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Preface

The 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2018) was held in Uppsala, Sweden, June 25–29, 2018.

Analysis of algorithms is a scientific basis for computation, providing a link between
abstract algorithms and the performance characteristics of their implementations in the
real world. The general effort to predict precisely the performance of algorithms has come
to involve research in analytic combinatorics, the analysis of random discrete structures,
asymptotic analysis, exact and limiting distributions, and other fields of inquiry in computer
science, probability theory, and enumerative combinatorics. See http://aofa.cs.purdue.edu/ .

The Call for Papers invited papers in
analytic algorithmics and combinatorics,
probabilistic analysis of algorithms,
randomized algorithms.

We also welcomed papers addressing problems such as: combinatorial algorithms, string
searching and pattern matching, sublinear algorithms on massive data sets, network al-
gorithms, graph algorithms, caching and memory hierarchies, indexing, data mining, data
compression, coding and information theory, and computational finance. Papers were
also welcomed that address bridges to research in related fields such as statistical physics,
computational biology, computational geometry, and simulation.

Authors of selected accepted extended abstracts will be invited to submit full papers for
peer review to a special issue (published circa late 2019) of Algorithmica.

—James Allen (“Jim”) Fill and Mark Daniel Ward,
on behalf of the Program and Steering Committees

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Al-
gorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward
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Flajolet Lecture

The Philippe Flajolet Lecture Prize for outstanding contributions to analytic combinatorics
and analysis of algorithms is awarded every two years by the Analysis of Algorithms (AofA)
community—a community that owes its existence to Philippe Flajolet. The first Flajolet
Lecture was presented by Donald E. Knuth at the 25th International Conference on Probab-
ilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms in 2014 in
Paris, France, and the second one by Robert Sedgewick at the 27th AofA Conference in 2016
in Krakow, Poland.

At this year’s conference, Luc Devroye presented the third Flajolet Lecture, entitled
“OMG: GW, CLT, CRT and CFTP.”

The prize is named in honor and recognition of the extraordinary accomplishments of the
late Philippe Flajolet, who spent most of his scientific life at INRIA, France. Philippe is best
known for fundamental advances in mathematical methods for the analysis of algorithms. His
research laid the foundation of a subfield of mathematics now known as analytic combinatorics.
Analytic combinatorics is a modern basis for the quantitative study of combinatorial structures
(such as words, trees, mappings, and graphs), with applications to probabilistic study of
algorithms that are based on these structures. It also strongly influences research in other
scientific domains, such as statistical physics, computational biology, and information theory.
Flajolet’s work takes the field forward by introducing original approaches in combinatorics
based on two types of methods: symbolic and analytic. The symbolic side is based on the
automation of decision procedures in combinatorial enumeration to derive characterizations
of generating functions. The analytic side treats those functions as functions in the complex
plane and leads to precise characterization of limit distributions. Beyond these foundational
contributions, Philippe’s research opened new avenues in various domains of applied computer
science, including streaming algorithms, communication protocols, database access methods,
data mining, symbolic manipulation, text-processing algorithms, and random generation.
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Organization and Funding

Local organization of the conference was coordinated by Cecilia Holmgren (Uppsala University,
Sweden) and Sofie White (Uppsala, Sweden), in coordination with Program Committee
Chair Jim Fill (Johns Hopkins University, USA). The conference location was the Campus
Blåsenhus of Uppsala University.

Generous funding for the conference was provided by the Marcus Wallenberg Foundation
for International Scientific Collaboration and by the Swedish Research Council.
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OMG: GW, CLT, CRT and CFTP
Luc Devroye
School of Computer Science, McGill University, 3480 University St., Montreal, Canada H3A 0E9
http://luc.devroye.org/
lucdevroye@gmail.com

Abstract
After a brief review of the main results on Galton-Watson trees from the past two decades, we
will discuss a few recent results in the field.

2012 ACM Subject Classification Mathematics of computing → Trees, Mathematics of comput-
ing → Probability and statistics

Keywords and phrases Galton-Watson trees, applied probability, asymptotics, simply generated
trees
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Assumptionless Bounds for Random Trees
Louigi Addario-Berry
Department of Mathematics & Statistics, McGill University, 1005-805 Rue Sherbrooke O.,
Montréal, QC, H3A 2K6, Canada
http://problab.ca/louigi
louigi.addario@mcgill.ca

Abstract
Let T be any Galton-Watson tree. Write vol(T ) for the volume of T (the number of nodes), ht(T )
for the height of T (the greatest distance of any node from the root) and wid(T ) for the width
of T (the greatest number of nodes at any level). We study the relation between vol(T ), ht(T )
and wid(T ).

In the case when the offspring distribution p = (pi, i ≥ 0) has mean one and finite variance,
both ht(T ) and wid(T ) are typically of order vol(T )1/2, and have sub-Gaussian upper tails on
this scale. Heuristically, as the tail of the offspring distribution becomes heavier, the tree T
becomes “shorter and bushier”. I will describe a collection of work which can be viewed as
justifying this heuristic in various ways In particular, I will explain how classical bounds on
Lévy’s concentration function for random walks may be used to show that for any offspring
distribution, the random variable ht(T )/wid(T ) has sub-exponential tails. I will also describe
a more combinatorial approach to coupling random trees with different degree sequences which
allows the heights of randomly sampled vertices to be compared.

2012 ACM Subject Classification Mathematics of computing→ Trees, Mathematics of comput-
ing → Random graphs, Mathematics of computing → Probability and statistics

Keywords and phrases Random trees, simply generated trees
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Making Squares – Sieves, Smooth Numbers,
Cores and Random Xorsat
Béla Bollobás
University of Cambridge, Department of Pure Mathematics and Mathematical Statistics,
Wilberforce Road, Cambridge CB3 0WB, UK and University of Memphis, Department of
Mathematical Sciences, Memphis, TN 38152, USA
bb12@dpmms.cam.ac.uk

Abstract
Since the advent of fast computers, much attention has been paid to practical factoring algorithms.
Several of these algorithms set out to find two squares x2, y2 that are congruent modulo the
number n we wish to factor, and are non-trivial in the sense that x 6≡ ±y (mod n). In 1994, this
prompted Pomerance to ask the following question.

Let a1, a2, . . . be random integers, chosen independently and uniformly from a set {1, . . . x}.
Let N be the smallest index such that {a1, . . . , aN} contains a subsequence, the product of whose
elements is a perfect square. What can you say about this random number N? In particular,
give bounds N0 and N1 such that P(N0 ≤ N ≤ N1)→ 1 as x→∞. Pomerance also gave bounds
N0 and N1 with log N0 ∼ log N1.

In 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds of Pom-
erance, bringing them within a constant of each other, and conjectured that their upper bound
is sharp. In a recent paper, Paul Balister, Rob Morris and I have proved this conjecture. In the
talk I shall review some related results and sketch some of the ideas used in our proof.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases integer factorization, perfect square, random graph process
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Bootstrap Percolation and Galton–Watson Trees
Karen Gunderson1

University of Manitoba, 186 Dysart Road, Winnipeg MB R3T 2N2, Canada
karen.gunderson@umanitoba.ca

Abstract
A bootstrap process is a type of cellular automaton, acting on the vertices of a graph which are
in one of two states: ‘healthy’ or ‘infected’. For any positive integer r, the r-neighbour bootstrap
process is the following update rule for the states of vertices: infected vertices remain infected
forever and each healthy vertex with at least r infected neighbours becomes itself infected. These
updates occur simultaneously and are repeated at discrete time intervals. Percolation is said
to occur if all vertices are eventually infected. For an infinite graph, of interest is the random
setting, in which each vertex is initially infected independently with a fixed probability. I will
give some history of this process for infinite trees and present results on the possible values of
critical probabilities for percolation on Galton–Watson trees.

This talk is based on joint work with Bollobás, Holmgren, Janson, and Przykucki.

2012 ACM Subject Classification Mathematics of computing → Random graphs, Mathematics
of computing → Trees

Keywords and phrases bootstrap percolation, Galton–Watson trees
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Abstract
We survey current discussions about possibilities and risks associated with an artificial intelligence
breakthrough on the level that puts humanity in the situation where we are no longer foremost
on the planet in terms of general intelligence. The importance of thinking in advance about such
an event is emphasized. Key issues include when and how suddenly superintelligence is likely to
emerge, the goals and motivations of a superintelligent machine, and what we can do to improve
the chances of a favorable outcome.
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1 Introduction

In 1951, Alan Turing, in his Intelligent machinery, a heretical theory [41], anticipated many
of the key ideas in current artificial intelligence (AI) futurology:

My contention is that machines can be constructed which will simulate the behaviour
of the human mind very closely. [...] Let us now assume, for the sake of argument, that
these machines are a genuine possibility, and look at the consequences of constructing
them. [...] It seems probable that once the machine thinking method had started, it
would not take long to outstrip our feeble powers. There would be no question of the
machines dying, and they would be able to converse with each other to sharpen their
wits. At some stage therefore we should have to expect the machines to take control.

One of Turing’s collaborators at Beltchley Park, mathematician I.J. Good, later made a
related prediction, in a famous passage [13] from which the title of the present paper is partly
borrowed:

Let an ultraintelligent machine be defined as a machine that can far surpass all the
intellectual activities of any man however clever. Since the design of machines is one
of these intellectual activities, an ultraintelligent machine could design even better
machines; there would then unquestionably be an “intelligence explosion,” and the
intelligence of man would be left far behind. Thus the first ultraintelligent machine is
the last invention that man need ever make.
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The presently favored term for what Good called ultraintelligence is superintelligence:
a superintelligent machine is one that by far exceeds human performance across the full
range of relevant cognitive skills, including the mysterious-seeming quality we label creativity
or the ability to think outside the box. Defining an agent’s intelligence is of course not
straightforward, and no strict definition will be given here, but it can be thought of informally
as the ability to direct the world towards whatever goals the agent has. If a machine has at
least human-level such ability across more or less the full range of domains encountered by
humans, we speak of artificial general intelligence (AGI), and if its general intelligence
vastly exceeds that of humans, then it has superintelligence.

Is it really reasonable to expect superintelligence any time soon – let’s say before the
end of the present century? This is a highly controversial issue where expert opinions vary
wildly, and while I accept that the question is wide open, I also hold – as the first of my two
main claims in this paper – that the emergence of superintelligence is a sufficiently plausible
scenario to warrant taking seriously. This claim is defended in Section 2 on the possibility in
principle of superintelligence, and in Sections 3 and 4 on timelines.

The second main claim in this paper is that it is of great practical importance to think in
advance about safety aspects of a superintelligence breakthrough, because if those aspects
are ignored or otherwise mismanaged, the event might have catastrophic consequences to
humanity. Such risks are discussed in Section 5, aided mainly by the Omohundro–Bostrom
theory for instrumental vs final AI goals, which is explained in some detail. Ideas on how to
ensure a more benign outcome are briefly discussed in Section 6, and Section 7 offers some
concluding remarks.

2 The possibility in principle

Is a superintelligent machine possible in principle in the universe we inhabit? If a supernatural
human soul – or something else in that vein – exists, then all bets are out the window, so I
will ignore that possibility and instead focus on the case which is more amenable to rational
argument: a physical world in which all high-level phenomena, including the human mind,
are the result of particular arrangements of matter. Assuming this, the example of the human
brain demonstrates that there are arrangements of matter that gives rise to human-level
intelligence.

There are several independent ways to argue that the human brain is unlikely to be
anywhere near an optimal arrangement of mater for producing intelligence. One is to point to
the fact that our brain is the product of biological evolution, which viewed as an optimization
algorithm is a rather primitive local search approach, which in a setting as complex as
optimizing for intelligence is unlikely to find anything like a global optimum. Another
thing to point at is the extreme slowness of the nervous system compared to how the same
information processing might be carried out on a modern electronic computer. A third one
is the many obvious miscalibrations and biases our brain has [12], that might be corrected
for. See also Sotala [38] for further concrete examples of ways in which there is room for
improvement upon human intelligence.

So there are good reasons to believe that there are physical arrangements of matter that
produce intelligence far superior to the human brain, i.e., superintelligence. The argument
so far does not show that it can be implemented on a digital computer, but if we accept
the Church–Turing–Deutsch principle that a Turing-complete computing device can be used
to simulate any physical process [9], then there is an algorithm out there that achieves
superintelligence.
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This argument is not entirely watertight, because if the algorithm is based on simulating
the physical process on a very low level (say, the movement of elementary particles), then an
implementation of it on a digital computer may turn out to be so slow that it cannot be
recognized as superintelligent. But it seems plausible that more efficient implementations of
the system’s essential information processing should be possible. We note in passing that the
level of detail with which a human brain needs to be implemented on a digital computer to
capture its intelligence remains a highly open question [34].

While some uncertainty remains, considerations such as these strongly suggest the exist-
ence of algorithms that can be implemented on a digital computer to achieve superintelligence.
Husfeldt [24] accepts the existence of such an algorithm, calls it the monster in the library of
Turing, and suggests that it is prohibitively difficult to find such a monster. So even if we
accept its existence, we should still be open to the possiblity that the answer to the question
that the next section addresses – that of when we can expect a superintelligent machine –
is “never”. It might be that finding it requires – short of a thremodynamics-level mircle –
astronomical (or larger) amounts of brute force search, so in the next sections’s discussion on
when to expect the emergence of superintelligence, time t = ∞ will be considered a genuine
possibility.

3 When to expect superintelligence?

In view of the current surge of progress in AI for a wide range of applications such as speech
synthesis [37], board games [36] and autonomous vehicles [25], it may be tempting to read
this as a sign that AGI and superintelligence are just around the corner. We should not jump
too quickly to such conclusions, however. Many commentators, including recently Jordan
[26], emphasize a fundamental discontinuity between specialized AI applications and AGI –
the former should not in general be understood as stepping stones towards the latter – and
they may well be right. (On the other hand, see Yudkowsky [44] who points out that we
do not have strong evidence to conclude that AGI and superintelligence are not around the
corner.)

When looking at the history of AI, the contrast between the the extraordinary achieve-
ments in specialized AI applications and the much less impressive progress towards AGI is
striking. It is sometimes claimed that the latter has been literally zero, but that seems to
me a bit harsh. For instance, an AI was developed a few years ago that quickly learned to
successfully play a range of Atari video games [29]. As I admitted in [19], this is of course
a very far cry from the ability to handle the full range of tasks encountered by humans in
the physical and social world we inhabit; nevertheless, it is a nonzero improvement upon
having specialized skill in just a single video game. One possible path towards AGI, among
many, might be a step-by-step expansion of the domain in which the machine is able to act
intelligently.

We do not at present have very clear ideas on what approach to AI has the best potential
for realizing AGI. The main driver behind the rapid progress we see today in various AI
applications is the deep learning approach, which is essentially a rejuvenation and further
development of old neural network techniques that used to yield unimpressive results but
which in many cases work remarkably well today, thanks to faster machines and access to
huge training data sets. It is not, however, written in stone that deep learning will retain its
position as the dominant AI paradigm forever. Other potentially useful approaches that share
the black box feature of deep learning include genetic programming mimicking biological
evolution, and the brute force copying of the workings of the human brain in sufficient detail
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to reproduce its behavior. This last possibility is advocated enthusiastically by Kurzweil [27]
and discussed in more balanced fashion by Sandberg and Bostrom [34]. Alternatively, we
might see a revival of the non-black box approach of GOFAI (Good Old-Fashioned AI) with
explicit hand-coding of the machine’s central concepts and reasoning procedures. Or perhaps
some hitherto untried combination of these approaches, or something else entirely. It might
be that none of these will ever yield AGI, but the reasonable stance seems to be to at least
be open to the possibility that one of them might eventually accomplish that.

But when would that happen? This is highly uncertain, as illustrated by a survey by
Müller and Bostrom [30] of estimates by the world’s top 100 most cited AI researchers –
eatimates that are spread out all over the present century, and beyond. Not only is the
amount of between-individual differences large, the individually reported uncertainty ranges
also tend to be broad. Among the 29 who responded, the median of their estimates for the
time when human-level AGI can be expected to have arrived with probability 50% (given
that “human scientific activity continues without major negative disruption”) is 2050, with a
median estimate of 50% for the probability that superintelligence emerges within 30 years
later. More detailed but broadly consistent results are reported in the more recent survey
by Grace et al. [14]. Yet another expert survey is reported in what looks like a deliberate
attempt to downplay the importance of thinking ahead about AGI and superintelligence [11],
but see [8] for an effective rebuttal.

The short answer to the question of when to expect superintelligence is that we do not
know: experts are highly divided. In such a situation, it would be epistemically reckless to
have a firm belief about if/when superintelligence will happen, rather than prudently and
thoughtfully accepting that it may well happen within decades, or within centuries, or not at
all.

Yet, it is quite common to hear, even among commentators for whom the label “AI
expert” seems justified, dismissive attitudes towards the idea of a future superintelligence;
Dubhashi and Lappin [10] and Bentley [3] are typical examples (see [20] for my fair and
balanced response to the latter). Rarely or never do these commentators offer convincing
arguments for their view. So one might wonder what the actual reasons for their view is,
and although admittedly it is dubious to speculate on one’s disputant’s motives, I made a
brave attempt in [17] to suggest an explanation for their stance in terms of what I decided
to call vulgopopperianism, which I defined as the implicit attitude of someone who

(a) is moderately familiar with Popperian theory of science, (b) is fond of the kind
of asymmetry [appearing between the task of showing that all swans are white and
showing that at least one non-white swan exists], and (c) rejoices in claiming, whenever
he encounters two competing hypotheses one of which he for whatever reasons prefers,
some asymmetry such that the entire (or almost the entire) burden of proof is on
proving the other hypothesis, and insisting that until a conclusive such proof is
presented, we can take for granted that the preferred hypothesis is correct.

The superintelligence timing case can for instance be concretized as a choice between
two competing hypotheses (H1) and (H2), where (H1) is the hypothesis that achieving
superintelligence is hard in the sense of not being attainable (other than possibly by extreme
luck) by human technological progress by the year 2100. (H2) is the complementary hypothesis
that achieving superintelligence is comparatively easy in the sense of being within reach of
human technological progress (if allowed to continue unhampered) by 2100. A priori both
hypotheses seem reasonably plausible, and the presently available evidence of one over the
other is fairly weak (in both directions). This gives a vulgopopperian favoring (H1) the
opportunity to focus on the shortage of evidence for (H2) and thus declare (H1) the winner –
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while neglecting the shortage of evidence for (H1). This may be backed up with an analogy to
the swan example: just like we stick to the “all swans are white” hypothesis until a non-white
swan is encountered, we can stick with (H1) for as long as no superintelligence has been
produced [17]. I believe this example would (or at least should) have made Popper nervous,
because the idea behind his theory of falsificationism is to make science self-correcting [33],
while in the case of stubbornly sticking to (H1) the desired self-correction (in case (H1) is
wrong) is likely to materialize only the moment that superintelligence shows up and and it is
too late for us to avert an AI apocalypse – a scenario whose plausibility I will argue for in
Section 5.

4 How suddenly?

Related to, but distinct from, the question of when superintelligence can be expected, is
that of how sudden its emergence from modest intelligence levels is likely to be. Bostrom
[6] distinguishes between slow takeoff and fast takeoff, where the former happens over
long time scales such as decades or centuries, and the latter over short time scales such as
minutes, hours or days (he also speaks of the intermediate case of moderate takeoff, but
for the present discussion it will suffice to contrast the two extreme cases). Fast takeoff is
more or less synonymous with the Singularity (popularized in Kurzweil’s 2005 book [27])
and intelligence explosion (the term coined by I.J. Good as quoted in Section 1, and the
one that today is preferred by most AI futurologists). The practical importance of deciding
whether slow or fast takeoff is the more likely scenario is mainly that the latter gives us less
opportunity to adapt during the transition, making it even more important to prepare in
advance for the event.

The idea that is most often held forth in favor of a fast takeoff is the recursive self-
improvement suggested in the Good quote in Section 1. Once we have managed to create
an AI that outperforms us in terms of general intelligence, we have in particular that this
AI is better equipped than us to construct the next and improved generation of AI, which
will in turn be even better at constructing the next AI after that, and so on in a rapidly
accelerating spiral towards superintelligence. But is it obvious that this spiral will be rapidly
accelerating? No, because alternatively the machine might quickly encounter some point of
diminishing return – an “all the low-hanging fruit have already been picked” phenomenon.
So the problem of deciding between fast and slow takeoff seems to remain open even if we
can establish that a recursive self-improvement dynamic is likely.

Just like with the timing issue discussed in Section 3, our epistemic situation regarding
how suddenly superintelligence can be expected to emerge is steeped in uncertainty. Still, I
think we are at present a bit better equipped to deal with the suddenness issue than with
the timing issue, because unlike for timing we have what seems like a promising theoretical
framework for dealing with suddenness. In his seminal 2013 paper [43], Yudkowsky borrows
from economics the concept of returns on reinvestment, frames the AI’s self-improvement as
a kind of cognitive reinvestment, and phrases the slow vs fast takeoff problem in terms of
whether returns on cognitive reinvestment are increasing or decreasing in the intelligence level.
Roughly, increasing returns leads to an intelligence explosion, while decreasing returns leaves
the AI struggling to reach any higher in the tree than the low branches with no fruits left
on them. From that insight, a way forward is to estimate returns on cognitive reinvestment
based on various data sets, e.g, from the evolutionary history of homo sapiens, and think
carefully about to what extent the results obtained generalize to an AI takeoff. Yudkowsky
does some of this in [43], and leans tentatively towards the view that an intelligence explosion
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is likely. This may be contrasted against the figures from the Müller–Bostrom survey [30]
quoted in Section 3, which suggest that a majority of AI experts lean more towards a slow
takeoff. I doubt, however, that most of these experts have thought as systematically and as
hard about the issue as Yudkowsky.

5 Goals of the superintelligent AI: Omohundro–Bostrom theory

Consequences of an AGI breakthrough may turn out extremely beneficial to humanity, or
they may turn out catastrophic. A favorite example of the latter – cartoonish on purpose to
emphaisze that it is merely an example – is the so-called Paperclip Armageddon, which
dates back at least to 2003 [4]. Imagine a paperclip factory, which is run by an advanced (but
not yet superintelligent) AI, programmed to maximize paperclip production. Its computer
engineers are continuously trying to improve it, and one day, more or less by accident, they
manage to push the machine over the threshold where it enters the spiral of self-improvement
causing an intelligence explosion. Coming out of the explosion is the world’s first and only
superintelligent AI. Having retained its goal of maximizing paperclip production, it promptly
goes on to turn our entire planet (including us) into a giant heap of paperclips, followed
by an expansion into outer space in order to turn the rest of the observable universe into
paperclips. (For readers who feel repelled by the crude and seemingly farfetched character of
Paperclip Armageddon, I recommend the more subtle and elaborate but no less frightening
thought experiments offered by Armstrong [1] and Tegmark [40].)

Of course, AI futurology is not about randomly dreaming up weird scenarios, but about
reasoning as rigorously as the topic admits about what is plausible and what is likely. The
difficulty in evaluating whether an apocalypse along the lines of Paperclip Armageddon
might really happen lies not so much in what a superintelligent machine would be capable of
doing, but rather what it would be motivated to do. (For some vivid scenarios illustrating
the capability of a superintelligent AI, see, e.g., [42], [6] and [40].) Currently the only game
in town for going beyond mere speculations regarding a superintelligent AI’s goals and
motivations is what in my 2016 book [16] I decided to call the Omohundro–Bostrom
theory of final vs instrumental AI goals, honoring key contributions by Omohundro
[31, 32] and Bostrom [5, 6]. An agent’s final goal is what the agent values as an end in itself
rather than as a means towards achieving something else. An instrumental goal, in contrast,
is one that is set up as a stepping stone towards another goal.

(Some philosophers, such as Searle [35], are fond of saying that this whole approach
is confused, because computers cannot have goals. But the confusion is on their side, as
even heat-seeking missiles and thermostats have goals in the relevant sense. See [15] for my
detailed response to Searle.)

The two cornerstones of Omohundro–Bostrom theory are the orthogonality thesis
and the the instrumental convergence thesis. We begin with the former.

The Orthogonality Thesis: More or less any final goal is compatible with more or
less arbitrarily high levels of intelligence.

In his original formulation, Bostrom [5] omits the qualifier “arbitrarily high” (writing instead
“any”), but I prefer its inclusion so as not to have to bother with possible counterexamples
that combine low intelligence with conceptually advanced goals. He does, however, include
the qualifiers “more or less” (in both places), underlining the statement’s lack of mathematical
precision; it really does seem to be needed due to the kinds of counterexamples discussed
towards the end of this section.
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In response to the question “What will a superintelligent machine be inclined to do?”,
the Orthogonality Thesis on its own obviously isn’t of much help in narrowing down from
the useless answer “anything might happen”. It does, however, serve as an antidote to
naive (but fairly common; [22] is a typical example) anthropomorphisms such as “Paperclip
Armageddon is impossible, since having such a stupid goal would directly contradict the very
notion of superintelligence; surely someone who is superintelligent would realize that things
like human welfare and ecosystem preservation are more important than monomanically
producing ever-increasing numbers of paperclips,” which conflate intelligence with goals. The
Orthogonality Thesis helps remind us to distinguish between intelligence and goals.

More useful in terms of narrowing down on what a superintelligent machine can be
expected to do is the Instrumental Convergence Thesis, in combination with a collection of
concrete goals to which it applies.

The Instrumental Convergence Thesis: There are several instrumental goals
that are likely to be adopted by a sufficiently intelligent agent in order to pursue its
final goal, for a wide range of final goals and a wide range of circumstances.

Omohundro [31] and Bostrom [5] list several instrumental goals that they argue to be in the
range of applicability of the instrumental convergence thesis:

Self-preservation: if you continue to exist and are up and running, you will be in a
better position to work for your final goal compared to if you are turned off, so don’t let
anyone pull the plug on you!
Self-improvement: improvements to one’s own software and hardware design.
Acquisition of resources such as hardware, but also things like money in case the
agent operates in a world that is still dominated by the kind of economy we have today.
Goal integrity: make sure your final goal remains intact.

The instrumental goal of self-improvement plays a special role in the theory of intelligence
explosion discussed in Section 5, because it explains why, among the millions of other things
it might decide to do, we should not be surprised to see the AI choose to work its way up
the spiral of recursive self-improvement.

The value, for the purpose of pursuing a generic final goal, of the first three instrumental
goals on the list is more or less self-explanatory, but the fourth item on the list – goal
intrgrity – may warrant an explanation. As a simple example, imagine an AI with the goal
of maximizing paperclip production, and suppose that, perhaps triggered by some external
impulse, it starts to contemplate whether in fact ecosystem preservation might in fact be a
preferable goal to pursue, compared to maximizing paperclip production. Should it stick to
the old goal, or should it switch? In order to decide, it needs some criterion for which goal
is the better one. Since it hasn’t yet switched to the new goal, but is merely considering
whether to do so, it still has the paperclip maximization goal, so the criterion will be: which
goal is likely to lead to the larger number of paperclips? In all but some very contrived
circumstances, paperclip maximimzation will win this comparison, so the AI will stick to
that.

Equipped with Omohundro–Bostrom theory, we are in a position to understand that
a scenario like Paperclip Armageddon is not as far-fetched as it first might seem. The
Orthogonality Thesis helps us see that while paperclip maximization may seem bizarre to us
(because we have other goals), it need not look that way to the machine, who may instead
find goals like ecosystem preservation and promotion of human well-being utterly pointless.
The instrumental goal of self-improvement helps explain why the paperclip maximizer might
go through an intelligence explosion, and the instrumental goal of goal integrity explains why
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the machine can be expected to come out of the intelligence explosion with its monomaniacal
wish to produce paperclips intact.

A common objection to Paperclip Armageddon-like scenarios is that a superintelligent
machine will understand that its original human programmers did not intend it to turn the
observable universe into paperclips, and will therefore refrain from doing so. The mistake
here is to take for granted that “do things that please your programmers” is among the
machine’s goals. Every programmer today knows that whenever there is a discrepancy
between what the programmer intends and what appears literally in the computer code, it is
the latter that counts. Omohundro–Bostrom theory predicts that principle to remain true
for superintelligent machines. If that sounds like bad news, then perhaps a remedy might be
to make “do things that please your programmers” the machine’s final goal. Ideas in that
spirit are in fact being considered in contemporary work on AI risk. More on that in the
next section.

Before that, let me emphasize that while Omohundro–Bostrom theory is, for the time
being, an indispensable tool for reasoning about consequences of an AGI breakthrough, it
is also to some extent tentative. Its two cornerstones deal with messy concepts with fuzzy
boundaries, and they do not (as yet, in their present form) deserve the same epistemic status
as mathematical theorems that have been established once and for all. Therefore, predictions
derived from the theory should be treated with some degree of epistemic humility (which
is not to say that they can be dismissed out of hand). In my recent paper [18], I discuss a
variety of challenges to the validity and range of applicability of Omohundro–Bostrom theory
– in particular, the following three.

First, self-referentiality. Bostrom [5] points out that a superintelligent machine with
the final goal of being stupid (properly specified) is unlikely to remain superintelligent
for very long. Thus, for all practical purposes, the final goal of being stupid serves as a
counterexample to the Orthogonality Thesis. Given one counterexample, how can we stop a
wildfire of others? Some extra condition on the final goal needs to be found that excludes
the stupidity example and whose inclusion makes the Orthogonality Thesis true. An obvious
candidate is that the final goal cannot refer back to the machine itself, but the discussion in
[18] points towards the task of defining such self-referentiality being highly problematic.

Second, Tegmark’s physics challenge. Could other properties of a final goal, beyond
self-referentiality, have the potential to invalidate the conclusion of the Orthogonality Thesis?
A perhaps-too-obvious candidate is incoherence. What would it even mean for the machine
to act towards an incoherent goal? Tegmark [39] suggests that the class of incoherent goals
might be much bigger than we currently think:

Suppose we program a friendly AI to maximize the number of humans whose souls go
to heaven in the afterlife. First it tries things like increasing people’s compassion and
church attendance. But suppose it then attains a complete scientific understanding of
humans and human consciousness, and discovers that there is no such thing as a soul.
Now what? In the same way, it is possible that any other goal we give it based on our
current understanding of the world (“maximize the meaningfulness of human life”,
say) may eventually be discovered by the AI to be undefined.

Third, human values are a mess. If we believe that the Omohundro–Bostrom framework
captures something important about the goal structure of a sufficiently intelligent agent,
then we should also expect its neat dichotomy of final vs instrumental goals to be observable
in such agents. The most intelligent agent we know of is homo sapiens, but the goals of a
typical human do not seem to admit such a clearcut dichotomy [18].
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6 AI Alignment

Various attempts have been made to avoid Turing’s [41] conclusion (quoted in Section 1)
that in the presence of superintelligent machines, “we should have to expect the machines
to take control”, but none of them seem to provide a clearcut solution. Probably the most
studied such attempt is the so-called AI-in-a-box approach, which is to keep the machine
boxed in and unable to influence the world other than via a narrow and carefully controlled
communications channel. While this deserves further study, the present state-of-the-art
seems to point in the direction that such boxing-in is extremely difficult and can be expected
to work for at most a temporary and rather brief time period; see, e.g., [2] and [21].

It therefore makes sense to look into whether it is possible to accept that the superintelli-
gent AI takes control and still get a favorable outcome (whatever that means). For that to
happen, we need that the AI has goals that work out in our favor. Due to the instrumental
goal of goal integrity, discussed in Section 5, it is unlikely that a superintelligent AI would
allow us to tamper with its final goal, so the favorable goal needs to be installed into the AI
before it attains superintelligence. This is the aim of the AI Alignment research program,
formulated (under the alternative heading Friendly AI, which however is perhaps best
avoided as it has an unnecessarily anthropomorphic ring to it) in Yudkowsky’s seminal 2008
paper [42], and much discussed ever since; see, e.g., [6], [16] and [40].

Following Bostrom [6], we can think of AI Alignment as two problems: First, the difficult
technical problem of how to encode whatever the desired goals are and install them into
the AI – Bostrom calls this the value loading problem and “a research challenge worthy
of some of the next generation’s best mathematical talent”. Second, the ethical problem of
what the desired goals are, who gets to determine them, and via what procedure (democratic
or otherwise). We probably do not want to leave it to a small group of AI developers in
Silicon Valley or elsewhere to decide on the fate of humanity for the rest of eternity. Most
thinkers in this field (including Yudkowsky [42] and Bostrom [6]) seem to agree that rather
than explicitly hand-coding the values we wish the AI to have, an indirect approach is better,
where somehow the AI is instructed to figure out what we want – or even better, what we
would have wanted if we were more knowledgable and ethically mature, and had more time
to think about it.

A key insight going back at least to Yudkowsky [42] is that human values are highly fragile,
in the sense that getting them just a little bit wrong can bring catastrophic consequenecs
in the mighty hands of a superintelligent AI. There may also be a tension between what is
good for humanity and what is good in a less anthropocentric and possibly more objective
sense: for instance, the goal “maximize the amount of hedonic utility in the world” might in
a sense be very good for the universe, but is also likely to lead to the prompt extinction of
humanity, as our bodies and brains are probably very far from optimizing the amount of
hedonic utility per kilogram of matter.

Solving the AI Alignment problem should in my opinion be a high on the list of today’s
most urgent research tasks, but not for the reason that AGI and superintelligence would
be likely to emerge during the next few years (although see [44]). Rather, even if they are
decades away, the problem may well be so difficult that we need those decades to solve it,
with little or no room for procrastination.

7 Concluding remarks

Let me conclude with the following remarks.
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1. The reader may have noticed the discrepancy between Turing’s [41] use of plural in
talking about “machines [taking] control”, and my use of singular when talking about
the superintelligent AI. My choice of singular is due to what Bostrom [6] speaks of as
“decisive strategic advantage”: especially in case of a fast takeoff, the first machine to
attain superintelligence can be expected to take control in such a way as to prevent
other machines from challenging its power monopoly. But this outcome is not certain,
and Bostrom devotes a chapter also to what he calls multipolar outcomes, with no such
monopoly. Such an outcome might arise if AGI is first attained via brain emulations, at
a time when our understanding of the human brain is still not good enough to enable
us to tweak with the emulations much beyond what we already do to our brains today;
Hanson [23] offers a rich and fascinating account of the many societal exotica that such a
breakthrough might lead to.

2. Creating superintelligence is of course difficult, but creating superintelligence and AI
Alignment may be even more difficult. This means that if several actors (companies or
countries) compete over being the first (and probably only) one to create superintelligence,
there may be an incentive to cut corners on the AI Alignment task or maybe even ignore
it altogether. Such a situation would be terribly dangerous (see, e.g., Miller [28] and Cave
and ÓhÉigeartaigh[7]), and should be avoided, e.g., by creating a spirit of international
cooperation rather than competition. That is possibly easier said than done.

3. Apart from superintelligence there are many other problems about the future of AI
that we urgently need to deal with, concering, e.g., integrity and mass survelliance, the
social consequences of sexbot technology, autonomous weapons arms races, or the effects
of automation on unemployment. It is sometimes suggested that the superintelligence
discourse in AI futurology is a dangerous distraction from these other problems; see, e.g.,
Dubhashi and Lappin [10]. I agree that these other problems are extremely important,
but I do not agree that this means that we should ignore superintelligence. It would
be bad if we managed to navigate all those more down-to-earth societal problems with
AI, only to end up being turned into into paperclips. We need to deal with all of these
problems, including superintelligence.
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Abstract
Consider a random permutation drawn from the set of permutations of length n that avoid a
given set of one or several patterns of length 3. We show that the number of occurrences of
another pattern has a limit distribution, after suitable scaling. In several cases, the limit is
normal, as it is in the case of unrestricted random permutations; in other cases the limit is a
non-normal distribution, depending on the studied pattern. In the case when a single pattern of
length 3 is forbidden, the limit distributions can be expressed in terms of a Brownian excursion.

The analysis is made case by case; unfortunately, no general method is known, and no general
pattern emerges from the results.
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1 Introduction

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ :=
⋃
n≥1 Sn. If σ =

σ1 · · ·σm ∈ Sm and π = π1 · · ·πn ∈ Sn, then an occurrence of σ in π is a subsequence
πi1 · · ·πim , with 1 ≤ i1 < · · · < im ≤ n, that has the same order as σ, i.e., πij < πik ⇐⇒
σj < σk for all j, k ∈ [m]. We let nσ(π) be the number of occurrences of σ in π, and note
that∑

σ∈Sm

nσ(π) =
(
n

m

)
, (1)

for every π ∈ Sn. For example, an inversion is an occurrence of 21, and thus n21(π) is the
number of inversions in π.

We say that π avoids another permutation τ if nτ (π) = 0. Let

Sn(τ) := {π ∈ Sn : nτ (π) = 0}, (2)
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the set of permutations of length n that avoid τ . More generally, for any set T = {τ1, . . . , τk}
of permutations, let

Sn(T ) = Sn(τ1, . . . , τk) :=
k⋂
i=1

Sn(τi), (3)

the set of permutations of length n that avoid all τi ∈ T . We also let S∗(T ) :=
⋃∞
n=1 Sn(T )

be the set of T -avoiding permutations of arbitrary length.
The classes S∗(τ) and, more generally, S∗(T ) have been studied for a long time. For

examples relevant to analysis of algorithms, see e.g. [13, Exercise 2.2.1-5] (π can be obtained
by a stack if and only if π ∈ Sn(312); equivalently: π is stack-sortable if and only if
π ∈ Sn(312)); [13, Exercise 2.2.1-10,11] and [17] (π is deque-sortable if and only if π
π ∈ Sn(2431, 4231); [16] (π can be sorted by 2 parallel queues if and only if π ∈ Sn(321).
Further examples are given in [15], Exercises 6.19 x (321), y (312), ee (321), ff (312), ii
(231), oo (132), xx (321); 6.25 g (321); 6.39 k, l ({2413, 3142}), m ({1342, 1324}); 6.47 a
({4231, 3412}); 6.48 (1342). See also [3].

In particular, one classical problem is to enumerate the sets Sn(T ), either exactly or
asymptotically, see e.g. [3, Chapters 4–5] and [14].

The general problem that concerns us is to take a fixed set T of one or several permutations
and let πT ;n be a uniformly random T -avoiding permutation, i.e., a uniformly random element
of Sn(T ), and then study the asymptotic distribution of the random variable nσ(πT ;n) (as
n→∞) for some other fixed permutation σ. (Only σ that are themselves T -avoiding are
interesting, since otherwise nσ(πT ;n) = 0.)

