established from a recurrence inequality. Define

c:=2[F(1) — F(0)] € (0,2)
and

m,:= min f(z), z>0.
z€][0,z]

» Lemma 6.1. Suppose b € [0,1) and that 6 € (0,1/2) is sufficiently small that g(§) > b.
Then for any integer k > 1 satisfying

2+ (k—1)b < [9(5) — b/
we have
Moy gy > (c&)kilmg.

We delay the proof of Lemma 6.1 in order to show next how the lemma leads us to the
desired lower bound in (4) on the right tail of f.

» Proposition 6.2. As z — oo we have
f(z) > exp[—zlnz —zlnlnz + O(z)].

Proof. Given x > 3 suitably large, we will show next that we can apply Lemma 6.1 for
suitably chosen b > 0 and ¢ and k = [(z — 2)/b] > 2. Then, by the lemma,

F(@) = mairy > (e0) " mg > (c8) =2/ g, (19)

and we will use (19) to establish the proposition.
We make the same choices of ¢ and b as in [3, Sec. 4], namely, § = 1/(zIlnz) and
=1—(2/Inxz). To apply Lemma 6.1, we need to check that g(6) > band 2+ (k—1)b <
[g(0) — b]/d, for the latter of which it is sufficient that x < [g(d) — b]/6. Indeed, if z is
sufficiently large, then

g(6) >1+435lné=1— - (Inz+Inlnz) >1- %

where the elementary first inequality is (4.1) in [3], and so

9@) —b> s -3 2@z >0
and
g(d) =b < 1/Inz
0 ~1/(xlnzx)

Finally, we use (19) to establish the proposition. Indeed,

—In f(z)

%2 ln(%) —Ilnms

IN N

o (@) + In(Z)] —Inms

717(271n o) In(zlnz) + O(x).
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But
T
———In(x1
=2/ @ne)
1+ 2 40— )| tne+mma
_ 2 n nln
* Inz (log x)? v v
2 1 Inlnzx
= (x1 1+ — —_— 1
wina) |1+ 17240 ()| (1 )
Inlnx 2 2Inlnz 1
= (z1 1+ —+ —
(z nx)[ + Inx Jrlnx+ (Inx)? JrO((log:n)Q)]
2z 1nl
lenx+mlnlnx+2x+m+0( < )
Inz log x
=zlnz+zlnlnz + O(z).
So
—Inf(z) <zlnz+zhlnz+ O(x),
as claimed. <

Now we go back to prove Lemma 6.1, but first we need two preparatory results.

» Lemma 6.3. Suppose z>2,b>0, and § € (0,1/2) satisfy g(§) > b and z < [g(d) — b]/J.
Then

flz+b) >cdm,.

Proof. By the integral equation (11) satisfied by f (and symmetry in u about u = 1/2), for
arbitrary z and b we have

F(z 4+ 0) =2/ul/2/eRf(y)f (”b‘““;‘“‘“)y)idydu.

=0

Since f is positive everywhere, a lower bound on f (z + b) can be achieved by shrinking the
region of integration:

o rF —gu)—(1—-u
rernzz [ [0 g (AR gy,

PP (ztb—gu)—(1-uwy)1
2o [ [ u )
é

z+b—g(u)
m

1
—om. [ [ O 20)

1—u

The equality comes from a change of variables. We next claim that the integral of
integration for £ contains (0,z — 1), and then the desired result follows. Indeed, if u € (0, )
and £ € (0,z — 1) then

z—1 z2+b—g(u)
<z l<5 0 ===,

where the last inequality holds because b > 0 and g(u) < 1; and, because g(u) > ¢(d) and
g(0) > band z < [g(d) — b]/d, we have

_ b—g(u) _ b—g(u) b—g(u) _ b—g(d)
§>0=2z+— [+ =22 > 24 —2 [z 4+ —2]

>z 4 @) [, 4 be@)] s <
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» Lemma 6.4. Suppose b > 0 and that 0 € (0,1/2) is sufficiently small that g(§) > b. Then

for any integer k > 2 satisfying
2+ (k—1)b < [g(5) —b]/d
we have

Matkh = COMoy (k—1)b-

Proof. For y € [2+ (k — 1)b, 2 4 kb], application of Lemma 6.3 with z = y — b yields

fy) = comy_p > cdmay (e—1)p-

Also, for y € [0,2 + (k — 1)b] we certainly have

F(Y) = maye—1yp > cOmay (k1)

The result follows. |

We are now ready to complete this section by proving Lemma 6.1.

Proof of Lemma 6.1. By iterating the recurrence inequality of Lemma 6.4, it follows that

mairs > (€0)* tmayy.

Lemma 6.1 then follows since b < 1. |
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—— Abstract

The paper deals with load balancing between one-server queues on a circle by a local choice
policy. Each one-server queue has a Poissonian arrival of customers. When a customer arrives

at a queue, he joins the least loaded queue between this queue and the next one, ties solved
at random. Service times have exponential distribution. The system is stable if the arrival-to-
service rate ratio called load is less than one. When the load tends to zero, we derive the first
terms of the expansion in this parameter for the stationary probabilities that a queue has 0 to
3 customers. We investigate the error, comparing these expansion results to numerical values
obtained by simulations. Then we provide the asymptotics, as the load tends to zero, for the
stationary probabilities of the queue length, for a fixed number of queues. It quantifies the
difference between policies with this local choice, no choice and the choice between two queues
chosen at random.
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1 Introduction

1.1 A load balancing policy

The paper deals with the impact of choice between two neighbors in a large set of queues.
Load balancing is present in a wide literature and includes various policies as choice, offloading,
redundancy or work stealing ([6], [17], [8] and others) for example. The two-choice policy
is a well-known distributed way to improve load balancing. See [14] and [12] for one-server
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queues. For this policy, the arriving customers choose two queues at random and join the
shortest one, ties being solved at random. The paper focuses on the case where only local
choice can be processed. This case occurs in many applications with geographical constraints,
like vehicle-sharing systems or cloud computing.