Here we study the cases when T is a set of permutations of length 3. The cases when T
contains a permutation of length ≤ 2 are trivial, since then there is at most one permutation
in Sn(T ) for any n. The case of forbidding one or several permutations of length ≥ 4 seems
much more complicated, but there are recent impressive results for Sn(2413, 3142) (separable
permutations) by Bassino, Bouvel, Féray, Gerin, and Pierrot [2], with generalizations to some
other classes in [1].

There are 26 = 64 sets T of permutations of length 3. Of these, every T that contains
{123, 321}, and every T with |T | ≥ 4 is trivial, in the sense that Sn(T ) contains at most
2 elements for any n ≥ 5 (see [14]). Ignoring these cases, there are 1 + 6 + 14 + 16 = 37
remaining cases (with |T | = 0, 1, 2, 3, respectively), and by symmetries, see Appendix A,
these reduce to 1 + 2 + 4 + 4 = 11 non-equivalent cases, which are treated in Sections 2–12.
For further details, see [12], [8], [9], [10]; these papers also contain further references to
related work, and to some of the many papers by various authors that study other properties
of random τ -avoiding permutations.

The cases studied here, i.e., the non-trivial cases with T ⊂ S3, all have asymptotic
distributions of one of the following two types.

I. Normal limits: For every σ ∈ S∗(T ), there exists constants α, β, γ such that, as n→∞,

nσ(πT ;n)− βnα

nα−1/2
d−→ N

(
0, γ2), (4)

with convergence of all moments. Furthermore, assuming |σ| ≥ 2, γ2 > 0, so the limit is
not deterministic, except possibly for one σ ∈ Sm(T ) for each length m ≥ 2.
In particular, Enσ(πT ;n) ∼ βnα. Note that (4) implies concentration, in the sense

nσ(πT ;n)
Enσ(πT ;n)

p−→ 1. (5)
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Table 1 The table shows whether nσ(πT ;n) has limits of type I or II; furthermore, the exponent
α = α(σ) is given in the column for the type. The last column shows the exceptional cases, if any,
where the asymptotic variance vanishes. Cn := 1

n+1

(2n
n

)
is a Catalan number; Fn+1 is a Fibonacci

number (F0 = 0, F1 = 1); sn−1 is a Schröder number; D(σ) is the number of descents and B(σ) is
the number of blocks in σ.

T |Sn(T )| type I type II as. variance = 0
∅ n! |σ|
{132} Cn (|σ|+D(σ))/2 m · · · 1
{321} Cn (|σ|+B(σ))/2 1 · · ·m
{132, 312} 2n−1 |σ|
{231, 312} 2n−1 B(σ) 1 · · ·m
{231, 321} 2n−1 B(σ) 1 · · ·m
{132, 321}

(
n
2

)
+ 1 |σ|

{231, 312, 321} Fn+1 B(σ) 1 · · ·m
{132, 231, 312} n |σ|
{132, 231, 321} n |σ| − 1 or |σ| 1 · · ·m
{132, 213, 321} n |σ|
{2413, 3142} sn−1 |σ|

II. Non-normal limits without concentration: For every σ ∈ S∗(T ), there exists a constant
α such that

nσ(πT ;n)
nα

d−→Wσ, (6)

with convergence of all moments, for some random variable Wσ > 0. Hence, also
nσ(πT ;n)
Enσ(πT ;n)

d−→W ′σ, (7)

with convergence of all moments, for some random variable W ′σ > 0 (necessarily with
EW ′σ = 1). Furthermore, assuming |σ| ≥ 2, VarWσ > 0, so Wσ and W ′σ are not
deterministic, except possibly for one σ ∈ Sm(T ) for each length m ≥ 2.

I Remark. In all cases studied here, if there are any exceptional σ ∈ S∗(T ) with σ ≥ 2
such that the limit in (4) or (6) is deterministic, i.e., the asymptotic variance is 0, then the
exceptional σ are either all identity permutations 1 · · ·m, or all decreasing permutations
m · · · 1. Furthermore, these exceptional cases arise because almost all of the

(
n
|σ|
)
patterns in

πT ;n of length |σ| are occurrences of σ; more precisely, E
((

n
|σ|
)
− nσ(πT ;n)

)
= O

(
n|σ|−1) for

the exceptional cases of type I and O
(
n|σ|−1/2) for the cases of type II. (It follows that (5)

holds also for the latter.)
We summarize the results for T consisting of permutations of length 3 in Table 1; for

reference, we include the number |Sn(T )| of T -avoiding permutations of length n, see e.g.
[13, Exercises 2.2.1-4,5], [15, Exercise 6.19ee,ff], [3, Corollary 4.7], and [14]. We include also
the case T = {2413, 3142} from [2]; see [17] for the enumeration.

We see no obvious pattern in the existence of limits of type I or II in Table 1. Moreover,
the proofs, sketched below, are done case by case; we have not succeeded to prove any general
results, treating all (or at least some) forbidden sets T at the same time.
I Remark. We do not know whether a general set of forbidden permutations T has limits
in distribution of nσ(πT ;n) (after normalization) at all, and even if limits exist, there is no
known reason implying that they have to be of type I or II above; other types of limits are
conceivable.
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I Remark. The non-normal limits in the cases {132}, {321} and {2413, 3142} can all be
expressed as functionals of a Brownian excursion e, see [8, 9, 2]. However, the expressions in
these three cases are, in general, quite different (and obtained by quite different arguments),
so there is no obvious hope for a unification. (The other cases of non-normal limits in Table 1
are different, and of a more elementary kind.)

1.1 Some notation
Let ι = ιn be the identity permutation of length n.

If σ ∈ Sm and τ ∈ Sn, their composition σ ∗ τ ∈ Sm+n is defined by letting τ act on
[m + 1,m + n] in the natural way; more formally, σ ∗ τ = π ∈ Sm+n where πi = σi for
1 ≤ i ≤ m, and πj+m = τj + m for 1 ≤ j ≤ n. We say that a permutation π ∈ S∗ is
decomposable if π = σ ∗ τ for some σ, τ ∈ S∗, and indecomposable otherwise; we also call an
indecomposable permutation a block.

It is easy to see that any permutation π ∈ S∗ has a unique decomposition π = π1 ∗ · · · ∗π`
into indecomposable permutations (blocks) π1, . . . , π`; we call these the blocks of π. (These
are useful to characterize the permutations in some of the classes below.)

2 No restriction, T = ∅

As a background, consider first the case T = ∅, so Sn(T ) = Sn; the set of all n! permutations
of length n. It is well-known, see Bóna [4, 5] and [12, Theorem 4.1], that if πn is a uniformly
random permutation in Sn, then nσ(πn) has an asymptotic normal distribution as n→∞
for every fixed permutation σ:

I Theorem 1 (Bóna [4, 5]). If |σ| = m ≥ 2 then, as n→∞, for some γ2 > 0,

nσ(πn)− 1
m!
(
n
m

)
nm−1/2

d−→ N
(
0, γ2). (8)

Sketch of proof. A random permutation πn can be obtained by taking i.i.d. random variables
X1, . . . , Xn ∼ U(0, 1) and considering their ranks. Then

nσ(πn) =
∑

i1<···<im

f
(
Xi1 , . . . , Xim

)
(9)

for a suitable (indicator) function f . This sum is an asymmetric U -statistic, and the result
follows by general results on U -statistics, see [6] and [11]. J

I Remark. The asymptotic variance γ2 depends on σ. It can be calculated explicitly, and
the same holds for all parameters γ2 (or µ) in the limit theorems below. Moreover, the
convergence (8) holds with convergence of all moments, and it holds jointly for any set of σ;
also this holds for all later limit theorems too.

3 Avoiding 132

Consider next the cases when T consists of a single permutation of length 3. The symmetries
in Appendix A leave two non-equivalent cases. In this section we avoid T = {132}; equivalent
cases are {213}, {231}, {312}. Recall that the standard Brownian excursion e(x) is a random
non-negative function on [0, 1]. Let

λ(σ) := |σ|+D(σ) (10)
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where D(σ) is the number of descents in σ, i.e., indices i such that σi > σi+1 or (as a
convenient convention) i = |σ|. Note that 1 ≤ D(σ) ≤ |σ|, and thus

|σ|+ 1 ≤ λ(σ) ≤ 2|σ|, (11)

with the extreme values λ(σ) = |σ|+ 1 if and only if σ = 1 · · · k, and λ(σ) = 2|σ| if and only
if σ = k · · · 1, for some k = |σ|.

I Theorem 2 ([8]). There exist strictly positive random variables Λσ such that as n→∞,

nσ(π132;n)/nλ(σ)/2 d−→ Λσ. (12)

Sketch of proof. The analysis is based on a well-known bijection with binary trees and Dyck
paths, and the, also well-known, convergence in distribution of random Dyck paths to a
Brownian excursion. For (not so simple) details, see [8]. J

The limit variables Λσ in Theorem 2 can be expressed as functionals of a Brownian
excursion e(x), see [8]; the description is, in general, rather complicated, but some cases are
simple. Moments of the variables Λσ can be calculated by a recursion formula given in [8].

I Example 3. In the special case σ = 12, Λ12 =
√

2
∫ 1

0 e(x) dx, see [8, Example 7.6]; this
is (apart from the factor

√
2) the well-known Brownian excursion area, see e.g. [7] and the

references there.
For the number n21 of inversions, we thus have(
n
2
)
− n21(π132;n)
n3/2 = n12(π132;n)

n3/2
d−→ Λ12 =

√
2
∫ 1

0
e(x) dx. (13)

By symmetries, see Appendix A, the left-hand side can also be seen as the number of
inversions n21(π231;n) or n21(π312;n), normalized by n3/2, where we instead avoid 231 or 312.

4 Avoiding 321

In this section we avoid T = {321}. The case T = {123} is equivalent.
Sn(321) is treated in detail in [9]. As for Sn(132) in Section 3, the analysis is based

on a well-known bijection with Dyck paths, but the details are very different, and so are in
general the resulting limit distributions.

I Theorem 4 ([9]). Let σ ∈ S∗(321). Let m := |σ|, and suppose that σ has ` blocks of
lengths m1, . . . ,m`. Then, as n→∞,

nσ(π321;n)/n(m+`)/2 d−→Wσ (14)

for a positive random variable Wσ that can be represented as

Wσ = wσ

∫
0<t1<···<t`<1

e(t1)m1−1 · · · e(t`)m`−1 dt1 · · · dt`, (15)

where wσ is positive constant.

Sketch of proof. As for Theorem 2, the analysis is based on a bijection with Dyck paths,
and the convergence in distribution of random Dyck paths to a Brownian excursion. For
details, see [8]. J
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In this case, we have an explicit general formula (15) for the limit variables. On the
other hand, we do not know how to compute even the mean EWσ in general; see [9] for
calculations in various special cases.

I Example 5. Let σ = 21. Then w21 = 2−1/2, see [9], and thus (14)–(15), with ` = 1 and
m1 = m = 2, yield for the number of inversions,

n21(π321;n)
n3/2

d−→ 2−1/2
∫ 1

0
e(x) dx. (16)

Note that the limit in (16) differs from the one in (13) by a factor 2.

5 Avoiding {132,312}

In this section we avoid T = {132, 312}. Equivalent sets are {132, 231}, {213, 231}, {213, 312}.

I Theorem 6. For any m ≥ 2 and σ ∈ Sm(132, 312), as n→∞,

nσ(π132,312;n)− 21−mnm/m!
nm−1/2

d−→ N
(
0, γ2). (17)

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent formulation) that
a permutation π belongs to the class S∗(132, 312) if and only if every entry πi is either
a maximum or a minimum. We encode a permutation π ∈ Sn(132, 312) by a sequence
ξ2, . . . , ξn ∈ {±1}n−1, where ξj = 1 if πj is a maximum in π, and ξj = −1 if πj is a minimum.
This is a bijection, and hence the code for a uniformly random π132,312;n has ξ2, . . . , ξn i.i.d.
with the symmetric Bernoulli distribution P(ξj = 1) = P(ξj = −1) = 1

2 .
Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm. Then πi1 · · ·πim is an occurrence of σ in

π if and only if ξij = ηj for 2 ≤ j ≤ m. Consequently, nσ(π132,312;n) is a U -statistic

nσ(π132,312;n) =
∑

i1<···<im

f
(
ξi1 , . . . , ξim

)
, (18)

where

f
(
ξ1, . . . , ξm

)
:=

m∏
j=2

1{ξj = ηj}. (19)

Note that f does not depend on the first argument.
The result now follows from the theory of U -statistics [6], [11]. J

I Example 7. For the number of inversions, we have σ = 21 and m = 2, η2 = −1. A
calculation yields µ = 1

2 and γ2 = 1
12 , and thus Theorem 6 yields

n21(π132,312;n)− n2/4
n3/2

d−→ N
(
0, 1

12
)
, (20)

6 Avoiding {231,312}

In this section we avoid T = {231, 312}. The only equivalent set is {132, 213}.

I Theorem 8. Let σ ∈ Sm(231, 312) have block lengths `1, . . . , `b. Then, as n→∞,

nσ(π231,312;n)− nb/b!
nb−1/2

d−→ N
(
0, γ2). (21)
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Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a
permutation π belongs to the class S∗(231, 312) if and only if every block in π is decreasing,
i.e., of the type `(` − 1) · · · 21 for some `. Hence there exists exactly one block of each
length ` ≥ 1, and a permutation π ∈ S∗(231, 312) can be encoded by its sequence of block
lengths. In this section, let π`1,...,`b

denote the permutation in S∗(231, 312) with block
lengths `1, . . . , `b.

A uniformly random permutation π231,312;n can be generated as πL1,...,LB
, where the

block lengths L1, . . . , LB are obtained from an infinite i.i.d. sequence L1, L2, · · · ∼ Ge( 1
2 ),

stopped at B such that L1 + · · ·+LB ≥ n, and then adjusting LB such that L1 + · · ·+LB = n.
Let σ ∈ S∗(231, 312) have block lengths `1, . . . , `b, so that σ = π`1,...,`b

. Then,

nσ
(
πL1,...,LB

)
=

∑
1≤i1<···<ib≤B

b∏
j=1

(
Lij
`i

)
. (22)

This is again a kind of U -statistic, but it is based on the sequence L1, . . . , LB of random
length B, obtained by stopping the infinite sequence Li. Nevertheless, general results for
U -statistics cover this modification and yield the result, see [11]. J

I Example 9. For the number of inversions, we have σ = 21 and b = 1, `1 = 2. A calculation
yields γ2 = 6, and Theorem 8 yields

n21(π231,312;n)− n
n1/2

d−→ N(0, 6). (23)

7 Avoiding {231, 321}

In this section we avoid T = {231, 321}. Equivalent sets are {123, 132}, {123, 213}, {312, 321}.

I Theorem 10. Let σ ∈ Sm(231, 321) have block lengths `1, . . . , `b, and let b1 be the number
of blocks of length `i = 1. Then, as n→∞,

nσ(π231,321;n)− 2b1−bnb/b!
nb−1/2

d−→ N
(
0, γ2). (24)

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a
permutation π belongs to the class S∗(231, 321) if and only if every block in π is of the type
`12 · · · (`− 1) for some `. Thus, as in Section 6, a permutation in S∗(231, 321) is determined
by its block lengths, and these can be arbitrary. Hence, a uniformly random π231,321;n has
block lengths L1, . . . , LB with the same distribution as in Section 6. Letting now σ be the
permutation in S∗(231, 321) with block lengths `1, . . . , `b, nσ(π231,321;n) is a function of the
block lengths L1, . . . , LB that is similar (but not identical) to (22). This time some lower
order terms appear, but they may be neglected, and the remainder is a U -statistic similar to
the one in the proof of Theorem 8, and the result follows in the same way. J

I Example 11. For the number of inversions, we have σ = 21 and b = 1, `1 = 2, b1 = 0. A
calculation yields γ2 = 1/4, and Theorem 10 yields

n21(π231,321;n)− n/2
n1/2

d−→ N(0, 1
4 ). (25)

In fact, in this special case it can be seen that we have the exact distribution

n21(π231,321;n) ∼ Bi
(
n− 1, 1

2
)
. (26)
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8 Avoiding {132, 321}

In this section we avoid T = {132, 321}. Equivalent sets are {123, 231}, {123, 312}, {213, 321}.
It was shown in [14, Proposition 13] that a permutation π belongs to S∗(132, 321) if and

only if either π = ιn for some n, or π = πk,`,m for some k, ` ≥ 1 and m ≥ 0, where, in this
section,

πk,`,m := (`+ 1, . . . , `+ k, 1, . . . , `, k + `+ 1, . . . , k + `+m) ∈ Sk+`+m. (27)

Recall that the Dirichlet distribution Dir(1, 1, 1) is the uniform distribution on the simplex
{(x, y, z) ∈ R3

+ : x+ y + z = 1}.

I Theorem 12. Let σ ∈ S∗(132, 321). Then the following hold as n→∞.
(i) If σ = πi,j,p for some i, j, p, then

n−(i+j+p)nσ(π132,321;n) d−→Wi,j,p := 1
i! j! p!X

iY jZp, (28)

where (X,Y, Z) ∼ Dir(1, 1, 1).
(ii) If σ = ιi, then

n−inσ(π132,321;n) d−→Wi := 1
i!
(
(X + Z)i + (Y + Z)i − Zi

)
, (29)

with (X,Y, Z) ∼ Dir(1, 1, 1) as in i.

Sketch of proof. For asymptotic results, we may ignore the case when π132,321;n = ιn.
Conditioning on π132,321;n 6= ιn, we have π132,321;n = πK,L,n−K−L, where K and L are
random with (K,L) uniformly distributed over the set {K,L ≥ 1 : K + L ≤ n}. As n→∞,
we thus have(K

n
,
L

n
,
n−K − L

n

)
d−→ (X,Y, Z) ∼ Dir(1, 1, 1). (30)

If σ = πi,j,p for some i, j, p, then it is easily seen that

nσ(πk,`,m) =
(
k

i

)(
`

j

)(
m

p

)
. (31)

Similarly, if σ = ιi, then, by inclusion-exclusion,

nσ(πk,`,m) =
(
k +m

i

)
+
(
`+m

i

)
−
(
m

i

)
. (32)

These exact formulas and (30) yield the results. J

I Corollary 13. The number of inversions has the asymptotic distribution

n−2n21(π132,321;n) d−→W := XY, (33)

with (X,Y ) as above; the limit variable W has density function

2 log
(
1 +
√

1− 4x
)
− 2 log

(
1−
√

1− 4x
)
, 0 < x < 1/4, (34)

and moments

EW r = 2 r!2

(2r + 2)! , r > 0. (35)
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9 Avoiding {231,312,321}

We proceed to sets of three forbidden patterns. In this section we avoid T = {231, 312, 321}.
An equivalent set is {123, 132, 213}.

I Theorem 14. Let σ ∈ Sm(231, 312, 321) have block lengths `1, . . . , `b. Then, as n→∞,

nσ(π231,312,321;n)− µnb/b!
nb−1/2

d−→ N
(
0, γ2), (36)

for some constants µ and γ2.

Sketch of proof. It was shown in [14, Proposition 15∗] (in an equivalent form) that a
permutation π belongs to the class S∗(231, 312, 321) if and only if every block in π is decreasing
and has length ≤ 2, i.e., every block is 1 or 21. Hence, a permutation π ∈ Sn(231, 312, 321)
is uniquely determined by its sequence of block lengths L1, . . . , LB, where each Li ∈ {1, 2}
and L1 + · · ·+ LB = n.

Let p := (
√

5− 1)/2, the golden ratio, so that p+ p2 = 1. Let X be a random variable
with the distribution

P(X = 1) = p, P(X = 2) = p2. (37)

Consider an i.i.d. sequence X1, X2, . . . of copies of X, and let Sk :=
∑k
i=1 Xi. Let further

B(n) := min{k : Sk ≥ n}. Then, conditioned on SB(n) = n, the sequence X1, . . . , XB(n) has
the same distribution as the sequence L1, . . . , LB of block lengths of a uniformly random
permutation π231,312,321;n.

Consequently, nσ(π231,312,321;n) can be expressed as a U -statistic based on X1, . . . , XB ,
conditioned as above. This conditioning does not affect the asymptotic distribution, see [11],
and the result follows again by general results for U -statistics. J

I Example 15. For the number of inversions, σ = 21 we have b = 1. A calculation yields
µ = 1− p = (3−

√
5)/2 and γ2 = 5−3/2. Consequently,

n21(π231,312,321;n)− 3−
√

5
2 n

n1/2
d−→ N

(
0, 5−3/2). (38)

10 Avoiding {132,231,312}

In this section we avoid {132, 231, 312}. Equivalent sets are {132, 213, 231}, {132, 213, 312},
{213, 231, 312}.

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 231, 312) =
{πk,n−k : 1 ≤ k ≤ n}, where, in this section,

πk,` := (k, . . . , 1, k + 1, . . . , k + `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (39)

I Theorem 16. Let σ ∈ S∗(132, 231, 312). Then the following hold as n→∞, with U ∼
U(0, 1).
(i) If σ = πk,m−k with 2 ≤ k ≤ m, then

n−mnσ(π132,231,312;n) d−→Wk,m−k := 1
k! (m− k)!U

k(1− U)m−k. (40)

AofA 2018
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(ii) If σ = π1,m−1 = ιm, then

n−mnσ(π132,231,312;n) d−→W1,m−1 := 1
(m− 1)!U(1− U)m−1 + 1

m! (1− U)m

= 1
m!
(
1 + (m− 1)U

)
(1− U)m−1. (41)

Sketch of proof. The random π132,231,312;n = πK,n−K , where K ∈ [n] is uniformly random.
Obviously, as n→∞,

K/n
d−→ U ∼ U(0, 1). (42)

Furthermore, if σ = πk,`, then it is easy to see that

nσ
(
πK,n−K

)
=


(
K
k

)(
n−K
`

)
, k ≥ 2,

K
(
n−K
`

)
+
(
n−K
`+1

)
, k = 1.

(43)

The results follow. J

I Corollary 17. The number of inversions has the asymptotic distribution

n−2n21(π132,231,312;n) d−→W := U2/2 (44)

with U ∼ U(0, 1). Thus, 2W ∼ B( 1
2 , 1), and W has moments

EW r = 1
2r(2r + 1) , r > 0. (45)

11 Avoiding {132,231,321}

In this section we avoid {132, 231, 321}. Equivalent sets are {123, 132, 231}, {123, 213, 312},
{213, 312, 321}, {123, 132, 312}, {123, 213, 231}, {132, 312, 321}, {213, 231, 321}.

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 231, 321) =
{πk,n−k : 1 ≤ k ≤ n}, where, in this section,

πk,` := (k, 1, . . . , k − 1, k + 1, . . . , k + `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (46)

I Theorem 18. Let σ ∈ S∗(132, 231, 321). Then the following hold as n→∞, with U ∼
U(0, 1).
(i) If σ = πk,m−k with 2 ≤ k ≤ m, then

n−(m−1)nσ(π132,231,321;n) d−→Wk,m−k := 1
(k − 1)! (m− k)!U

k−1(1− U)m−k. (47)

(ii) If σ = π1,m−1 = ιm, then

n−mnσ(π132,231,321;n) = 1
m! +O

(
n−1) p−→ 1

m! . (48)

Sketch of proof. The random permutation π132,231,321;n = πK,n−K , where K ∈ [n] is
uniformly random. The results follow similarly to the proof of Theorem 16. J

I Corollary 19. The number of inversions n21(π132,231,321;n) has a uniform distribution on
{0, . . . , n− 1}, and thus the asymptotic distribution

n−1n21(π132,231,321;n) d−→ U ∼ U(0, 1). (49)
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12 Avoiding {132,213,321}

In this section we avoid {132, 213, 321}. An equivalent sets is {123, 231, 312}.
It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 213, 321) =

{πk,n−k : 1 ≤ k ≤ n}, where, in this section,

πk,` := (`+ 1, . . . , `+ k, 1, . . . , `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (50)

I Theorem 20. Let σ ∈ S∗(132, 213, 321). Then the following hold as n→∞, with U ∼
U(0, 1).
(i) If σ = πk,m−k with 1 ≤ k ≤ m− 1, then

n−mnσ(π132,213,321;n) d−→Wk,m−k := 1
k! (m− k)!U

k(1− U)m−k. (51)

(ii) If σ = πm,0 = ιm, then

n−mnσ(π132,213,321;n) d−→Wm,0 := 1
m!
(
Um + (1− U)m

)
. (52)

Sketch of proof. Similarly to the proof of Theorem 16. J

I Corollary 21. The number of inversions has the asymptotic distribution

n−2n21(π132,213,321;n) d−→W := U(1− U), (53)

with U ∼ U(0, 1). Thus, 4W ∼ B(1, 1
2 ), and W has moments

EW r = Γ(r + 1)2

Γ(2r + 2) , r > 0. (54)
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A Symmetries

For any permutation π = π1 · · ·πn, define its inverse π−1 in the usual way, and its reversal
and complement by

πr := πn · · ·π1, (55)
πc := (n+ 1− π1) · · · (n+ 1− πn). (56)

These three operations generate a group G of 8 symmetries (isomorphic to the dihedral group
D4). It is easy to see that for any symmetry s ∈ G,

nσs(πs) = nσ(π). (57)

Thus, if we define T s := {τ s : τ ∈ T}, then

Sn(T s) = {πs : π ∈ Sn(T )}, (58)

and, for any permutation σ,

nσs(πT s;n) d= nσ(πT ;n). (59)

We say that the sets of forbidden permutations T and T s are equivalent, and note that (59)
implies that it suffices to consider one set T in each equivalence class {T s : s ∈ G}.
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7:2 Vanishing of Cohomology Groups of Random Simplicial Complexes

1 Introduction

1.1 Motivation
In their seminal paper [12], Erdős and Rényi introduced the uniform random graph and ad-
dressed the problem of determining the probability of this graph being connected. Nowadays,
this classical result is usually stated for the binomial model, in which each edge is present
with a given probability p independently: the connectedness of the binomial random graph
G(n, p) on n vertices undergoes a phase transition around the sharp threshold p = logn

n [24],
where log denotes the natural logarithm.

I Theorem 1.1. Let ω be any function of n which tends to infinity as n→∞. Then with
high probability,1 the following holds.
(i) If p = logn−ω

n , then G(n, p) is not connected.
(ii) If p = logn+ω

n , then G(n, p) is connected.

As an even stronger result, Erdős and Rényi [12] determined the limiting probability
for connectedness around the point of the phase transition. Subsequently, Bollobás and
Thomason [7] proved a hitting time result, stating that whp the random graph process
becomes connected at the very same time at which the last isolated vertex—the smallest
obstruction for connectedness—disappears.

Since then, various higher-dimensional analogues of both random graphs and connected-
ness have been analysed and in particular two different approaches have received considerable
attention. A first natural generalisation is the random k-uniform hypergraph Gp = G(k;n, p)
in which each (k + 1)-tuple of vertices forms a hyperedge with probability p independently.
There are several natural ways of defining connectedness of Gp, which have been extensively
studied [4, 5, 6, 8, 9, 10, 11, 15, 16, 22, 23].

A more recent approach concerns random simplicial complexes, of which a first model
for the 2-dimensional case was introduced by Linial and Meshulam [17]. They considered
F2-homological 1-connectivity of the random 2-complex as the vanishing of its first homology
group with coefficients in the two-element field F2, which is equivalent to the vanishing of the
first cohomology group. More precisely, the model Yp = Y(k;n, p) considered by Linial and
Meshulam [17] for k = 2 and subsequently by Meshulam and Wallach [20] for general k ≥ 2
is defined as follows. Starting from the full (k − 1)-dimensional skeleton on [n] := {1, . . . , n},
that is, all simplices from dimension zero up to k− 1, each (k+ 1)-set forms a k-simplex with
probability p independently. They showed that the vanishing of the (k − 1)-th cohomology
group Hk−1(Yp;F2) with coefficients in F2 has a sharp threshold at p = k logn

n .

I Theorem 1.2 ([17, 20]). Let ω be any function of n which tends to infinity as n → ∞.
Then with high probability, the following holds.
(i) If p = k logn−ω

n , then Hk−1(Yp;F2) 6= 0.
(ii) If p = k logn+ω

n , then Hk−1(Yp;F2) = 0.

Later, Kahle and Pittel [15] derived a hitting time result for the case k = 2 and determined
the limiting probability of Hk−1(Yp;F2) = 0 for general k ≥ 2 and p in the critical window.

In this paper, we aim to bridge the gap between random hypergraphs and random
simplicial complexes. We consider random simplicial k-complexes that arise as the downward-
closure of random (k + 1)-uniform hypergraphs. Unlike Yp, in this model the presence of the

1 With probability tending to 1 as n tends to infinity, whp for short.
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full (k − 1)-dimensional skeleton is not guaranteed, thus the vanishing of the cohomology
groups of dimensions lower than k − 1 does not hold trivially. Therefore, for each j ∈ [k − 1],
we introduce F2-cohomological j-connectedness as the vanishing of all cohomology groups
with coefficients in F2 from dimension one up to j and the zero-th cohomology group being
isomorphic to F2.

Although this notion of connectedness is not monotone, we prove that nevertheless
F2-cohomological j-connectedness has a sharp threshold. Furthermore, we derive a hitting
time result and determine the limiting probability for F2-cohomological j-connectedness
in the critical window. As a corollary, we deduce a hitting time result for Yp in general
dimension, thus extending the hitting time result of Kahle and Pittel [15].

1.2 Model
Throughout the paper let k ≥ 2 be a fixed integer. For a positive integer `, let [`] := {1, . . . , `}.

I Definition 1.3. A family G of non-empty finite subsets of a vertex set V is called a
simplicial complex if it is downward-closed, i.e. if every non-empty set A that is contained in
a set B ∈ G also lies in G, and if the singleton {v} is in G for every v ∈ V .

The elements of a simplicial complex G of cardinality k + 1 are called k-simplices of G. If
G has no (k + 1)-simplices, then we call it k-dimensional, or k-complex. If G is a k-complex,
then for each j = 0, . . . , k − 1 the j-skeleton of G is the j-complex formed by all i-simplices
in G with 0 ≤ i ≤ j.

We aim to define a model of random k-complexes starting from the binomial random
(k+ 1)-uniform hypergraph Gp = G(k;n, p) on vertex set [n]: the 0-simplices are the vertices
of Gp, the k-simplices are the hyperedges of Gp, but there is more than one way to guarantee
the downward-closure property, to obtain a simplicial complex. In the model Yp considered by
Meshulam and Wallach in [20], the full (k− 1)-skeleton on [n] is always included. In contrast,
we shall only include those simplices that are necessary to ensure the downward-closure
property.

I Definition 1.4. We denote by Gp = G(k;n, p) the random k-dimensional simplicial complex
on vertex set [n] such that

the 0-simplices are the singletons of [n];
the k-simplices are the hyperedges of Gp;
for each j ∈ [k − 1], the j-simplices are exactly the (j + 1)-subsets of hyperedges of Gp.

In other words, Gp is the random k-complex on [n] obtained from Gp by taking the downward-
closure of each hyperedge.

Given a simplicial complex G, let Hi(G;F2) be its i-th cohomology group with coefficients
in F2 (see Section 2.1 for the definition). Connectedness of Gp in the topological sense—
which we call topological connectedness in order to distinguish it from other notions of
connectedness—is equivalent to H0(Gp;F2) being (isomorphic to) F2. We therefore define a
notion of connectedness as follows.

I Definition 1.5. For a positive integer j, a simplicial complex G is called F2-cohomologically
j-connected (j-cohom-connected for short) if

H0(G;F2) = F2;
Hi(G;F2) = 0 for all i ∈ [j].

One might define an analogous version of connectedness via the vanishing of homology
groups, which would be equivalent to F2-cohomological j-connectedness by the Universal
Coefficient Theorem (see e.g. [21]).
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7:4 Vanishing of Cohomology Groups of Random Simplicial Complexes

A significant difference between Gp and Yp is that for Yp the only requirement for F2-
cohomologically (k − 1)-connectedness is the vanishing of the (k − 1)-th cohomology group,
since the presence of the full (k − 1)-skeleton guarantees topological connectedness and the
vanishing of the j-th cohomology groups for all j ∈ [k − 2].

Moreover, it is important to observe that F2-cohomological j-connectedness is not a
monotone increasing property of Gp: adding a k-simplex to a j-cohom-connected complex
might yield a complex without this property (see Example 2.3). Thus, the existence of a
single threshold for j-cohom-connectedness is not guaranteed, but one of our main results
shows that such a threshold indeed exists.

1.3 Main results
The main contributions of this paper are fourfold. Firstly, we prove (Theorem 1.8) that for
each j ∈ [k − 1], F2-cohomological j-connectedness of Gp undergoes a phase transition at
around probability

pj := (j + 1) logn+ log logn
(k − j + 1)nk−j (k − j)!. (1)

Secondly, we prove a hitting time result (also Theorem 1.8), which relates the j-cohom-
connectedness threshold to the disappearance of all copies of the minimal obstruction Mj

(Definition 1.7). Thirdly, our results directly imply an analogous hitting time result for Yp
(Corollary 1.9), which Kahle and Pittel [15] proved for k = 2. Lastly, we analyse the critical
window around the threshold pj , showing that inside the window the dimension of the j-th
cohomology group converges in distribution to a Poisson random variable (Theorem 1.10).

Before defining the minimal obstruction Mj , we need the following concept.

I Definition 1.6. Given a k-simplex K in a k-complex G, a collection F = {P0, . . . , Pk−j}
of j-simplices forms a j-flower in K if K =

⋃
i Pi and C :=

⋂
i Pi satisfies |C| = j. We call

the j-simplices Pi the petals and the set C the centre of the j-flower F .
Observe that for each k-simplex K and each (j − 1)-simplex C ⊆ K, there is a unique

j-flower in K with centre C, namely

F(K,C) := {C ∪ {w} | w ∈ K \ C}.

When j is clear from the context, we simply refer to a j-flower as a flower. A j-cycle
is a set J of j-simplices such that every (j − 1)-simplex is contained in an even number of
j-simplices in J .

I Definition 1.7. A copy of Mj (see Figure 1) in a k-complex G is a triple (K,C, J) where
(M1) K is a k-simplex;
(M2) C is a (j − 1)-simplex in K and each petal of the flower F = F(K,C) is contained in

no other k-simplex of G;
(M3) J is a j-cycle that contains exactly one petal of F , i.e. there exists a vertex w0 ∈ K \C

such that

J ∩ F =
{
C ∪ {w0}

}
.

We will see (Lemma 2.2) that a copy of Mj can be interpreted as a minimal obstruction
for F2-cohomological j-connectedness.

The random k-complex Gp can be viewed as a process, by assigning a birth time to each
k-simplex. More precisely, for each (k+ 1)-set of vertices in [n] independently, sample a birth
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w3

w2

w1

w0

J

c1

c2

K

Figure 1 A copy of Mj for k = 5, j = 2. The centre C = {c1, c2} lies in all petals Pi = C ∪ {wi},
i = 0, . . . , 3 (dark grey), which are contained in no other k-simplex except K. The j-cycle J (light
grey) intersects the flower F(K, C) = {P0, P1, P2, P3} only in the petal P0 = C ∪ {w0}.

time uniformly at random from [0, 1].2 Then Gp is exactly the complex generated by the
(k + 1)-sets with birth times at most p, by taking the downward-closure. If p is gradually
increased from 0 to 1, we may interpret Gp as a process. Thus, we can define pMj

as the
birth time of the k-simplex whose appearance causes the last copy of Mj to disappear. More
formally, let

pMj := sup{p ∈ [0, 1] | Gp contains a copy of Mj}. (2)

Our first main result is that the value pMj
is the hitting time for j-cohom-connectedness

of Gp and is “close” to pj defined in (1), implying that pj is in fact a sharp threshold for
F2-cohomological j-connectedness.

I Theorem 1.8. Let k ≥ 2 be an integer and let ω be any function of n which tends to
infinity as n→∞. For each j ∈ [k − 1], with high probability the following statements hold.

(i) (j+1) logn+log logn−ω
(k−j+1)nk−j (k − j)! < pMj

< (j+1) logn+log logn+ω
(k−j+1)nk−j (k − j)!.

(ii) For all p < pMj , Gp is not F2-cohomologically j-connected, i.e.

H0(Gp;F2) 6= F2 or Hi(Gp;F2) 6= 0 for some i ∈ [j].

(iii) For all p ≥ pMj , Gp is F2-cohomologically j-connected, i.e.

H0(Gp;F2) = F2 and Hi(Gp;F2) = 0 for all i ∈ [j].

For the case j = k − 1, Theorem 1.8 gives a threshold pk−1 = k logn+log logn
2n for F2-

cohomologically (k− 1)-connectedness, which is about half as large as the threshold k logn
n in

Theorem 1.2 for Yp. The reason for this is that the minimal obstructions are different: in Yp
the minimal obstruction is a (k − 1)-simplex which is not contained in any k-simplex of the
complex (such a (k−1)-simplex is called isolated). By definition, isolated (k−1)-simplices do
not exist in Gp, because Gp contains only those (k − 1)-simplices that lie in some k-simplex.

Observe that Theorem 1.8 ii and iii provide a hitting time result for the process described
above. A similar result was proved by Kahle and Pittel [15] for Yp, but only for the 2-
dimensional case. As a corollary of Theorem 1.8, we can now derive a hitting time result for
Yp for general k ≥ 2. To this end, let

pisol := sup{p ∈ [0, 1] | Yp contains isolated (k − 1)-simplices} (3)

2 With probability 1 no two (k + 1)-sets have the same birth time.
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7:6 Vanishing of Cohomology Groups of Random Simplicial Complexes

be the birth time of the k-simplex whose appearance causes the last isolated (k − 1)-simplex
to disappear and let

pconn := sup{p ∈ [0, 1] | Hk−1(Yp;F2) 6= 0 } (4)

be the time when Yp becomes F2-cohomological (k − 1)-connected.

I Corollary 1.9. Let k ≥ 2 be an integer. Then, with high probability pconn = pisol.

Our last main result gives an explicit expression for the limiting probability of the random
complex Gp being F2-cohomologically j-connected inside the critical window given by the
threshold pj . More generally, we prove that the dimension of the j-th cohomology group
with coefficients in F2 converges in distribution to a Poisson random variable.

I Theorem 1.10. Let k ≥ 2 be an integer, j ∈ [k− 1] and c ∈ R be a constant. Suppose that
cn ∈ R are such that cn

n→∞−−−−→ c. If

p = (j + 1) logn+ log logn+ cn
(k − j + 1)nk−j (k − j)!,

then dim
(
Hj(Gp;F2)

)
converges in distribution to a Poisson random variable with expectation

λj := (j + 1)e−c

(k − j + 1)2j! ,

while whp H0(Gp;F2) = F2 and Hi(Gp;F2) = 0 for all i ∈ [j − 1]. In particular, we have

P (Gp is j-cohom-connected) n→∞−−−−→ e−λj .

Note that a similar result for Yp was proved by Kahle and Pittel [15].

1.4 Related work
The vanishing of Hk−1(Yp;F2) considered in [17] and [20] is a monotone property due to the
presence of the full (k − 1)-dimensional skeleton. This fact in particular makes it possible to
use a simple second moment argument to prove the subcritical case (i.e. statement (i)) of
Theorem 1.2.

In contrast, Gp does not contain the full (k − 1)-dimensional skeleton. As a consequence,
we need to consider all cohomology groups up to dimension j, for each j ∈ [k− 1]. Moreover,
our notion of F2-cohomological j-connectedness is not a monotone property, which makes
the subcritical case far from trivial. In fact, it does not suffice to prove that Gp is not
j-cohom-connected at p− = (j+1) logn+log logn−ω

(k−j+1)nk−j (k − j)!; rather we need to show that whp
Gp is not j-cohom-connected for any p up to and including p−.

The proof of the supercritical case p ≥ pMj
is also more challenging than for Yp. We

are forced to derive better bounds for the number of bad functions (see Definition 2.1), due
to the fact that for j = k − 1, the threshold in Theorem 1.8 is about half as large as the
corresponding threshold in [20].

2 Preliminaries

2.1 Cohomology terminology
We formally introduce cohomology with coefficients in F2 for a simplicial complex. The
following notions are all standard, except the definition of a bad function (Definition 2.1).
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Given a simplicial k-complex G, for each j ∈ {0, . . . , k} denote by Cj(G) the set of
j-cochains, that is, the set of 0-1 functions on the j-simplices. The support of a function
in Cj(G) is the set of j-simplices mapped to 1. Each Cj(G) forms a group with respect to
pointwise addition modulo 2. We define the coboundary operators δj : Cj(G)→ Cj+1(G) for
j = 0, . . . , k−1 as follows. For f ∈ Cj(G), the 0-1 function δjf assigns to each (j+1)-simplex
σ the value

δjf(σ) :=
∑

τ⊂σ, |τ |=j+1

f(τ) (mod2).

In addition, we denote by δ−1 the unique group homomorphism δ−1 : {0} → C0(G). The
j-cochains in im δj−1 and ker δj are called j-coboundaries and j-cocycles, respectively. A
straightforward calculation shows that each coboundary operator is a group homomorphism
and that every j-coboundary is also a j-cocycle, i.e. im δj−1 ⊆ ker δj . Therefore, we can
define the j-th cohomology group of G with coefficients in F2 as the quotient group

Hj(G;F2) := ker δj/ im δj−1.

By definition, Hj(G;F2) vanishes if and only if every j-cocycle is a j-coboundary. This
motivates the following definition of a bad function.

I Definition 2.1. We say that a function f ∈ Cj(G) is bad if
(i) f is a j-cocycle, i.e. it assigns an even number of 1’s to the j-simplices on the boundary

of each (j + 1)-simplex;
(ii) f is not a j-coboundary, i.e. it is not induced by a 0-1 function on the (j − 1)-simplices.

Thus, Hj(G;F2) vanishes if and only if no bad function in Cj(G) exists.
Recall that a set J of j-simplices is a j-cycle if every (j − 1)-simplex lies in an even

number of j-simplices in J . It is easy to see that if f is a j-cocycle and J is a j-cycle such
that f |J has support of odd size, then f is not a j-coboundary and thus is a bad function.

2.2 Minimal obstructions
Let us explain why Mj (Definition 1.7) can be interpreted as the minimal obstruction to
j-cohom-connectedness. Given a copy (K,C, J) of Mj in a k-complex G, define a function
f ∈ Cj(G) that takes value 1 on the petals of the flower F(K,C) and 0 everywhere else. Since
each petal lies in K but in no further k-simplices, every (j + 1)-simplex contains either two
petals or none. In particular, f is even on the boundary of every (j + 1)-simplex. However,
J would be a j-cycle containing precisely one j-simplex (namely C ∪ {w0}) on which f takes
value 1, ensuring that f is bad. The support of f has size k − j + 1.

I Lemma 2.2. Let G be a k-complex and let S be a non-empty support of a j-cocycle. Then
either S is the flower of an Mj (and thus |S| = k − j + 1) or |S| ≥ k − j + 2.

Both the presence of a copy of Mj and j-cohom-connectedness are not monotone, as the
following example shows.

I Example 2.3. Let G be the 2-complex on vertex set {1, 2, 3, 4, 5} generated by the 3-
uniform hypergraph with hyperedges {1, 2, 3} and {1, 4, 5}, see Figure 2. Then G is 1-cohom-
connected and thus contains no copies of M1. Adding to G the 2-simplex {2, 3, 4} (and its
downward-closure) creates several copies of M1 and thus yields a complex G′ which is not
1-cohom-connected. If we further add the 2-simplex {1, 3, 4} to G′, we obtain a 2-complex
G′′ which is 1-cohom-connected and thus contains no copies of M1.
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1
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G′′

Figure 2 Adding simplices might create new copies of Mj or destroy existing ones.

3 Subcritical regime

3.1 Overview
In this section we study the subcritical case p < pMj and state results necessary for the
proofs of statements i and ii of Theorem 1.8.

Define

pT := sup{p ∈ [0, 1] | Gp is not topologically connected}

as the birth time of the k-simplex whose appearance causes the complex Gp to become
topologically connected. In addition, we will need the probabilities

p−0 := logn
nk

,

p−j :=
(

1− 1√
logn

)
(j + 1) logn

(k − j + 1)nk−j (k − j)! for each j ∈ [k − 1].

Observe that H0(Gp;F2) 6= F2 in [0, pT ) by definition. In order to prove Theorem 1.8 ii, we
aim to show that whp Hj(Gp;F2) 6= 0 in [p−j−1, pMj ) for all j ∈ [k − 1] and that

[0, pT ) ∪
j⋃
i=1

[p−i−1, pMi
) = [0, pMj

),

which we prove by showing that pT > p−0 and pMj > p−j > p−j−1 for all j ∈ [k − 1] whp. To
cover the interval [p−j−1, pMj

), we in fact prove the existence of just three copies of Mj such
that whp for all p in this interval, at least one of these copies is present in Gp.

I Lemma 3.1. Let j ∈ [k − 1]. With high probability, there exist three triples (K`, C`, J`),
` = 1, 2, 3, such that for all p ∈ [p−j−1, pMj

), (K`, C`, J`) forms a copy of Mj in Gp for some
`. In particular, whp Hj(Gp;F2) 6= 0 for all p ∈ [p−j−1, pMj ).

3.2 Topological connectedness
Topological connectedness of Gp is equivalent to vertex-connectedness of the random (k + 1)-
uniform hypergraph, whose (sharp) threshold follows e.g. as a special case of [8] or [22].

I Lemma 3.2. Let ω be any function of n which tends to infinity as n → ∞. Then with
high probability

logn− ω
nk

k! < pT <
logn+ ω

nk
k!

and thus in particular pT > p−0 .
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3.3 Finding obstructions
In order to prove Lemma 3.1, we make use of a simplified version of the obstruction Mj .

I Definition 3.3. copy of M−j in a k-complex G is a pair (K,C) such that
(M1) K is a k-simplex;
(M2) C is a (j − 1)-simplex in K such that each petal of the flower F(K,C) is contained in

no other k-simplex of G.

In other words, a copy of M−j can be viewed as a copy of Mj without the condition
(M3) of Definition 1.7, i.e. without the j-cycle J containing one of the petals. Therefore,
if (K,C, J) is a copy of Mj in Gp, then (K,C) is a copy of M−j . Vice versa, the following
lemma ensures that whp for p at least

p
(1)
j := 1

10(j + 1)
(
k+1
j+1
)
nk−j

,

whp every copy of M−j gives rise to a copy of Mj , allowing us to consider just copies of M−j
as obstructions to j-cohom-connectedness. In other words, the existence of copies of M−j
and Mj are essentially equivalent for p ≥ p(1)

j .

I Lemma 3.4. There exists a positive constant γ such that with high probability for every
p ≥ p(1)

j , each j-simplex σ in Gp lies in at least γn many j-cycles in Gp that meet only in σ.
In particular, whp for all p ≥ p(1)

j , every copy of M−j in Gp is part of a copy of Mj.

3.4 Excluding obstructions and determining the hitting time
A second moment argument shows that at time

p̄j :=
(j + 1) logn+ 1

2 log logn
(k − j + 1)nk−j (k − j)!, (5)

whp Gp̄j
contains (a growing number of) copies of M−j , and thus whp also copies of Mj by

Lemma 3.4. Define p̄Mj
as the first birth time p larger than p̄j such that there are no copies

of Mj in Gp. By definition of pMj
, conditioned on the high probability event Mj ⊂ Gp̄j

, we
have p̄Mj

≤ pMj
. In the next lemma we show that they are in fact equal whp.

To do so, we need the following definition.

I Definition 3.5. Given a k-complex G, a k-simplex K is a local obstacle if K contains at
least k − j + 1 many j-simplices which are not contained in any other k-simplex of G.

Observe that each M−j is in particular a local obstacle. Moreover, whp each copy of M−j
in Gp for p ≥ p̄j gives rise to copies of Mj by Lemma 3.4.

I Lemma 3.6. With high probability, for all p ≥ p̄j every local obstacle that exists in Gp
also exists in Gp̄j

. In particular, we have pMj
= p̄Mj

whp.

I Corollary 3.7. Whp for all p ≥ pMj
, there are no copies of M−j in Gp.

By first and second moment arguments, we can now easily derive that pMj is “close to”
pj . Observe that the following corollary is exactly Theorem 1.8 i.

I Corollary 3.8. Let ω be any function of n which tends to infinity as n tends to infinity.
Then whp

(j + 1) logn+ log logn− ω
(k − j + 1)nk−j (k − j)! < pMj

<
(j + 1) logn+ log logn+ ω

(k − j + 1)nk−j (k − j)!.
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3.5 Covering the interval
Our strategy to derive Lemma 3.1 is to divide the interval [p−j−1, pMj

) into three subintervals
[p−j−1, p

(1)
j ], [p(1)

j , p−j ], [p−j , pMj ), each of which we cover by one copy of Mj . We first use a
second moment argument to show that at time p−j−1, whp there are “many” copies of Mj .
With high probability, at least one copy (K1, C1, J1) survives until probability p(1)

j .
In order to find a copy of Mj that covers the interval [p(1)

j , p−j ], we show that whp “many”
copies of M−j exist at time p−j , of which one whp was already present at the beginning of
the interval. Together with the fact that whp each M−j gives rise to a copy of Mj (Lemma
3.4), this implies that whp one copy (K2, C2, J2) of Mj exists throughout this interval.

For the remaining interval [p−j , pMj
), consider a copy (K3, C3) of M−j that vanishes at

time pMj . Corollary 3.8 implies that whp p−j = (1− o(1))pMj , and thus (K3, C3) whp was
already present at time p−j . Now Lemma 3.4 ensures the existence of a j-cycle J3 such that
(K3, C3, J3) is a copy of Mj throughout the range [p−j , pMj ).

4 Critical window and supercritical regime

In this section, we study obstructions around the point of the claimed phase transition and in
the supercritical regime, that is, for p = (1 + o(1))pj and p ≥ pMj

, respectively. The results
of this section will form the foundation of the proof of Theorem 1.8 iii. Furthermore, they
will play a crucial role in the proof of Theorem 1.10.

By the definition of pMj , there are no copies of Mj in Gp (and also no copies of M−j by
Corollary 3.7) for any p ≥ pMj

. It remains to show that there are no other obstructions
either. In fact, we shall even prove (Lemma 4.2) that from slightly before pMj

onwards, any
j-cocycles are generated by copies of M−j . To make this more precise, we need the following
notation.

I Definition 4.1. We say that a j-cochain fK,C arises from a copy (K,C) of M−j in a
k-complex G if its support is the j-flower F(K,C). Observe that then fK,C is a j-cocycle.

We say that a j-cocycle f in G is generated by copies of M−j if it lies in the same
cohomology class as a sum of cocycles that arise from copies of M−j . We denote by NG the
set of j-cocycles that are not generated by copies of M−j .

We show that whp for all p ≥ pMj
, NGp

= ∅, which will in particular imply that there are
no non-empty j-cocycles in Gp. Furthermore, a similar argument will enable us to directly
relate the number of copies of M−j with the dimension of Hj(Gp;F2) (cf. Theorem 1.10).

I Lemma 4.2. For every p ≥ p−j , we have NGp
= ∅ with high probability. Moreover, with

high probability NGp = ∅ for all p ≥ pMj simultaneously.

In order to prove Lemma 4.2, we first show that a smallest support of elements of NG
would have to have a property we call traversability.

I Definition 4.3. Let G be a k-complex and S ⊆ G be a collection of j-simplices. For
σ1, σ2 ∈ S, we write σ1 ∼ σ2 if σ1 and σ2 lie in a common k-simplex.3 We say that S is
traversable if the transitive closure of ∼ is S × S.

In other words, a set of j-simplices in a k-complex is traversable if it cannot be partitioned
into two non-empty subsets such that no k-simplex contains j-simplices in both subsets.

3 Observe that this relation is reflexive, because every j-simplex is contained in at least one k-simplex.
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I Lemma 4.4. Let G be a k-complex and f be an element of NG with smallest support S.
Then S is traversable.

We then show that whp no such smallest support can exist in Gp. For “small” support
size and probability around pj , a standard application of the first moment method suffices.

I Lemma 4.5. For p = (1 + o(1))pj and for any constant d ≥ k− j+ 2, with high probability
Gp has no j-cocycle with traversable support of size s with k − j + 2 ≤ s ≤ d.

For larger size, we make use of traversability to define a breadth-first search process
that finds all possible supports. Using this process, we can bound the number of possible
smallest supports of elements of NGp

more carefully, thus allowing us to prove that whp for
all relevant p simultaneously, such a smallest support cannot be “large”.

I Lemma 4.6. There exists a positive constant d̄ such that with high probability for all
p ≥ p−j , the smallest support of a j-cocycle in NGp

has size s < d̄.

In particular, for any fixed p = (1 + o(1))pj , whp the smallest support of elements of NGp
is

not “small” by Lemma 4.5 and not “large” by Lemma 4.6, which means that NGp
= ∅ whp.

Finally, we complete the argument by proving that any new element of NGp
with “small”

support that might appear if we increase p would have to give rise to a “new” local obstacle.
But Lemma 3.6 already tells us that whp no new local obstacles appear. This concludes the
proof of Lemma 4.2.

5 Proofs of main results

5.1 Proof of Theorem 1.8
Corollary 3.8 states that for any function ω of n which tends to infinity as n→∞, whp

(j + 1) logn+ log logn− ω
(k − j + 1)nk−j (k − j)! < pMj <

(j + 1) logn+ log logn+ ω

(k − j + 1)nk−j (k − j)!,

which is precisely Theorem 1.8 i.
To prove ii, recall that Lemma 3.1 tells us that for each i ∈ [j − 1], whp Hi(Gp;F2) 6= 0

for all p ∈ [p−i−1, pMi
). By i, whp

pMi
>

(
1− 1√

logn

)
(i+ 1) logn

(k − i+ 1)nk−i (k − i)! = p−i ,

and thus whp Gp is not j-cohom-connected throughout
j⋃
i=1

[p−i−1, pMi
) = [p−0 , pMj

).

Now observe that by Lemma 3.2 whp pT > p−0 and that Gp is not topologically connected
in [0, pT ) by definition of pT . Therefore, whp Gp is not j-cohom-connected in

[0, pMj
) = [0, pT ) ∪ [p−0 , pMj

),

as required.
It remains to prove iii. By Corollary 3.7, we know that for all p ≥ pMj , there are no copies

ofM−j in Gp. Thus, if Hj(Gp;F2) 6= 0, then any representative of a non-zero cohomology class
cannot arise from copies of M−j and therefore lies in NGp

(Definition 4.1). But by Lemma
4.2, whp each such NGp

is empty and thus whp Hj(Gp;F2) = 0 for all p ≥ pMj
. Analogously,

whp all cohomology groups Hi(Gp;F2) for i ∈ [j − 1] vanish, because whp pMi
< pMj

by i.
Finally, by i and Lemma 3.2 whp pT < pMj , meaning that whp Gp is topologically connected
for all p ≥ pMj

. This implies that whp each such Gp is F2-cohomologically j-connected. J
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5.2 Proof of Corollary 1.9
Let ω be any function of n which tends to infinity as n→∞. It follows by a simple first and
second moment argument (see e.g. [20]) that whp

k logn− ω
n

< pisol <
k logn+ ω

n
. (6)

In order to prove that pconn = pisol whp, suppose that a (k − 1)-simplex σ is isolated in
Yp for some p. The indicator function fσ of σ is a (k− 1)-cocycle, because σ is isolated. But
fσ is not a (k − 1)-coboundary, because σ lies in (many) (k − 1)-cycles due to the presence
of the full (k − 1)-dimensional skeleton. In particular, Hk−1(Yp;F2) 6= 0. By the definitions
of pconn and pisol, this implies that pconn ≥ pisol.

For the opposite direction, fix the birth times of all k-simplices. Then for all p ≥ pisol,
we have Yp = Gp and therefore Yp is F2-cohomological (k − 1)-connected whp for every
p ≥ max(pisol, pMk−1) by Theorem 1.8 iii. By (6) and Theorem 1.8 i for j = k − 1, whp for
any (slowly) growing function ω

pisol >
k logn− ω

n
>
k logn+ log logn+ ω

2n > pMk−1 ,

hence whp for all p ≥ pisol we have Hk−1(Yp;F2) = 0. This means that whp pconn ≤ pisol
and thus pconn = pisol, as required. J

5.3 Proof of Theorem 1.10
We are interested in the asymptotic distribution of Dj := dim

(
Hj(Gp;F2)

)
for

p = (j + 1) logn+ log logn+ cn
(k − j + 1)nk−j (k − j)!, where cn

n→∞−−−−→ c ∈ R.

Denote by X− the number of copies of M−j in Gp. Standard calculations show that

E(X−) = (1 + o(1))λj , where λj = (j + 1)e−c

(k − j + 1)2j! .

Moreover, we show that for each fixed integer t ≥ 1

E
(
X−
t

)
= (1 + o(1))

λtj
t! .

These equalities are precisely what is necessary to apply the method of moments (see e.g.
[13]) in order to show that X− converges in distribution to a Poisson random variable with
expectation λj , which we denote by X−

d−→ Po(λj).
It remains to show that X− = Dj whp. To this end, denote by f1, . . . , fX− the j-cocycles

arising from the copies of M−j in Gp. Lemma 4.2 states that whp the cohomology classes of
f1, . . . , fX− generate Hj(Gp;F2), which means that X− ≥ Dj whp.

In order to prove the opposite direction, we show that the cohomology classes of
f1, . . . , fX− are linearly independent. Observe first that whp X− = o(n) by Markov’s
inequality, because X− has bounded expectation. Let I ⊆ [X−] be non-empty and let S
be the support of

∑
i∈I fi. Whp no two fi’s can have their supports contained in the same

k-simplex K, because otherwise their union would be a traversable support of size s with
k − j + 2 ≤ s ≤ 2(k − j + 1), but such supports whp do not exist by Lemma 4.5.
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Thus, whp the fi’s have disjoint support by property (M2) of an M−j (Definition 3.3), and
in particular S 6= ∅. Pick σ ∈ S. Lemma 3.4 tells us that whp there are Θ(n) many j-cycles in
Gp that contain σ and are otherwise disjoint. But at most |S| ≤ (k− j+ 1)|I| = o(n) of these
j-cycles can contain another j-simplex in S, which means that whp there are j-cycles that
meet S only in σ, showing that

∑
i∈I fi is not a j-coboundary. Therefore the cohomology

classes of f1, . . . , fX− are linearly independent whp. This shows that X− ≤ Dj and thus
X− = Dj whp, as desired.

Together with X−
d−→ Po(λj), this proves that Dj

d−→ Po(λj). By Theorem 1.8 (for j − 1
instead of j), whp H0(Gp;F2) = F2 and Hi(Gp;F2) = 0 for all i ∈ [j − 1]. In particular,

P(Gp is j-cohom-connected) = P
(
Hj(Gp;F2) = 0

)
+ o(1)

= (1 + o(1))P
(
Po(λj) = 0

)
= (1 + o(1))e−λj .

This concludes the proof of Theorem 1.10. J

6 Concluding remarks

The vanishing of cohomology groups with coefficients in F2 is just one possible way of defining
the concept of “connectedness” of Gp. An obvious alternative would be to consider coefficients
from other groups or fields. For Yp, such notions of connectedness have been studied for
coefficients in any finite abelian group, in Z, or in any field [1, 2, 14, 18, 19, 20].

A rather strong notion of connectedness would be to require the homotopy groups
π1(Gp), . . . , πj(Gp) to vanish. For the 2-dimensional case, the vanishing of π1(Yp) was studied
by Babson, Hoffman and Kahle [3]. In particular, they showed that whp π1(Yp) 6= 0 at the
time that H1(Yp;F2) becomes zero. From that time on, the models Yp and Gp coincide. As
π1(Gp) 6= 0 follows immediately from H1(Gp;F2) 6= 0, the range that should be of particular
interest with respect to π1(Gp) in the 2-dimensional case is

logn+ 1
2 log logn
n

≤ p ≤ 2 logn+ ω

n
.

A natural conjecture would be that whp π1(Gp) 6= 0 in this range.
Theorem 1.9 provides a limit result for the dimensions Dj = dim(Hj(Gp;F2)) around the

point of the phase transition. It would be interesting to know the behaviour of Dj also for
earlier regimes. More precisely, we know by Theorem 1.8 that whp Dj 6= 0 in the interval
[p−j−1, pMj

). Can we say more about the value of Dj in this interval? How far below p−j−1 do
we have Dj > 0 whp?
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We discuss the structure of periods in subtraction games. In particular, we discuss ways that a
computational approach yields insights to the periods that emerge in the asymptotic structure
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1 Overview

Subtraction games are one of the most fundamental combinatorial games. In the document
Unsolved Problems in Combinatorial Games [4], maintained by Richard J. Nowakowski, the
structure of combinatorial games is the first open problem that is discussed. Such games are
so fundamental because the underlying premise is the same as Nim: there are several piles of
beans, and on a player’s turn, he/she can remove beans from exactly one pile. As in many
areas of mathematics, this simple concept gives rise to much deeper mathematical structure.
In the case of subtraction games, an even richer structure emerges because the moves of a
player are limited. For instance, in the three-dimensional version of subtraction games with
subtraction set {s1, s2, s3}, the number of beans that can be removed from a heap during a
player’s turn is limited to one of these three possibilities. In other words, a player can only
remove either s1, s2, or s3 beans.

The problem of understanding the associated Nim values of a subtraction game is
sufficiently challenging and useful that a table of values for small s1, s2, s3 is given in the
4-volume set of books called Winning Ways for your Mathematical Plays [2].

The problem of understanding the asymptotic periodicities of subtraction games with a
subtraction set of size three has been open for more than 40 years; see [1] for early analysis.

Mark Paulhus and Alex Fink have derived values of the periods in two cases, for subtraction
sets of size 3, namely, in the case where s1 = 1 and s2, s3 are arbitrary, and in the case where
s1 < s2 < s3 < 32 (see [4]). Achim Flammenkamp [3] has made conjectures about the types
of periodicities that arise, based on calculations with all sj ’s bounded above by 256.

We organized a team of colleagues to work on this problem at the American Institute
of Mathematics (AIM), under the auspices of the Research Experiences for Undergraduate
Faculty (REUF) workshops, starting in July 2016. (Ward had already been working on
a computational attack for this problem in his spare moments, for more than a decade.)
Our REUF team relies on a data-driven approach. We have computed the Nim values and
the resulting (asymptotic) periodicity of the games for sj ’s bounded above by 16384. The
computational aspects of this problem are nontrivial. Each time the size of the parameters
grows by a factor of 2, the computational time required for the resulting computations grows
by a factor of (roughly) 17. Therefore, our most recent computation took a full 37 years of
CPU time. It was accomplished by running a massive parallel computation on three of the
computational clusters at Purdue University (using thousands of computational cores). After
all, we made

(16384
3

)
= 732,873,539,584 distinct computations altogether. We have generated

terabytes of data about this combinatorial problem.
We will present our computational approach to determining the combinatorial structure

of the asymptotic periods that arise in these subtraction games. Importantly, we emphasize
that our algorithms allow us to know the asymptotic periods, without resorting at all to
the traditional approach (which relies on minimal excluded numbers). Instead, we have
obtained structural insights about this problem. These results should continue to be useful
for revealing completely new viewpoints about the structure of combinatorial games.
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Abstract
We investigate the number of permutations that occur in random node labellings of trees. This
is a generalisation of the number of subpermutations occuring in a random permutation. It
also generalises some recent results on the number of inversions in randomly labelled trees [3].
We consider complete binary trees as well as random split trees a large class of random trees
of logarithmic height introduced by Devroye [4]. Split trees consist of nodes (bags) which can
contain balls and are generated by a random trickle down process of balls through the nodes.

For complete binary trees we show that asymptotically the cumulants of the number of
occurrences of a fixed permutation in the random node labelling have explicit formulas. Our
other main theorem is to show that for a random split tree with high probability the cumulants
of the number of occurrences are asymptotically an explicit parameter of the split tree. For the
proof of the second theorem we show some results on the number of embeddings of digraphs into
split trees which may be of independent interest.
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1 Introduction and statement of results

Our main results are Theorem 2 on the distribution of the number of appearances of a fixed
permutation in a random labelling of a complete binary tree and Theorem 4 which shows
that for a random split tree with high probability (whp) the same result holds for the number
of appearances of a fixed permutation in a random labelling of the balls of the tree. We
write a complete introduction and statement of results in terms of complete binary trees first
before defining split trees and stating our results for split trees.
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Complete Binary trees

Let Vn denote the node set of the complete binary tree Tn of height m and n = 2m+1 − 1
nodes. Define a partial ordering on the nodes of the tree by saying that a < b if a is an
ancestor of b. Choose a uniform random labelling of the nodes π : Vn → [n].

We say that nodes a and b form an inversion if a < b and π(a) > π(b). The (random)
number of inversions in random node labellings of fixed trees as well as some random models
of trees were studied in a recent paper ([3]). This paper finds approximate extensions to
some of these results.

The (random) number of inverted triples is R(321, T ) =
∑
u1<u2<u3

1[π(u1) > π(u2) >
π(u3)] where the sum runs over all triples of nodes in T such that u1 is an ancestor of u2 and
u2 an ancestor of u3. In general, we say a permutation σ appears on the |σ|-tuple of vertices
u1, . . . , u|σ| , if u1 < . . . < u|σ| and the induced order on π(u) = (π(u1), . . . , π(u|σ|)) is σ.
Write π(u) ≈ σ to indicate the induced order is the same for example 527 ≈ 312. Define

R(σ, T ) def=
∑

u1<...<u|σ|

1[π(u) ≈ σ],

so in particular R(21, T ) counts the number of inversions in a random labelling of T .
We will generally be concerned with the centralised moments, e.g., E [(R(σ, T )− E [R(σ, T )])r].

Let d(v) denote the depth of v, i.e., the distance from v to the root ρ. For any u1 < . . . < u|σ|
we have P[π(u) = σ] = 1/|σ|! and so it immediately follows that,

E [R(σ, T )] =
∑

u1<...<u|σ|

E [π(u) = σ] = 1
|σ|!

∑
v

(
d(v)
|σ| − 1

)
. (1)

For length two permutations, e.g. inversions, E [R(21, T )] = 1
2 Υ(T ) where Υ(T ) def=

∑
v d(v)

is called the total path length of T . We state our results in terms of a tree parameter Υk
r (T )

which generalises the notion of total path length.
We define Υk

r (T ) which allows us to generalize (1) to higher moments of R(σ, T ). For r
nodes v1, . . . , vr (not necessarily distinct), let c(v1, . . . , vr) be the number of ancestors that
they share c(v1, . . . , vr)

def= |{u ∈ V : u ≤ v1, v2, . . . , vr}| which is also the depth of the least
common ancestor plus one. That is c(v1, . . . , vr) = d(v1 ∨ . . . ∨ vr) + 1 where we write d(v)
for the depth of v and v1 ∨ v2 for the least common ancestor of v1 and v2. The ‘off by one
error’ is because the root is in the set of common ancestors for any subsets of nodes but we
use the convention the root has depth 0. Also define

Υk
r (T ) def=

∑
v1,...,vr

c(v1, . . . , vr)
r∏
i=1

(
d(vi)
k − 2

)
, (2)

where the sum is over all ordered r-tuples of nodes in the tree and with the convention
(
x
0
)

= 1.
For a single node v, d(v) = c(v)− 1, since v itself is counted in c(v). So Υ(T ) = Υ2

1(T )− |V |;
i.e., we recover the usual notion of total path length. The k = 2 case recovers the r-total
common ancestors defined in [3], Υ2

r(T ) =
∑
v1,...,vr

c(v1, . . . , vr).
Indeed the distribution of the number of permutations in a fixed tree has already been

studied in [3]. Let κr = κr(X) denote the r-th cumulant of a random variable X (provided
it exists); thus κ1(X) = E [X] and κ2(X) = Var (X).
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I Theorem 1 (Thm 1 of Cai et al. [3]). Let T be a fixed tree. Let κr = κr(R(21, T )) be the
r-th cumulant of R(21, T ). Then for r ≥ 2,

κr = Br(−1)r

r

(
Υ2
r(T )− |V |

)
where Br denotes the r-th Bernoulli number.

For the case of T a complete binary tree on n vertices we asymptotically recover this
result for large n. Moreover we extend it to cover any fixed permutation σ for complete
binary trees.
I Remark. In essence Theorem 1 of [3] shows the r-th cumulant of the number of inversions
is a constant times Υ2

r(T ). Our main result on fixed trees, Theorem 2 (resp. Theorem 4 on
split trees), shows that for any fixed permutation σ of length k for complete binary trees
(and whp for split trees) the r-th cumulant is a constant times Υk

r (Tn) asymptotically. The
exact constant is defined below and is a little more involved than for inversions but observe it
is a function only of the moment r and the length of k = |σ| together with the first element
σ1 of the permutation σ = σ1 . . . σk. With some work one can show D12,r = Br(−1)r/r and
so Theorem 2 does asymptotically recover Theorem 1 for complete binary trees.

We now state our first main result.

I Theorem 2. Let Tn be the complete binary tree of depth n and fix a permutation σ =
σ1 . . . σk of length k. Let κr = κr(R(σ, Tn)) be the r-th cumulant of R(σ, Tn). Then for
r ≥ 2,

κr = Dσ,rΥk
r (Tn) + o

(
Υk
r (Tn)

)
(3)

where

Dσ,r
def=

r∑
j=0

(−1
k!

)r−j(r
j

) (
j(σ1 − 1)

)
!
(
j(k − σ1 − 1)

)
!(

j(k − 1) + 1
)
!
(
(σ1 − 1)!(k − σ1)!

)j . (4)

This implies the following corollary.

I Corollary 3. Let Tn be the complete binary tree of depth n. For permutations σ of length 3,

V(R(σ, Tn)) =
{

1
45 Υ3

2(Tn)(1 + o(1)) for σ = 123, 132, 312, 321
1

180 Υ3
2(Tn)(1 + o(1)) for σ = 213, 231

and more generally for σ = σ1σ2 . . . σk,

V(R(σ, Tn)) =


1

((k−1)!)2

(
1

2k−1 −
1
k2

)
Υk

2(1 + o(1)) for σ1 ∈ {1, k}(
1

(2k−1)(k−σ1)!(k+σ1−2)! −
1

(k!)2

)
Υk

2(1 + o(1)) .

I Remark. The methods of proof are very different for inversions and general permuta-
tions. In [3], the method takes advantage of a nice independence property of permuta-
tions. For a node u let Iu be the number of inversions involving u as the top node:
Iu = |{w : u < w, π(u) > π(w)}|. Then the {Iu}u are independent random variables and Iu
is distributed as the uniform distribution on {0, . . . , |Tu|}, see Lemma 1 of [3].

Without an obvious similar independence property for general permutations our route
instead uses nice properties on the number of embeddings of small digraphs in both binary
trees and, whp, in split trees. This property allows us to calculate the centralised r-th
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9:4 Permutations in Binary Trees and Split Trees

moment of R(σ, T ) directly from a sum of products of indicator variables as most terms in
the sum are zero or negligible by the embedding property. The centralised r-th moment is
then approximately a function of the j-th cumulants for j ≤ r and we are able to deduce the
r-th cumulant by induction.

We now define a particular notion of embedding small digraphs into a tree which will be
important as discussed in the previous remark.

In the complete binary tree we have a natural partial order, the ancestor relation, where
the root is the ancestor of all other nodes. Any fixed acyclic digraph also induces a partial
order on its vertices where v > u if there is a directed path from v to u. Define [ ~H]Tn to
be the number of embeddings ι of ~H to distinct nodes in Tn such that the partial order of
vertices in ~H is respected by the embedding to nodes in Tn under the ancestor relation.

[ ~H]Tn
def= |{ι : V ( ~H)→ V (Tn) such that if u < v in ~H then ι(u) < ι(v) in Tn}|

Observe the inverse of embedding ι−1 need not respect relations. If u ⊥ v in ~H, i.e. u, v
are incomparable in ~H then we can embed so that ι(u) < ι(v), ι(u) > ι(v) or ι(u) = ι(v)
in Tn. For an example of this take the digraph and denote by P` the rooted path on `
nodes. Notice that in two of the vertices are incomparable but the vertices of the digraph
can be embedded into the nodes of a path which are completely ordered. The counts are
[ ]P4 = 2 and in general [ ]P` = 2

(
`
4
)
.

A particular star-like digraph ~Sk,r will be important. This is the digraph obtained
by taking r directed paths of length k and fusing their source vertices into a single vertex.
Alternatively we can state the theorem in terms of star counts as [~S|σ|,r]Tn = Υ|σ|r (Tn)(1+o(1)).
See the beginning of the proof of the theorem for details.

Split trees

Split trees were first defined in [4] and were introduced to encompass many families of trees
that are frequently used in algorithm analysis, e.g., binary search trees [6], m-ary search
trees [8] and quad trees [5].

The random split tree Tn has parameters b, s, s0, s1,V and n. The integers b, s, s0, s1 are
required to satisfy the inequalities

2 ≤ b, 0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. (5)

and V = (V1, . . . , Vb) is a random non-negative vector with
∑b
i=1 Vi = 1.

We may now define the random split tree as follows. Consider an infinite b-ary tree U .
The split tree Tn is constructed by distributing n balls (pieces of information) among nodes
of U . For a node u, let nu be the number of balls stored in the subtree rooted at u. Once nu
are all decided, we take Tn to be the largest subtree of U such that nu > 0 for all u ∈ Tn.
Let Vu = (Vu,1, . . . , Vu,b) be the independent copy of V assigned to u. Let u1, . . . , ub be the
child nodes of u. Conditioning on nu and Vu, if nu ≤ s, then nui = 0 for all i; if nu > s, then

(nu1 , . . . , nub) ∼ Mult(n− s0 − bs1, Vu,1, . . . , Vu,b) + (s1, s1, . . . , s1),

where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying (5). Note
that

∑b
i=1 nui ≤ n (hence the “splitting”). Naturally for the root ρ, nρ = n. Thus the

distribution of (nu,Vu)u∈V (U) is completely defined. For this paper we will also require that
the internal node capacity s0 is at least one so that there are some internal balls to receive
labels.

This next theorem is our other main result.



M. Albert, C. Holmgren, T. Johansson, and F. Skerman 9:5

Figure 1 An example of a directed acyclic graph ~H with ‘sink’ (green), ‘ancestor’ (blue) and
‘common-ancestor’ (red) nodes indicated by colour. This particular digraph is in G4,7 and it appears
in the seventh moment calculations of R(σ, T ) for |σ| = 4.

I Theorem 4. Fix a permutation σ = σ1 . . . σk of length k. Let Tn be a split tree with split
vector V = (V1, . . . , Vb) and n balls. Let κr = κr(R(σ, Tn)) be the r-th cumulant of R(σ, Tn).
For r ≥ 2 the constant Dσ,r is defined in line (4). Whp the split tree Tn has the following
property.

κr = Dσ,rΥk
r (Tn) + o

(
Υk
r (Tn)

)
.

Our theorem says the following. Generate a random split tree Tn, whp it has the property
that the random number of occurrences of any fixed subpermutation in a random ball
labelling of Tn has variance and higher cumulant moments approximately a constant times a
‘simple’ tree parameter of Tn.

We may contrast this with Theorem 4 of [3]. This theorem states the distribution of
the number of inversions in a random split tree; where the distribution is expressed as the
solution of a system of fixed point equations. It is work in progress to find the distribution
of Υk

r (Tn). This would extend Theorem 4 of [3] about inversions to general permutations.

2 Embeddings of small digraphs into the complete binary tree

Certain classes of digraphs will be important in the proof of Theorem 2, loosely those that
may be obtained by taking r copies of the path ~Pk and iteratively fusing pairs of vertices
together. It will also matter how many embeddings each digraph has into the complete
binary tree. In Proposition 9 we show the counts for most digraphs in such a class are
dwarfed by the counts of a particular digraph in the class. The main work in the proof of
this proposition is to show that the number of embeddings of any digraph ~H, up to a factor
of n, depends only on the numbers of two types of vertices in ~H. We separate this result out
as a lemma, Lemma 5, which we show first before proving the proposition.

A vertex in a directed graph is a sink if it has zero out-degree. For a directed acyclic
graph ~H we define Ai ⊆ V ( ~H) to be the vertices with exactly i descendents in ~H which are
sinks. In particular A0 is the set of sink vertices. We will call vertices in A1 ancestors as
they are ancestors of a single sink and those in Ai for i ≥ 2 common-ancestors as they are
the common ancestor of at least two sinks (see Figure 1). Observe if ~H is a directed forest
then the sinks are the leaves but a sink may have indegree more than one as in the rightmost
sink in Figure 1
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9:6 Permutations in Binary Trees and Split Trees

The next lemma shows that the numbers of sinks and ancestors in ~H determine the
number of ways to map ~H into the complete binary tree Tn on n vertices to within a factor
of lnn.

I Lemma 5. Let ~H be a fixed directed acyclic graph and let Tn be the complete binary tree
of height m with n = 2m+1 − 1 vertices. Then writing |A0| = |A0( ~H)| for the number of sink
(green) vertices and |A1| = |A1( ~H)| for the number of ancestor (blue) vertices

Ω(n|A0|(lnn)|A1|) = [ ~H]Tn = o(n|A0|(lnn)|A1|+1).