1.2 The model

The model we present is called local choice model. Tt consists in a set of IV one-server queues
with infinite capacity where customers arrive at each queue according to independent Poisson
processes with rate A, which means that inter-arrival times are independent with exponential
distribution with parameter A. When a customer arrives at queue ¢, 1 <4 < N, he chooses
between queues i and ¢ + 1 the least loaded one and joins it. By convention, queue N + 1
is queue 1. If queues 7 and 7 4+ 1 have the same number of customers, he joins one of these
queues with probability 1/2. The service times are iid with exponential distribution with
parameter . When the customer is served, he leaves the system. All inter-arrival and service
times are independent. The load p is by definition \/pu.

1.3 The problem

The main issue addressed in the paper concerns the marginal distribution of the number
of customers in one queue at equilibrium for the local choice model. We investigate the
asymptotics of the stationary probabilities for one queue as the load tends to zero. The
number N of queues is fixed throughout the paper. We compare them with the same
quantities for the random choice model, where an arriving customer chooses two queues at
random and joins the least loaded one and the no choice model, where a customer who arrives
at queue ¢ is served at this queue.

The no choice model is simply N independent M/M/1 queues. The random choice model
is classical, see [14] and [12]. For p < 1, the limiting stationary tail probability, i.e. the limit
as N gets large of the stationary probability that a queue has more than k customers, is
doubly exponentially decreasing, more precisely is ka_l, k > 0. This doubly exponential
decrease is known in the literature as the power of choice. Indeed it is much smaller than the
tail probability p*, k > 0 in the no choice model as in the M/M/1 queue, the queue length
stationary distribution is geometric with parameter p. What is this tail probability for the
local choice model?

1.4 The results

They concern the local choice model previously described. In the paper, N is fixed and p < 1
to ensure the ergodicity of the queue length process. We consider the stationary probabilities
as analytical functions of parameter p. Based on some crucial arguments (see Lemmas 2
and 3), an induction procedure provides all the terms of the power series expansion. We
apply this procedure to find the first terms explicitly. Then, in the study of the marginal
distribution for one queue, it gives the first terms (at order 6) of the expansion in p of the
stationary probability that a queue has m customers, for small m (m < 3). This expansion
is an approximation for the stationary probability at light traffic, which is compared to
simulations.

The main result of the paper gives the asymptotics as p tends to 0 of the stationary
probability that a queue has m customers, for any m. It is claimed in Proposition 8 that
these asymptotics are 2p*™~1 for N = 2 and 12(p/2)*™~! for N > 3. It gives the rate of
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decay in parameter p of the stationary queue length at light traffic, which is p? for N = 2
and (p/2)? for N > 3. In other words, compared to the N independent M/M/1 queues, the
local choice model does not lead an improvement as large as in the random choice model
which is doubly exponential.

1.5 Related work

The choice between two queues at random among N one-server queues is well understood
for N large via mean-field method for the late 90’s with [14] and [12] and knows a great
interest in literature. Nevertheless, local choice is a quite challenging open problem in
queueing theory. As far as we know, very few papers investigate the problem. For this
model, where the underlying graph is linear, more precisely a circle, and more generally for a
graph G = (V, E), [7] gives an approximation of the steady-state queue length distribution
which seems numerically accurate compared to simulations. This approximation, called
pair-approximation, is obtained from the empirical measure on pairs of neighbors. It is a
mean field limit as the graph gets large. But this limit, solution of an ODE;, is hard to study
analytically. In [7], the expression of the ODE is explicitly given, but its equilibrium point is
investigated by numerical simulations.

The series expansion of the stationary probabilities in parameter p is the key tool in
[2] for the study of the JSQ model. Tt is the classical model of N queues, where arriving
customers join the shortest queue among all the queues. The paper gives asymptotics in

light traffic for the mean and the variance of the total number of customers at equilibrium.

Nevertheless the method to obtain them is quite different.

1.6 Related models

Some papers deal with such models, but without departure. They are called urn models in
computer science literature, and deposition models or crystal growth models in statistical
physics. The problems addressed in both cases are quite different.

THE URN MODEL. Urns are put at vertices of a finite graph G = (V, E) with |V| = N.

Arrival of balls are associated to edges. For each ball, an edge is chosen at random and
the ball is put in the least loaded of the two end-points of the edge. The problem of the
maximum number of balls per urn for N balls in N urns is investigated. The conclusion is
that the power of choice does not hold for d-regular graphs, d constant, as this maximum
is not in loglog N (see [10], also [3] and references therein). But the main difference with
our study is that we deal with the stationary regime. The poor load balancing result in the
urn problem might come from the fact that with N balls in N urns, the equilibrium is not
reached.

THE CRYSTAL GROWTH MODEL. In this model, consider N sites 1,..., N. There is
also no departure. Particles arrive at each site, say i, at rate A. If the two (respectively just
one or none) neighboring sites i — 1 and ¢ + 1 have more particles than site i, the arrival
rate at the site ¢ is B3, £1 and So, respectively. [9, 1, 5] give ergodic conditions for the shape
process, which is Markov. Our arrival process is a variant of this model in the special case
where Sy = 0 and B2 = 28; (see Section 2 for details). Note that if we extend the local
choice model, to the case where the customers, arriving at queue ¢, choose between the two
neighboring queues 7 and ¢ 4+ 1 with some probability « and do not choose otherwise, it will
still fit in this framework as a variant, but with Sy # 0.

22:3
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1.7 Outline

The paper is organized as follows. Section 2 gives the model description and the notations.
Section 3 leads to the induction procedure to obtain the power series expansion of the
stationary state probabilities of the model. Section 4 deals with the results for the marginal
distribution for one queue.

2 Model description and notations

Consider a system of N queues with infinite capacities, each of them served by one server at
rate p. In all the following, queue N + 1 means queue 1. The arrival rate at each queue is
A but the arriving customer at queue ¢ joins the least loaded queue between queues ¢ and
1+ 1, ties being solved at random. All inter-arrival and service times are independent with
exponential distribution. The i.i.d. Bernoulli variables with parameter 1/2 introduced to
solve the ties are independent of the previous random variables. By definition, p = A/ p.

2.1 The state process

For 1 < i < N, let X;(¢) be the number of customers at queue ¢ at time ¢t and X (¢) =
(Xi(t))1<i<n- The queue length process (X (t)):>0 is a Markov process on state space NV
with @Q-matrix @, given for n = (ny,...,ny) here and in all the following, by its non-negative
components, for 1 <i < N,

Q(n,n+e;) = Aci(n)

Qn,n —e;) = plp,>o
where ¢: N x NV — R, called the contribution function, quantifies the amount of arrivals
at the different queues and (e;)1<i<n is the canonical basis of RV,

For our local choice model, this contribution function is called local choice function and is

denoted by ¢!¢. Function ¢¢ at queue 4, depends only on the state of this queue and the two
neighboring queues ¢ — 1 and ¢ + 1 and is defined by

1
céc(n) = d(ni,ni_H) + d(ni,ﬂi_1) where d(k‘, l) = il{k:l} + ]l{k<l} (1)

with, by convention, ng = ny and nyy1 = ny. Dispatching function d is the basis of our
local choice model since it implements the load balancing policy: join the least loaded among
two neighboring queues.

» Remark. The local choice function ¢ can also be defined by
C'l'c(”) = w(A;_1n, —Ain),

7

in terms of the shape function A defined by n — An = (Ain,...,Axn) where Ajn =
n; —njt1, 1 < j < N and the so-called deposition function w given by

1
w(a,b) = 3 (Tga=o0} + Lo=0}) + L{as0} + Lip>0s a,b € Z. (2)

Note that the Gates-Wescott process studied in [5] is the shape process (AX (t)) for the
model without departure associated to the following deposition function

w(a,b) = B, 0y +1p50y5 @0 EZ, (3)

with By, #1 and (2 > 0.
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3 An algorithm to compute the stationary distribution

In this section we study, for N fixed, the queue length process (X (t)) at stationarity. We
prove first that (X (¢)) is ergodic for p < 1 if ¢ = ¢!°. See Proposition 1. For a general c, if
(X (t)) is ergodic, it has a unique invariant measure y = (y,, n € NV) on NV, solution of the
global balance equations

> y()Q(' ,n) =0, neNV. (4)

n’eNN

Our aim is not to solve these equations but rather look for an analytical solution for y of
the form

un(p) = ar(n)p*, n e NV,
k>0

Assuming the existence of € > 0 such that the solution of the global balance equations y,(p)

has a serie expansion for 0 < p < ¢, we prove that each oy, £ > 0, has a finite support.

See Lemma 4. Then we explain the algorithm to obtain by induction on k& > 0 the explicit
expressions of o and compute explicitely the first terms.

3.1 Ergodicity for c'

For local choice, contribution function c'® is given by equation (1). The following result gives
us the necessary and sufficient condition for ergodicity of the Markov state process (X (t)) in
this case.

» Proposition 1 (Ergodicity). For ¢ = ¢, the Markov process (X (t))i>0 is ergodic if p < 1
and transient if p > 1.

The proof based on Foster’s criterion is postponed in Appendix.

3.2 Power series expansion in p of the stationary probabilities

For p such that (X(t)) is ergodic, let y(p) = (yn(p),n € NV) be its invariant measure, the
unique solution of the global balance equations

N N
(St 2 3et t -
N

N
Z Ynte; (p) + 'DZ ]]-{m>0}ci(n - ei)yn—ei (p)7 ne NN (5)
=1

i=1
obtained by plugging the expression of ) in equation (4).

We look for an invariant measure (y,,,n € NV) satisfying the following condition.

(Hp) There exists € > 0, such that, for p € [0,¢[ and n € NV,
yn(p) can be written as a series expansion of the form

yn(p) = ar(n)p*. (6)

k>0
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» Remark. In all the following, (Hy) will be assumed. This question of analyticity of
stationary probabilities of a family of Markov chains depending on one parameter is the
major issue addressed by [16, Chapter IV] (see also [15, Chapter 7]). The main tool for
proving such analyticity is the Lyapunov function in Foster’s criterion for ergodicity. We
get a quadratic Lyapunov function to prove the ergodicity in Proposition 1 (see the proof
in Appendix A). But the dynamics of our model do not allow to apply the results of [16,
Chapter IV] or [15, Chapter 7], due to the contribution function part. This question is the
object of future work.