Proof of upper bound. The key observation is that for most pairs of nodes in Tn their least
common ancestor is very near the root. Let the nodes at depth d be w1, . . . , w2d . Fix a node
u in the tree. Provided the depth of node u is at least d, i.e. h(u) ≥ d then if c(u, v) ≥ d it
must be that u and v are in the same subtree Twi for some i. If h(u) ≥ d let w(u) be the
node at depth d which is either node u itself or an ancestor of u. Thus∑

u,v

1[c(u, v) ≥ d] ≤
∑
v

1[v ∈ Tw(u))]
∑
u

1[d(u) ≤ d]

≤ 2(m+ 2m−d+1 − 1)(2m+1 − 1)
≤ 22m−d+2+1 +m2m+1 + 22d+2

= n22−d+3 +mn (6)

Fix ε > 0 such that |A2|ε < 1/2. LetB be the set of |A0|-tuples of vertices so that some pair
of them have an ancestor at depth > nε. By (6) the set is B is small: |B| ≤ |A0|2n|A0| · 2−nε .

Given an embedding of A0 into Tn the number of ways to extend an embedding of ~H into
Tn is at most m|A1|+|A2|. This is because each vertex in A1 ∪A2 must be embedded as an
ancestor of the embedding of a vertex in A0 and each vertex in Tn has at most m ancestors.
And in particular, if A0 is embedded to a |A0|-tuple not in B there are at most m|A1|+ε|A2|

ways to extend to an embedding of ~H. Thus

[ ~H]T ≤ n|A0|m|A1|+ε|A2| + n|A0|−εm|A1|+|A2| = o(n|A0|(lnn)|A1|+1),

where the second inequality follows because m = Θ(lnn). J

Proof of lower bound. We restrict attention to embeddings where all common-ancestors are
embedded very near the root of Tn, the sink vertices are embedded to leaves of Tn and the
ancestor vertices are placed on the path between the root of Tn and the leaf in to which their
descendent sink was embedded (see Figure 2). There are sufficiently many such embeddings
to obtain the lower bound. In fact we restrict a little further to make it easy to check all the
embeddings are valid.

By an abuse in notation denote by A2 the union ∪i≥2Ai. As ~H is an acyclic digraph the
directed edges define a partial order on all vertices of ~H and in particular for those in A2.
Thus this relation can be extended to a total order. Fix some total order <∗ on V ( ~H) and
relabel vertices in A2 so that v1 <∗ . . . <∗ v|A2|. Thus we may embed v1 to the root ρ in Tn
and each vi+1 to a child of the node to which vi was embedded and the relation between
vertices in ~H will be preserved by their embedding in Tn; i.e. we may embed A2 to the nodes
on the path from ρ to some u∗ at depth |A2| − 1. Fix such a node u∗ and let T ∗ be the
subtree of Tn from u∗.

Label the sinks A0 = {s1, . . . , s|A0|} and vertices in A1 according to which sink they are
the ancestors of Ai1

def= {v ∈ A1 : v < si}.
We obtain a subcount of [ ~H]Tn by embedding A2 onto the path from ρ to u∗, embedding

A0 to leaves of T ∗ and then for each i in turn embedding vertices in Ai on the path from u∗
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u∗

ρ

|A2|

m− |A2|

2m−|A2| leaves

T ∗

Figure 2 Schematic for the lower bound construction in Lemma 5. The colours indicate the
positions in the binary tree to which the common-ancestor (red), ancestor (blue) and sink (green)
vertices are embedded. Recall A2 = A2( ~H) denotes the set of common-ancestor vertices of ~H.

to the embedding of si. There are m− |A2| − 1 vertices on the path from si to u∗ and at
most |A1| of them already have an ancestor vertex embedded onto to them (i.e. from Aj1 for
some j < i). Thus

[ ~H]Tn ≥
(

2m−|A2|

|A0|

)∏
i

(
m− |A2| − |A1| − 1

|Ai1|

)
where the first binomial counts the number of ways to embed A0 and the i-th binomial in
the product counts the ways to embed Ai1. Now because ~H is fixed |A2| = O(1) and the
product over i is at least

(
m−|A2|−1
|A1|

)
so the lower bound follows. J

3 Embeddings of small digraphs into the split trees

In this section we show upper and lower bounds on the number of embeddings of a fixed
digraph ~H, thought of as constant, into a random split tree with n balls. We begin by briefly
listing some results on split trees from the literature that will be useful for us.

For split vector V define µ =
∑
i E [Vi lnVi]. The average depth of a ball is ∼ 1

µ lnn [7][Cor
1.1]. Moreover almost all balls are very close to this depth. Define a ball v to be good if it
has depth

|d(v)− 1
µ

lnn| ≤ ln0.6 n

and then whp n− o(n) of the balls in the split tree are good [2][Thm 1.2]. That whp in a
split tree all good balls have a Θ(n) depth and almost all balls are good is the only result
about split trees required for the proof of the lower bound on [ ~H]Tn in Lemma 8. For the
upper bound we need a bit more.

It is known that the height of a split tree with split vector V is whp (c+ o(1)) lnn for a
(known) constant c; for details see [1][Thm 2]. We write Tu to denote the subtree from bag
(node) u and |Tu| the number of balls in the subtree.

AofA 2018



9:8 Permutations in Binary Trees and Split Trees

I Lemma 6. Fix k. Let U be the set of bags at depth bα ln lnnc for some large enough
constant α = α(k). Then whp

∑
u∈U
|Tu|2 = o

(
n2

(lnn)k

)
.

We omit the proof of the lemma but note that it follows the same steps as Lemma 3.5
of [2].

Similarly for binary trees we show that the number of embeddings of a fixed acyclic
digraph ~H, to a good approximation, depends only on the number of ‘sink’ and ‘ancestor’
vertices in ~H. It is a little trickier to prove the corresponding statement to the upper bound
Lemma 5 in the case of split trees. However, we are rewarded by a tighter bound on the
number of embeddings is determined by the numbers of ‘sink’ and ‘ancestor’ vertices up to
ln lnn factors.

I Lemma 7. Let ~H be a fixed directed acyclic graph and let Tn be a split tree with split
vector V and n balls. Then writing |A0| = |A0( ~H)| for the number of sink (green) vertices,
|A1| = |A1( ~H)| for the number of ancestor (blue) vertices and |A2| = |A2( ~H)| for the number
of common-ancestor (red) vertices whp

[ ~H]Tn = O(n|A0|(lnn)|A1|(ln lnn)|A2|).

Proof. The idea of the proof is to show that any way of embedding A0( ~H) into the tree can
only be extended to an embedding of all the vertices in ~H in a limited number of ways. Note

[ ~H]Tn =
∑

v=v1,...,v|A0|

f(v) (7)

where f(v) is the number of ways to extend an embedding of A0( ~H) to an embedding
V ( ~H)→ V (Tn). Formally label the vertices in A0( ~H) by s1, . . . , s|A0| and define

f(v) def= |{ι : ι(sj) = vj for each j = 1, . . . , |A0| and
ι : V ( ~H)→ V (Tn) such that if u < v in ~H then ι(u) < ι(v) in Tn}|.

We claim first that for any v, whp f(v) = O
(
(lnn)|A1|+|A2|

)
and indeed will later show a

stronger bound holds for most v.
To see this first claim recall that whp the height of a split tree on n balls is Θ(lnn).

In particular the depth of each ball vj is O(lnn) and so vj has O(lnn) balls as ancestors.
Each vertex in A1( ~H) ∪A2( ~H) must be embedded to a ball which is the ancestor of some vj
(and possibly further restricted to balls which are ancestors of some set of vj ’s but we will
not need this). Hence there are at most O(lnn) choices of where to embed each vertex in
A1( ~H) ∪A2( ~H) which finishes the claim.

Similarly to the proof for the case of binary trees we now exploit the fact that in split
trees most pairs of balls have their least common ancestor in a bag very near the root. This
will allow us to define a large set of v for which f(v) is small.

Say a tuple of balls v is inbred if some pair of balls has a common ancestor at depth
greater than L def= bα ln lnnc for some α such that Lemma 6 holds with k = |A2|. Denote the
set of these tuples by I. We claim that whp

|I| ≤ |A0|2n2(lnn)−|A2|. (8)
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Before proving claim (8) let us show that it implies the theorem. If a tuple of balls is
not inbred, v /∈ I, then any ancestor of any pair of balls has depth at most L = O(ln lnn).
Thus whp there are at most O(ln lnn) choices of where to embed each vertex in A2( ~H) when
extending an embedding in which A0( ~H) was embedded to v /∈ I. So for non inbred v,

max
v/∈I

f(v) = O((lnn)|A1|(ln lnn)|A2|).

We are almost finished (modulo the claim). By (9) and recalling there are less than n|A0|

possible tuples of balls we get

[ ~H]Tn =
∑
v∈I

f(v) +
∑
v/∈I

f(v) ≤ |I|O
(
(lnn)|A1|+|A2|

)
+O(n|A0|(lnn)|A1|(ln lnn)|A2|) (9)

and so the claim |I| = O(n|A0|(lnn)−|A2|) does imply the theorem.
It now remains to prove the claim. Let c(v1, v2) be the depth of the bag which is the

least common ancestor of balls v1 and v2. To prove the claim it suffices to show∑
v1,v2

1[c(v1, v2) ≥ L] ≤ n2

(lnn)|A2|
.

Trivially, if c(v1, v2) ≥ L then both v1 and v2 must be at depth at least L. Also notice
if v1 and v2 have their least common ancestor at depth at least L they must have some
common ancestor, u say, at depth exactly L. Let U be the set of bags at depth L. Then

1
[
c(v1, v2) ≥ L

]
= 1

[
v1, v2 ∈ Tu for some u ∈ U

]
and so we may apply Lemma 6 directly∑

v1,v2

1
[
c(v1, v2) ≥ L

]
≤
∑
u

|Tu|2 ≤
n2

(lnn)|A2|

which establishes the claim. J

I Lemma 8. Let ~H be a fixed directed acyclic graph and let Tn be a split tree with split
vector V = {V1, . . . , Vb} and n balls. Then writing |A0| = |A0( ~H)| for the number of sink
(green) vertices and |A1| = |A1( ~H)| for the number of ancestor (blue) vertices whp

[ ~H]Tn = Ω(n|A0|(lnn)|A1|).

Proof. (sketch) We describe a strategy to embed ~H into Tn. The details of the proof are
then to show that whp this strategy can be followed to obtain a valid embedding of ~H and
that there are sufficiently many different such embeddings to achieve the lower bound.

First embed ‘common-ancestor’ vertices along a path to some node u∗ with ñ = Ω(n)
balls. Now consider a split tree with ñ balls and embed ‘ancestor’ and ‘sink’ vertices into that.
Embed ‘sink’ vertices to ‘good’ balls in the tree (i.e. depth very close to the expected depth)
and the ‘ancestor’ vertices to balls which along the path between u∗ and the embedding of
their descendent. See Figure 3.

We embed the common-ancestor vertices, A2( ~H), to the balls in the nodes on the path
between a node, u∗ say, at depth |A2| − 1 and the root, using one ball per node. This is
so far effectively the same as in the binary case. And we will later embed the ‘sink’ and

AofA 2018



9:10 Permutations in Binary Trees and Split Trees

u∗, ñ balls

ρ, n balls

|A2|

1
µ

ln ñ

ln0.6 ñ

ln0.6 ñ

T ∗

Figure 3 Schematic for the construction in Lemma 8. The colours indicate the positions in
the split tree to which the common-ancestor (red), ancestor (blue) and sink (green) vertices are
embedded. Recall A2 = A2( ~H) denotes the set of common-ancestor vertices of ~H.

‘common-ancestor’ vertices to balls in the subtree Tu∗ . We need to confirm there is some
node u∗ at depth L = |A2| − 1 with ñ balls in its subtree. Each node (bag) has capacity at
most s0 or s and at most (bL+1 − 1) nodes, a constant number, at depth less than L, so
n−O(1) balls remaining. These balls are shared between bL, a constant, number of subtrees
Tu. Hence by pigeon-hole principle some vertex u∗ has ñ = Θ(n) balls in its subtree.

Now work in the split tree Tñ. Embed the ‘sink’ vertices to any good balls v1, . . . , v|A0| in
the split trees. There are Θ(ñ|A0|) ways to embed them. Label the ‘sink’ vertices s1, . . . , s|A0|

and Aj1 ⊂ A
j
1( ~H) to be the ‘ancestor’ vertices with sj as their lone descendent. Vertices in

Aj1 can be embedded to balls anywhere between vj and u∗ and so there are Θ((ln ñ)|A
j
1|)

ways to do that for each j. All up there are Ω(ñ|A0|(ln ñ)|A1|) ways to embed A0( ~H)∪A1( ~H)
into balls of Tñ. But now as ñ = Θ(n) we are done. J

4 Star counts

After having proved the required properties of our two classes of trees, binary trees and split
trees, we show these imply the desired results on cumulants of the number of appearances of
a permutation in the node labellings of binary trees, respectively ball labellings in split trees.

Say a sequence of trees Tn with n nodes (resp. balls) is explosive if for any fixed acyclic
digraph ~H

Ω(n|A0|(lnn)|A1|) = [ ~H]Tn = o(n|A0|(lnn)|A1|+1).

Thus Section 2 was devoted to showing binary trees are explosive and Section 3 to
showing split trees are explosive whp. This section proves the cumulant results using only
this explosive property of the tree classes.

Now we introduce some notation in order to state Proposition 9. We use a notion
of subgraph on an ordered set of vertices. For a k-tuple of vertices Vi = (v1

i , . . . , v
k
i )
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Figure 4 The set G′3,2. Labels of the first path V1 = (v1
1 , v

2
1 , v

3
1) indicated by black arrows between

the nodes and respectively brown arrows for labels of the second path V2 = (v1
2 , v

2
2 , v

3
2). Colours

of nodes indicate ‘sink’ (green), ‘ancestor’ (blue) and ‘common-ancestor’ (red) nodes respectively.
These labelled directed acyclic graphs appear in variance calculations of R(σ) for |σ| = 3.

we say ~H|Vi = ~Pk if the subgraph of ~H induced on Vi has precisely the directed edges
v1
i v

2
i , v

2
i v

3
i , . . . , v

k−1
i vki .

The set Gk,r is the set of acyclic digraphs which may be obtained by taking r copies of
the path ~Pk and iteratively fusing pairs of vertices together such that each path is involved
in at least one fusing operation. Likewise labelled ~H ′ in G′k,r are those obtained by fusing
together j labelled paths ~Pk keeping both sets of labels when a pair of vertices are fused.
The set G′4,2 is illustrated in Figure 4.

Formally let Gk,r be the set of directed acyclic graphs ~H such that we can find (non-
disjoint) vertex subsets V1, . . . , Vr where for each i we have ~H|Vi = ~Pk and ∃j 6= i with
Vi ∩ Vj = ∅. (The second condition is to ensure each i-th path is involved in a fusing
operation.) For ~H ∈ Gk,r write ~H ′ for ~H together with a labelling V1, . . . , Vr (note some
vertices have multiple labels). Likewise write G′k,r for the labelled set of graphs.

Denote by ~Sk,j the digraph composed by taking j copies of the path ~Pk and fusing the j
source vertices into a single vertex. Also define S∗k,r = ∪i~Sk,ri where the disjoint union is
over all Sk,ri with

∑
i ri = r and ri ≥ 2. Observe Sk,r ⊂ Gk,r.

I Proposition 9. Fix k, r and let ~H ∈ Gk,r. Suppose Tn is explosive. If ~H /∈ Sk,r then

[ ~H]Tn = o
(

[~Sk,r]Tn
)
.

Proof. First observe that ~Sk,r has r sink vertices, (k − 2)r ancestor vertices and exactly one
common-ancestor vertex. Thus by the explosive property of Tn

[~Sk,r]Tn = Ω(nr(lnn)(k−2)r).

Fix ~H ∈ Gk,r\Sk,r and fix a labelling V1, . . . , Vr on ~H. Again by the explosive property

[ ~H]Tn = o(n|A0( ~H)|(lnn)|A1( ~H)|+1). (10)

Hence if |A0( ~H)| ≤ r − 1 then [ ~H]Tn = o([~Sk,r]) and so we would be done. Thus we
may assume that A0( ~H) = r and it will suffice to show that A1( ~H) < (k − 2)r. Consider
the path labelled V i = (vi1, . . . , vik). We know vik is a sink vertex and not fused with any
other vertex otherwise we would have A0( ~H) < r. If vertex vij is fused with another vertex,
it must be a vertex on a different path to avoid a cycle, and so vij and vij−1, . . . , v

i
1 would
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9:12 Permutations in Binary Trees and Split Trees

become common-ancestors. Thus if vij is fused to another vertex there are at most (k− j− 1)
ancestor vertices in path Vi. Hence if A1( ~H) = (k − 2)r then we must have only fused the
source vertices of each path but this means that ~H ∈ Sk,r and so we are done. J

By exploiting only the explosive property of binary and (whp) of split trees we prove
the moments result for both classes at once. In particular observe that Theorems 2 and 4
are both implied by taking Proposition 10 along with the lemmas proving binary trees are
explosive and split trees are whp explosive.

I Proposition 10. Suppose Tn is explosive. Let κr = κr(R(σ, Tn)) be the r-th cumulant of
R(σ, Tn). Then for r ≥ 2,

κr = Dσ,rΥ|σ|r (Tn) + o(Υ|σ|r (Tn)).

Proof sketch. The proof proceeds by induction on r with r = 2, the variance, as the base
case. The variance calculation is also a simpler version of the calculations for higher r and
so illustrates the key steps we use for the inductive step.

We give a rough idea of these steps. The variance (and higher centralised moments) can
be written as a sum over indicator random variables for a subpermutation occuring on a set
of |σ| nodes. Almost all terms in this sum are zero or negligible. Firstly if the indicators
concern disjoint sets of vertices they are independent and because we calculate centralised
moments these terms drop away. This leaves only terms in the sum in which the nodes of
indicator variables overlap. We group the terms by how the vertices in these sets overlap
and the results about numbers of embeddings then show most groups are negligible.

For the variance only one group is non-negligible and so we will be done at this step. In
the inductive step the centralised r-th moment has only one ‘new’ group (not occuring in
smaller moment calculations) which is non-negligible as well as non-negligible groups which
appeared in smaller cumulants for j ≤ r. This occurs in such a way that we can prove this
new group approximates the r-th cumulant. J
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10:2 Asympotics of Lattice Paths with Forbidden Patterns

Figure 1 Some models of self-avoiding walks are encoded by partially directed lattice paths
avoiding a pattern (see [2]). In this article, we analyse the asymptotics of more general walks (any
jumps, any forbidden pattern).

1 Introduction

Combinatorial structures having a rational or an algebraic generating function play a
key role in many fields: computer science (analysis of algorithms involving trees, lists,
words), computational geometry (integer points in polytopes, maps, graph decomposition),
bioinformatics (RNA structure, pattern matching), number theory (integer compositions,
automatic sequences and modular properties, integer solutions of varieties), probability theory
(Markov chains, directed random walks), see e.g. [4, 11, 22, 32]. They are often the trace of a
structure which has a recursive specification in terms of a system of tree-like structures, or
of some functional equation solvable by variants of the kernel method [12].

Since the seminal article by Chomsky and Schützenberger on the link between context-free
grammars and algebraic functions [15], which also holds for pushdown automata [30], many
articles encoded and enumerated combinatorial structures via a formal language approach.
See e.g. [20,25,28] for such an approach on the so-called generalized Dyck languages. The
words generated by these languages are in bijection with directed lattice paths, and in this
article, we try to understand how some of these fundamental objects can be enumerated
when they have the additional constraint to avoid a given pattern. For sure, such a class
of objects can be described as the intersection of a context-free language and a rational
language; therefore, classical closure properties imply that they are directly generated by
another (but huge and clumsy) context-free language. Unfortunately, despite the fact that
the algebraic system associated with the corresponding context-free grammar is in theory
solvable by a resultant computation or by Gröbner bases, this leads in practice to equations
which are so big that no current computer could handle them in memory, even for generalized
Dyck languages with only 20 different letters.

In this article, we generalize the asymptotics obtained by Banderier and Flajolet [5] to
lattice paths avoiding a given pattern. As we shall see, the situation is much more involved,
and we build on the explicit formulas that we obtained in our companion article [1]. There,
we introduced a generic way to tackle the question of enumerating words avoiding a given
pattern (for languages generated by pushdown automata) which bypass these intractable
equations. For directed lattice paths, our method allows to handle an arbitrary number
of letters (i.e., allowed steps), up to alphabets of thousands of letters, computationally in
a few minutes. It relies on an analytic combinatorics approach, and also on the kernel
method, which we used in our investigation of enumerative and asymptotic properties of
lattice paths [6–8]. This allows to unify the considerations of many articles which investigated
natural patterns like peaks, valleys, humps, etc., in Dyck and Motzkin words, corresponding
patterns in trees, compositions. . . , see e.g. [9, 10,13,16,17,19,21,26,27,29].
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Table 1 Summary of our results from [1], which extend the Banderier–Flajolet results
from [5] to lattice paths avoiding a pattern. For the four types of paths and for any set of jumps
encoded by P (u), we give the corresponding generating function of such lattice paths avoiding a
pattern p (of length ` and final altitude b). The formulas involve the autocorrelation polynomial
R(t, u) of p, and the small roots ui of the kernel K(t, u) := (1− tP (u))R(t, u) + t`ub.

ending anywhere ending at 0

on Z

walks

W (t, u) = R(t, u)
K(t, u)

bridges

B(t) = −
e∑

i=1

u′i
ui

R(t, ui)
Kt(t, ui)

on N
meanders

M(t, u) = R(t, u)
K(t, u)

c∏
i=1

(u− ui(t))

excursions

E(t) = (−1)c+1

t

c∏
i=1

ui(t)

2 Definitions and notations

In their paper, Banderier and Flajolet consider the following setting. Let S, the set of steps
(or jumps), be some finite subset of Z that contains at least one negative and at least one
positive number. A lattice path with steps from S is a finite word w = [v1, v2, . . . , vn] in
which all letters belong to S, visualized as a directed polygonal line in the plane, which starts
in the origin and is formed by successive appending of vectors (1, v1), (1, v2), . . . , (1, vn). The
letters that form the path w = [v1, v2, . . . , vn] are referred to as its steps. The length of w, to
be denoted by |w|, is the number of steps in w. The final altitude of w, to be denoted by
h(w), is the sum of all steps in w, that is v1 + v2 + . . .+ vn.

Under this setting, it is usual to consider two restrictions: that the whole path is (weakly)
above the x-axis, and that it has final altitude 0 (equivalently, terminating at the x-axis).
Consequently, one considers four classes of lattice paths:
1. A walk is any path as described above.
2. A bridge is a path that terminates at the x-axis.
3. A meander is a path that stays (weakly) above the x-axis.
4. An excursion is a path that stays (weakly) above the x-axis and terminates at the x-axis.

In the generating functions, the variable t corresponds to the length of a path, and the
variable u to its final altitude. P (u) is the characteristic polynomial of the set of steps S,
defined by P (u) =

∑
s∈S u

s. The smallest (negative) number in S is denoted by −c, and the
largest (positive) number in S is denoted by d: that is1, if one orders the terms of P (u) by
the powers of u, one has P (u) = u−c+us2 + . . .+us|S|−1 +ud with S = {−c, s2, . . . , s|S|−1, d}.
The drift of the walk is given by the quantity P ′(1).

1 Some weights (or probabilities, or multiplicities) could be associated with each jump, but we omit them
in this article for clarity. All the proofs would be similar.
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10:4 Asympotics of Lattice Paths with Forbidden Patterns

3 Lattice paths with forbidden patterns and the autocorrelation
polynomial

We consider lattice paths with step set S that avoid a certain pattern, that is, an a priori
fixed path p = [a1, a2, . . . , a`]. To be precise, we define an occurrence of p in a lattice path w
as a substring of w which coincides with p. If there is no occurrence of p in w, we say that w
avoids p. For example, the path [1, 2, 3, 1, 2] has two occurrences of [1, 2], but it avoids [2, 1].

Before we state our results, we introduce some notations.
A presuffix of p is a non-empty string that occurs in p both as a prefix and as a suffix.

In particular, the whole word p is a (trivial) presuffix of itself. If p has one or several
non-trivial presuffixes, we say that p exhibits an autocorrelation phenomenon. For example,
for the pattern p = [1, 1, 2, 1, 2] we have no autocorrelation. In contrast, the pattern
p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1] has three non-trivial presuffixes: [1], [1, 1], and [1, 1, 2, 3, 1, 1], and
thus in this case we have autocorrelation.

While analysing the Boyer–Moore string searching algorithm and properties of periodic
words, Guibas and Odlyzko [23] introduced in 1981 what turns out to be one of the key
characters of our article, the autocorrelation polynomial2 of the pattern p: For any given
word p, let Q be the set of its presuffixes; the autocorrelation polynomial of p is

R(t, u) =
∑
q∈Q

t|q̄|uh(q̄), (1)

where q̄ denotes the complement of q in p (i.e. qq̄ = p) and h(q̄) the final altitude of a walk
made of the steps of q̄.

For example, consider the pattern p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]. Its four presuffixes produce
four terms of R(t, u) as follows:

q |q̄| h(q̄)

[1] 9 15
[1, 1] 8 14

[1, 1, 2, 3, 1, 1] 4 7
[1, 1, 2, 3, 1, 1, 2, 3, 1, 1] 0 0

Therefore, for this p we have R(t, u) = 1 + t4u7 + t8u14 + t9u15. Notice that if for some p no
autocorrelation occurs, then we have Q = {p} and therefore R(t, u) = 1.

Finally, we define the kernel of a lattice path avoiding some pattern p as the following
Laurent polynomial:

K(t, u) := (1− tP (u))R(t, u) + t|p|uh(p). (2)

Also, in our case it can be shown that each root u = u(t) of K(t, u) = 0 is either small
(i.e., limt→0 u(t) = 0) or large (i.e., limt→0 |u(t)| = +∞). The small roots are denoted by
u1, . . . , ue. We will also refer to them as the small branches.

Now we can state the enumeration results. Recall that t is the variable for the length of
a path, and u is the variable for its final altitude.

I Theorem 1. Let S be a set of steps, and let p be a pattern with steps from S. Denote ` = |p|,
b = h(p). Let R(t, u) be the autocorrelation polynomial of the pattern p. Let u1, . . . , ue be the

2 A similar notion also appears in the work of Schützenberger on synchronizing words [31].
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Figure 2 The automaton for the jumps S = {−1, 1, 2} and the pattern p = [1, 2, 1, 2,−1]. Any
walk avoiding a given pattern p is associated with a similar automaton. It is in fact a pushdown
automaton, in order to follow the positivity constraint. The matricial kernel method leads to the
formulas of Theorem 1 for the corresponding generating functions, without having to solve a big
algebraic system.

small roots of the kernel K(t, u), as defined in (2). Then (under one additional constraint
detailed in the proof), the generating functions of walks, bridges, meanders and excursions
avoiding the pattern p are given by:

W (t) = 1
1− tP (1) + t`/R(t, 1) , (3)

B(t) = −
e∑
i=1

u′i(t)
ui(t)

R(t, ui)
Kt(t, ui)

, (4)

M(t) = R(t, 1)
K(t, 1)

c∏
i=1

(
1− ui(t)

)
, (5)

E(t) =
{

(−1)c+1

t

∏c
i=1 ui(t) if b > −c,

(−1)c+1

t−t`
∏c
i=1 ui(t) if b = −c.

(6)

Proof. We refer to our companion article [1] for the proofs and the complete bivariate
generating functions. The kernel K(t, u) is in fact the determinant of (I− tA(u))−1, where
A(u) is the transition matrix encoding the stack automaton associated with the constrained
walk (see Figure 2 below). The formulas then follow from an extension of the kernel method
to matrix equations. (In fact, we presented above the simplified formulas for M and E,
when p is what we call a pseudomeander, i.e. a lattice path which does not cross the x-axis,
except, possibly, at its last step. If this is not the case, then we may have more than c small
roots.) J

I Remark. Notice that for these four classes of lattice paths, forbidding a pattern of length 1
or using symbolic weights for the jumps recovers the formulas from Banderier and Flajolet [5].
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10:6 Asympotics of Lattice Paths with Forbidden Patterns

4 Asymptotics of excursions avoiding a given pattern

The aim of this section is to characterize the asymptotics of the number of walks with
jumps S avoiding a given pattern p.

I Lemma 2 (Location of the dominant singularity). The dominant singularity (i.e. the nearest
from zero) of B(t) and E(t) is ρ, the smallest real positive number where a small branch
meets a large branch. (The branches refer to the solutions of K(t, u) = 0, as defined in (2)).

Proof. Lattice paths avoiding a given pattern can be generated by a pushdown automaton
(see Figure 2). Accordingly, they can be generated by a context-free grammar, and their
generating functions therefore satisfy a “positive” system of algebraic equations (see [15]).
Therefore, the asympotic number of words of length n in such languages is of the form
Cρ−nnα. When the system is not strongly connected, α is either an integer (if ρ is a pole),
either a dyadic number (if one has an iterated square root Puiseux singularity at ρ), as proven
by Banderier and Drmota in [4]. For excursions, one has a strongly connected dependency
graph (see Figure 2); the dominant singularity ρ (or, possibly, the dominant singularities)
thus behaves like a square root. What is more, the cycle lemma (see the discussion on this
in [5]) gives a correspondence between excursions and bridges, which implies that E(t) and
B(t) have the same radius of convergence (this still holds when there is a forbidden pattern).

Now, because of the product formula (6) for excursions, one (or several) of the small
branches have to follow this square root Puiseux behaviour. By Pringsheim’s theorem, this
has to be at a place 0 < ρ ≤ 1; the geometry of the branches implies (see Table 2) that its
location is where a large branch meets a small branch (because if the branching point comes
from the intersection of small branches only, then their product will be regular). Therefore,
ρ has to be the smallest real positive number where a small branch meets a large branch. J

I Remark. ρ is also the radius of convergence of meanders with negative or zero drift. For
meanders with positive drift, the dominant pole of 1/K(t, 1) will be the radius of convergence.

In order to avoid pathological cases, we now focus on generic walks.

I Definition 3 (Generic walks). We call a constrained walk model “generic” if the following
three properties hold.

Property 1. The generating functions B(t),M(t) and E(t) are algebraic, not rational.
Property 2. They have a unique domininant singularity.
Property 3. No large negative branch (i.e. a branch such that limz→0+ u(z) = −∞) meets
a small negative branch at ρ.

These three properties are very natural; we now comment more on them:
For Property 1, it can be the case that the forbidden pattern leads to a degenerated model,
in the sense that it is no more involving any stack and then we have words generated by
a regular automaton (then, the generating functions are rational and the asymptotics are
well understood). Example: S = {−1, 1} and p = [1,−1] or p = [−1,−1].
For Property 2, it is proven in [3] that multiple dominant singularities appear if and only
if the gcd of the pairwise differences of the jumps is not 1. In this case, the asymptotics
are obtained via [8, Theorem 8.8].
For Property 3, we conjecture that it always holds. We have a proof for many classes of
walks, but some remaining cases are tricky as it is possible to exhibit cases where one
small negative branch meets a large negative branch, at some ρ′ > ρ: This is e.g. the case
for S = {−2,−1, 0, 1, 2} and p = [0, 1,−2]. Moreover, it is also possible that two small
negative branches meet at ρ: This is e.g. the case for S = {−2, 1} and p = [1,−2, 1,−2].
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Table 2 Plot of the real branches of the kernel equation K(t, u) = 0, for several pattern p. This
illustrates the diversity of behaviours. In all the examples, the set of jumps is S = {−2,−1, 0, 1, 2},
and the pattern p is indicated. Note that due to a theorem of Pólya–Fatou–Carlson [14] on pure
algebraic functions with integer coefficients (and therefore for generic walks), the first crossing
between a small and large branch is at 0 < ρ < 1 (i.e. ρ = 1 or any other root of t− t`, cannot be
the dominant singularity).

p = [1,−2, 1, 1,−2, 1] p = [0, 1, 0, 0, 1, 0] p = [0, 0, 1, 2, 0, 0]

p = [0, 0,−1,−2, 0, 0] p = [−1,−2,−1,−2,−1,−2] p = [−1,−2,−1,−1,−2,−1]

p = [−1,−1, 0,−1,−1, 0] p = [−2,−2, 0,−2,−2, 0] p = [−2,−1, 1,−2,−1, 1]

p = [2, 2,−1, 2, 2− 1] p = [2,−1,−1, 2,−1,−1] p = [2,−1,−1, 2,−1, 1]

AofA 2018



10:8 Asympotics of Lattice Paths with Forbidden Patterns

d < b < d`−c ≤ b ≤ d−c` < b < −c

(0, c)(0, c)

(1, 0)

(`, c+ b)

(`, c+ b)

(1, c+ d)

(1, c+ d)
(0,−b)

(1, d− b)

(`, 0) (1, 0)

(1,−c− b)

Figure 3 The three possibilities for the Newton polygon of the kernel K(t, u) (the list is exhaustive
if R(t, u) = 1). Each dot (i, j) corresponds to a monomial tiuj of K. The slopes of the convex hull
segments on the left give the Puiseux behaviour at 0 of the small and large roots ui and vj .

We observe that the behaviour of real branches of K(t, u) = 0 is much more complicated
and diverse than that in the Banderier–Flajolet study. To recall, in their case there are always
exactly two real positive branches (one small branch u1 and one large branch v1), and they
meet at a singularity point (t, u) = (ρ, τ), where u = τ is the only positive number such that
P ′(τ) = 0. In contrast, in our case we may have additional positive branches – even when
the autocorrelation is trivial. Table 2 illustrates that we always have a small branch and one
large branch whose shape in general resembles that of u1 ∪ v1 from Banderier–Flajolet.

In one sense, the forbidden pattern gives a perturbation of the Banderier–Flajolet geometry
of branches, and adds additional branches. A rigorous version of this intuition can be obtained
by playing with a Boltzmann weight/Gibbs measure (like in statistical mechanics): moving
the parameter v in a continuous way from 1 to 0 in the generating function F (t, u, v) in the
next section gives the explanation of these phenomena.

More information about these branches (on their Puiseux expansions) can be derived
from the Newton polygon associated with the kernel (see [18] for a crisp presentation of the
theory of Newton polygons for Puiseux expansion).

Equipped with all this information on the roots, and the way they cross, we can derive
the following asymptotic results. Note that we use the notations Kt(t, u) for (∂tK)(t, u), and
Kuu(t, u) for (∂2

uK)(t, u). We start with asymptotics of walks on Z with a forbidden pattern.

I Theorem 4 (Asymptotics of walks on Z). Let ρK be the smallest positive root of K(t, 1).
For any generic model, the asymptotic number of walks of length n is:

Wn ∼ −ρKKt(ρK , 1)R(ρK , 1)ρ−nK .

Proof. This follows from the partial fraction decomposition of W (t) = R(t,1)
K(t,1) . J

I Theorem 5 (Asymptotics of excursions). Assume that we have a generic walk avoiding
a pattern p which is a pseudomeander. Let Y (t) := (−1)c−1u2(t) · · ·uc(t). The number of
excursions of size n satisfies

En ∼ Y (ρ)

√
Kt(ρ, 1)

2πρKuu(ρ, 1) · n
−3/2ρ−n .

Proof. Since the walk is generic, Y (t) is analytic for |t| ≤ ρ. Thus the singular behaviour of
u1(t) determines the singularity and the local behaviour of E(t). We obtain:

E(t) ∼ E(ρ)− Y (ρ)

√
2Kt(ρ, τ)
ρKuu(ρ, τ)

√
1− t

ρ
. J
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I Theorem 6 (Asymptotics of bridges). Assume that we have a generic walk avoiding a
pattern p. The number of bridges of size n satisfies

Bn ∼ −
R(ρ, τ)
τKt(ρ, τ)

√
Kt(ρ, 1)

2πρKuu(ρ, 1) · n
−1/2ρ−n .

Proof. We know from Lemma 2 that B(t) and E(t) have the same radius of convergence.
Thus, the singular behaviour of u1(t) determines the singularity and the local behaviour of
B(t). We have therefore

B(t) ∼ − R(t, u1(t))
Kt(t, u1(t))

u′1(t)
u1(t)

and plugging the singular expansion of u1 into this formula yields the result. J

I Theorem 7 (Asymptotics of meanders). Let ρK be the smallest positive root of K(t, 1) (as
in Theorem 4). Assume that the walk is generic and that p is a pseudomeander. Then the
asymptotics of the coefficients of the meander generating function

M(z) = (1− u1(t))Y (t)R(t, 1)/K(t, 1) with Y (t) :=
c∏
i=2

(1− ui(t))

is given by

Mn ∼ R(ρ, 1)Y (ρ)

√
2

πρKt(ρ, 1)Kuu(ρ, 1) · n
−1/2ρ−n (for ρK = ρ),

Mn ∼ −
Y (ρK)R(ρK , 1)
ρKKt(ρK , 1) · ρ

−n
K (for ρK < ρ),

Mn ∼
R(ρ, 1)Y (ρ)
K(ρ, 1)

√
ρKt(ρ, 1)

2πKuu(ρ, 1) · n
−3/2ρ−n (for ρK > ρ).

Proof. To prove the first assertion, observe that ρK = ρ is equivalent to τ = 1. The dominant
singularity of the generating function M(t) = (1 − u1(t))Y (t)R(t, 1)/K(t, 1) is at ρK = ρ

and it originates from a simple zero in the denominator K(t, u) and from u1. The singular
expansion from u1(t) at ρ gives (we use κ(t) := − 1

tKt(t,1) ):

M(t) ∼ R(ρ, 1)Y (ρ)κ(ρ)

√
2ρKt(ρ, 1)
Kuu(ρ, 1)

(
1− t

ρ

)−1/2
= R(ρ, 1)Y (ρ)

√
2√

ρKt(ρ, 1)Kuu(ρ, 1)

(
1− t

ρ

)−1/2
.

In the case ρK < ρ we have τ 6= 1 and thus K(ρ, 1) > 0. Hence the generating function
has the dominant singularity ρK which comes from the kernel only. This implies

M(t) ∼ Y (ρK)R(ρK , 1)κ(ρK) 1
1− t/ρK

.