Moreover the following technical assumption

S et = 3 Yt p<e (7)

k>0 neNN neNN k>0

is used.

I as analyticity requires the existence of

» Remark. According to Proposition 1, for ¢ = ¢
the stationary measure, thus implicitly the ergodicity of process (X (t)), it holds that ¢ < 1.
Note that assumption (Hp) could have been written with 1 instead of . We introduce ¢ in
(Hy) of this form because some results in the following apply for more general ¢ than ¢/,

where the ergodicity condition can be written p < €.

Under assumption (Hp), for each n € NV, p s y,(p) is C> on [0,¢] and ax(n) =
yﬁ,k)(O) /k!. Taking the k-th derivative in the global balance equations (5) with respect to p
and evaluating it at p = 0, it holds that, for any n € NV and k € N*,

N
(Z ]l{ni>0}> ag(n) =
i=1
N
Zak n+e;) +211{m>0}cz(n76,)ak 1(n—e;) (ch )ak 1(n). (8)

=1 1=1 =1

3.3 Some crucial lemmas

Equation (8) allows us to prove that, for k fixed, oy has a finite support. It is the purpose
of Lemma 4. For that, we need to prove the two following technical lemmas. Lemma 2,
formulated with « for sake of simplicity, will be applied for each ay, k > 1. Before that, let
us introduce the following set

S eNY ny+na+...+ny =k} keN. (9)
» Lemma 2. Let a : NV — R and kg € N* be such that, for n = (ny,...,nx) with
|n|=ni+--+nn > ko,
(i) a(n) 20

(ii) the following recurrence equation holds,

N N
<Z ]]-{ni>0}> a<n) = Z a(n + ei)’ (10)
i=1 =1

(i) D, sk, @(n) <00
then, for all n such that |n| > ko, a(n) = 0.
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Proof. Let kg € N* be fixed. First, we claim that, for any k > ko,

3 Yawter= 3 (St Jato) )

ncAg i=1 neApy1 \i=1

Indeed, for n € Ay1, for i such that n; # 0, a(n) can be written as a(f + e;), for a unique
7 € Ag. The number of elements in Ay that can generate n when we add them to e; is exactly
equal to the number of non-zero coordinates n; of n, 1 < i < N. Therefore, equation (11)
holds.

Then we replace Zil a(n + ;) in the left-hand side of (11) by the left-hand side of
equation (10). It yields, for any k& > ko,

N N
neA, \i=1 neEAgy1 \i=1
Thus, for any k > ko,
N
> (z n{n,.>o}> alm =0 (12
neA, \i=1

where C' is non-negative due to (i) and independent of k. As Ziil Tin, >0y <N,

Z Na(n) > C.

neAg

IfC>0, > > a(n)diverges, since Y. a(n)> % > 0. But, this contradicts the

k>ko ne Ay neA
fact that >, |, >, @(n) < oo. Thus C' = 0. Using the fact that a(n) > 0 in equation (12),
for all n such that |n| > ko, a(n) = 0. <

The following lemma is a key argument for both computing the ax(n) (see Section 3.4)
and in the proof of Lemma 4.

» Lemma 3. The following property holds:

> ar(n)=0, k>o0. (13)

neNN

Proof. Permuting the sums, by equation (7), it holds that, for p < ¢,
(3 )= X (St ) = 3w -1
k>0 \neNN neNN \ k>0 neNN

as y(p) = (yn(p),n € NV) is a probability measure. The left-hand side of this equation is a
power series whose all the terms except the first one are null. It ends the proof. <

We can now prove the following result.

» Lemma 4. Let k € N. For alln, |n| >k, ax(n) =0.

22:7
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Proof. We prove this assertion by induction on k. Take k = 0. From equation (6), y,(0) =
ag(n). As the invariant measure for p = 0 (no arrival) is y,(0) = dg,, the Dirac mass
at (0,...,0) € NV denoted by Oy, the assertion is true for k = 0. Let k¥ € N be fixed.
If we suppose that the assertion holds for ¥’ < k, then Lemma 2, applied to a = a1
and kg = k + 1, guarantees that the assertion is true for k¥’ = k + 1. Indeed let us check
assertions (i), (ii) and (iii) for all n with |n| > k + 1. Let such a n be fixed. In equation (8),
A(pt1)—1(n) = qy1)—1(n — ;) = 0 since |n| > k and |n — e;| > k and induction assumption.
Therefore equation (8) is rewritten as equation (10), giving (ii). Moreover, by induction
assumption, in equation (6), agy1(n) represents the first possible non-zero coefficient for
yn(p). This coeflicient ag11(n) > 0, because otherwise, as
yn(p) ~p—0 Oék+1(n)0k+17
it would exist p such that y,(p) < 0, which is false as y(p) is a probability measure. It gives

(i). Eventually, by equation (13), 32, _(,, ) Qk+1(n) = 0and, as 3, g ary1(n) is
finite, then } =~ ;1 ak+1(n) is finite too, which is (iii). <

3.4 Induction procedure

The algorithm to obtain all the coefficients a(n) is an induction procedure on k > 0. We
use that ag = dp,, and key equation (8). For k > 1, assume that we know the coefficients
ag_1(n), for all n € NV and find the coefficients ax(n), n € NV. First, by Lemma 4,
ar(n) = 0 for |n| > k. Second we derive each coefficient ay(n) for n € Ay, defined by
equation (9), as the left-hand side of equation (8). Indeed, in the right-hand side of the same
equation, the first term is null due to Lemma 4. The other terms are known as coefficients
for k — 1. By the same procedure, we compute the ay(n) for n € Ax_;: Since n + e; € Ay,
we still know also the first term of the right-hand side of equation (8). Then we determine
the coefficients for n € Ax_2, n € Ap_3 and so on, until n € A;. It remains to compute the
last coefficient ay(0n). It is given by the additional equation (13) in Lemma 3.

» Remark. For Lemma 4 and the previous induction procedure, we do not use the specific
expression (1) of contribution function ¢. We just choose p in the domain of analyticity of
the y,,n € N¥. What follows remains valid for a general contribution function ¢ satisfying
the following additional assumptions

(Hy) For n € NV, ¢;(n) + - +en(n) = N.

(Hz) ¢ is invariant by cyclic permutation or reflection (reverse order).

More precisely, the second assumption means that, for such a permutation o on {1,2,..., N},
for n € NV and 1 <i < N, ¢,(;)(c(n)) = ci(n). These assumptions are obviously true for
the local choice function ¢ = c'® defined by equation (1).

3.5 Deriving the first terms

Let us derive the coefficients until order 3 under (Hp), (Hy) and (Hz). It is given by the
following proposition.

» Proposition 5. For k =0,

aO(n) = ]]-{n:ON}- (14)
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Fork=1,
al(ON) = —N,
ai(e;)) =1,1<i<N (15)
ai(n) =0 otherwise.

For k=2, fori,j€{1,2,..,N},

as(0n) :%(NQ—Ncl(el)),
as(e;) =-N, (16)
az(e; +e5) = cilej),

(

ag(n) = 0 otherwise.

For k=3, foralli,j,le{1,2,..,N},i#j,j#1 andl #1,

az(0n) == 0y @3(10)

as(e;) = 1(N? — Nci(er))

as(e; + ¢€;) = % Ef}vzl as(e; + e +ey) —3Nci(e;) )

s (2€;) =1 (N ciles)eiles + ) — 3Nei(es) )

as(ei +ej+e) =3(ciej)ale +e;) +cjle)ci(e; + er) (17)
Fa(ei)c (e + €:)),

a3(2e; + ¢€;) = 35 (cilej)eiles + e5) + cilei)e;(2e:))

as(3e;) = ci(e1)er(2er)

az(n) = 0 otherwise.

Proof. For p = 0, the solution is 4, (0) = 1{,,—0,}, which gives the coefficients for £ = 0. For
k =1,2 and 3, we use the method previously described and assumptions (Hy) and (Hs). <

Tt is interesting to notice that, for £k = 0 and 1, the coefficients «ay(n) do not depend
on the choice function c. It means that, for p sufficiently small, the choice policy does not
influence the system. For k > 4, the expressions become huge, which is not a problem if
performed numerically.

4  Marginal distribution for one queue

Our objective is to study the expansion of the stationary probability that queue 7, 1 <7 < N,
has m € N customers assuming an analytical solution for y. We give the series expansion
at order 6, for small m (m < 3), for the local choice contribution function. Moreover
we investigate the accuracy of this expansion, compared to numerical values obtained by
simulations. Then the main result of the section provides the first term of the expansion for
every m > 1.

As our system is invariant by cyclic permutation, by assumption (Hz), for m € N and
i € {1,..., N}, the probability that queue i has m customers does not depend on 4. This
probability, denoted by m,,(p), is given by

T (p) = > Yn(p)- (18)

n=(ni,...,nN),n1=m
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Under assumption (Hy) that y,(p) is analytical on [0, e[, 7 (p) has a series expansion, that
can be written as

Tm(p) =Y dr(m)p®, 0<p<e (19)
k>0

where ¢r(m) = 7r7(,]f)(0)/k! is given from equation (6) by

(M) = Lim<iy Z ag(m,ng,ng, ..., ny). (20)
na+nz+...+ny<k—m
4.1 Expansion for a general contribution function

Note that, in equation (20), ¢y, (m) is the first possibly non-null coefficient of the expansion
of 7, (p). This follows directly from Lemma 4. Moreover this coefficient is derived in the
following proposition, which also gives the third order expansion of the m,,’s.

» Proposition 6. If the choice function ¢ satisfies (Hp), (Hy) and (Hs), then

WO(P) =1- P
m(p) = p = cr(en)p? + (Nea(er) = Ty ealer +e5)eales) ) o° + O(p"), o
m2(p) = nlen)? — (Nesler) = iy caler + e)eales) ) o* + OpY),

mu(p) = (IS e1(Gen) ) o™ + O(p™+Y), m =3
where p tends to 0.

Proof. Equation (21) comes straightforwardly from equation (19) and two intermediate
results, Lemma 9 and Lemma 10, postponed in Appendix. Note that, as at equilibrium the
rates of incoming and outgoing customers are the same, i.e., N\ = Nu(l — mp), it gives
another way to obtain that mo(p) =1 — p. <

4.2 Expansions for the local choice contribution function

Equation (21) can be rewritten in the case of the local choice function ¢ = c¢ defined by
equation (1). It gives the following result.

» Corollary 7. For the local choice function c'¢, for N >3

3

mo(p) =1 - p, m(p) = p = 50"+ 0(p"),
3

m2(p) = 5'03 + 0(104)7 Tm(p) = O(p™ ), m > 2.