In the last case, ρK > ρ, u1 has a square-root type singularity before K(t, 1) becomes
singular. Singularity analysis thus gives the last claim of the theorem, via the following
Puiseux expansion at the dominant singularity ρ

M(t) ∼M(ρ) + R(ρ, 1)Y (ρ)
K(ρ, 1)

√
2ρKt(ρ, 1)
Kuu(ρ, 1)

√
1− t

ρ
. J
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Caveat: We are aware that several constants in these theorems can be further simplified,
but we kept them like this in order to help the reader to follow the proofs (just sketched
here, due to the page limit).

The theorems above for excursions and meanders are stated when the pattern p is a
pseudomeander; there is a similar result for any pattern, but the proof goes through a wider
disjunction of cases to handle, as then the closed form for the generating function is no more
the same. We will handle this in the full version of this article.

These asymptotics also allow to get results on limit laws, as presented in the next section.

5 Limit law for the number of occurrences of a given pattern

Our approach also allows to count the number of occurrences of a pattern in paths. As usual,
an occurrence of p in w is any substring of w that coincides with p, and when we count
them we do not require that the occurrences will be disjoint. For example, the number of
occurrences of 11 in 1111 is 3. We use the same notations than in Section 3. Then one has

I Theorem 8 (Gaussian limit laws for occurrences). Let Xn be the random variable which
counts the number of occurrences of a pattern in a generic walk, bridge, meander, excursion
model. Then Xn has a Gaussian limiting distribution with E[Xn] = µn+O(1) and Var[Xn] =
σ2n+O(1) for some constants µ > 0 and σ2 ≥ 0:

1√
n

(Xn − E[Xn])→ N (0, σ2).

Proof (sketch). The proof relies on the Gaussian limit laws for positive algebraic systems
from [4, Theorem 9], which itself comes from following the dependency in the graph associated
with the system, and applying Hwang’s quasi-power theorem to each component. In this
process, some positive variance conditions have to be checked on the formulas given by an
equivalent of Theorem 1, with the additional variable v counting the number of occurrences
of the pattern, and where the corresponding trivariate kernel is

K(t, u, v) := det(I − tA) = (1− v)((1− tP (u))R(t, u) + t`ub) + v(1− tP (u)). (7)

This comes from the associated automaton (as illustrated in Figure 4), and its adjacency
matrix A. Note that for v = 0 we get the kernel from the avoidance case (see equation (2)),
and for v = 1 we get 1− tP (which is, as expected, the kernel from [5]).

To show the relation (7), we use a method adapted from [22, p. 60]. Let W ≡W (t, u, v)
and Wp ≡ Wp(t, u, v) be the generating functions of all words and words ending with p,
respectively, where v counts the number of occurrences of p. We show the following two
identities:

1 +WtP = W −Wp + v−1Wp , (8)
Wt`ub = v−1WpR− (R− 1)Wp . (9)

This system is readily solved and gives W as a rational function with denominator the right-
hand side of (7). Since it is an irreducible polynomial, with degree ` in t, this denominator
times a polynomial factor Q(t, u, v) has to be equal to det(I − tA). In fact, Q(t, u, v) = 1.
Indeed, an inspection of the degrees of the product shows that they cannot be higher than the
degrees of the determinant of I − tA, and multiplying the denominator by a non constant Q
would contradict this. Now, setting v = 1 gives that 1− tP = det(I− tA) = (1− tP )Q(t, u, 1)
and thus Q = 1. This shows (7).
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Figure 4 Pushdown automaton for the set of jumps S = {−1, 1, 2} and the pattern p =
[1, 2,−1, 1, 2]. In dashed red we marked the arrow from the last state (X`−1) labelled by the last
letter of the pattern (a`). Marking this transition with v leads to formulas involving the kernel
K(t, u, v) = det(I− tA) as given in Equation (7), where A is the adjacency matrix of this automaton.

To show (8), take a word and add a letter to it. If the resulting word does not end with p,
it is counted by W −Wp; if it does, it is counted by v−1Wp. To show (9), take a word w
and add the pattern p to it. This creates a number j ≥ 1 of new occurrences of p. The
path wp can be written in j ways as w′r, where w′ ends with a new occurence of p and r is
an autocorrelation factor, or j − 1 ways if we impose that r 6= ε. It is therefore counted with
a factor v + · · ·+ vj by WpR and with a factor v + · · ·+ vj−1 by (R− 1)Wp, and the result
follows. J

6 Conclusion

In this article, we presented a unifying way which gives the asymptotics of all families of
lattice paths with a forbidden pattern, and we proved that the number of occurrences of a
given pattern is normally distributed. The same approach would, for instance, allow to do
the asymptotics of walks having exactly m occurrences of a given pattern, or to consider
patterns which are no longer a word but a regular expression.

It is also nice that our approach gives a method (let us call it the vectorial kernel method) to
solve in an efficient way the question of the enumeration and asymptotics of words generated
by a pushdown automaton (or words belonging to the intersection of an algebraic language
and a rational language). What is more, it is possible to use our functional equation approach
to analyse the intersection of two algebraic languages. Note that testing if this intersection is
empty is known to be an undecidable problem, even for deterministic context-free grammars
(see e.g. [24]), so we cannot expect too much from a generic method in this case. However,
we can specify a little bit more the type of system of functional equations we get: indeed
this problem is related to automata with two stacks, which, in turn, are known to have the
same power as a Turing machine; the evolution of these two stacks corresponds to lattice
paths in the quarter plane (with steps of arbitrary length), the complexity of the problem is
reflected by the fact that one can then get generating functions which are no more algebraic,
D-finite, or differentially-algebraic, and we do not expect some universal nice results here,
but a wider zoo of behaviours.

However, no doubt that all these cases will be new instances of what Flajolet and
Sedgewick called Borges’s Theorem: Any pattern which is not forbidden by design will appear
a linear number of times in large enough structures, with Gaussian fluctuations.

For sure, it is more a metatheorem, a natural credo, so it is always worthwhile to establish
this claim rigorously. Naturally, may it be with tools of probability theory or of analytic
combinatorics, there is always some technical conditions to check to ensure this claim. In

AofA 2018
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this article, our closed form expressions for the generating functions were one of the keys,
together with the universal behaviour of the small branches. This allowed us to prove this
Gaussian behaviour for the number of occurrences of any given pattern. Year after year, this
claim is established for more and more combinatorial structures (it was done for patterns in
Markov chains, trees, maps, permutations, context-free grammars, and now... lattice paths!).

Let us end with the passage of Flajolet and Sedgewick [22, p. 61] which explains where
Borges’s Theorem comes from:

This property is sometimes called “Borges’s Theorem” as a tribute to the famous
Argentinian writer Jorge Luis Borges (1899-1986) who, in his essay The Library of
Babel, describes a library so huge as to contain:

“Everything: the minutely detailed history of the future, the archangels’ autobio-
graphies, the faithful catalogues of the Library, thousands and thousands of false
catalogues, the demonstration of the fallacy of those catalogues, the demonstration
of the fallacy of the true catalogue, the Gnostic gospel of Basilides, the commentary
on that gospel, the commentary on the commentary on that gospel, the true story
of your death, the translation of every book in all languages, the interpolations of
every book in all books.”
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11:2 Periodic Pólya Urns and an Application to Young Tableaux

1 Periodic Pólya urns

Pólya urns were introduced in a simplified version by George Pólya and his PhD student
Florian Eggenberger in [7, 8, 27], with applications to disease spreading and conflagrations.
They constitute a powerful model, still widely used: see e.g. Rivest’s recent work on auditing
elections [28], or the analysis of deanonymization in Bitcoin’s peer-to-peer network [9]. They
are well-studied objects in combinatorial and probabilistic literature [2, 11, 22], and offer
fascinatingly rich links with numerous objects like random recursive trees, m-ary search trees,
branching random walks (see e.g. [3, 6, 15, 16, 30]). In this paper we introduce a variation
which offers new links with another important combinatorial structure: Young tableaux. We
solve the enumeration problem of this new model, derive the limit law for the evolution of
the urn, and give some applications.

In the Pólya urn model, one starts with an urn with b0 black balls and w0 white balls at
time 0. At every discrete time step one ball is drawn uniformly at random. After inspecting
its colour it is returned to the urn. If the ball is black, a black balls and b white balls are
added; if the ball is white, c black balls and d white balls are added (where a, b, c, d ∈ N are
non-negative integers). This process can be described by the so-called replacement matrix:

M =
(
a b

c d

)
, a, b, c, d ∈ N.

We call an urn and its associated replacement matrix balanced if K := a+ b = c+ d. In
other words, in every step the same number K of balls is added to the urn. This results in a
deterministic number of balls after n steps: b0 + w0 +Kn balls.

Now, we introduce a more general model which has rich combinatorial, probabilistic, and
analytic properties.

I Definition 1. A periodic Pólya urn of period p with replacement matrices M1,M2, . . . ,Mp

is a variant of a Pólya urn in which the replacement matrix Mk is used at steps np+ k. Such
a model is called balanced if each of its replacement matrices is balanced.

In this article, we illustrate the aforementioned rich properties on the following model
(the results for other values of the parameters are similar to the case we now handle in detail).

I Definition 2. We call a Young–Pólya urn the periodic Pólya urn of period 2 with re-

placement matrices M1 :=
(

1 0
0 1

)
for every odd step, and M2 :=

(
1 1
0 2

)
for every even

step.

Let us describe the state of the urn after n steps by pairs (number of black balls, number
of white balls), starting with b0 = 1 black ball and w0 = 1 white ball shown in Figure 1.
In the first step the matrix M1 is used and gives the two states (2, 1), and (1, 2). In the
second step, matrix M2 is used, in the third step, matrix M1 is used again, in the fourth
step, matrix M2, etc. Thus, the possible states are (3, 2), (2, 3), and (1, 4), at time 2, and
(4, 2), (3, 3), (2, 4), and (1, 5), at time 3.

In fact, each of these states may be reached in different ways, and such a sequence of
transitions is called a history. Each history comes with weight one. Implicitly, they induce
a probability measure on the states at step n. So, let Bn and Wn be random variables for
the number of black and white balls after n steps, respectively. As our model is balanced,
Bn +Wn is a deterministic process, reflecting the identity Bn +Wn = b0 + w0 + n+

⌊
n
2
⌋
.

So, from now on, we concentrate our analysis on Bn.
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M1

M2

M1

6

2

1 1

2 2

1

8 8 8

H0 = xy

H1 = x2y + xy2

H2 = 2x3y2 + 2x2y3 + 2xy4

H3 = 6x4y2 + 8x3y3 + 8x2y4 + 8xy5

Figure 1 The evolution of a Young–Pólya urn with one initial black and one initial white ball.
Black arrows mark that a black ball was drawn, dashed arrows mark that a white ball was drawn.
Straight arrows indicate that the replacement matrix M1 was used, curly arrows show that the
replacement matrix M2 was used. The number below each node is the number of possible transitions
to reach such a state. In this article we give a formula for Hn (which encodes all the possible states
of the urn at time n) and their asymptotic behaviour.

For the classical model of a single balanced Pólya urn, the limit law of the random variable
Bn is fully known: The possible limit laws include a rich variety of distributions. To name a
few, let us mention the uniform distribution [10], the normal distribution [3], and the Beta
and Mittag-Leffler distributions [15]. Periodic Pólya urns (which include the classical model)
lead to an even larger variety of distributions involving a product of generalized Gamma
distributions [31].

I Definition 3. The generalized Gamma distribution GenGamma(α, β) with real parameters
α, β > 0 is defined by the density function (having support (0,+∞))

f(x;α, β) := β xα−1 exp(−xβ)
Γ (α/β) ,

where Γ is the classical Gamma function Γ(z) :=
∫∞

0 tz−1 exp(−t) dt.

I Remark. Let Γ(α) be the Gamma distribution1 of parameter α > 0, given by its density

g(x;α) = xα−1 exp(−x)
Γ(α) .

Then, one has Γ(α) L= GenGamma(α, 1) and, for r > 0, the distribution of the r-th power of
a random variable distributed according to Γ(α) is Γ(α)r L= GenGamma(α/r, 1/r).

Our main results are the enumeration result from Theorem 5, the application to Young
tableaux in Theorem 7, and the following result (and its generalization in Theorem 6):

I Theorem 4. The normalized random variable 22/3

3
Bn
n2/3 of the number of black balls in a

Young–Pólya urn converges in law to a generalized Gamma distribution:

22/3

3
Bn
n2/3

L−→ GenGamma (1, 3) .

1 Caveat: It is traditional to use the same letter for both the Γ function and the Γ distribution. Also,
some authors add a second parameter to the distribution Γ, which is set to 1 here.
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We give a proof of this result in Section 3. Let us first mention some articles where this
distribution has already appeared before:

in Janson [17], for the analysis of the area of the supremum process of the Brownian
motion,
in Peköz, Röllin, and Ross [25], as distributions of processes on walks, trees, urns, and
preferential attachments in graphs (they also consider what they call a Pólya urn with
immigration, which is a special case of a periodic Pólya urn),
in Khodabin and Ahmadabadi [19] following a tradition to generalize special functions by
adding parameters in order to capture several probability distributions, such as e.g. the
normal, Rayleigh, and half-normal distribution, as well as the MeijerG function (see also
the addendum of [17], mentioning a dozen of other generalizations of special functions).

In the next section we translate the evolution process into the language of generating
functions by encoding the dynamics of this process into partial differential equations.

2 A functional equation for periodic Pólya urns

Let hn,k,` be the number of histories of a periodic Pólya urn after n steps with k black
balls and ` white balls, with an initial state of b0 black balls and w0 white balls, and with
replacement matrices M1 for the odd steps and M2 for the even steps. We define the
polynomials

Hn(x, y) :=
∑
k,`≥0

hn,k,`x
ky`.

Note that these are indeed polynomials as there are just a finite number of histories after n
steps. We collect all these histories in the trivariate exponential generating function

H(x, y, z) :=
∑
n≥0

Hn(x, y)z
n

n! .

In particular, we get for the first 3 terms of H(x, y, z) the expansion (compare Figure 1)

H(x, y, z) = xy +
(
xy2 + x2y

)
z +

(
2xy4 + 2x2y3 + 2x3y2) z2

2 + . . .

Observe that the polynomials Hn(x, y) are homogeneous, as we have a balanced urn model.
Now it is our goal to derive a partial differential equation describing the evolution of the

periodic Pólya urn model. For a comprehensive introduction to the method we refer to [10].
In order to capture the periodic behaviour we split the generating function H(x, y, z) into

odd and even steps. We define

He(x, y, z) :=
∑
n≥0

H2n(x, y) z
2n

(2n)! and Ho(x, y, z) :=
∑
n≥0

H2n+1(x, y) z2n+1

(2n+ 1)! ,

such that H(x, y, z) = He(x, y, z) + Ho(x, y, z). Next, we associate to the replacement
matrices M1 and M2 from Definition 2 the differential operators D1 and D2, respectively.
We get

D1 := x2∂x + y2∂y and D2 := x2y∂x+ y3∂y,

where ∂x and ∂y are defined as the partial derivatives ∂
∂x and ∂

∂y , respectively. These model
the evolution of the urn. For example, in the term x2∂x, the derivative ∂x represents drawing
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a black ball and the multiplication by x2 returning the black ball and an additional black
ball into the urn. The other terms have analogous interpretations.

With these operators we are able to link odd and even steps with the following system

∂zHo(x, y, z) = D1He(x, y, z) and ∂zHe(x, y, z) = D2Ho(x, y, z). (1)

Note that the derivative ∂z models the evolution in time. This system of partial differential
equations naturally corresponds to recurrences at the level of coefficients hn,k,`, and vice
versa. This philosophy is well explained in the symbolic method part of [12] and see also [10].

As a next step we want to eliminate the y variable in these equations. This is possible as
the number of balls in each round and the number of black and white balls are connected
due to the fact that we are dealing with balanced urns. First, as observed previously, one has

number of balls after n steps = b0 + w0 + n+
⌊n

2

⌋
. (2)

Therefore, for any xky`zn appearing in H(x, y, z) with b0 = w0 = 1 we have

k + ` = 2 + 3n
2 (if n is even) and k + ` = 2 + 3n

2 −
1
2 (if n is odd).

This translates directly into
x∂xHe(x, y, z) + y∂yHe(x, y, z) = 2He(x, y, z) + 3

2z∂zHe(x, y, z),

x∂xHo(x, y, z) + y∂yHo(x, y, z) = 3
2Ho(x, y, z) + 3

2z∂zHo(x, y, z).
(3)

Finally, combining (1) and (3), we eliminate ∂yHe and ∂yHo. After that it is legitimate to
insert y = 1 as there appears no differentiation with respect to y anymore. As the urns are
balanced, the exponents of y and x in each monomial are bound (see Equation (2)), so we are
losing no information on the trivariate generating functions by setting y = 1. Hence, from
now on we use the notation H(x, z), He(x, z), and Ho(x, z) instead of H(x, 1, z), He(x, 1, z),
and Ho(x, 1, z), respectively. All of this leads to our first main enumeration theorem:

I Theorem 5 (Linear differential equations and hypergeometric expressions for histories). The
generating functions describing the 2-periodic Young–Pólya urn at even and odd time satisfy
the following system of differential equations:

∂zHe(x, z) = x(x− 1)∂xHo(x, z) + 3
2z∂zHo(x, z) + 3

2Ho(x, z),

∂zHo(x, z) = x(x− 1)∂xHe(x, z) + 3
2z∂zHe(x, z) + 2He(x, z).

(4)

Moreover, all these functions satisfy linear differential equations (they are D-finite, see
e.g. [12, Appendix B.4] for more on this notion), which in return implies that H = He +Ho

satisfies the equation L.H(x, z) = 0, where L is a differential operator of order 3 in ∂z, and
then one has the hypergeometric closed forms for hn := [zn]H(1, z):

hn =

3n Γ(n2 +1)Γ(n2 + 2
3 )

Γ(2/3) if n is even,

3n Γ(n2 +1/2)Γ(n2 +7/6)
Γ(2/3) if n is odd.

(5)

Alternatively, this sequence satisfies h(n+ 2) = 2
3h(n+ 1) + 1

4 (9n2 + 21n+ 12)h(n). This
sequence is not found in the OEIS2, we added it there, it is now A293653, and it starts like
this: 1, 2, 6, 30, 180, 1440, 12960, 142560, 1710720, 23950080, 359251200, . . .

2 On-Line Encyclopedia of Integer Sequences, https://oeis.org.
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In the next section we will use Equations (4) to iteratively derive the moments of the
distribution of black balls after n steps.

3 Moments of periodic Pólya urns

In this section, we give a proof via the method of moments of Theorem 4 stated in the
introduction. Let mr(n) be the r-th factorial moment of the distribution of black balls after
n steps, i.e.

mr(n) := E (Bn(Bn − 1) · · · (Bn − r + 1)) .

Expressing them in terms of the generating function H(x, z), it holds that

mr(n) =
[zn] ∂r

∂xrH(x, z)
∣∣
x=1

[zn]H(1, z) .

Splitting them into odd and even moments, we have access to these quantities via the partial
differential equation (4). As a first step we compute hn := [zn]H(1, z), the total number
of histories after n steps. We substitute x = 1, which makes the equation independent of
the derivative with respect to x. Then, the idea is to transform (4) into two independent
differential equations for He(1, z) and Ho(1, z). This is achieved by differentiating the
equations with respect to z and substituting the other one to eliminate He(1, z) or Ho(1, z),
respectively. This decouples the system, but increases the degree of differentiation by 1. We
get (

9z2 − 4
)
∂2
zHe(1, z) + 39z∂zHe(1, z) + 24He(1, z) = 0,(

9z2 − 4
)
∂2
zHo(1, z) + 39z∂zHo(1, z) + 21Ho(1, z) = 0.

In this case it is easy to extract the underlying recurrence relations and solve them explicitly.
This also leads to the closed forms (5) for hn, from which it is easy to compute the asymptotic
number of histories for n→∞. Interestingly, the first two terms in the asymptotic expansion
are the same for odd and even number of steps, only the third ones differ. We get

hn = n!
√
π

21/6Γ
( 2

3
) (3

2

)n
n1/6

(
1 +O

(
1
n

))
.

As a next step we compute the mean. Therefore, we differentiate (4) once with respect
to x, substitute x = 1, decouple the system, derive the recurrence relations of the coefficients,
and solve them. Note again that the factor (x−1) prevents higher derivatives from appearing
and is therefore crucial for this method. After normalization by hn we get

m1(n) =


33/2Γ( 2

3 )2

2π
Γ(n2 + 4

3 )
Γ(n2 + 2

3 ) if n is even,
33/2Γ( 2

3 )2

4π
(n+1)Γ(n2 + 5

6 )
Γ(n2 + 7

6 ) if n is odd.

For the asymptotic mean we discover again the same phenomenon that the first two terms in
the asymptotic expansion are equal for odd and even n.

Differentiating (4) to higher orders allows to derive higher moments in a mechanical way
(this however requires further details, which will be included in the expanded version of this
article). In general we get the closed form for the r-th factorial moment

mr(n) = 3r

22r/3
Γ
(
r
3 + 1

3
)

Γ
( 1

3
) n2r/3

(
1 +O

(
1
n

))
. (6)
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Therefore we see that the moments E (B∗nr) of the rescaled random variable B∗n := 22/3

3
Bn
n2/3

converge for n to infinity to the limit

mr :=
Γ
(
r
3 + 1

3
)

Γ
( 1

3
) . (7)

Note that one has m−1/(2r)
r =

( 3e
r

)1/6 (1 + o(1)) for large r, so the following sum diverges:∑
r>0

m−1/(2r)
r = +∞ . (8)

Therefore, a result by Carleman (see [5, pp. 189-220] or [33, p. 330])3 implies that there
exists a unique distribution (let us call it D) with such moments mr.

Furthermore, by the asymptotic result from Equation (6) there exist an n0 > 0 and
constants ar and br independent of n such that ar < mr(n) < br, for all n ≥ n0. Thus,
by the limit theorem of Fréchet and Shohat [13]4 there exists a limit distribution (which
therefore has to be D) to which a subsequence of our rescaled random variables B∗n converge
to. And as we know via Carleman’s criterion above that D is uniquely determined by its
moments, it is in fact the full sequence of B∗n which converges to D.

Now it is easy to check that if X ∼ GenGamma(d, p) is a generalized Gamma distributed
random variable (as defined in Definition 3), then it is a distribution determined by its
moments, which are given by E(Xr) = Γ

(
d+r
p

)
/Γ
(
d
p

)
.

In conclusion, the structure of mr in Formula (7) implies that the normalized random
variable B∗n of the number of black balls in a Young–Pólya urn converges to GenGamma (1, 3) .
This completes the proof of Theorem 4. J

The same approach allows us to study the distribution of black balls for the urn with

replacement matrices M1 = M2 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 `

0 1 + `

)
. We call

this model the Young–Pólya urn of period p and parameter `.

I Theorem 6. The renormalized distribution of black balls in the Young–Pólya urn of period p
and parameter ` is asymptotically a distribution, which we call ProdGenGamma(p, `, b0, w0),
defined as the following product of independent distributions:

pδ

p+ `

Bn
nδ

L−→ Beta(b0, w0)
`−1∏
i=0

GenGamma(b0 + w0 + p+ i, p+ `) (9)

with δ = p/(p+ `), and where Beta(b0, w0) is as usual the law with support [0, 1] and density
Γ(b0+w0)

Γ(b0)Γ(w0)x
b0−1(1− x)w0−1.

Sketch. This follows from the following r-th (factorial) moment computation:

E (Brn) = (p+ `)r

pδr
Γ(b0 + r)Γ(b0 + w0)
Γ(b0)Γ(b0 + w0 + r)

`−1∏
i=0

Γ
(
b0+w0+p+r+i

p+`

)
Γ
(
b0+w0+p+i

p+`

) nδr
(

1 +O

(
1
n

))
,

3 Note that there is no typo in Formula 8: if the support of the density is [0, +∞[ the moments in the
sum have index r and exponent −1/(2r), while they have index 2r and exponent −1/(2r) if the support
is ]−∞, +∞[.

4 As a funny coincidence, Fréchet and Shohat mention in [13] that the generalized Gamma distribution
with parameter p ≥ 1/2 is uniquely characterized by its moments.
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which in turn characterizes the ProdGenGamma distribution. Indeed, if for some independent
random variables X,Y, Z, one has E(Xr) = E(Y r)E(Zr) (and if Y and Z are determined by
their moments), then X L= Y Z. J

This is consistent with our results on the Young–Pólya urn introduced in Section 1.
Indeed, there one has w0 = b0 = 1, p = 2, ` = 1, and therefore the renormalized distribution
of black balls pδ

p+`Bn/n
δ is asymptotically Unif(0, 1) ·GenGamma(4, 3) = GenGamma (1, 3).

We will now see what are the implications of this result on an apparently unrelated topic:
Young tableaux.

4 Urns, trees, and Young tableaux

As predicted by Anatoly Vershik in [32], the 21st century should see a lot of challenges and
advances on the links of probability theory with (algebraic) combinatorics. A key role is
played here by Young tableaux5, because of their ubiquity in representation theory. Many
results on their asymptotic shape have been collected, but very few results are known on
their asymptotic content when the shape is fixed (see e.g. the works by Pittel and Romik,
Angel et al., Marchal [1, 24, 26, 29], who have studied the distribution of the values of the
cells in random rectangular or staircase Young tableaux, while the case of Young tableaux
with a more general shape seems to be very intricate). It is therefore pleasant that our work
on periodic Pólya urns allows us to get advances on the case of a triangular shape, with any
slope.

For any fixed integers n, `, p ≥ 1, we introduce the quantity N := p`n(n+ 1)/2. We define
a triangular Young tableau of slope −`/p and of size N as a classical Young tableau with N
cells with length n` and height np such that the first p rows (from the bottom) have length
n`, the next p lines have length (n− 1)` and so on (see Figure 2). We now study what is
the typical value of its lower right corner (with the French convention for drawing Young
tableaux, see [21] but take however care that on page 2 therein, Macdonald advises readers
preferring the French convention to “read this book upside down in a mirror”!).

It could be expected (e.g. via the Greene–Nijenhuis–Wilf hook walk algorithm for gener-
ating Young tableaux, see [14]) that the entries near the hypotenuse should be N − o(N).
Can we expect a more precise description of these o(N) fluctuations? Our result on periodic
urns enables us to exhibit the right critical exponent, and the limit law in the corner:

I Theorem 7. Choose a uniform random triangular Young tableau Y of slope −`/p and
size N = p`n(n+ 1)/2 and put δ = p/(p+ `). Let Xn be the entry of the lower right. Then
(N −Xn)/n1+δ converges in law to the same limiting distribution as the number of black balls
in the periodic Young–Pólya urn with initial conditions w0 = `, b0 = p and with replacement

matrices M1 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 `

0 1 + `

)
, i.e. we have the convergence

in law, as n goes to infinity:

pδ

p+ `

N −Xn

n1+δ
L−→ ProdGenGamma(p, `, b0, w0).

(Recall that ProdGenGamma is defined by Formula 9.)

5 A Young tableau of size n is an array with columns of (weakly) decreasing height, in which each cell is
labelled, and where the labels run from 1 to n and are strictly increasing along rows from left to right
and columns from bottom to top, see Figure 2. We refer to [21] for a thorough discussion on these
objects.
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I Remark. The simplest case ` = p = 1 relates to the Young–Pólya urn model which we
analysed in the previous sections.

Sketch of proof. We first establish a link between Young tableaux and linear extensions of
trees. Then we will be able to conclude via a link between these trees and periodic Pólya
urns. Let us start with Figure 2, which describes the main characters of this proof.

The bottom part of Figure 2 presents two trees (the “big” tree T , which contains the
“small” tree S). More precisely, we define the rooted planar tree S as follows

The left-most branch of S has n`+ 1 vertices, which we call v1, v2, . . . , vn`+1, where v1 is
the root and vn`+1 is the left-most leaf of the tree.
For 2 ≤ k ≤ n− 1, the vertex vk` has p+ 1 children.
The vertex vn` has p− 1 children.
All other vertices vj (for j < n`, j 6= k`) have exactly one child.

Now, define T as the “big” tree obtained from the “small” tree S by adding a vertex v0
as the father of v1 and adding N + 1− n(p+ `) children to v0 (see Figure 2). Remark that
the number of vertices of T is equal to 1 + the number of cells of Y. Moreover, the hook
length of each cell in the first row (from the bottom) of Y is equal to the hook length of the
corresponding vertex in the left-most branch of S.

Let us now introduce a linear extension ET of T , i.e. a bijection from the set of vertices
of T to {0, 1, . . . , N} such that ET (u) < ET (u′) whenever u is an ancestor of u′. A key
result, which will be proved in the expanded version of this abstract, is the following: if ET
is a uniformly random linear extension of T , then Xn (the entry of the lower right corner in
a uniformly random Young tableau with shape Y) has the same law as ET (vn`):

Xn
L= ET (vn`). (10)

What is more, recall that T was obtained from S by adding a root and some children
to this root. Therefore, one can obtain a linear extension of the “big” tree T from a linear
extension of the “small” tree S by a simple insertion procedure. This allows us to construct
a uniformly random linear extension ET of T and a uniformly random linear extension ES
of S such that∣∣∣∣2(p+ `)

n`p
(N − ET (vn`))− (n`+ p− ES(vn`))

∣∣∣∣→ 0 (in probability).

So, to summarize, we have now

ET (vn`)
L= ES(vn`) + deterministic quantity + smaller order error terms. (11)

The last step (which we just state here, see our forthcoming long version for its full proof)
is that

ES(vn`)
L= distribution of periodic Pólya urn + deterministic quantity. (12)

Indeed, more precisely N − ES(vn`) has the same law as the number of black balls in a
periodic urn after (n− 1)p steps (an urn with period p, with adding parameter `, and with
initial conditions w0 = ` and b0 = p). Thus, our results on periodic urns from Section 3 and
the conjunction of Equations (10), (11), and (12) gives the convergence in law for Xn which
we wanted to prove. J
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41 55 61 72

31 44 60 71

22 27 45 58

18 25 32 43 46 57 59 68

17 19 26 30 40 52 56 63

12 14 20 29 38 39 51 62

6 8 10 21 28 35 50 53 54 65 67 70

3 5 7 13 15 24 47 48 49 64 66 69

1 2 4 9 11 16 23 33 34 36 37 42

` ` `

p

p

p

v0

`

`

`

p− 1

p

p

v1

T
S

vn`

Figure 2 In this section, we see that there is a relation between Young tableaux with a given
periodic shape, some trees, and the periodic Young–Pólya urns. The lower right corner of these
Young tableaux is thus following the same generalized Gamma distribution we proved for urns.
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5 Conclusion and further work

In this article, we introduced Pólya urns with periodic replacements, and showed that they can
be exactly solved with generating function techniques, and that the initial non-linear equation
encoding their dynamics leads to linear (D-finite) moment generating functions, which we
identify as a product of generalized Gamma distributions. Note that [20, 23] involve the
asymptotics of a related process (by grouping p units of time at once of our periodic Pólya
urns). This related process is therefore “smoothing” the irregularities created by our periodic
model, and allows us to connect with the usual famous key quantities for urns, such as the
quotient of eigenvalues of the substitution matrix, etc. Our approach has the advantage to
describe each unit of time (and not just what happens after “averaging” p units of time at
once), giving more asymptotic terms, and also exact enumeration.

In the full version of this work we will consider arbitrary periodic balanced urn models, and
their relationship with Young tableaux. It remains a challenge to understand the asymptotic
landscape of Young tableaux, even if it could be globally expected that they behave like a
Gaussian free field, like for many other random surfaces [18]. As a first step, understanding the
fluctuations and the universality of the critical exponent at the corner could help to get a
more global picture. Note that our results on the lower right corner directly imply similar
results on the upper right corner: just use our formulae by exchanging ` and p, i.e. for a
slope corresponding
to the complementary angle to 90o. Thus the critical exponent for the upper right corner is
2−δ. In fact, it is a nice surprise that there is even more structure: there is a duality between
the limit laws X and X ′ of these two corners and we get the factorization as independent
random variables (up to renormalization and slight modifications of the boundary conditions)
XX ′

L= Γ(b0). Similar factorizations of the exponential law, which is a particular case of the
Gamma distribution, have appeared recently in relation with functionals of Lévy processes,
following [4].
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1 Introduction

We study the power series coefficients of rational functions of the form F (x1, . . . , xd) =
1/Q(x1, . . . , xd) where Q is a symmetric multilinear function with Q(0) 6= 0. Let

F (x) = 1
Q(x) =

∑
r∈Zd

arxr,

converging in some polydisk D ⊂ Cd. Often one focuses on the diagonal coefficients
δn := an,...,n, whose univariate generating function diagF (z) :=

∑
n δnz

n satisfies a linear
differential equation with polynomial coefficients, but may be transcendental. A number of
questions are natural, including nonnegativity (are all coefficients nonnegative), eventual
nonnegativity (all but finitely many coefficients nonnegative), diagonal extraction (computing
diagF from Q), diagonal asymptotics, multivariate asymptotics and phase transitions in the
asymptotics of {ar}.

The positivity (nonnegativity) question is the most classical, dating back at least to
Szegő’s work in [26]. The techniques, some of which are indicated in the next section, used
in the literature are diverse and include integral methods and special functions, positivity
preserving operators, combinatorial identities, computer algebra such as cylindrical algebraic
decomposition, or determinantal methods. Contrasting to these methods are analytic
combinatorial several-variable methods (ACSV) as developed in [20]. These are typically
asymptotic, rather than exact, and therefore less useful for proving classical positivity
statements, though they can be used to disprove them. Their chief advantages are their
broad applicability and, increasingly, the level to which they have been automated. Our
aim in this paper is to apply ACSV methods to a number of previously studied families of
rational coefficient sequences, thereby extending what is known as well as illuminating the
relative advantages of each method.

1.1 Previously studied instances
LetMd denote the class of symmetric functions of d variables that are multilinear (degree 1
in each variable). This class of generating functions F (x) := 1/Q(x) where Q ∈Md includes
a great number of previously studied cases, some of which we now review. Here and in the
following, we use d for the number of variables and boldface x,y, z, etc., for vectors of length
d of integer, real or complex numbers. When d is small we use x, y, z, w for x1, x2, x3, x4.
Let ek = ek,d denote the kth elementary symmetric function of d variables, the sum of all
distinct k element products from the set of d variables. An equivalent description of the class
Md is that it contains all linear combinations of {ek,d : 0 ≤ k ≤ d}.

The Askey-Gasper rational function is

A(x, y, z) := 1
1− x− y − z + 4xyz , (1)

which, in the previous notation, is A(x) = F (x) when d = 3 and Q = 1− e1 + 4e3. Gillis,
Reznick and Zeilberger [11] deduce positivity of A from positivity of a 4-variate extension
due to Koornwinder [15], for which they give a short elementary proof using a positivity
preserving operation. Gillis, Reznick and Zeilberger also provide an elementary proof of the
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stronger result by Askey and Gasper [3] that Aβ is positive for β ≥ (
√

17− 3)/2 ≈ 0.56, by
deriving a recurrence relation for the coefficients that makes positivity apparent.

Specific functions inM4 that have shown up in the literature include the Szegő rational
function

S(x, y, z, w) := 1
e3(1− x, 1− y, 1− z, 1− w) (2)

as well as the Lewy-Askey function

L(x, y, z, w) := 1
e2(1− x, 1− y, 1− z, 1− w) , (3)

which is a rescaled version of 1/Q(x) with d = 4 and Q = 1−e1 + 2
3e2. Szegő [26] proved that

(2) is positive. In fact, he showed that e−βd−1,d(1−x) is nonnegative if β ≥ 1/2. His proof relates
the power series coefficients to integrals of products of Bessel functions and, among other
ingredients, employs the Gegenbauer–Sonine addition theorem. Scott and Sokal [22] establish
a vast and powerful generalization of this result by showing that, if TG is the spanning-tree
polynomial of a connected series-parallel graph, then T−βG (1− x) is nonnegative if β ≥ 1/2.
In the simplest non-trivial case, if G is a d-cycle, then TG = ed−1,d, thus recovering Szegő’s
result. Relaxing the condition on β, Scott and Sokal further extend their results to spanning-
tree polynomials of general connected graphs. They do so by realizing that Kirchhoff’s
matrix-tree theorem implies that these polynomials can be expressed as determinants, and
by proving that determinants of this kind are nonnegative. As another consequence of
this determinantal nonnegativity, Scott and Sokal conclude that (3) is nonnegative, thus
answering a question originating with Lewy [2] (with positivity replaced by nonnegativity).
Kauers and Zeilberger [14] show that positivity of the Lewy-Askey rational function (3)
would follow from positivity of the four variable function

K(x, y, z, w) := 1
1− e1 + 2e3 + 4e4

. (4)

However, the conjectured positivity (or even nonnegativity) of (4) remains open.
As noted above, e−βd−1,d(1− x) is nonnegative if β ≥ 1/2. The asymptotics of e−βk,d(1− x)

are computed in [5] for (k, d) = (2, 3). In the cone 2(rs + rt + st) > r2 + s2 + t2, the
coefficient ar,s,t is asymptotically positive when β > 1/2 = (d− k)/2 and not when β < 1/2.
A conjecture of Scott and Sokal that remains open in both directions is that, for general
k and d, the condition β ≥ (d − k)/2 is necessary and sufficient for nonnegativity of the
coefficients of e−βk,d(1− x).

Gillis, Reznick and Zeilberger [11] consider the family

Fc,d(x1, . . . , xd) := 1
1− e1 + c ed

(5)

of rational functions, where c is a real parameter. When c < 0, the coefficients are trivially
positive, therefore it is usual to assume c > 0. Gillis, Reznick and Zeilberger show that Fc,3
has nonnegative coefficients if c ≤ 4 (and this condition is shown to be necessary in [23]),
but they conjecture that the threshold for d ≥ 4 has a different form, namely that Fc,d has
nonnegative coefficients if and only if c ≤ d!. It is claimed in [11], but the proof is omitted
due to its length, that nonnegativity of Fd!,d is implied by nonnegativity of the diagonal
power series coefficients. In the cases d = 4, 5, 6, Kauers [13] proved nonnegativity of these
diagonal coefficients by applying cylindrical algebraic decomposition (CAD) to the respective
recurrences. On the other hand, it is suggested in [25] that the diagonal coefficients are
eventually positive if c < (d− 1)d−1.
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1.2 Previous questions and results on diagonals
The diagonal generating function diagF and the sequence δn := an,...,n it generates have
received special attention. One reason is that the question of multivariate asymptotics in
the diagonal direction is simply stated, whereas the question of asymptotics in all possible
directions requires discussion of different possible phase regimes, a notion of uniformity over
directions, degeneracies when the coordinates are not of comparable magnitudes, and so
forth. Another reason is that there are effective methods for determining diagF from Q,
transferring the problem to the familiar univariate realm.

We briefly recall the theory of diagonal extraction. A d-variate power series F is said to
be D-finite if the formal derivatives {∂rF : r ∈ (Z+)d} form a finite dimensional vector space
over C[x]. In one variable, this is equivalent to F satisfying a linear differential equation
with polynomial coefficients,

k∑
i=0

qi(z)
di

dzi
F = 0, qi ∈ C[z].

I Proposition 1 (D-finite closure under diagonals [17]). Let F (x) be a D-finite power series.
Then diag(z) :=

∑
n δnz

n is D-finite, where δn := an,...,n.

When F is a rational function and d = 2, it was known that diag is algebraic (and thus
D-finite) at least by the late 1960’s [10, 12], and in special cases by Pólya in the 1920’s [21].
In the rational function F (x, y) = P (x, y)/Q(x, y) one substitutes y = 1/x and computes a
residue integral to extract the constant coefficient. The basis for Lipshitz’ proof was the
realization that the complex integration can be viewed as purely formal. With the advent of
computer algebra this formal D-module computation was automated, with an early package
in Macaulay and more widely used modern implementations in Magma, Mathematica and
Maple. Due to advances in software and processor speed, these computations are often
completable on functions arising in applications. Christol [8] was the first to show that
diagonals of rational functions are D-finite.

The following relationship between D-finiteness of a univariate function and the existence
of a polynomial recursion satisfied by its coefficient sequence is the result of translating a
formal differential equation into a relation among the coefficients.

I Proposition 2. The series f(z) =
∑
n≥0 anz

n is D-finite if and only if it is polynomially
recursive, meaning that there is a k > 0 and there are polynomials p0, . . . , pk, not all zero,
such that for all but finitely many n,

k∑
i=0

pi(n)f(n+ i) = 0 .

Let f be a D-finite power series in one variable. If f has positive finite radius of convergence
and integer coefficients, then it is a so-called G-function and has well behaved asymptotics
according to following result.

I Proposition 3 (Asymptotics of G-Function Coefficients). Suppose f is D-finite with finite
radius of convergence and integer coefficients annihilated by a minimal order linear differential
operator L with polynomial coefficients. Then L has only regular singular points in the
Frobenius sense. Consequently, the coefficients {an} are given asymptotically by a formula

an ∼
∑
α

Cαn
βαρ−nα (logn)kα (6)
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where the sum is over quadruples (Cα, bα, ρα, kα) as α ranges over a finite set A with the
following properties. The base ρα is an algebraic number, a root of the leading polynomial
coefficient of L. The βα are rational and for each value of ρα can be determined as roots
of an explicit polynomial constructed from ρα and L. The log powers kα are nonnegative
integers, zero unless for fixed ρα there exist two values of βα differing by an integer (including
multiplicities in the construction of βα). The Cα are not in general closed form analytic
expressions, but may be determined rigorously to any desired accuracy.

Proof. The discussion in [18, page 37] gives references to several published results that
together establish this proposition; see also Flajolet and Sedgewick [9, Section VII. 9].
Determination of all rational and algebraic numbers other than Cα is known to be effective. J

Because there are computational methods for the study of diagonals, it is of interest to
reduce positivity questions to those involving only diagonals. For the Gillis-Reznick-Zeilberger
class Fc,d, such a result is conjectured.

I Conjecture 4 ([11]). For d ≥ 4, the following three statements are equivalent.
(i) c ≤ d!
(ii) The diagonal coefficients of Fc,d are nonnegative
(iii) All coefficients of Fc,d are nonnegative

To be precise, (iii)⇒ (ii)⇒ (i) is trivial (look at δ1); nonnegativity of all coefficients of
Fc,d holds for some interval c ∈ [0, cmax], therefore the conjecture comes down to nonnegativity
of Fd!,d. A proof for (ii)⇒ (iii) in the case c = d! is claimed in [11] but omitted from the
paper due to length. This question is generalized in [25] to all ofMd.

I Question 5 ([25, Question 1.1 and following]). For Q ∈ Md and F = 1/Q, under what
conditions does nonnegativity of the coefficients of diagF imply nonnegativity of all coefficients
of F?

More specifically, with nonnegativity in place of positivity, the authors of that paper
wonder whether positivity of F is equivalent to positivity of diagF together with positivity
of F (x1, . . . , xd−1, 0). They prove that this is true for d = 2 and, with additional evidence,
conjecture this to be true for d = 3 as well. Combined with [23, Conjecture 1] and [25,
Conjecture 3.3], we obtain the following explicit predictions on the diagonal coefficients.

I Conjecture 6. Let F = 1/Q where Q = 1− e1 + ae2 + be3, which is, up to rescaling, the
general element ofM3. Then diagF is nonnegative if and only if

b ≤


6(1− a) a ≤ a0

2− 3a+ 2(1− a)3/2 a0 ≤ a ≤ 1
−a3 a ≥ 1,

(7)

where a0 ≈ −1.81 is characterized by 6(1− a0) = 2− 3a0 + 2(1− a0)3/2.

1.3 Present results
In the present work we use ACSV to answer asymptotic versions of these questions. Aside
from computing special cases, the main new results are (1) simplification for diagonals with
symmetric denominators via the Grace-Walsh-Szegő Theorem (Lemma 15 below); (2) an
easy further simplification for the Gillis-Reznick-Zeilberger class (Lemma 18 below); and
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(3) a topological computation to explain the drop in magnitude of coefficients at critical
parameter values (Theorem 22 below).

The first special case we look at is the diagonal of the general element ofM3, corresponding
to Conjecture 6.

I Theorem 7. Let Q = 1− e1 + ae2 + be3, let F = 1/Q =
∑

r arzr and let δn = an,...,n be
the diagonal coefficients of F . Then δn is eventually positive when

b <


−9a a ≤ −3
2− 3a+ 2(1− a)3/2 −3 ≤ a ≤ 1
−a3 a ≥ 1

(8)

while, when the inequality is reversed, δn attains an infinite number of positive and negative
values.

Theorem 7 is obtained by examining asymptotic regimes, captured in the following result.

I Theorem 8. Let Q,F, and δn be as in Theorem 7. Assuming that b is not equal to the
piecewise function in Equation (8),

δn =
∑
x∈E

(
x−3n

n
·
∣∣∣∣1− 2ax− bx2

1− ax

∣∣∣∣ · 1
2
√

3(1− 2x+ ax2)

)(
1 +O

(
1
n

))
, (9)

where E consists of the minimal modulus roots of the polynomial Q(x, x, x) = 1− 3x+ 3ax2 +
bx3.

The situation for eventual positivity on the diagonal when equality holds in Equation (8) is
more delicate. When a < −3 it follows from seeing that there are two diagonal minimal points,
(r, r, r) and (−r,−r,−r), with a greater constant at the positive point. When −3 < a < 1, it
follows from a dominant positive real cone point. When a = −3 a quadratically degenerate
smooth point at (−1/3,−1/3,−1/3) may be shown via rigorous numerical diagonal extraction
to dominate the cone point at (1/3, 1/3, 1/3), leading to alternation. When a = 1, ar ≡ 1.
Finally, when a > 1, there are three smooth points on the unit circle, with nonnegativity
conjectured because the positive real point is degenerate and should dominate.

Our second set of results concern the diagonal of the general element of the GRZ rational
function Fc,d. Let

c∗ = c∗(d) := (d− 1)d−1 . (10)

The following corresponds to Conjecture 4.

I Theorem 9. Let d ≥ 4. Then the diagonal coefficients of Fc,d are eventually positive when
c < c∗ and contain an infinite number of positive and negative values when c > c∗. When
c < c∗, there is a conical neighborhood N of the diagonal such that ar > 0 for all but finitely
many r ∈ N .

Again, the result is obtained through an explicit asymptotic analysis.

I Theorem 10. Let δn be the diagonal coefficients of Fc,d. Then when c 6= c∗,

δn =
∑
x∈E

(
x−dn

n(d−1)/2 ·
(

2π(1− (d− 1)r)
r(d−1)/2

)(d−1)/2
· 1
d1/2(1− (d− 1)r)

)(
1 +O

(
1
n

))
,

where E consists of the minimal modulus roots of the polynomial 1/Fc,d(x, . . . , x) = 1− dx+
cxd.
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These theorems are proven in Section 4, using ACSV smooth point methods summarized
in Section 2, however the case c = c∗ for the GRZ rational function requires the more delicate
results of Section 5.

1.4 Exponential drop and further results
In the GRZ family, for even values of d ≥ 4 the exponential growth rate of the coefficients
drops at the special value c = (d− 1)d−1. This special value, and the corresponding drop
in exponential growth, may be identified for each fixed d from the differential equation
annihilating the diagonal. For example, when d = 4 an annihilating differential equation for
the diagonal of Fc,4 is computed by D-module integration in the Mathematica package of
Koutschan [16] producing the annihilating operator L, of order 3 and maximum coefficient
degree 8, such that LdiagFc,4 = 0:

L = z2(c4z4 + 4c3z3 + 6c2z2 + 4cz − 256z + 1)(3cz − 1)2∂3
z

+ 3z(3cz − 1)(6c5z5 + 15c4z4 + 8c3z3 − 6c2z2 − 384cz2 − 6cz + 384z − 1)∂2
z

+ (cz + 1)(63c5z5 − 3c4z4 − 66c3z3 + 18c2z2 + 720cz2 + 19cz − 816z + 1)∂z
+ 9c6z5 − 3c5z4 − 6c4z3 + 18c3z2 − 360c2z2 + 13c2z − 384cz + c− 24. (11)

When c = 27, all coefficients in (11) acquire enough zeros at z = 1/81 that the quantity
(81z−1)4 may be factored out of the entire operator, leaving the following operator of order 3
and maximum degree 4:

L27 :=z2(81z2 + 14z + 1) ∂3
z + 3z(162z2 + 21z + 1) ∂2

z

+ (21z + 1)(27z + 1)∂z + 3(27z + 1). (12)

Asymptotics for δn may be extracted via the methodology described in Proposition 3. In
the special case d = 4, c = 27, the recursion may be found on the OEIS (entry A125143) and
identifies {δn} as the Almkvist–Zudilin numbers5 from [1, sequence (4.12)( δ)]. The known
asymptotic formula implies that |δn|1/n → 9. However, as c 6= 27 approaches 27 from either
side, we have

lim
c→27

lim
n→∞

|δn|1/n = 81;

in other words, the growth rate at c = 27 drops suddenly from 81 to 9. The occurrence of
a phase change at (d− 1)d−1 for all d and drop in exponential rate for even d ≥ 4 had not
previously been proved. The special role of the case c = (d − 1)d−1 was observed in [25,
Example 4.4] and claimed to agree with intuition from hypergeometric functions. We verify
this, first by identifying the singularity from an ACSV point of view and then by checking
that this singularity indeed produces the observed dimension drop.

I Theorem 11 (exponential growth approaching criticality). For all d ≥ 2,

lim
c→c∗

lim sup
n→∞

|δn|1/(dn) = d− 1 .

I Theorem 12 (dimension drop at criticality). When c = c∗ and d ≥ 4 is even,

lim sup
n→∞

|δn|1/(dn) < d− 1 .

Theorem 12 is proved in Section 5.

5 That these are the diagonals of the rational function F27,4 was observed in [24], where it is further
conjectured that the coefficients of F27,4 satisfy very strong congruences.
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2 ACSV

In this section we describe the basic setup for ACSV and state some existing results.
Definitions for the topological and geometric quantities used below can be found in Pemantle
and Wilson [20]. Throughout this section let F (z) = P (z)/Q(z) =

∑
r arzr denote a

rational series in d variables, with P and Q co-prime polynomials. Assume that F has a
(finite) positive radius of convergence; that is, Q(0) 6= 0 and P/Q is not a polynomial. Let
V := {z ∈ Cd : Q(z) = 0} denote the singular variety for F and letM = (C∗)d \ V where
C∗ = C \ {0}. Coefficients ar are extracted via the multivariate Cauchy formula

ar = 1
(2πi)d

∫
T

z−rF (z)dz
z , (13)

where dz/z denotes the holomorphic logarithmic volume form (dz1/z1)∧· · ·∧ (dzd/zd) and T
denotes a small torus (a product of sufficiently small circles about the origin in each coordinate,
so that the product of the corresponding disks is disjoint from V). The fundamental insight
of ACSV is that the integral depends only on the homology class of T in Hd(M). Therefore,
one tries to replace T by some homologous chain C over which the integral is easier, typically
via some combination of residue reductions and saddle point estimates.

A direction of asymptotics is an element r̂ ∈ (RPd)+; that is, a projective vector in
the positive orthant. If r ∈ (Rd)+ we write r̂ to denote the representative r/|r| of the
projective equivalence class containing r, where |r| = |r|1 := r1 + · · ·+ rd. Given a Whitney
stratification of V into smooth manifolds, the critical set crit(r̂) for a direction r̂ is the set
of z ∈ V such that r̂ is orthogonal to the tangent space of the stratum of z in V. If z is a
smooth point of V and Q is square-free, this means r̂ should be parallel to the logarithmic
gradient (z1∂Q/∂z1, . . . , zd∂Q/∂zd). A minimal point for direction r̂ is a point z ∈ crit(r̂)
such that the open polydisk D(z) := {w : |wj | < |zj | ∀1 ≤ j ≤ d} does not intersect V. The
minimal point z is called strictly minimal if the closed polydisk D(z) intersects V only at z.

For any β ∈ Rd, let T(β) = {w : |wj | = exp(βj) ∀ 1 ≤ j ≤ d} denote the torus of
points with log modulus vector β. The amoeba of Q(z) is the image of V under the map
Relog(z) = (log |z1|, . . . , log |zd|), while the height of a point z is hr̂(z) = −r̂ · Relog(z).
Except in Section 5, all ACSV computations are based on the following result.

I Theorem 13 (smooth point formula). Fix F = P/Q =
∑

r arzr and vector r ∈ (Rd)+ in
direction r̂. Assume there exists β ∈ Rd such that the following two hypotheses hold.

1 Finite critical points on the torus. The set E := T(β) ∩ crit(r̂) is finite, nonempty
and contains only minimal smooth points.

2 Quadratic nondegeneracy. At each z ∈ E fix k = k(z) such ∂Q/∂zk(z) 6= 0 and let
zk = g(z1, . . . , ẑk, . . . , zd) be a smooth local parametrization of zk on V as a function of
{zj : j 6= k}. We assume that the Hessian determinant Hk(z) of second partial derivatives
of g

(
w1e

iθ1 , . . . , wde
iθd
)
with respect to the θj at the origin is non-zero for each z ∈ E.

Then there exists a closed neighborhood N of r̂ in (Rd)+ on which all the above hypotheses
hold and, for any r with r̂ in this neighborhood,

ar = (2π)(1−d)/2
∑
z∈E

detH−1/2
k(z)

P (z)
zk(∂Q/∂zk)(z)r

(1−d)/2
k z−r +O

(
r
−d/2
k z−r

)
. (14)

I Remark. A number of other formulae for ar are equivalent to this one and hold under the
same hypotheses. An explicit formula for Hk in terms of partial derivatives of Q is given
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in [18, Theorem 54]. The following coordinate-free formula for the constants involved in
terms of the complexified Gaussian curvature K at a smooth point z ∈ V is given in [20,
(9.5.2)] as

ar = (2π)(1−d)/2

[∑
z∈E
K(z)−1/2 |∇logQ(z)|−1P (z) |r|(1−d)/2 z−r

]
+O

(
|r|−d/2|z|−r

)
(15)

Proof. Assume first that log |w| is the unique minimizer of r · x on the boundary of the log
domain of convergence (this being a component of the complement of the amoeba). Under no
assumptions on E or K, Theorem 9.3.2 of [20] writes the multivariate Cauchy integral 13 as
the integral of a residue form ω over an intersection cycle, C. Taking into account that E is
finite, and assuming an extra hypothesis that r is a proper direction (see [5, Definition 2.3]),
Theorem 9.4.2 of [20] identifies C as a sum of quasi-local cycles near the points of E. For
each such z, if ∂Q/∂zk and detHk do not vanish, Theorem 9.2.7 of [20] identifies the integral
as the corresponding summand in (14). Nonvanishing of Hk is equivalent to nonvanishing of
K, leading to the coordinate-free formula (15), which may be found in [20, Theorem 9.3.7].
This proves the theorem under an extra hypothesis on the amoeba boundary.

To remove the properness hypothesis, consider the intersection cycle C obtained from
expanding the torus T(β − εr) inside the domain of convergence of F to a torus T(β + εr).
The construction in [20, Section A4] gives a compact (d− 1)-chain representing a relative
cycle in Hd−1(Vc+ε,Vc−ε); that is, a chain of maximum height c+ε with maximum boundary
height c − ε. Applying the downward gradient flow of hr̂ on V for arbitrarily small time,
we arrive again at a chain satisfying the conclusions of [20, Theorem 9.4.2]. Because the
deformed chain has nonvanishing boundary, one must add a term for the chain swept out by
the deformation applied to this boundary, but the elements of this chain have height at most
c− ε so the resulting integral will be within the error term above. J

I Corollary 14. Assume the hypotheses of Theorem 13, and fix a vector v in direction r̂.
(i) If E = {z} for some z in the positive real orthant in Cd and the leading constant of

Equation (14) is positive, then there exists a neighbourhood of r̂ such that all but finitely
many coefficients {ar : r̂ ∈ N} are positive.

(ii) If E = {z} for some z such that zv :=
∏d
j=1 z

vj
j is positive real and the leading constant

of Equation (14) is positive, then all but finitely many coefficients anv are positive.
(iii) If E does not contain a point z with zv positive real and the sum in Equation (14) is

not identically zero, then infinitely many coefficients anv are positive and infinitely
many anv are negative.

I Remark. When E contains a point in the positive real orthant but it is not a singleton,
the corollary does not provide information as to eventual positivity.

Proof. Conclusions (i) and (ii) follow immediately from (14) because the sum is a single
positive term.

For conclusion (iii), grouping the elements of E by conjugate pairs we note that up to
scaling by znvnd/2 the asymptotic leading term of anv has the form

ln =
|E|∑
i=1

ai cos(2πθin+ βi),

where each θi, ai, βi is real, and θi ∈ (0, 1). If rn is any sequence satisfying a linear recurrence
relation with constant coefficients, and rn = O(1/n), then Bell and Gerhold [6, Section 3]
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show that ln > rn infinitely often. Since the modulus of the error term in Equation (14) can
be bounded by a linear recurrence sequence with growth O(1/n), we see that anv is positive
infinitely often. Repeating the argument with −ln shows that anv is negative infinitely
often. J

Any computer algebra system can compute the set of smooth critical points in crit(r̂)
by solving the d− 1 equations (∇logQ)(z) ‖ r̂ together with the equation Q(z) = 0, where
∇logQ = (z1∂Q/∂z1, . . . , zd∂Q/∂zd). Identifying which points in crit are minimal is more
difficult, although still effective [19]. For our cases, we can use results about symmetric
functions to help with the computations. For any polynomial Q in d variables, let δQ denote
the codiagonal: the univariate polynomial defined by δQ(x) = Q(x, . . . , x).

I Lemma 15 (polynomials inMd have diagonal minimal points). Let F = 1/Q with Q ∈Md.
Let x be a zero of δQ of minimal modulus. Then x := (x, . . . , x) is a minimal point for F in
crit(1, . . . , 1).

This follows directly from the classical Grace-Walsh-Szegő Theorem, a modern proof of
which is contained in the following.

Proof. Let α1, . . . , αk be the roots of δQ, where k ≤ d is the common degree of Q and δQ
and |α1| is minimal among {|αj | : j ≤ k}. For any ε > 0, the polynomial

M(x) :=
k∏
j=1

(xj − αj)

has no zeros in the polydisk D centered at the origin whose radii are α1 − ε. The sym-
metrization of M (see [7]) is defined to be the multilinear symmetric function m such that
m(x, . . . , x) = M(x, . . . , x). In our case M(x, . . . , x) = δQ(x), and it immediately follows
that m = Q. By the Borcea-Brändén symmetrization lemma (see [7, Theorem 2.1]), the
polynomial Q has no zeros in the polydisk D. We conclude that the zero x of Q is a minimal
point of F . J

3 Symmetric multilinear functions of three variables

In this section we determine the diagonal asymptotics for general Q = 1−e1 +ae2 +be3 ∈M3.
Taking the coefficient of e1 to be 1 loses no generality because of the rescaling xj → λxj
which preserves Md and affects coefficient asymptotics in a trivial way. In order to use
Theorem 13, we begin by identifying minimal points. Lemma 15 dictates that our search
should be on the diagonal.

To that end, let δQ(x) = Q(x, x, x) = 1− 3x+ 3ax2 + bx3. The discriminant of δQ is a
positive real multiple of p(a, b) := 4a3 − 3a2 + 6ab+ b2 − 4b = (a− 1 + 3(b− 1))2 − 4(b− 1)3,
and the zero set of δQ is obtained from that of the cubic 4b3 = −a2 by centering at (1,−1)
and shearing via (a, b) 7→ (a+ 3b, b). The discriminant p(a, b) vanishes along the red curve
(solid and dashed) in Figure 1. Let r1(a) and r2(a) denote respectively the upper and lower
branches of the solution to p(a, b) = 0.

I Lemma 16. Let p be a minimal modulus root of δQ. Then any critical point of 1/Q on
the torus T (p, p, p) has the form (q, q, q) where δQ(q) = 0.

Proof. Gröbner basis computations show nondiagonal critical points to be permutations of(
1
a ,

1
a ,

a(1−a)
a2+b

)
, occurring when b = a2(a− 2). When a ≤ 1, the only time the positive root



Y. Baryshnikov, S. Melczer, R. Pemantle, and A. Straub 12:11

−4 −3 −2 −1 1 2 3

−30

−20

−10

10

20

30

40

Figure 1 The three regimes defined by Proposition 17, made up of the curves b = −9a, p(a, b) = 0,
and b = −a3. Dashed lines represent the curves where they do not determine positivity of coefficients;
note smoothness in the transitions between regimes.

of δQ(x) has modulus 1/|a| is the trivial case (a, b) = (1,−1). When b = a2(a− 2) and a > 1,
the modulus of the product of the roots of δQ(x) equals 1

a2(a−2) and the minimal roots of
δQ(x) are a pair of complex conjugates. If this pair has modulus 1/a, then the real root of
δQ(x) is ± 1

a4(a−2) , but δ
Q
(
± 1
a4(a−2)

)
6= 0 for a > 1. J

Determining asymptotics is thus a matter of determining the minimal modulus roots
of δQ(x). The following may be proved by comparing moduli of roots, separating cases
according to the sign of p(a, b).

I Proposition 17. The function δQ has a minimal positive real zero if and only if

b ≤


−9a a ≤ −3
r1(a) −3 ≤ a ≤ 1
−a3 a ≥ 1

This corresponds to the set of points lying on and below the solid curve in Figure 1.

Proof of Theorems 7 and 8: Suppose b is greater than the piecewise expression in the
proposition; then δQ has no minimal positive zero, so the product of the three coordinates
of the minimal points determined above do not lie in the positive orthant. By part (iii) of
Corollary 14, the diagonal coefficients are not eventually positive. Asymptotics of δn are
determined by Theorem 13, and when b is less than the piecewise expression it can be verified
that the dominant term is positive. J

4 The Gillis-Reznick-Zeilberger classes

Throughout this section, let F = Fc,d = 1/Qc,d = 1/(1 − e1 + ced) and recall that c∗ =
(d − 1)d−1. Lemma 15 implies that for Q ∈ Md, in the diagonal direction, one may find
diagonal minimal points. For Fc,d, things are even simpler: all critical points for diagonal
asymptotics are diagonal points.

I Lemma 18. Let Fc,d = 1/Qc,d. If z ∈ crit(1, . . . , 1) then zi = zj for all 1 ≤ i, j ≤ d.
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Proof. From Q = Qc,d = 1 − e1 + ced we see that (∇logQ)j = −zj − ced and hence that
(∇logQ)i = (∇logQ)j if and only if zi = zj . J

I Proposition 19 (Smoothness of Fc,d for c 6= c∗). Let Fc,d = 1/Qc,d. If c 6= c∗ then V is
smooth. If c = c∗ then V fails to be smooth at the single point z∗ = (1/(d− 1), . . . , 1/(d− 1)).
When c = c∗, the singularity at z∗ has tangent cone e2.

Proof. Checking smoothness of V we observe that for d fixed and c and x1, . . . , xd variable,
vanishing of the gradient of Qc,d with respect to the x variables implies xj = ced for all j.
This common value, x, cannot be zero, hence xj ≡ x and c = x1−d. Vanishing of Qc,d then
implies vanishing of 1− dx+ x, hence x = 1/(d− 1) and c = c∗. This proves the first two
statements. Setting c = c∗ and xj = 1/(d − 1) + yj centers Qc∗,d at the singularity and
produces a leading term of (d− 1)e2(y), proving the third statement. J

4.1 Proof of Theorems 9 and 10 in the case c < c∗

When c ≤ 0, the denominator of Fc,d is one minus the sum of positive monomials, which
leaves no doubt as to positivity. Assume, therefore, that 0 < c < c∗. Apply Lemma 15 to
see that if x is a minimum modulus zero of δQ := Qc,d(x, . . . , x) then (x, . . . , x) is a minimal
point for Fc,d in the diagonal direction. Apply Lemma 18 to conclude that the set E in
Theorem 13 of minimal critical points on T(|x|, . . . , |x|) consists only of points (y, . . . , y) such
that y is a root of δQ. By part (i) of Corollary 14, it suffices to check that δQ = 1− dx+ cxd

has a unique minimal modulus root ρ and that ρ ∈ R+. Thus, the conclusion follows from
the following proposition.

I Proposition 20. For c ∈ (0, c∗), the polynomial δQ = 1− dx+ cxd has a root ρ ∈
[

1
d ,

1
d−1

]
which is the unique root of δQ of modulus less than 1/(d− 1).

Proof. Checking signs we find that δQ(1/d) = cd−d > 0 while δQ(1/(d− 1)) = −(d− 1)−1 +
c(d− 1)−d < −(d− 1)−1 + c∗(d− 1)−d = 0, therefore there is at least one root, call it ρ, of
δQ in the interval [1/d, 1/(d − 1)]. On the other hand, when |z| = 1/(d − 1), we see that
|dz| ≥ |1+czd| and therefore, by applying Rouché’s theorem to the functions −dz and 1+czd,
we see that δQ has as many zeros on |z| < 1/(d− 1) as does −dz: precisely one root, ρ. J

4.2 Proof of Theorems 9 and 10 in the case c > c∗

Again, by Lemmas 15 and 18, we may apply part (iii) of Corollary 14 to the set E of points
(y, . . . , y) for all minimal modulus roots y of δQ. The result then reduces to the following
proposition.

I Proposition 21. For c > c∗, the set of minimal modulus roots of the polynomial δQ =
1− dx+ cxd contains no point whose dth power is real and positive.

Proof. First, if zd is real then the imaginary part of δQ(z) is equal to the imaginary part of
−dz, hence any root z of δQ with zd real is itself real.

Next we check that δQ has no positive real roots. Differentiating δQ(x) with respect to x
gives the increasing function d(−1 + cxd−1) with a unique zero at c−1/(d−1). This gives the
location of the minimum of δQ on R+, where the function value is 1−dc−1/(d−1)+c1−d/(d−1) =
1− (d− 1)/c1/(d−1) which is positive because c > (d− 1)d−1.

If d is even, δQ clearly has no negative real roots, hence no real roots at all, finishing the
proof in this case. If d is odd δQ will have a negative real root u, however because d is odd,
the product of the coordinates of (u, . . . , u) is ud < 0. J
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We conjecture that the roots of minimal modulus when c > c∗ are always a complex
conjugate pair, however this determination does not affect our positivity results.

4.3 Proof of Theorem 11

When c < c∗ we have seen that there is a single real minimal point (ρc, . . . , ρc) in the diagonal
direction and that ρc ↑ 1/(d− 1) as c ↑ c−∗ . The limit from below in Theorem 11 then follows
directly from Theorem 10.

For the limit from above, it suffices to show that in the diagonal direction, for c sufficiently
close to c∗ and greater, E consists of a single diagonal complex conjugate pair (ζc, . . . , ζc)
and (ζc, . . . , ζc), and that ζc → 1/(d− 1) as c∗ ↓ c. First, we check that at c = c∗ the unique
minimum modulus root of δQ is the doubled root at 1/(d− 1). For c = c∗, the first and third
terms of δQ = 1− dz+ c∗z

d have modulus 1 and 1/(d− 1) when |z| = 1/(d− 1), respectively,
summing to the modulus of the middle term; therefore if δQ(z) = 0 and |z| = 1/(d− 1) then
the third term is positive real. But then the second term must be positive real too, hence the
unique solution of modulus at most 1/(d− 1) is z = 1/(d− 1). A quick computation shows
the multiplicity to be precisely 2. We know that for c > c∗ there are no real roots. Therefore,
as c increases from c∗, the minimum modulus doubled root splits into two conjugate roots,
which, in a neighborhood of c∗, are still the only minimum modulus roots.

5 Lacuna computations

Theorem 22 is the subject of forthcoming work [4]. Theorem 12 follows immediately, with
the specifications: d ≥ 4 and even, c = c∗, k = 1, P = 1, Q = Qc,d, z∗ = (1/d, . . . , 1/d),
r̂ = (1, . . . , 1), B is the component of the complement of the amoeba of Q containing
(a, . . . , a) for a < − log d, x∗ = (− log d, . . . ,− log d), y∗ = 0 and N taken to be the diagonal.
Proposition 19 guarantees the correct shape for the tangent cone to Q at z∗.

I Theorem 22. Suppose F = P/Qk with P a holomorphic function and Q a real Laurent
polynomial. Fix r̂ ∈ RPd, let B be a component of the complement of the amoeba of Q, let∑

r arzr be the Laurent expansion for F convergent for z = exp(x + iy) and x ∈ B. Let
x∗ ∈ ∂B be a maximizing point for r · x on ∂B. Assume that V has a unique singularity
z∗ = exp(x∗ + iy∗), and that the tangent cone of Q at z transforms by a real linear map to
z2
d −

∑d−1
j=1 z

2
j . Let N be any closed cone such that x∗ maximizes r · x for all r ∈ N .

If d > 2k is even then there is an ε > 0 and a chain Γ contained in the set Vε := {z ∈ V :
|z−r| ≤ exp(−r · x∗ − ε|r|) such that

ar =
∫

Γ
z−r P

Qk
dz
z . (16)

In other words, the chain of integration can be slipped below the height of the singular point.

Sketch of proof: Expand the torus T of integration to z∗ and just beyond. The integral (13)
turns into a residue integral over an intersection cycle swept out by the expanding torus; see,
e.g. [20, Appendix A.4]. For small perturbations Qε of Q, the residue cycle is the union of a
sphere surrounding z∗ and a hyperboloid intersecting the sphere. As Qε → Q, this cycle may
be deformed so that the sphere shrinks to a point while the hyperboloid’s neck also constricts
to a point. The hyperboloid may then be folded back on itself so that in a neighborhood of
z∗, the chain vanishes, leaving a chain Γ supported below the height of z∗. J
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A Appendix A: Maple Code

Maple worksheets going through the calculations discussed above can be found at https:
//github.com/smelczer/SymmetricRationalFunctionsAofA ; we include the main com-
ponent of those worksheets, code giving dominant smooth asymptotics, here for archival
purposes.

smoothASM := proc(G, H, vars,pt)
local N, i, j, M,HES, C, U, lambda, sbs:
N := nops(vars) :

# Get the Hessian determinant of the phase implicitly
for i from 1 to N do for j from 1 to N do

U [i, j] := vars[i] · vars[j] · diff(Q, vars[i], vars[j]) :
od: od:
lambda := x · diff(Q, x) :
for i from 1 to N − 1 do for j from 1 to N − 1 do
if i <> j then M [i, j] := 1 + 1/lambda · (U [i, j] − U [i, N ] − U [j, N ] + U [N, N ]) :
else M [i, j] := 2 + 1/lambda · (U [i, i] − 2 · U [i, N ] + U [N, N ]) :
fi:

od: od:
HES := LinearAlgebra[Determinant](Matrix([seq([seq(M [i, j], i = 1..N − 1)], j = 1..N − 1)])) :

C := simplify(−G/vars[−1]/diff(H, vars[−1]) · HESˆ(−1/2) · (2 · Pi)ˆ((1 − N)/2));
sbs := seq(vars[j] = pt[j], j = 1..N) :
return eval(1/mul(j, j = pt))ˆn · nˆ((1 − N)/2) · eval(subs(sbs, C)) :

end:
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Abstract
We consider random rooted maps without regard to their genus, with fixed large number of edges,
and address the problem of limiting distributions for six different parameters: vertices, leaves,
loops, root edges, root isthmus, and root vertex degree. Each of these leads to a different limiting
distribution, varying from (discrete) geometric and Poisson distributions to different continuous
ones: Beta, normal, uniform, and an unusual distribution whose moments are characterised by a
recursive triangular array.
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1 Introduction

Rooted maps form a ubiquitous family of combinatorial objects, of considerable importance
in combinatorics, in theoretical physics, and in image processing. They describe the possible
ways to embed graphs into compact oriented surfaces [17].

The present paper focuses on asymptotic enumeration of basic parameters in rooted
maps with no restriction on genus. From a generating function point of view, if the genus of
the maps is not fixed, then the generating function of rooted maps is non-analytic (namely,
convergent only at zero) and often satisfies a Riccati differential equation, in contrast to
planar maps for which analytic (convergent) generating functions abound. The divergent
Riccati equations appear frequently in enumerative combinatorics. For example, at least 39
entries in Sloane’s OEIS [20] were found containing sequences whose generating functions

© Olivier Bodini, Julien Courtiel, Sergey Dovgal, and Hsien-Kuei Hwang;
licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 13; pp. 13:1–13:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:olivier.bodini@lipn.fr
mailto:julien.courtiel@unicaen.fr
mailto:dovgal@lipn.fr
mailto:hkhwang@stat.sinica.edu.tw
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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Figure 1 Three rooted maps. Each root is marked by an arrow. The two last maps are equal.

satisfy Riccati equations, including some entries related to the families of indecomposable
combinatorial objects, moments of probability distributions, chord diagrams [9, 10, 14],
Feynman diagrams [11], etc. Some of these are closely connected to maps. Indeed, it is known
that rooted maps with no genus restriction also encode different combinatorial families such
as chord diagrams and Feynman diagrams on the one hand, and different fragments of lambda
calculus [5, 21] on the other hand. Thus most asymptotic information obtained on maps can
often be transferred to the aforementioned objects and lead to a better understanding of
them in the corresponding domains.

While the asymptotics and stochastics on planar maps have been extensively studied (see
for example [2, 4, 3, 12, 18]), those on rooted maps with no genus restriction have received
comparatively much less attention in the literature. Of closest connection to our study here is
the paper by Arquès and Béraud [1], which contains several characterisations of the number
of rooted maps and their generating functions. In particular, they give an explicit formula
for the number of maps, expressed as an infinite sum, from which the asymptotic number of
maps with n edges can be deduced (which is (2n + 1)!!). Recently, Carrance [7] obtained
the distribution of genus in bipartite random maps. To our knowledge, no other asymptotic
distribution properties of map statistics have been properly examined so far. Along a different
direction, Flajolet and Noy [14] investigated basic statistics on chord diagrams, and Courtiel
and Yeats [9] studied the distribution of terminal chords.

From an asymptotic point of view, for planar enumeration, as Bender and Richmond
put it in [3]: “The two most successful techniques for obtaining asymptotic information from
functional equations of the sort arising in planar enumeration are Lagrange inversion and the
use of contour integration.” An equally useful analytic technique is the saddle-point method
as large powers of generating functions are ubiquitous in map asymptotics; see [2, 13] for
more detailed information. In contrast, for divergent series, Odlyzko writes in his survey [19]:
“There are few methods for dealing with asymptotics of formal power series, at least when
compared to the wealth of techniques available for studying analytic generating functions."
We show however that a few simple linearizing techniques are very helpful in deriving the
diverse limit laws mentioned in the Abstract; the approaches we use may also be of potential
application to other closely related problems.

For a rigorous definition of a rooted combinatorial map we refer, for example, to [17, 1].
For our purposes in this extended abstract we use a less formal but more intuitive definition.

I Definition 1 (Maps). A map is a connected multigraph endowed with a cyclic ordering of
consecutive half-edges incident to each vertex. Multiple edges and loops are allowed. Around
each vertex, each pair of adjacent half-edges is said to form a corner. If there is only one
half-edge, there is only one corner. A rooted map is a map with a distinguished corner.

Figure 1 shows some examples of rooted maps. Observe that the first two maps are
different since the cyclic ordering is not the same: in the first map, the pendant edge follows
counterclockwise the edge after the root (the corner pointed to by an arrow), while in the
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Figure 2 Left: The small triangles point at every corner of the map. Right: The light-blue line
marks the contour of one face of the map. The double-lined edges are the isthmi of the map. The
only loop of the map is adjacent to the rightmost isthmus, and the vertex incident to this loop has
degree 3.

Table 1 The six map statistics and their limit laws studied in this extended abstract.

Statistics Differential equation Mean ∼ Limit law

leaves L = v + (2− u)zL + zL2 + 2z2∂zL +
z(1− v)∂vL

1 Poisson(1)

root isthmic parts C = 1 + zC + vzC|v=1C + 2z2∂zC 2 Geometric( 1
2 )

vertices X = v + zX + zX2 + 2z2∂zX log n N (log n, log n)

loops Y = v + vzY + vzY |v=1Y 1
2 n A new law∗

+2vz2∂zY +v2z(vw−1)∂vY

root edges E = 1 + vzE + vzE|v=1E + 2vz2∂zE 2
3 n Beta(1, 1

2 )

root degree D = 1 + v2zD + vzD|v=1D
n Uniform[0, 2]

+ 2vz2∂zD − v2(1− v)z∂vD

second map it precedes in counterclockwise order. In contrast, the last two maps are equal:
although the leaves are at different positions, one can find an isomorphism between the two
maps preserving the vertices, the root and the cyclic orderings around each vertex. The
corners of the leftmost map are displayed in Figure 2 (left), showing all the possible rootings
of this map.

I Definition 2 (Map features). A face can be obtained by starting at some corner, moving
along an incident half-edge, then switching to the next clockwise half-edge and repeating the
procedure until the starting corner is met. A loop is an edge that connects the same vertex.
An isthmus is an edge such that the deletion of this edge increases the number of connected
components of the underlying graph. The degree of a vertex is the number of half-edges
incident to this vertex.