For N = 2, the coefficient 3/2 of p? is replaced by 2.

The main point is that ¢,,(m) is null in this case. The aim will be to find the first non
vanishing term of the expansion of m,,(p) for every m > 1. It is the purpose of Section 4.6.
Let us begin by giving more terms in the previous series expansion.
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(a) For m =1, 2 and 3, as a function of p. (b) For p =0.2, 0.4 and 0.5.

Figure 1 Invariant distribution 7 = (7m, m € N) of the number of customers in one queue for a
set of N queues with local choice.

4.3 Further expansions for the local choice function

As the amount of cases to analyze grows exponentially with k, it is rather difficult to obtain
further series expansions. The following expansions are obtained with help of mathematical
software. For that, we observe the following property, which remains to be proved, that for
each k € N, there exists No(k) such that if N > Ny(k), for each m > 1, ¢r(m) does not
depend on N. For small values of k, it is easy to see that this property holds, given the
recurrence equation and the local choice function. Using this, from global balance equations
(5) for some N sufficiently large, the following result holds. For p < 1 tending to 0,

mo(p) =1—p

m(p) =p - gp?’ + %p“ - gps %pﬁ O(p")
ma(p) = gpg — %p“ gff) — %pﬁ +0(p")
m3(p) = gps + %pﬁ +0(p")

mi(p) = O(p"), i>3.

4.4 Validation by simulation

In Figure 1, we investigate numerically the accuracy of the previous expansion. Recall that
7 is the stationary queue length distribution of any queue in this symmetric system of N
queues. In figure la, we plot m,, for m =0, 1, 2 and 3 as a function of p given by simulation
and by the series expansion at order 6. The conclusion is that the previous series expansion

gives a quite good approximation for small values of p (p < 0.3), reasonable for p < 0.4.

Figure 1b gives the distribution for different small values of p. It indicates that, as p increases,
the distribution deviates from a geometric distribution. Moreover, the series expansion gives
a quite good approximation for p < 0.4.

4.5 No choice policy: the case of independent queues

For the case where each queue receives independently customers at rate A and serves them
at rate p, the contribution function becomes c¢;(n) = 1, n € NV and i € N. We can easily
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verify that

N
= (—1)k=Inl 1
a(n) = (1) k— |n| In|<k
satisfies equation (8), where |n| = n; +...+ny. Using equation (20), we have for any r € N,
0<r <k,

otk =n = S (T (X))

=0
= (=1)"L<ay (22)

The term (N _2.2‘”"") comes from the fact that we need to distribute the remaining ¢ customers
in the remaining N —1 queues. The last equality, of the form a, = b, for all € N, is obtained
proving that the generating functions >, ., a,2, and > . b,z are equal by developing the
product

1

With straightforward algebra, plugging equation (22) in equation (19), we retrieve that the
stationary distribution 7 (p) = (7,,(p), m € N) for one queue is the geometric distribution
with parameter p, as each queue is a M /M /1 queue with arrival-to-service-rate ratio p = \/p.

4.6 Main result: Asymptotics for the stationary queue length
distribution in light traffic

Let us then present the main result.

» Proposition 8. For the local choice function !¢ defined by equation (1) and under as-
sumption (Hy), for m > 2, the stationary probability m,(p) that a queue has m customers
verifies
P 2m—1
12 <7) L O™ ifN>3
Tm(p) = 2
2p°™m=1 + O(p*™) if N =2

when p tends to zero.

Proposition 8 guarantees that, for p sufficiently small, the probability of having m
customers in the queue follows a geometric decay of parameter p?/4 as m grows. The
following table illustrates where the local choice is situated.

Table 1 Comparison of asymptotics for the stationary probability that a queue has more than &
customers in light traffic (as parameter p tends to 0) for different allocation policies, N > 3.

Allocation
policy Uk = Zkzk TTm
No-choice ~pm
Local choice ~ (p/2)2k—1
Random choice ~ ka—l
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As expected, the performance of local choice policy is between the other two policies.

However, for light traffic, its behavior is closer to no choice than to random choice. Indeed,
the two first asymptotics are exponential while the third one is double exponential in p.

The light-traffic asymptotics obtained in this paper are for the limit when ¢ tends to

400 first and then N tends to +o0, since the asymptotic result is independent of N for

N > 3, while from mean-field approximation for the random choice model the limit is when

N first and then ¢ tends to +00. The comparison we made is rigorous and justified by the

interchange of the order of these two limits, see [14].
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A Proof of Proposition 1

Proof. Assume that p < 1. We prove ergodicity by Foster’s criterion for Markov processes
based on a Lyapunov function (see for example [13, Proposition 8.14]). Here the Lyapunov
function f is quadratic, given by f(n) =ni+---+n%, n= (n1,...,nN).

Let us denote |n| = Zf\il n;. The infinitesimal generator is given by

Lf(n)= > Qn,n)(f(n') = f(n))

n’eNN

= Z Aci(n)(f(n+ei) = f(n)) + Tnsop(f(n — ) — f(n)), (23)

for f: N¥ — R with finite support. With straightforward algebra, using equation (1), it
holds that

nlclf(n) 4+t nNcll\C,(n) < |n| and clf(n) 4+t cll\cf(n) = N. (24)
This gives
N N
L(f)(n) =AY ) ((ni+1)° =nd) + Y Lnsol(ni — 1)> = nf) (25)
i=1 i=1

N N N N
= 2)\Zcéc(n)ni + )\Zcﬁc(n) — 2#2”1‘ + ”Z 1,50
i=1 i=1 i=1 i=1
<A+ p)N =2(p = A)n|.

By the equivalence of norms in RY there is a constant C' > 0 such that, for all n, \/f(n) <
C~'|n| where |n| =ny +--- +ny. Thus, if f(n) > K then |n| > CVK. Asp=\/u<1, K
can be chosen large enough to get v = —(A 4+ p)N + 2(u — \)CVEK > 0.

Thus, by equation (25), if f(n) > K then L(f)(n) < —y. Moreover the set F = {n €
NV, f(n) < K} is finite and the random variables supy<,<; f(X(s)) and fol L(f)(X(s))ds
are integrable. Indeed,

sup f(X(s)) < C72 sup |X(s)|* < C7*(Man([0,1])?
0<s<1 0<s<1
where the arrival process in the system, denoted by Ny, is a Poisson process with intensity
ANds, as the sum of the N independent Poisson processes with parameter A of arrivals at
the N queues. Using again equation (25),

/0 L(f)(X(5))ds < (A + p)N.

Thus, the Markov process (X (t));>0 is ergodic if p < 1.

If p > 1, we apply [13, Theorem 8.10], a simplified version of a Lamperti’s result, to
prove the transience of the embedded Markov chain (M,,) at jump times of (X (¢)). It
gives the transience of (X(t)). Let g be defined by g(n) = ny + -+ + ny. Using that
cé(n) + ...+ c¢(n) = N, see equation (24), for all n € NV,

N N
E.(9(My1) = g(n)) = Lg(n) = A Z ci(n) = u Y Loy = (A= p)N > 0.

i=1
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Moreover, for all n € NV,

En(lg(M1) —g(m)[?) = Y Q(n,n)|g(n’) — g(n)|?
neNN
N

:/\ch +le{n >0p < (A+ )N

i=1
thus sup,, v En(lg(M1) — g(n)|?) < oo. The sufficient conditions for applying [13, Theorem
8.10] hold. It ends the proof. <

B Two lemmas
» Lemma 9. For integer k, 0 < k < 3, the coefficients ¢.(m), m € N | are given by

#$0(0) =1, and ¢o(m) =0, m > 0,
$1(0) = =1, ¢1(1) =1 and ¢1(m) =0, m > 1,
$2(0) =0, ¢2(1) = —ci(e1), $2(2) = ci(e1) and ¢2(m) =0, m > 2,

#3(0) =0, ¢3(1) = —¢3(2) = Nei(er)

1(ex +ej)ca(ey),

H'MZ

#3(3) = c1(e1)e1(2e1) and ¢3(m) =0, m > 3.
Proof. We use, for k < 3, the expressions of oy given by Proposition 5 to compute ¢;. <«
» Lemma 10. For k > 1, ¢p(k) = ar(ker) = H?;ll c1(jer).
Proof. For k € N*, by equation (20), ¢r(k) = ax(ke1). Taking n = ke; in equation (8),

N
w(ker) = ag(ker +e;) + er((k — Der)ar—1((k — 1)er) — Noy_1 (ker).

=1

By Lemma 4, for any ¢, 1 <i < N, ag(ke; +¢;) = 0 and ax—1(ke;) = 0. It gives that
o (k) = c1((k — 1er)gp—1(k — 1).

This recurrence equation in ¢ (k) leads to the desired result, since ¢;(1) = 1. <

C Proof of Proposition 8

Proof. In the proof, the following definition will be used.

» Definition 11. The state n = (ny,...,ny) exists at order k if and only if, in equation (6),
ak(n) # 0.
First step. To prove Proposition 8, the first step is to obtain that, for a state n = (nq,...,nx)

existing at order k, the maximum possible queue length is [k/2]. Indeed, by Lemma 4, n
exists at order k only if |n| < k. Moreover, the following result holds.

» Lemma 12. Let k € N and n = (ny,...,ny) € NV, If |n] < k and ny > [k/2] then
ag(n) =0.

Proof. The following assertion is proved by induction on p > 0.
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(By,) For k € Nand n = (n;)1<i<n, if [n| =k —p and ny > [k/2] then ay(n) = 0.

Let us prove (Bp). Let k € N and n such that |n| = k and n; > [k/2]. As |n| = k, by
Lemma 4, for each 7, 1 <i < N, ag(n+e;) = ar—1(n) = 0. Thus equation (8) is rewritten as

N N
(Z ﬂ{ni>o}> ar(n) = Z L, >0yci(n — €;)a—1(n — ;). (26)
i—1

i=1

As In| < kand ny > [k/2], no +ny < k—ny < k— [k/2] < ny. Thus ny + ny <
k—[k/2] —1<ni —1.

It means that each neighboring queue of queue 1 has strictly less than n; — 1 customers.
Thus the contribution on queue 1 for our local choice function ¢ defined by equation (1)

gives ci°(n — e1) = 0 and equation (26) can be rewritten

N N
(Z ﬂ{ni>0}> ar(n) = Z ]l{m>0}clic(n —e))ap_1(n —e;). (27)
i=1

=2

Therefore, state n exists at order k only if there is 41 # 1 such that ag_1(n —e;;) # 0. But
|n —e;,| = k— 1 and we can repeat the previous arguments for k — 1 instead of k and n — e;,
instead of n, with (n —e;;)1 > [k/2] > [(k — 1)/2], and so on until we obtain nje;. In
conclusion, n exists at order k only if a,, (n1e1) # 0. It contradicts Lemma 10. Therefore
ag(n) = 0.