These definitions are illustrated in Figure 2 (right).
Arquès and Béraud [1] prove that the generating function of maps M(z) :=

∑
n>0 mnz

n,
where mn enumerates the number of maps with n edges, satisfies

2z2M ′(z) = (1− z)M(z)− 1− zM(z)2, (1)

a typical Riccati equation whose first few Taylor coefficients read M(z) = 1 + 2z + 20z2 +
444z3 + 16944z4 + · · · .

We address in this paper the analysis of the extended equations of (1) for bivariate (and
in one case, trivariate) generating functions M(z, v) :=

∑
n,k>0 mn,kz

nvk, where mn,k stands

AofA 2018
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Figure 3 Left: Root vertex degree. Right: Number of root isthmic parts.
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for the number of maps with n edges and the value of the shape parameter equal to k. We
obtain limit laws for the distributions of six different parameters (see Figures 3 to 5).

We collect the statistics and their limit laws studied here in Table 1 for comparison.
We see that some of the limit laws are discrete (Poisson and Geometric), one of them (the
number of vertices) is Gaussian with a logarithmic mean, which is denoted by N (logn, logn),
and the others are continuous. For the number of root edges, root degree and loops, the
corresponding limit laws are normalized by n, the total number of edges. The distribution of
the number of loops follows a rather unusual limit law (see Figure 5) in the sense that we
can only characterise the limit law by its moment sequence, ηl, which satisfies ηl = η0,l with
ηk,l computable only through a recurrence involving ηk−1,l and ηk+1,l−1. The corresponding
probability density function of this law remains unknown and does not have an explicit
expression at this stage (see Figure 5). Finally, by the bijection from [10] and a known
property of chord diagrams in [14], it is possible to deduce the limit laws for the number of
leaves.

One technique we use several times in our proofs consists in linearising the differential
equations satisfied by the generating functions, by choosing a suitable transformation, inspired
from the resolution of Riccati equations. Once the dominant term is identified, the analysis
for the limit law becomes more or less straightforward. When such a technique fails, we
rely then on the method of moments, which establishes weak convergence by computing
all higher derivatives of M(z, v) at v = 1 and by examining asymptotically the ratios
[zn]∂kvM(z, v)|v=1/[zn]M(z, 1) (which correspond to factorial moments of random variable).
Such a procedure also linearises to some extent the more complicated bivariate nature of the
differential equations and facilitates the resolution complexity of the asymptotic problem.



O. Bodini, J. Courtiel, S. Dovgal, and H.-K. Hwang 13:5

X

0.0 0.4 0.8 1.2 1.6 2.0

Y
0.0

0.2
0.4

0.6
0.8

1.0

Z

0.0

0.25

0.5

0.75

1.0

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Figure 5 Left: Joint distribution of root vertex degree and the number of loops. Right: Number
of loops.

ormap = or

Figure 6 A symbolic construction of rooted maps.

Structure of the Paper. In Section 2 we derive the nonlinear differential equations satisfied
by the generating functions of the map statistics. Then in Section 3 we sketch the proofs
for the limit laws of five statistics based on generating functions. The Poisson law for the
number of leaves (together with the root face degree and the number of trivial loops) will be
proved by a direct combinatorial approach in the last section.

2 Differential equations for maps

In this section, we derive the differential equations satisfied by the bivariate or trivariate
generating functions with the additional variable(s) marking the shape statistics.

Univariate generating function of maps. Since the Riccati equation (1) lies at the basis
of all other extended equations in Table 1, we give a quick proof of it via the recurrence
satisfied by mn, the number of maps with n edges (see Figure 6):

mn = 1[n=0] +
∑

06k<n
mkmn−1−k + (2n− 1)mn−1, (2)

which then implies the Riccati equation (1).
First, m0 = 1 because there is only one map with 0 edges. Then a map with n edges

can be formed either by connecting the roots of two maps (with k and n − k − 1 edges,
respectively) with an isthmus, or by adding an edge to a map with n− 1 edges, connecting

AofA 2018
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the root and a corner. The number of possible ways to insert an edge in this way is equal to
2n− 1, because there are 2n− 2 corners in a map of size n− 1, and there are two possible
ways to insert a new edge at the root corner (either before, or after the root). This proves
(2).

Vertices. Consider now the bivariate generating function X(z, v) =
∑
n,k>0 xn,kz

nvk, where
xn,k is equal to the number of rooted maps with n edges and k vertices. Arquès and Béraud [1]
showed that

X(z, v) = v + zX(z, v) + zX(z, v)2 + 2z2∂zX(z, v). (3)

This recurrence can be obtained from (2) by noticing that no new vertex is created when we
connect two maps with an isthmus, nor when we add a new root edge to a map. Note that
X(z, v) satisfies another functional equation (see [1])

X(z, v) = v + zX(z, v)X(z, v + 1),

which seems less useful from an asymptotic point of view.

Root isthmic parts. We count here the root isthmic parts, which are the number of isthmic
constructions used at the root vertex. Note that an isthmic part may not be a bridge because
the additional edge constructor may induce additional connections. Then the bivariate
generating function C(z, v) =

∑
n,k>0 cn,kz

nvk, where cn,k enumerates the number of maps
with n edges and k root isthmic parts, satisfies

C(z, v) = 1 + zC(z, v) + vzC(z, v)C(z, 1) + 2z2∂zC(z, v). (4)

In Figure 6, the number of root isthmic parts only changes whenever two maps are
connected by an isthmus. This yields vzC(z, v)C(z, 1) instead of zC2.

Root edges. Similarly, consider E(z, v) =
∑
n,k>0 en,kz

nvk, where en,k counts the number
of rooted maps with n edges and k root edges. Then E(z, v) satisfies

E = 1 + vzE + vzE|v=1E + 2vz2∂zE. (5)

This again results from the recurrence (2) and from Figure 6: the non-root edges come from
the bottom map in the isthmic construction, yielding the term vzE(z, v)E(z, 1).

Root Degree. Consider the degree of the root vertex. Note that this may be different
from the number of root edges because for the root degree, each loop edge is counted twice,
therefore the degree of the root vertex varies from 0 to 2n. By duality, the distribution of
the root face degree is the same as the distribution of the root vertex degree.

Let D(z, v) =
∑
n,k>0 dn,kz

nvk denote the bivariate generating function for maps with
variable v marking root degree. Then

D = 1 + v2zD + vzD|v=1D + 2vz2∂zD − v2(1− v)z∂vD. (6)

In this case, the original construction in Figure 6 is insufficient, and we need to consider
further cases in Figure 7. When an additional edge becomes a loop, it increases the degree
of the root vertex by 2; otherwise, the root degree is increased merely by 1. Note that
the equation (6) is now a bona fide partial differential equation, making the analysis more
difficult.
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ormap = or

Figure 7 Symbolic method to count root degree and loops in rooted maps.

Leaves. The differential equation for the bivariate generating function of maps with variable
v marking leaves (see Table 1) can be obtained in a similar way by considering different cases
in the new edge constructor. The number of special leaf corners is equal to the number of
leaves.

Loops. Finally, we look at the number of loops whose enumeration necessitates the con-
sideration of the joint distribution of the number of loops and the number of root edges,
namely, we consider the trivariate generating function Y (z, v, w) =

∑
n,k,m yn,k,mz

nvkwm,
where yn,k,m denotes the number of rooted maps with n edges, root degree equal to k, and
m loops. Then Y (z, v, w) satisfies a partial differential equation

Y = 1 + zvY + zvY |v=1Y + 2z2v∂zY + zv2(vw − 1)∂vY. (7)

As in the symbolic construction of Figure 7, a new edge becomes a loop only if it is attached
to one of the corners incident to the root vertex. The differential equation (7) is then a
modification of (6) with an additional variable marking the number of loops.

Note that Equation (7) is catalytic with respect to the variable v, i.e. putting v = 1
introduces a new unknown object ∂vY |v=1 to the differential equation. One of the strategies
for dealing with catalytic equations was developed by Bousquet-Mélou and Jehanne [6],
generalising the so-called kernel method and quadratic method. However, their method does
not work in our case because our equation is differentially algebraic.

3 Limit laws

This section describes the techniques we employ to establish the limit laws.
From now on, by a random map (with n edges) we assume that all rooted map with n

edges are equally likely. For notational convention, we use X ′ = ∂zX to denote derivative
with respect to z. Due to space limit, we give only the sketches of the proofs.

3.1 Transformation into a linear differential equation
For most of the equations in the previous section, it turns out that a transformation similar
to that used for Riccati equations largely simplifies the resolution and leads to solvable
recurrences, which are then suitable for our asymptotic purposes. We begin by solving
the standard Riccati equation (1) and see how a similar idea extends to other differential
equations.

I Proposition 3. The number mn of maps with n edges satisfies

mn

φn
= 2n− 1 +O

(
n−1), where φn = (2n)!

2nn! = (2n− 1)!!. (8)
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Proof. We solve the Riccati equation (1) by considering the transformation

M(z) = 1 + 2zφ′(z)
φ(z) , (9)

for some function φ(z) with φ(0) = 1. Substituting this form into the equation (9), we get
the second-order differential equation 2z2φ′′ + (5z − 1)φ′ + φ = 0. From this equation, the
coefficients φn := [zn]φ(z) satisfy the recurrence φn+1 = (2n+1)φn, which implies the double
factorial form of φn by φ0 = 1.

Moreover, by extracting the coefficient of zn in (9), we obtain a relation between the
coefficients mk and φ`. By the inequality mn > (2n− 1)mn−1 (see (2)), we then deduce the
asymptotic relation (8). J

I Theorem 4. Let Xn denote the number of vertices in a random rooted map with n edges.
Then Xn follows a central limit theorem with logarithmic mean and logarithmic variance:

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1), E(Xn) ∼ logn, V(Xn) ∼ logn. (10)

Proof. Similar to (9), we define a bivariate generating function S(z, v) =
∑
n>0 sn(v)zn such

that

X(z, v) = v + 2zS′

S
, S(0) = 1.

Substituting this X(z, v) into (3) leads to a linear differential equation from which one can
extract the recurrence

sn(v) = (2n+ v − 2)(2n+ v − 1)
2n sn−1(v).

We then get an explicit expression for sn(v), from which we deduce, by singularity analysis,
that

E(vXn) = 2v−1

Γ(v) n
v−1(1 +O(n−1)),

and conclude by applying the Quasi-Powers Theorem [13, 15]. J

A finer Poisson(logn+ c) approximation, for a suitably chosen c, is also possible, which
results in a better convergence rate O(logn)−1 instead of (logn)− 1

2 ; see [16] for details.

I Theorem 5. Let Cn denote the number of root isthmic parts in a random rooted map with
n edges. Then,

Cn
d−→ Geometric

( 1
2
)
.

Proof. Since C(z, 1) = M(z), we use again the substitution (9) and apply it to (4):

2z2(φC ′ + vφ′C) = (1− (1 + v)z)φC − φ.

The trick here is to multiply both sides by φ(z)v−1 and set Q(z, v) = φ(z)vC(z, v). We then
obtain

2z2Q′ = (1− (1 + v)z)Q− φv.
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Using the recurrence for the normalised coefficients q̂n(v) := qn(v)/φn and dominant-term
approximations, we find that the n-th coefficient of Q is proportional to

q̂n(v) = v

2n
∑

16k6n

(n
k

)v/2
+O(n−1/2) = v

2− v +O(n− 1
2 ).

This corresponds to a (shifted by 1) geometric distribution with parameter 1
2 . By the

definition Q(z, v) = φ(z)vC(z, v), we deduce that the limiting distribution of Cn is also
geometric with parameter 1

2 . J

I Theorem 6. Let En denote the number of edges incident to the root vertex in a random
rooted map with n edges. Then En follows asymptotically a Beta distribution:

En
n

d−→ Beta
(
1, 1

2
)
, (11)

with the density function 1
2 (1− t)− 1

2 for t ∈ [0, 1).

Proof. We use again the substitution E(z, 1) = M(z) = 1 + 2z φ
′

φ in (5), giving

2vz2(φE′ + φ′E) = (1− 2vz)φE − φ.

With Q(z, v) = φ(z)E(z, v), we then obtain

2vz2Q′ = (1− 2vz)Q− φ. (12)

This linear differential equation translates into a recurrence for the coefficients qn(v) of
Q(z, v), which yields the closed-form expression

qn(v) = 2nn!
∑

06j6n

(
2j
j

)
4−jvn−j . (13)

Returning to E(z, v), we see that its coefficients behave asymptotically like qn(v). This
implies the Beta limit law (11) for the random variable En/n since

(2j
j

)
4−j ∼ (πj)−1/2 for

large j. J

I Theorem 7. Let Dn denote the degree of the root vertex in a random rooted map with n
edges. Then, Dn, divided by the number of edges, converges in law to the uniform distribution
on [0, 2]:

Dn

n

d−→ Uniform [0, 2] . (14)

Proof. The substitutions

D(z, 1) = M(z) = 1 + 2zφ′

φ
, and D(z, v) = Q(z, v)

φ(z)

lead to a partial differential equation, which in turn yields the recurrence for the coefficients
qn(v) := [zn]Q(z, v):

qn(v) = v(2n− 1 + v)qn−1 − v2(1− v)q′n−1(v) + φn.

We then get the exact solution qn(v) = φn(1 + v + · · · + v2n). Accordingly, dn(v) :=
[zn]D(z, v) ∼ qn(v). This implies the uniform limit law (14). J

A more intuitive interpretation of this uniform limit law is given in the next section.
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3.2 Approximation and method of moments
Unlike all previous proofs, we use the method of moments to establish the limiting distribution
of the number of loops. The situation is complicated by the presence of the term involving
∂vY in (7), which introduces higher order derivatives with respect to v at v = 1 when
computing the asymptotic of the moments.

I Theorem 8. Let Yn denote the total number of loops in a random rooted map with n edges.
Then

Yn
n

d−→ L, (15)

where L is a continuous law with a computable density on [0, 1].

Proof. First, we show by induction that there exist constants ηk,`, such that as n→∞,

[zn]∂kv∂`wY (z, v, w)
∣∣
v=w=1 ∼ ηk,`n

k+`+1φn, k, ` > 0. (16)

For k = ` = 0 the statement clearly holds. Let y(k,`)
n := [zn]∂kv∂`wY (z, v, w)

∣∣
v=w=1 for larger

k, ` > 0. By translating (7) into the corresponding recurrence for the coefficients and by
collecting the dominant terms (using the induction hypothesis (16)), we deduce that

y(k,`)
n ∼ (2n+ k)y(k,`)

n−1 + `y
(k+1,`−1)
n−1 + (2kn− 2k)y(k−1,`)

n−1 + 1[k=0]y
(k,`)
n−1 .

Accordingly, we are led to the recurrence

ηk,` = 1
k + 2`+ 1[k>0]

(2kηk−1,` + `ηk+1,`−1),

for k + ` > 0 (provided that we interpret ηk,` = 0 when any index becomes negative). In
particular, when ` = 0, we obtain the moments of the random variable En, the number of
root edges: ηk,0 = 2k+1

k+1 , which coincides with the moments of the uniform random variable
Uniform[0, 2]. Finally, it is not complicated to check that the numbers η0,` satisfy the
condition of Hausdorff moment problem, i.e. η0,` uniquely determine the limiting random
variable defined on [0, 1]. J

4 Combinatorics of map statistics

We examine briefly the combinatorial aspect of the map statistics, relying our arguments on
the close connection between maps and chord diagrams (see [8]).

Recall that a chord diagram [14] with n chords is a set of vertices labelled with the
numbers {1, 2, . . . , 2n} equipped with a perfect matching. A chord diagram is indecomposable
if it cannot be expressed as a concatenation of two smaller diagrams.

Why the root degree follows a uniform law? We begin with Cori’s bijection [8] between
rooted maps and indecomposable diagrams. In this bijection, each chord connecting labels i
and j corresponds to matching of the half-edges with labels i and j. The set of half-edges
incident to each vertex of the resulting map corresponds to the set of nodes to the right of
the starting points of the so-called outer chords, i.e. chords that do not lie under any other
chord.

I Proposition 9. There exists a bijection between rooted maps of root degree d with n edges,
and indecomposable diagrams with n+ 1 chords such that the vertex d− 2 is matched with
vertex 1.
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Figure 8 Random rooted maps, respectively with 1000 and 20000 edges.

Once this proposition is available, it leads to a simpler and more intuitive proof of
Theorem 7 as follows. In a (not necessarily indecomposable) diagram, the label of the vertex
matched with 1 follows exactly a uniform law on {2, . . . , 2n}. But a diagram is almost surely
an indecomposable diagram (because its cardinality is asymptotically the same); thus the
label of the vertex matched with 1 divided by 2n obeys asymptotically a uniform law on
[0, 1] (or Uniform[0, 2] if divided by n as in Theorem 7).

Uniform random generation. Cori’s bijection is also useful for generating random rooted
maps. Uniformly sampling a random diagram can be achieved by adding the chords se-
quentially one after another. If this procedure results in a decomposable diagram, it is
rejected (which occurs with asymptotic probability 0). A successful sampled diagram is then
transformed into a map using Cori’s bijection [8]. Figure 8 shows two instances of random
maps thus generated.

The number of leaves. Another bijection in [10] is useful in proving the Poisson limit law
of the number of leaves. This bijection sends leaves of a map into the isolated chords (namely,
edges connecting vertices k and k + 1) of an indecomposable chord diagram. According
to [14, Theorem 2], the number of isolated edges in a random chord diagram has a Poisson
distribution with parameter 1. We can then deduce the following theorem.

I Theorem 10. The number of leaves in a random map with n edges follows asymptotically
a Poisson law with parameter 1.

Two dual parameters. We briefly remark that two other parameters, namely root face
degree and the number of trivial loops do not seem easily dealt with by the method of
generating functions because marking them requires additional nested information such
as the degrees of all the faces. However, such parameters can be easily marked in their
corresponding dual maps. Their limit distributions are uniform and Poisson, respectively.
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1 Introduction

Concurrent processes are logic units running independently in the same environment which
share resources (processing time, file inputs or outputs, etc). To guarantee the good behavior
of a concurrent program (a set of processes), a mechanism of synchronization has to be set
up. For example, synchronization can be used to avoid a process to write in a file currently
read by another process.

To deal with concurrent programs, researchers in the concurrency theory community
formalize the programs in an abstract language called process algebra. Different formalisms
exhibit different properties of concurrent programs. We are mainly interested in the so-
called Calculus of Communicating Systems introduced in [18], because of its popularity in
concurrency theory and the simplicity to reason about.

In this context, one of the main goals in concurrency is to check the good behavior of
such programs. A very popular method to do the verification is the model checking: several
logical properties (the specification of the program behavior) are checked for all the possible
runs of the program (see [3] as a reference book).

A common problem in such a method is the combinatorial explosion phenomenon: the
huge number of runs to check. To deal with that explosion, a statistical method has been
introduced: the Monte-Carlo model checking (see [13]). Here, the idea is to check the
specification only for few runs randomly sampled. Thus, the result of the method is not
anymore a proof of good behavior but a statistical certificate.

In this paper we investigate this phenomenon from a combinatorial point of view. We
consider concurrent programs as sets of atomic actions (executed computations) constrained
by a partial order relation: some actions have to finish before others start their computations.
Thus in this setting, a concurrent program can be modeled as a partial order (a.k.a. poset).
Then, its runs (possible execution flows) are its linear extensions (i.e. the total orders
compatible with the partial order) and the combinatorial explosion phenomenon (for a given
family of posets) is the fast growth of the number linear extensions as its number of atomic
actions increases.

The problem of counting the number of linear extensions of a poset is known to be
]P-complete [10]. As a consequence, an analytic approach to study this counting problem
for general posets seems out of reach. We thus limit the difficulty by considering restricted
classes of partial orders. In previous works we dealt with tree-like processes [9], tree-like
processes with non-deterministic choice [8] and Series-Parallel processes [5, 7]. In these
papers, like in the present one, we take the point of view to model a partial order by its
covering directed acyclic graph – DAG – (a.k.a. Hasse diagram). Then a linear extension
becomes an increasing labeling of the covering DAG. Previously this consideration let us to
use symbolic method to specify our models and so to use tools of Analytic Combinatorics
(see [11]).

In the present work we focus on processes built on synchronization by means of futures
or promises (see [4]). This concept is an abstraction for processes based on a main execution
thread but allowing to delay some computations. These computations are run asynchronously
and are represented as an object that can be queried in two ways: finish? to know if the
computation has terminated and get to retrieve the result of the computation (and properly
proceed the synchronization). This quite old principle aroses recently in many programming
languages, especially in the very popular Javascript language (see [1]).

To emphasize these paradigm we consider arch processes: a simplistic model of processes
with futures. An arch process is composed of a main trunk from which start several arches
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Figure 1 The (n, k)-arch process.

(modeling futures). The general shape of such a process is given in the Figure 1. Arch
processes are based on two parameters related to their sizes and their numbers of arches. A
combinatorial and recursive specification (as in [11]) for these increasing labeled structures
seems out of the reach at the moment. As a consequence we present here a different approach
to specify the problem.

For this model we exhibit exact and asymptotic formula for the number of increasing
labelings.As a second main contribution is the design of two algorithms. The first one
is an uniform random sampler for runs of a given arch process and the second one is an
unranking algorithm which allows to obtain an exhaustive builder of runs. The design of
these algorithms is motivated by the possible applications to (statistical) model checking.

The paper is organized as follows. The next section is devoted to the formal description of
(n, k)-arch processes and gives the solution of the recurrence equation driving their numbers
of runs. In Section 3 we prove the algebraicity of the bivariate generating function, we give a
closed form formula for it and the asymptotic behaviors of the diagonal coefficients of the
functions. Section 4 carefully describes both algorithms.

2 The arch processes and their runs

A concurrent program is seen as a partially ordered set (poset) of atomic actions where the
order relation define the precedence constraints over the executions of the actions.
A run of a concurrent program is a linear extension of the corresponding poset: i.e. a total
order compatible with the partial order relation.

Note that many other models of concurrent program exist but we have chosen to use this
one because it is well-suited to study the combinatorial explosion phenomenon.
We introduce now the model of arch processes, a family of restricted concurrent program
encoding synchronization by means of futures.

I Definition 1. Let n and k be two positive integers with k ≤ n+ 1. The (n, k)-arch process,
denoted by An,k, is built in the following way:

the trunk of the process: a sequence of (n+ k) actions a1, . . . , ak, x1, . . . , xn−k, c1, . . . , ck
and represented in Figure 1 on a semicircle;
the k arches that correspond to the triplets, for all i ∈ {1, . . . , k}, ai → bi → ci.

Thus k is the number of arches in the process, and n is the length (along the trunk) between
both extremities of each arch ai and ci (for all i). There are two extreme cases: when k = n,

AofA 2018
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1 •3 •
4•

6•

7•

9 •
11 •

12•
13•

2 •10 •
5 •

8 •

Figure 2 A run of the (5, 4)-arch process.

it corresponds to the arch processes that do not contain any node xi in the trunk, and the
case k = n+ 1 that corresponds to the case where both the nodes ak and c1 are merged into
a single node (and thus there is no node xi).

In Figure 1 representing the (n, k)-arch process, the precedence constraints are encoded
with the directed edges such that a → b means that the action a precedes b. We remark
that the (n, k)-arch process contains exactly (n + 2k) actions. Due to the intertwining of
the arches, we immediately observe when k is larger than 1 then the arch processes are
not Series-Parallel processes. Hence the results we exhibited in our papers [6, 7] cannot be
applied in this context.

I Definition 2. An increasing labeling for a concurrent process containing ` actions is
a bijection between the integers {1, . . . , `} and the actions of the process, satisfying the
following constraint: if an action a precedes an action b then the label associated to a is
smaller than the one related to b.

In Figure 2 we have represented an increasing labeling of the (5, 4)-arch process A5,4
corresponding to the run 〈a1, b1, a2, a3, b3, a4, x1, b4, c1, b2, c2, c3, c4〉. As one can see, every
directed path (induced by the precedence relation) is increasingly labeled. Our quantitative
goal is to calculate the number of runs for a given arch process.

I Proposition 3. The number of runs of a concurrent process is the number of increasing
labelings of the actions of the process.

Thus, each increasing labeling is in bijection with a single linear extension.
While there is the classical hook-length formula for tree-processes [15, 9] and its general-

ization for Series-Parallel processes [6], to the best of our knowledge, no closed form formula
is known for more general classes of processes. In the rest of the paper, for a given process
A, we denote by σ(A) its number of runs.

First, let us easily exhibit a lower bound and an upper bound (in the case k < n+ 1) in
order to obtain a first idea for the growth of the numbers of runs for the arch processes. We
remark that a similar approach could be used for the case when k = n+1. We first enumerate
the runs where all the bi nodes are preceded by ak, and all of them precede the node c1. This
imposes new precedence constraints for the process, and thus its number of runs is a lower
bound for the total number of runs. In this case the bi’s permute without any constraint, i.e.
k! possibilities and then each permutation of the bi’s shuffles with the sequence x1, . . . , xn−k.
Thus we get the following lower bound for the number of runs of An,k:

σ(An,k) ≥ k!
(
k + n− k

k

)
= n!

(n− k)! .
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Figure 3 From left to right, the processes denoted Dn,k, Dn,k, D
1
n,k and D2

n,k.

We now focus on an upper bound for the number of runs of An,k. Here again we suppose
that all the permutations of the bi’s are possible, but we allow each bi to appear everywhere
between a1 and ck. This constraint is satisfied by all the runs, but some possibilities are
not valid runs: thus we are computing an upper bound. Once the permutation of the bi’s is
calculated, we shuffle it into the trunk (containing n+ k nodes):

σ(An,k) ≤ k!
(
k + n+ k − 1
n+ k − 1

)
= (n+ 2k − 1)!

(n+ k − 1)! .

A refinement of these ideas for the bounds computation allows to exhibit a recurrence formula
for the value σ(An,k).

I Theorem 4. Let n and k be two integers such that 0 ≤ k ≤ n+ 1. The number σ(An,k)
of runs of the process An,k is equal to tn,k that satisfies:

tn,k = n+ 2k − 1
2 tn,k−1 + n− k

2 tn+1,k−1 and tn,0 = 1. (1)

In order to provide the proof, we first introduce the four processes in Figure 3. Notice that
they are not arch processes. From left to right, the first process, denoted by Dn,k, is almost
the process An,k. In fact, the single difference is that Dn,k contains exactly one more action,
denoted by c′1, that is preceded by all the other actions. The second process Dn,k is related
to Dn,k in the following way: the precedence relation starting at b1 is replaced, instead of
having b1 → c1, it is b1 → c′1. Finally, for the two last processes D1

n,k and D2
n,k, it is also the

relations a1 → b1 → c1 which are modified.

Proof. The extreme case An,0 corresponds to a process without any arch: just a trunk.
Obviously it admits a single increasing labeling: it has a single run.

Suppose first that k < n+ 1. The number σ(An,k) is equal to the number of runs σ(Dn,k)
because for all runs, the integer associated to c′1 is inevitably the largest one: 2k + n + 1.
Then, using a inclusion/exclusion principle, we obtain the following formula for the number
σ(Dn,k):

σ(Dn,k) = σ(Dn,k)−
(
σ(D1

n,k)− σ(D2
n,k)

)
. (2)

In fact we are focusing on the action preceded by b1. In Dn,k it corresponds to c1. By
modifying it to c′1 in Dn,k we allow runs where b1 appears after c1, thus that are not valid
for Dn,k. We remove this number of non-valid runs with σ(D1

n,k)− σ(D2
n,k), by playing with

both actions x1 and c1. To compute σ(Dn,k), first omit the action b1 (and its incoming
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and outgoing edges) ; the remaining process is a (n, k − 1)-arch process, up to renaming,
with added top and bottom actions (a1 and c′1) which do not modify the number of runs
of An,k−1. It remains to insert b1 in this “almost” An,k−1, somewhere between a1 and c′1:
there are (2 · (k − 1) + n− 1) + 2 = 2k + n− 1 possibilities. The term (2 · (k − 1) + n− 1)
are the cases where b1 is put between a2 and ck and the term 2 corresponds to the cases
where b1 is either before a2 or after ck. The process D1

n,k is similar to the arch process An,k,
there is only an action a1 that precedes it, so σ(D1

n,k) = tn,k. Lastly, for the process σ(D2
n,k),

forgetting b1 we recognize An+1,k−1 up to renaming, so b1 can be inserted between x1 and
c1: there are n− k possibilities. Finally we obtain the following equation

σ(An,k) = (n+ 2k − 1) · σ(An,k−1)− σ(An,k) + (n− k) · σ(An+1,k−1).

Suppose now that k = n+ 1. Here there is no action xi and both the nodes ak and c1 are
merged into a single node. We can adapt equation (2) and obtain the same recurrence, but via
a small difference in the computation: σ(Ak−1,k) = 3k ·σ(Ak−1,k−1)−σ(Ak−1,k)−σ(Ak,k−1).
But since k = n+ 1, this recurrence is equal to equation (1) too. J

When k ≥ n+ 1, one can think to the arch process An,k as an arch process where the last
(k−n) actions an−i are merged with the first (k−n) actions ci. But the recursive formula (1)
does not apply to such models: once k > n+ 1 the recurrence loses its combinatorial meaning.

The next result exhibits a closed form formula for the number of runs of the arch processes.

I Theorem 5. Let n and k be integers such that 0 < k ≤ n+ 1. The number 1 of runs of
the (n, k)-arch process is

σ(An,k) =(2k + n− 1)!!
2k−1

k−1∑
s=0

(n+ s) par(n, s)
(n+ s+ 1)!!

∑
1≤i1<···<is≤k

s∏
j=1

(ij + j + n− k − 1)
Γ
(

2(k−ij)+n+j+2
2

)
Γ
(

2(k−ij)+n+j+3
2

) ,

where par(n, s) =


(2s/2)−1 if s is even
√
π(2(s+1)/2)−1 if s is odd and n is even

(2(s−1)/2√π)−1 if s is odd and n is odd.

Let us recall the double factorial notation: for n ∈ N, n!! = n · (n−2)!! with 0!! = 1!! = 1. We
remark that the ratio of the two Γ-functions is related to the central binomial coefficient. The
asymptotic behavior of the sequence does not seem immediate to obtain using this formula.

key-ideas. The formula for σ(An,k) is obtained by resolving the recurrence stated in equa-
tion (1). First remark that the calculation of σ(An,k) requires the values of σ(Ai,j) in the
triangle such that n ≤ i ≤ n + k and 0 ≤ j ≤ k − (i − n). The formula is computed by
unrolling k times the recurrence. In particular, the index s in the formula corresponds to
the number of times we have used the second term of equation (1), to reach the final term
σ(An+s,0). The ij values indicate in which iteration the second terms of equation (1) have
been chosen. They describe the path from (n, k) to (n+ s, 0). The brute formula obtained in
this way is composed of a product of truncated double factorials that can be written as ratios

1 In Theorem 5 we use the convention that the sum over the sequence of ij ’s is equal to 1 when s = 0.
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of double factorial numbers. Finally, by coupling the adequate numerators and denominators
in the product we exhibit several Wallis’s ratios [2] that are easily simplified by using the

Γ-function: (2n− 1)!!
(2n)!! = 1√

π

Γ
(
n+ 1

2
)

Γ (n+ 1) . J

By using this closed form formula, or the bivariate recurrence (cf. equation (1)), we easily
compute the first diagonals of the recurrence. The values of a given diagonal correspond to
the class of arch processes with the same number of actions xi in the trunk.

(σ(Ak−1,k))k∈N\{0,1} = (1, 12, 170, 2940, 60760, 1466640, 40566680, 1266064800, . . . )
(σ(Ak,k))k∈N∗ = (1, 5, 44, 550, 8890, 176120, 4130000, 111856360, . . . )

(σ(Ak+1,k))k∈N∗ = (2, 11, 100, 1270, 20720, 413000, 9726640, 264279400, . . . )
(σ(Ak+2,k))k∈N∗ = (3, 19, 186, 2474, 41670, 850240, 20386800, 561863960, . . . )

We remark that the first terms of the sequence (σ(Ak+1,k))k∈N∗ coincide with the first terms
of the sequence A220433 (shifted by 2) in OEIS 2 . This sequence is related to a specific Alia
algebra and is exhibited in the paper of Khoroshkin and Piontkovski [14]. In their paper, the
exponential univariate generating function naturally appears as an algebraic function. This
motivates us to study in detail the bivariate generating function for (tn,k) and in particular
its diagonals.

3 Algebraic generating functions

Let us associate to the bivariate sequence (tn,k)n,k the generating function, denoted by
A(z, u), exponential in u and ordinary in z:

A(z, u) =
∑

n≥0,k≥0

tn,k
k! z

nuk.

Recall this series enumerates the increasing labelings of the arch processes, when k ≤ n+ 1,
but has no combinatorial meaning beyond this bound.

I Proposition 6. The bivariate generating function A(z, u) is holonomic and satisfies the
following differential equation.

(2zu− 2z − u) ∂

∂u
A (z, u) + (z − 2)A (z, u) + z (z + 1) ∂

∂z
A (z, u) + C(u) = 0.

where C(u) is an algebraic function determined by the initial conditions of the equation.

The differential equation can be exhibited since the recursive behavior of (tn,k) is not disturbed
beyond the bound k > n+ 1.

key-ideas. The differential equation is directly obtained from the recurrence equation (1).
The function C(u) encodes the initial conditions of the equation. The differential equation
satisfied by A(z, u) ensures its holonomicity (cf. [21, 11]). J

2 OEIS corresponds to the On-line Encyclopedia of Integer Sequences: http://oeis.org/.
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It is important to remark that C(u) is holonomic. In fact we have C(u) = u ∂
∂uA(0, u) +

2A(0, u) and consequently C(u) is holonomic as a specialization of a holonomic bivariate
generating function. A direct computation for C(u) exhibits the following differential equation

4
(
24u2 + 3u+ 1

)
C(u)− 4u

(
84u2 − 3u+ 1

) d
duC(u)

− 2u2 (216u2 − 151u+ 13
) d2

du2C(u)

− 2u2 (58u3 − 75u2 + 33u− 2
) d3

du3C(u)

− u3 (8u3 − 15u2 + 12u− 4
) d4

du4C(u)− 8 (3u+ 1) = 0.

Note that we prove also that C(u) is solution of an algebraic equation. This fact is really
not obvious from a combinatorial point of view. But it is deduced through the fact that the
function A(0, u) is algebraic:

(8u3 − 15u2 + 12u− 4)A(0, u)3 + (12u2 − 12u+ 6)A(0, u)− 2u3 = 0. (3)

The equation is obtained by a guess and prove approach. Once it has been guessed it remains
to prove it by using the holonomic equation proven in Proposition 6. Thus we get

32
(
9u2 − 12u+ 8

)
(u− 1)3

+ 48
(
36u6 − 120u5 + 202u4 − 199u3 + 123u2 − 44u+ 8

)
(u− 1)2

C(u)

+
(
8u3 − 15u2 + 12u− 4

)3
C(u)3 = 0.

I Theorem 7. The function A(z, u) is an algebraic function in (z and u) whose annihilating
polynomial has degree 3:

2 + 6
(
12zu3 − 18zu2 − 2u2 + 13zu+ 2u− 3z − 1

)
A(z, u)

+ 6z2 (8u3 − 15u2 + 12u− 4
)
A(z, u)2

+
(
8u3 − 15u2 + 12u− 4

) (
z3 + 6zu+ 3z2 − 3z − 1

)
A(z, u)3 = 0.

Note that the choice to use a doubly exponential generating function (in u and z) for (tn,k)
would have made sense and would be holonomic too (closure property of Borel transform). But
it would not be algebraic because of the inappropriate asymptotic expansion (cf. Theorem 9).

Proof. The fact that the initial conditions and a diagonal of A(z, u) are algebraic suggests that
it could also be algebraic as a function of z and u. Applying a bivariate guessing procedure,
we observe that the bivariate function H(z, u) = (u+ 1)(z3 + 3z2 + 6zu− 3z − 1)A(z, u) is
such that [zn]H(z, u) = 0 for n > 2. Furthermore [zj ]H(z, u) is algebraic for j = {0, 1, 2}.
So, let us calculate these z-extractions. First recall that [z0]A(z, u) satisfies the algebraic
equation (3). In the same vein, [z1]A(z, u) satisfies the algebraic equation(

8u3 − 15u2 + 12u− 4
)
f(u)3 + 3

(
8u3 − 15u2 + 12u− 4

)
f(u)2

+3
(
8u3 − 15u2 + 10u− 2

)
f(u) + 8u3 − 15u2 + 6u = 0,

and finally [z2]A(z, u) satisfies the algebraic equation(
8u3 − 15u2 + 12u− 4

)
f(u)3 +

(
−24u3 + 45u2 − 36u+ 12

)
f(u)2

+
(
−72u3 + 135u2 − 84u+ 18

)
f(u)− 40u3 + 75u2 − 36u = 0.
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Thus we obtain

[z0]H(z, u) = −(1 + u)A(0, u)
[z1]H(z, u) = −1 + (u+ 1)

(
(6u− 3)A(0, u)− [z1]A(z, u)

)
[z2]H(z, u) = (u+ 1)

(
(6u− 3)[z1]A(z, u)− [z2]A(z, u) + 3A(0, u) + (6u− 4)

)
.

Finally we get A(z, u) = [z≤2]H(z, u)
(u+ 1) (z3 + 3z2 + 6uz − 3z − 1) . By using the elimination theory,

we get a closed form algebraic equation for A(z, u) of degree 27, that obviously cannot fit in
the conference paper format. Nevertheless, this equation is not minimal. Simplifying it, we
get a minimal polynomial of degree 3 which annihilates A(z, u):

(
8u3 − 15u2 + 12u− 4

) (
z3 + 3z2 + 6zu− 3z − 1

)
A(z, u)3

+ 6z2 (8u3 − 15u2 + 12u− 4
)
A(z, u)2

+ 6
(
12zu3 − 18zu2 − 2u2 + 13zu+ 2u− 3z − 1

)
A(z, u) + 2 = 0.