Assume now, for p > 1, that (B,—1) is true, and prove (B,). For that, let £ € N and n be
such that [n| =k —p and ny > [k/2]. By induction assumption (B,_1), applied to k and
n+e as|n+e|=k—(p—1),thentok—1andnas|n|=%k—1—(p—1), it holds that
ar(n+e;) = ag—1(n) = 0. Then the arguments used for (By) give that ay(n) = 0. It ends
the proof. <

One can then deduce easily the following result.

» Lemma 13. Let m be in N*. The first possibly non vanishing term of the expansion
when p tends to zero of the stationary probability ., (p) that a queue has m customers is

bam—1(m)p*™ L.

Proof. For m € N, by definition, see (19), mm(p) = 315 ér(m)p* with

or(m) = Z ag(m,na,...,ny).

n=(m,na,...,nAN)
[n|<k
If k < 2m — 1 then, for n = (m,ng,...,ny) such that |n| <k, ny =m > [k/2]. Thus, by
Lemma 12, all the ag(m, no,...,ny) in the right-hand side of the previous equation are null
for k < 2m — 1. It ends the proof. |

Second step. Moreover the states which exist at order k = 2m — 1 with one queue with
the maximum value m correspond just to two neighboring queues with m and j < m. It is
given by the following lemma.

» Lemma 14. If |n| <k =2m —1 (k odd), ny = m and there exists two distinct j and l,
different from 1, such that nj >0 and n; > 0 then ax(n) = 0.

Proof. The following assertion is proved by induction on p > 0
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(Bp) For k =2m — 1, m € N, for n such that |n| =k —p, ny =m, n; > 0 and n; > 0 with j
and [ distinct, different from 1, then ax(n) = 0.

Let us prove (By). Let k = 2m—1 and n chosen as indicated. As |n| = k, by Lemma 4, for each
i, 1 <i < N, one gets ax(n+e;) = ag—1(n) = 0. As before, using Lemma 2, equation (26)
holds. By assumption, as in the proof of Lemma 12, it holds that each neighboring queue
of queue 1 has strictly less than n; — 1 customers, which yields ¢;(n — e;) = 0. Thus
equation (26) can be rewritten equation (27). We conclude as in the proof of Lemma 12. <

Step 8. We distinguish two cases:
Case 1: N > 3. From equation (20) and applying Lemma 14,

m—1

m—1
(bgm_l(m) = Z Oézm_l(m, 1,0, 0) + Z agm_l(m, 0,...,0, Z) + Oézm_l(m, 0,..., O)
=1 =1
then by symmetry,

m—1
Gam—1(m) =2 om-1(m,4,0,...0) + azm_1(m,0,0,...0). (28)
i=1

This means that only these terms are non null. The rest of the proof consists in deriving
them.

Let ny and ngy be chosen as follows: ny; = (k+ 1)/2 and ny = (k — 1)/2. Using the same
arguments as in Lemma 12, equation (8) gives, for k = 2m — 1 with m integer and m > 2,

1
209 —1(m,m — 1,0,...,0) = §a2(m_1)(m —-1,m-1,0,...,0). (29)

Let k = 2m, and n = (m,m,0,...,0). For m € N, m > 2, as c&*(m,m — 1,0,...,0) = 1,
equation (8) gives

209, (m,m, 0, ...,0) = 2a9,;,—1(m, m — 1,0, ...,0). (30)

Combining equations (29) and (30), for m > 3,

aom—1(m,m—1,0,...,0) = %agm_g(m —1,m-2,0,...,0)

and then, using equation (17) to show that as(2,1,0,...,0) = 3/8, for m > 3,
1 3

aom—1(m,m—1,0,...,0) = WQS(Z 1,0,...,0) = Jom=T- (31)
Then, for n = (m, 1,0, ...,0), for 0 < i < m — 1, from equation (8),

2009 -1(m, 1,0, ...,0) = agm_1(m, i+ 1,0, ...,0).
By induction and using equation (31), for 0 <i < m — 1,

. 1 3 1

agm—1(m,,0,...,0) = Wagm,l(m,m -1,0,..,0) = Som—T gm—i=i" (32)
With similar arguments and then using equation (32) for i = 1,

@2m-1(m,0,0,...,0) = agm-1(m, 1,0, ...,0) + agm—_1(m,0,...,0,1) (33)

6 1

= 92m-19m-2°
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Plugging equations (31), (32) and (33) in equation (28),

m—2

3 3 1 6 1
(bszl(m) = 22277174 +2 ; 92m—1 9m—1—i + 22m—1 9m—2

m—1
6 1 1 12
= 92m-1 (Z om—1=i T 2m—2> = 92m-1

i=1
Using it in Lemma 13 gives the result.

Case 2: N = 2. With similar arguments, equation (28) is rewritten in this case

m—1

Pam—1(m) = Z ao2m—1(m, 1) + azpm—1(m,0).

i=1

while equations (29) and (30) become 2asg,,—1(m,m — 1) = as(m-1)(m —1,m — 1) and
209, (m, m) = 209, —1(m, m — 1). Following exactly the same lines as in case 1, one gets

m—1

1 1
¢2m71(m) = Z om—1—i + om—2 =2
i=1

It ends the proof. <
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