A direct proof by recurrence confirms the validity of this equation. J

We remark in the previous section that the diagonals of the function A(z, u) are of
particular interest because they define subclasses of arch processes with a fixed number of xi
actions covered by all the arches. In order to extract the generating functions of this subclass,
we could use the Cauchy formula to compute [u0]A(z/u, u) and so on; we would keep the
holonomicity property of the sequences but not their algebraicity. So, we prefer to define
the generating function B(z, u) = A(z/u, u). A similar proof as for the case A(z, u) can be
done to prove the algebraicity of B(z, u). In particular, it exhibits the following algebraic
equation satisfied by B(z, u)(

9u2 + 12u− 4
) (
z3 + 3z2 + 6u− 3z − 1

)
B(z, u)3 + 6z2 (9u2 + 12u− 4

)
B(z, u)2

+6
(
18u2z − 18u2 + 6uz + 9u− 3z − 1

)
B(z, u) + 2 (6u− 1)2 = 0

In particular, B(0, u) is associated to the sequence (tk,k)k, [z1]B(z, u) corresponds to the
sequence (tk−1,k)k and so on. By specializing z = 0 in the latter algebraic equation then
by resolving it through the Viète-Descartes approach for the resolution of cubic equation
(detailed in the paper [19]), we obtain the following closed form formula corresponding to
the branch that is analytic in 0:

B(0, u) =
√

2
√

1− 3u
1− 3u− 9

4u
2 cos

1
3 arccos

 6u− 1√
2(1− 3u)

√
1− 3u− 9

4u
2

1− 3u

 .

Even if the way we represented B(0, u) could suggest a singularity when the argument of the
arccos function is equal to 1, the function admits an analytic continuation up to its dominant
singularity ρ : the solution of 1 − 3u − 9

4u
2 = 0, thus corresponding to ρ = 2

3

(√
2− 1

)
.

Furthermore, by studying the global generating function B(z, u), we obtain its singular
expansion.

I Lemma 8. Near the singularity when u tends to ρ, the function B(z, u) satisfies

B(z, u) =
u→ρ

a(z) + b(z)√
ρ− u

+ o
(

(ρ− u)−1/2
)
,

with a(z) and b(z) two functions independent from u.
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By using this result we deduce the asymptotic behaviors of the diagonal coefficients of A(z, u).

I Theorem 9. Let i be a given integer greater than −1, and k tend to infinity:

tk+i,k ∼
k→∞

γi
ρ−k√
k
k! with γ0 = 1

2

√
3√
2π

(√
2− 1

)
and γi =

(
1√

2− 1

)i
γ0.

This theorem is a direct consequence of Lemma 8. The (γi)i can be deduced by asymptotic
matching (using an Ansatz).

Finally, by computing [z1]B(z, u) with the algebraic equation it satisfies, we prove that
its second derivative is solution of the algebraic equation exhibited in OEIS A220433.

4 Uniform random generation of runs

We now introduce an algorithm to uniformly sample runs of a given arch process An,k. Our
approach is based on the recursive equations (1) and (2) for the sequence (tn,k). Here we
deal with the cases k ≤ n and avoid the limit case k = n+ 1. Although the latter limit case
satisfies this equation too, its proof is based on another combinatorial approach, and so the
construction of a run cannot be directly deduced form the combinatorial approach proposed
for the cases k ≤ n. Of course, a simple adaptation of the algorithm presented below would
allow to sample in Ak−1,k, but the lack of space prevent us to present it here.

Our algorithm is a recursive generation algorithm. But since the objects are not specified
in a classical Analytic Combinatorics way, we cannot use the results of [12]. As usual for
recursive generation, the first step consists in the computation and the memorization of the
value tn,k and all the intermediate values (ti,j) needed for the calculation of tn,k.

I Proposition 10. In order to compute the value tn,k, it is sufficient to calculate the values
in the bi-dimensional set {ti,j | n ≤ i ≤ n+ k and 0 ≤ j ≤ k − (i− n)}. This computation
is done with O

(
k2) arithmetic operations.

Recall that the coefficient computations are done only once for a given pair (n, k), and then
many runs can be drawn uniformly for An,k by using the recursive generation algorithm.

Let us present the way we exploit the recurrence equation (2) to design the sampling
method. The main problem that we encounter is the presence of a minus sign in the recurrence
equation. Let us rewrite it in a slightly different way: σ(Dn,k) + σ(D1

n,k) = σ(Dn,k) + σ(D2
n,k).

Recall that the structures under consideration are depicted in Figure 3. We introduce
the classes of increasingly labeled structures from Dn,k, D

1
n,k, Dn,k and D2

n,k, respectively
denoted by In,k, I

1
n,k, In,k and I2

n,k. Remark that the number of runs of An,k is equal to |In,k|,
where the function | · | corresponds to the cardinality of the considered class. Obviously the
equation on the cardinalities can be written directly on the classes In,k ∪ I

1
n,k = In,k ∪ I

2
n,k

(since their intersections are empty: In,k and I1
n,k are distinct even if they are isomorphic).

Thus, we consider the problem of sampling the class In,k ∪ I
1
n,k where we bijectively replace

the runs belonging to I
1
n,k by runs of In,k (which can be performed recursively during

the sampling procedure). The Algorithm Sampling(n, k) is based on the correspondence
depicted in the Figure 3 and its adaptation presented above on the classes In,k ∪ I

1
n,k. In

each case the algorithm completes a recursively drawn run and applies some renaming on
the actions of that run. Then, it inserts the action b1 according to the cases In,k\I

1
n,k, I

1
n,k

or I2
n,k. In the specific case I1

n,k, instead of b1, it is the action bk that is inserted and the
renaming occurs in a similar fashion to obtain a run of In,k from the one of I1

n,k.
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Algorithm 1 Uniform random sample for In,k.
1: function Sampling(n, k)
2: if k = 0 then
3: return 〈x1, x2, . . . , xn〉
4: r := rand_int(0, 2 · tn,k − 1) . a uniform integer between 0 and 2 · tn,k − 1 in r
5: if r < |In,k| then . generation in In,k
6: U := Sampling(n, k − 1)
7: pb := 1 + r//tn,k−1 . The position of the new b to insert
8: if pb > px1 then . generation in Ī1

n,k

9: Rename x1 by ak ; and each xi with i > 1 by xi−1
10: Insert bk at position pb ; and ck at the end of U
11: else . generation in In,k\Ī1

n,k

12: In U , rename each ai (resp. ci and bi) by ai+1 (resp. ci+1 and bi+1)
13: Rename xn−k+1 by c1
14: Insert b1 at position pb ; and a1 at the head of U
15: else . generation in I2

n,k

16: U := Sampling(n+ 1, k − 1)
17: pb := 2 + (r − (n+ 2k − 1) · tn,k−1)//tn+1,k−1
18: Rename xpb

by b1 and xn−k+2 by c1 ; and each xi with i > pb by xi−1
19: Insert a1 at the head of U
20: return U

Line 4 and 17 : the binary operator // denotes the Euclidean division.
The position of an action in a run is its arrival number (from 1 to the number of actions).

I Theorem 11. The Algorithm Sampling(n, k) builds uniformly at random a run of An,k
in k recursive calls, once the coefficients computations and memorizations have been done.

Since each object of In,k is sampled in two distinct ways, the uniform sampling in In,k ∪ I
1
n,k

induces the uniform sampling of In,k.
Focus on the run of A5,4 depicted in Figure 2: 〈a1, b1, a2, a3, b3, a4, x1, b4, c1, b2, c2, c3, c4〉.

It is either obtained from a (renamed) run of Ī1
5,4: 〈a1, b1, a2, a3, b3, x1, x2, c1, b2, c2, c3〉 with

pb = 8 (Line 8 of the algorithm). Or it is built from 〈a1, a2, b2, a3, x1, b3, x2, b1, c1, c2, c3〉 of
Ī5,4\Ī1

5,4, with pb = 1 (Line 11). But it cannot be built from a run of I2
5,4.

In Figure 4, we have uniformly sampled 1000 runs for A1000,1000 and we have represented
in blue points every pair (k, n) corresponding to an increasing sub-structure from An,k that
has been built during the algorithm (k for abscissa and n for ordinate). Only around 4.78 ·104

sub-structures have been built among the 50 · 104 inside the red lines which are calculated
for the value t1000,1000. At the beginning n ≈ k and the if branch on Line 5 is preferred
(instead of the else one on Line 15) because the number of xi actions is too small. After
some recursive calls, the number of xi actions has increased and then both branches of
the algorithm are taken with probabilities of the same order. Recall that the constants γi
(cf. Theorem 9) are evolving with an exponential growth. Finally, we observe that only a
small number of diagonals are necessary for the samplings. Since the diagonals (tni,ki

) for
increasing sequences (ni)i and (ki)i follow P-recurrences (cf. [16]), a lazy calculation of the
terms of the necessary diagonals that envelop the blue points would allow to minimize the
pre-computations of Proposition 10.

We close this section with the presentation of an unranking algorithm for the construction
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Figure 4 The terms ti,j needed for the sampling of 1000 runs of A1000,1000.

of the runs of a given arch process An,k. This type of algorithm has been developed during
the 70’s by Nijenhuis and Wilf [20] and introduced in the context of Analytic Combinatorics
by Martínez and Molinero [17]. Our algorithm is based on a bijection between the set of
integers {0, . . . , tn,k − 1} and the set of runs of An,k. Here again we restrict ourselves to the
values k ≤ n. As usual for unranking algorithms, the first step consists in the computation
and the memorization of the values of a sequence. But compared to the uniform random
sampling, here we need more information than the one given by the sequence (tn,k).

To be able to reconstruct the run associated to a given rank, we need to know the position
of the action x1 in the recusively drawn run in order to decide if the action b1 appears before
or after it. First suppose k < n and let tn,k,` be the number of runs in An,k whose action x1
appears at position `. Let us denote by In,k,` the associated combinatorial class. We obtain
directly a constructive recurrence for the sequence.

tn,k,` = (`− 2) tn,k−1,`−2 + (n− k) tn+1,k−1,`−1 and tn,0,1 = 1; tn,0,`>1 = 0.

I Proposition 12. The computation of tn,k,` is done with O
(
k2) arithmetic operations.

The Unranking algorithm computes a run given its rank in the following total order:

α �n,k β iff.


α ∈ In,k,i0 and β ∈ In,k,i1 ∧ i0 < i1,

or α, β ∈ In,k,i ∧ α is built recursively from In,k−1,i−2 and
β is built recursively from In+1,k−1,i−1

or α, β ∈ In,k,i ∧ α, β ∈ In,k−1,i−2 (resp. In+1,k−1,i−1) and
α0, β0 inducing α, β satisfy α0 �n,k−1 β0.

The run example of Figure 2 has rank 479 among the 1270 runs of A5,4. Note that in the
case k = n (at the end there is no x1) the algorithm is easily extended by considering the
position of b1 as the one of x1.

I Theorem 13. The Algorithm Unranking(n, k, r) builds the r-th run of An,k in k recursive
calls, once the coefficient memorizations tn,k,`, for all ` such that k + 1 ≤ ` ≤ 2k + 1 (and
the necessary n and k), have been done.

Note that the implementation of both algorithms can be much more efficient than the
pseudocode exhibited above. Actually, only the absolute positions of the bi actions are
important in a run, because all other actions have their positions determined by the positions
of the bi actions. However, such implementations are much more cryptic to read, and so we
preferred to present here easy-to-read algorithms.
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Algorithm 2 Unranking for In,k.
1: function Unranking(n, k, r)
2: ` := k + 1
3: while r ≥ 0 do
4: r := r − tn,k,l
5: ` := `+ 1
6: return Cons(n, k, `, r)
7: function Cons(n, k, `, r)
8: if k = 0 then
9: return 〈x1, x2, . . . , xn〉

10: if r < (`− 2) · tn,k−1,`−2 then . generation in In,k−1,`−2
11: rr := r % tn,k−1,`−2
12: U := Cons(n, k − 1, `− 2, rr)
13: pb := 1 + r//tn,k−1,`−2 . The position of the new b to insert
14: In U , rename each ai (resp. ci and bi) by ai+1 (resp. ci+1 and bi+1)
15: Rename xn−k+1 by c1
16: Insert b1 at position pb ; and a1 at the head of U
17: else . generation in In+1,k−1,`−1
18: r′ := r − (`− 2) · tn,k−1,`−2
19: rr := r′ % tn+1,k−1,`−1
20: U := Cons(n+ 1, k − 1, `− 1, rr)
21: pb := 2 + r′//tn+1,k−1,`−1
22: Rename xpb

by b1 and xn−k+2 by c1 ; and each xi with i > pb by xi−1
23: Insert a1 at the head of U
24: return U

Line 11 and 19 : the binary operator % denotes the Euclidean division remainder.
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Abstract
We study I(T ), the number of inversions in a tree T with its vertices labeled uniformly at
random. We first show that the cumulants of I(T ) have explicit formulas. Then we consider
Xn, the normalized version of I(Tn), for a sequence of trees Tn. For fixed Tn’s, we prove a
sufficient condition for Xn to converge in distribution. For Tn being split trees [6], we show
that Xn converges to the unique solution of a distributional equation. Finally, when Tn’s are
conditional Galton–Watson trees, we show that Xn converges to a random variable defined in
terms of Brownian excursions. Our results generalize and extend previous work by Panholzer
and Seitz [20].
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15:2 Inversions in Split Trees and Conditional Galton–Watson Trees

1 Introduction

1.1 Inversions in a fixed tree
Let σ1, . . . , σn be a permutation of {1, . . . , n}. If i < j and σi > σj , then the pair (σi, σj)
is called an inversion. The concept of inversions was introduced by Cramer [5] (1750) due
to its connection with solving linear equations. More recently, the study of inversions has
been motivated by its applications in the analysis of sorting algorithms ([15, Section 5.1]).
Many authors, e.g., Feller [7, pp. 256], have shown that the number of inversions in uniform
random permutations has a central limit theorem.

The concept of inversions can be generalized as follows. Consider an unlabeled rooted
tree T on node set V . Let ρ denote the root. Write u < v if u is a proper ancestor of v, i.e.,
the unique path from ρ to v passes through u and u 6= v. Write u ≤ v if u is an ancestor of
v, i.e., either u < v or u = v. Given a bijection λ : V → {1, . . . , |V |} (a node labeling), define
the number of inversions

I(T, λ) def=
∑
u<v

1λ(u)>λ(v).

Note that if T is a path, then I(T, λ) is nothing but the number of inversions in a permutation.
Our main object of study is the random variable I(T ), defined by I(T ) = I(T, λ) where λ is
chosen uniformly at random from the set of bijections from V to {1, . . . , |V |}.

The enumeration of trees with a fixed number of inversions has been studied by Mallows
and Riordan [16] and Gessel et al. [9] using the so called inversions polynomial. While
analyzing linear probing hashing, Flajolet et al. [8] noticed that the numbers of inversions in
Cayley trees with uniform random labeling converges to an Airy distribution. Panholzer and
Seitz [20] showed that this is true for conditional Galton–Watson trees, which encompasses
the case of Cayley trees.

For a node v, let zv denote the size of the subtree rooted at v. The following representation
of I(T ) is the basis of most of our results:

I Lemma 1. Let T be a fixed tree. Then

I(T ) d=
∑
v∈V

Zv,

where {Zv}v∈V are independent random variables, and Zv ∼ Unif{0, 1, . . . , zv − 1}.

We will generally be concerned with the centralized number of inversions, i.e., I(T )−
E [I(T )]. For any u < v we have P {λ(u) > λ(v)} = 1/2. Let h(v) denote the depth of v, i.e.,
the distance from v to the root ρ. It immediately follows that,

E [I(T )] =
∑
u<v

E
[
1λ(u)>λ(v)

]
= 1

2Υ(T ), (1.1)

where Υ(T ) def=
∑
v h(v) is called the total path length (or internal path length) of T .

Let κk = κk(X) denote the k-th cumulant of a random variable X (provided it exists);
thus κ1(X) = E [X] and κ2(X) = Var (X). We now define Υk(T ), the k-total common
ancestors of T , which allows us to generalize (1.1) to higher cumulants of I(T ). For k nodes
v1, . . . , vk (not necessarily distinct), let c(v1, . . . , vk) be the number of ancestors that they
share, i.e.,

c(v1, . . . , vk) def= |{u ∈ V : u ≤ v1, u ≤ v2, . . . , u ≤ vk}| .
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We define

Υk(T ) def=
∑

v1,...,vk

c(v1, . . . , vk),

where the sum is over all ordered k-tuples of nodes in the tree. For a single node v,
h(v) = c(v)− 1, since v itself is counted in c(v). So Υ(T ) = Υ1(T )− |V |; i.e., we recover the
usual notion of total path length. Using Lemma 1, it is easy to show the following:

I Theorem 2. Let T be a fixed tree. Let κk(I(T )) be the k-th cumulant of I(T ). Then

E [I(T )] = κ1(I(T )) = 1
2Υ(T ) = 1

2(Υ1(T )− |V |),

Var (I(T )) = κ2(I(T )) = 1
12(Υ2(T )− |V |),

and, more generally, for k ≥ 1,

κ2k+1(I(T )) = 0, κ2k(I(T )) = B2k

2k (Υ2k(T )− |V |),

where Bk denotes the k-th Bernoulli number. Moreover, I(T ) has the moment generating
function

E
[
etI(T )

]
=
∏
v∈V

ezvt − 1
zv(et − 1) ,

and for the centralized variable we have the estimate

E
[
et(I(T )−E[I(T )])] ≤ exp

(
1
8 t2
∑
v∈T

(zv − 1)2
)
≤ exp

(
1
8 t2
∑
v∈T

z2
v

)
= exp

(
1
8 t2Υ2(T )

)
, t ∈ R.

1.2 Inversions in sequences of trees
The total path length Υ(T ) has been studied for random trees like split trees [3] and
conditional Galton–Watson trees [1, Corollary 9]. This leads us to focus on the deviation

Xn = I(Tn)− E [I(Tn)]
s(n) ,

under some appropriate scaling s(n), for a sequence of (random or fixed) trees Tn.

Fixed trees
The following theorem follows easily from Theorem 2:

I Theorem 3. Let Tn be a sequence of fixed trees on n nodes. Let

Xn = I(Tn)− E [I(Tn)]√
Υ2(Tn)

.

Assume that for all k ≥ 1,
Υ2k(Tn)
Υ2(Tn)k → ζ2k,

for some sequence (ζ2k). Then there exists a unique distribution X with

κ2k−1(X) = 0, κ2k(X) = B2k

2k ζ2k, k ≥ 1,

such that Xn
d−→ X and, moreover, E

[
etXn

]
→ E

[
etX
]
<∞ for every t ∈ R.

AofA 2018



15:4 Inversions in Split Trees and Conditional Galton–Watson Trees

I Example 4. When Pn is a path of n nodes, we have for fixed k ≥ 1

Υk(Pn) ∼ 1
k + 1n

k+1.

Thus Υ2k(Pn)/Υ2(Pn)k → κ2k = 0 for k ≥ 2. So by Theorem 3, Xn converges to a normal
distribution, and we recover the central limit law for inversions in permutations. Also, the
vertices have subtree sizes 1, . . . , n and so we also recover from Theorem 2 the moment
generating function

∏n
j=1(ejt − 1)/(j(et − 1)) [22, 17].

Other examples where Theorem 2 can be easily applied include complete b-ary trees and
stars (a star is a tree containing only a root and leaves).

Random trees
We move on to random trees. We consider generating a random tree Tn and, conditioning
on Tn, labeling its nodes uniformly at random. The relation (1.1) is maintained for random
trees:

E [I(Tn)] = E [E [I(Tn) | Tn]] = 1
2E [Υ(Tn)] .

The deviation of I(Tn) from its mean can be taken to mean two different things. Consider
for some scaling function s(n),

Xn = I(Tn)− E [I(Tn)]
s(n) , Yn = I(Tn)− E [I(Tn) | Tn]

s(n) =
I(Tn)− 1

2 Υ(Tn)
s(n) .

Then Xn and Yn each measure the deviation of I(Tn), unconditionally and conditionally.
They are related by the identity

Xn = Yn +Wn/2, (1.2)

where

Wn = Υ(Tn)− E [Υ(Tn)]
s(n) .

In the case of fixed trees Wn = 0 and Xn = Yn, but for random trees we consider the
sequences separately.

Split trees
The first class of random trees which we study are split trees. They were introduced by
Devroye [6] to encompass many families of trees that are frequently used in algorithm analysis,
e.g., binary search trees, m-ary search trees, digital search trees, etc.

A split tree can be constructed as follows. Consider a rooted infinite b-ary tree where each
node is a bucket of finite capacity s. We place n balls at the root, and the balls individually
trickle down the tree in a random fashion until no bucket is above capacity. Each node
draws a split vector V = (V1, . . . , Vb) from a common distribution, where Vi describes the
probability that a ball passing through the node continues to the ith child. The trickle-down
procedure is defined precisely in Section 2. Any node u such that the subtree rooted at u
contains no balls is then removed, and we consider the resulting tree Tn.

In the context of split trees we differentiate between I(Tn) (the number of inversions on
nodes), and Î(Tn) (the number of inversions on balls). In the former case, the nodes (buckets)
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are given labels, while in the latter the individual balls are given labels. For balls β1, β2,
write β1 < β2 if the node containing β1 is a proper ancestor of the node containing β2; if
β1, β2 are contained in the same node we do not compare their labels. Define

Î(Tn) =
∑
β1<β2

1λ(β1)>λ(β2).

Similarly define Υ̂(Tn) as the total path length on balls, i.e., the sum of the depth of all balls.
And let

X̂n =
Î(Tn)− E

[
Î(Tn)

]
n

, Ŷn = Î(Tn)− s0Υ̂(Tn)/2
n

, Ŵn =
Υ̂(Tn)− E

[
Υ̂(Tn)

]
n

. (1.3)

Here s0 is a fixed integer denoting the number of balls in any internal node, and we have
X̂n = Ŷn + s0Ŵn/2 (justified in Section 2). The following theorem gives the limiting
distributions of the random vector (X̂n, Ŷn, Ŵn). In a longer version of this paper [4], we also
have a similar result for (Xn, Yn,Wn) under stronger assumptions. Note that the concepts
are identical for any class of split trees where each node holds exactly one ball, such as binary
search trees and digital search trees.

Let d2 denote the Mallows metric, also called the minimal `2 metric (defined in Section
2). Let Md

0,2 be the set of probability measures on Rd with zero mean and finite second
moment.

I Theorem 5. Let Tn be a split tree and let V = (V1, . . . , Vb) be a split vector. Define

µ = −
b∑
i=1

E [Vi lnVi] , and D(V) = 1
µ

b∑
i=1

Vi lnVi.

Assume that P {∃i : Vi = 1} < 1 and s0 > 0. Let (X̂, Ŷ , Ŵ ) be the unique solution inM3
0,2

for the system of fixed-point equations

X̂

Ŷ

Ŵ

 d=



b∑
i=1

ViX̂
(i) +

s0∑
j=1

Uj + s0

2 D(V)

b∑
i=1

ViŶ
(i) +

s0∑
j=1

(Uj − 1/2)

b∑
i=1

ViŴ
(i) + 1 + D(V)


. (1.4)

Here (V1, . . . , Vb), U1, . . . , Us0 , (X̂(1), Ŷ (1), Ŵ (1)), . . . , (X̂(b), Ŷ (b), Ŵ (b)) are independent,
with Uj ∼ Unif[0, 1] for j = 1, . . . , s0, and

(
X̂

(i)
n , Ŷ

(i)
n , Ŵ

(i)
n

)
∼ (X̂, Ŷ , Ŵ ) for i = 1, . . . , b.

Then the sequence (X̂n, Ŷn, Ŵn) defined in (1.3) converges to (X̂, Ŷ , Ŵ ) in d2 and in moment
generating function within a neighborhood of the origin.

The proof of Theorem 5 uses the contraction method, introduced by Rösler [21] for finding
the total path length of binary search trees. The technique has been applied to d-dimensional
quad trees by Neininger and Rüschendorf [19] and to split trees in general by Broutin and
Holmgren [3].

AofA 2018



15:6 Inversions in Split Trees and Conditional Galton–Watson Trees

Conditional Galton–Watson trees
A conditional Galton–Watson tree Tn is a Galton–Watson tree conditioned on having n
nodes, which we define in details in Section 3. It generalizes many uniform random tree
models, e.g., Cayley trees, Catalan trees, binary trees, b-ary trees, and Motzkin trees. For a
comprehensive survey, see Janson [12].

Aldous [1] showed that many asymptotic properties of conditional Galton–Watson trees,
such as the height and the total path length, can be derived from properties of Brownian
excursions. Our analysis of inversions follows a similar route. In particular, we relate I(Tn)
to the Brownian snake studied by e.g., Janson and Marckert [14].

In the context of Galton–Watson trees, Aldous [1, Corollary 9] showed that n−3/2Υ(Tn)
converges to an Airy distribution. We will see that the standard deviation of I(Tn)− 1

2 Υ(Tn)
is of order n5/4 � n3/2, which by the decomposition (1.2) implies that n−3/2I(Tn) converges
to the same Airy distribution, recovering one of the main results of Panholzer and Seitz [20,
Theorem 5.3]. Our contribution for conditional Galton–Watson trees is a detailed analysis of
Yn under the scaling function s(n) = n5/4.

Let e(s), s ∈ [0, 1] be the random path of a standard Brownian excursion, and define
C(s, t) def= C(t, s) def= 2 mins≤u≤t e(u) for 0 ≤ s ≤ t ≤ 1.

We define a random variable, see [11],

η
def=
∫

[0,1]2
C(s, t)ds dt = 4

∫
0≤s≤t≤1

min
s≤u≤t

e(u). (1.5)

I Theorem 6. Suppose Tn is a conditional Galton–Watson tree with offspring distribution ξ
such that E [ξ] = 1, Var (ξ) = σ2 ∈ (0,∞), and E

[
eαξ
]
<∞ for some α > 0, and define

Yn =
I(Tn)− 1

2 Υ(Tn)
n5/4 .

Then we have

Yn
d−→ Y

def= 1√
12σ
√
η N , (1.6)

where N is a standard normal random variable, independent from the random variable η
defined in (1.5). Moreover, E

[
etYn

]
→ E

[
etY
]
<∞ for all fixed t ∈ R.

In the rest of the paper, we outline the proofs of our main results, Theorem 5 and 6. The
proofs of Theorem 2 and 3 are omitted. The details of the proofs can be found in the longer
version of this paper [4].

2 A sequence of split trees

In this section we outline how one can apply the contraction method to prove Theorem 5.
We will now define split trees introduced by Devroye [6]. The random split tree Tn has

parameters b, s, s0, s1,V and n. The integers b, s, s0, s1 are required to satisfy the inequalities

2 ≤ b, 0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. (2.1)

and V = (V1, . . . , Vb) is a random non-negative vector with
∑b
i=1 Vi = 1. Consider an infinite

b-ary tree U . The split tree Tn is constructed by distributing n balls (pieces of information)
among nodes of U . For a node u, let nu be the number of balls stored in the subtree rooted
at u. Once nu are all decided, we take Tn to be the largest subtree of U such that nu > 0



X. S. Cai, C. Holmgren, S. Janson, T. Johansson, and F. Skerman 15:7

for all u ∈ Tn. Let the split vector V ∈ [0, 1]b be as before. Let Vu = (Vu,1, . . . , Vu,b) be the
independent copy of V assigned to u. Let u1, . . . , ub be the child nodes of u. Conditioning
on nu and Vu, if nu ≤ s, then nui

= 0 for all i; if nu > s, then

(nu1 , . . . , nub
) ∼ Mult(n− s0 − bs1, Vu,1, . . . , Vu,b) + (s1, s1, . . . , s1),

where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying (2.1).
Note that

∑b
i=1 nui

≤ n (hence the “splitting”). Naturally for the root ρ, nρ = n. Thus the
distribution of (nu,Vu)u∈V (U) is completely defined.

Once all n balls have been placed in U , we obtain Tn by deleting all nodes u such that the
subtree rooted at u contains no balls. Note that an internal node of Tn contains exactly s0
balls, while a leaf contains a random amount in {1, . . . , s}. We assume, as previous authors,
that P {∃i : Vi = 1} < 1. We can assume that V has a permutation invariant distribution
without loss of generality, since a uniform random permutation of subtree order does not
change the number of inversions.

2.1 Outline
Recall that in (1.3), we define X̂n, Ŷn and Ŵn. Let n = (n1, . . . , nb) denote the vector of the
(random) number of balls in each of the b subtrees of the root. Broutin and Holmgren [3]
showed that, conditioning on n,

Ŵn
d=

b∑
i=1

ni
n
Ŵni + n− s0

n
+ D̂n(n), D̂n(n) def= −

E
[
Υ̂(Tn)

]
n

+
b∑
i=1

E
[
Υ̂(Tni

)
]

n
.

We derive similar recursions for X̂n and Ŷn. Conditioning on n, Î(Tn) satisfies the
recursion

Î(Tn) d= Ẑρ +
b∑
i=1

Î(Tni
),

where Ẑρ denotes the number of inversions involving balls contained in the root ρ. Therefore,
still conditioning on n, we have

X̂n
d=

b∑
i=1

ni
n
X̂ni

+ Ẑρ
n
−

E
[
Î(Tn)

]
n

+
b∑
i=1

E
[
Î(Tni

)
]

n

=
b∑
i=1

ni
n
X̂ni + Ẑρ

n
− s0

2

E
[
Υ̂(Tn)

]
n

+ s0

2

b∑
i=1

E
[
Υ̂(Tni

)
]

n

=
b∑
i=1

ni
n
X̂ni

+ Ẑρ
n

+ s0

2 D̂n(n),

where we use that

E
[
Î(Tn) | Tn

]
= s0

2 Υ̂(Tn). (2.2)

It follows also from (2.2) that X̂n = Ŷn + s0
2 Ŵn and

Ŷn
d=

b∑
i=1

ni
n
Ŷni + Ẑρ

n
− s0

2
n− s0

n
.
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15:8 Inversions in Split Trees and Conditional Galton–Watson Trees

It is not difficult to see that

Ẑρ
n

L2

−→ U1 + · · ·+ Us0 ,

where U1, . . . , Us0 are independent and uniformly distributed in [0, 1]. Broutin and Holmgren
[3] have shown that D̂n(n) a.s.−→ D(V), where

µ = −
b∑
i=1

E [Vi lnVi] , and D(V) = 1
µ

b∑
i=1

Vi lnVi.

Together with (n1/n, . . . , nb/n) a.s.−→ (V1, . . . , Vb) (by the law of large number), we arrive at
the fixed-point equations (1.4) presented in Theorem 5.

For a random vectorX ∈ Rd, let ‖X‖ be the Euclidean norm ofX. Let ‖X‖2
def=
√

E
[
‖X‖2].

Recall thatMd
0,2 denotes the set of probability measures on Rd with zero mean and finite

second moment. The Mallows metric onMd
0,2 is defined by

d2(ν, λ) = inf {‖X − Y ‖2 : X ∼ λ, Y ∼ ν} .

Using the contraction method, Broutin and Holmgren [3] proved that Ŵn
d2−→ Ŵ , the unique

solution of the last equation of (1.4) inM1
0,2.

We can apply the same contraction method to show that the vector (X̂n, Ŷn, Ŵn) d2−→
(X̂, Ŷ , Ŵ ), the unique solution of (1.4) in M3

0,2. Assume that the independent vectors(
X̂(i), Ŷ (i), Ŵ (i)

)
, i = 1, . . . , b share some common distribution µ ∈M3

0,2. Let F (µ) ∈M3
0,2

be the distribution of the random vector given by the right hand side of (1.4). Using a
coupling argument, we can show that for all ν, λ ∈M3

0,2,

d2(F (ν), F (λ)) < cd2(ν, λ),

where c ∈ (0, 1) is a constant. Thus F is a contraction and by Banach’s fixed point theorem,
(1.4) must have a unique solution (X̂, Ŷ , Ŵ ) ∈M3

0,2. Finally, we can use a similar coupling
argument to show that (X̂n, Ŷn, Ŵn) d2−→ (X̂, Ŷ , Ŵ ).

Note that in [4], instead of carrying out the above argument in details, we actually used
a result by Neininger [18] which gives us a shortcut.

3 A sequence of conditional Galton–Watson trees

Let ξ be a random variable with E [ξ] = 1, Var ξ = σ2 < ∞, and E
[
eαξ
]
< ∞ for some

α > 0, (The last condition is used in the proof below, but is presumably not necessary.) Let
Gξ be a (possibly infinite) Galton–Watson tree with offspring distribution ξ. The conditional
Galton–Watson tree T ξn on n nodes is given by

P
{
T ξn = T

}
= P

{
Gξ = T

∣∣ Gξ has n nodes
}

for any rooted tree T on n nodes. The assumption E [ξ] = 1 is justified by noting that if ζ is
such that P {ξ = i} = cθiP {ζ = i} for all i ≥ 0 then T ξn and T ζn are identically distributed;
hence it is typically possible to replace an offspring distribution ζ by an equivalent one with
mean 1, see [12, Sec. 4].

We fix some ξ and drop it from the notation, writing Tn = T ξn.
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In a fixed tree T with root ρ and n total nodes, for each node v 6= ρ let Qv ∼
Unif(−1/2, 1/2), all independent, and let Qρ = 0. For each node v define

Φv
def=
∑
u≤v

Qu, and let J(T ) def=
∑
v∈T

Φv.

In other words, Φu is the sum of Qv for all v on the path from the root to u. For each v 6= ρ

also define Zv = b(Qv + 1/2)zvc, where zv denotes the size of the subtree rooted at v. Then
Zv is uniform in {0, 1, . . . , zv − 1}, and by Lemma 1, the quantity

I∗(T ) def=
∑
v 6=ρ

(
Zv − E [Zv]

)
is equal in distribution to the centralized number of inversions in the tree T , ignoring
inversions involving ρ. The main part (1.6) of Theorem 6 will follow from arguing that for a
conditional Galton–Watson tree Tn,

J(Tn)
n5/4

d−→ Y
def= 1√

12σ
√
ηN . (3.1)

Indeed, under the coupling of Qv and Zv above,

J(Tn) =
∑
v

Φv =
∑
v

∑
u:u≤v

Qu =
∑
u

Qu
∑
v:u≤v

1 =
∑
u

Quzu

≤
∑
u 6=ρ

(
Zu −

zu
2 + 1

)
< n+ I∗(Tn),

and similarly J(Tn) > I∗(Tn)− n. As ρ contributes at most n inversions to I(Tn), it follows
from the triangle inequality that |J(Tn)− (I(Tn)−Υ(Tn)/2)| ≤ 2n = o(n5/4). Thus (3.1),
once proved, will imply that

Yn
def= I(Tn)−Υ(Tn)/2

n5/4 = o(1) + J(Tn)
n5/4

d−→ Y.

The quantity J(Tn) and the limiting distribution (3.1) have been considered by several
authors. In the interest of keeping this section self-contained, we will now outline the proof
of (3.1) which relies on the concept of a discrete snake, a random curve which under proper
rescaling converges to a Brownian snake, a curve related to a standard Brownian excursion.
This convergence was shown by Gittenberger [10], and later in more generality by Janson
and Marckert [14], whose notation we use.

Define f : {0, . . . , 2(n − 1)} → V by saying that f(i) is the location of a depth-first
search (under some fixed ordering of nodes) at stage i, with f(0) = f(2(n− 1)) = ρ. Also
define Vn(i) = d(ρ, f(i)) where d denotes distance. The process Vn(i) is called the depth-first
walk, the Harris walk or the tour of Tn. For non-integer values t, Vn(t) is given by linearly
interpolating adjacent values. See Figure 1.

Finally, define Rn(i) def= Φf(i) to be the value at the vertex visited after i steps. For
non-integer values t, Rn(t) is defined by linearly interpolating the integer values. Also define
R̃n(t) by R̃n(t) def= Rn(t) when t ∈ {0, 1, . . . , 2n}, and

R̃n(t) def=

 Rn(btc), if Vn(btc) > Vn(dte),
Rn(dte), if Vn(btc) < Vn(dte).
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ρ

v1 v2

v11 v12 v21

v121

1 8

2 3 4 7

5 6

9 12

10 11

Vn(t)

t

v11

v121

v1

v21

v2

Figure 1 The depth-first walk Vn(t) of a fixed tree.

In other words, R̃n(t) takes the value of node f(btc) or f(dte), whichever is further from the
root. We can recover J(Tn) from R̃n(t) via

2J(Tn) =
∫ 2(n−1)

0
R̃n(t)dt.

Indeed, for each non-root node v there are precisely two unit intervals during which R̃n(t)
draws its value from v, namely the two unit intervals during which the parent edge of v is
being traversed. Now, since Qv ∼ Unif(−1/2, 1/2) we have |Rn(i)−Rn(i− 1)| ≤ 1/2 for all
i > 0 and

J(Tn)
n5/4 = 1

2n5/4

∫ 2(n−1)

0
R̃n(t)dt = 1

2n5/4

∫ 2(n−1)

0
Rn(t)dt+O(n−1/4) =

∫ 1

0
rn(s)ds+o(1),

where rn(s) def= n−1/4Rn(2(n− 1)s). Also normalize vn(s) def= n−1/2Vn(2(n− 1)s). Theorem 2
of [14] (see also [10]) states that (rn, vn) d−→ (r, v) in C[0, 1]×C[0, 1], with r, v to be defined
shortly.

Before defining r and v, we will briefly motivate what they ought to be. Firstly, as
the offspring distribution ξ of Tn satisfies E [ξ] = 1, we expect the tour Vn to be roughly
a random walk with zero-mean increments, conditioned to be non-negative and return to
the origin at time 2(n− 1), and the limiting law v ought to be a Brownian excursion (up to
a constant scale factor). Secondly, consider a node u and the path ρ = u0, u1 . . . , ud = u,
where d is the depth of u. We can define a random walk Φu(t) for t = 0, . . . , d by Φu(0) = 0
and Φu(t) =

∑t
i=1 Qui

for t > 0, noting that Φu = Φu(d). Under rescaling, the random
walk Φu(t) will behave like Brownian motion. For any two nodes u1, u2 with last common
ancestor at depth m, the processes Φu1 ,Φu2 agree for t = 0, . . . ,m, while any subsequent
increments are independent. Hence Cov(Φu1 ,Φu2) = cm for some constant c > 0. Now, for
any i, j ∈ {0, . . . , 2(n − 1)}, the nodes f(i), f(j) at depths Vn(i), Vn(j) have last common
ancestor f(k), where k is such that Vn(k) is minimal in the range i ≤ k ≤ j. Hence r(s)
should be normally distributed with variance given by v(s), and the covariance of r(s), r(t)
proportional to mins≤u≤t v(u).

We now define r, v precisely. If Var ξ = σ2, then v(s) def= 2σ−1e(s), where e(s) is a standard
Brownian excursion, as shown by Aldous [1, 2]. Conditioning on v, we define r as a centered
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Gaussian process on [0, 1] with

Cov(r(s), r(t) | v) = 1
12 min

s≤u≤t
v(u) = 1

12σC(s, t), s ≤ t.

The constant 1/12 appears as the variance of the random increments Qv. Again, Theorem 2
of [14] states that (rn, vn) d−→ (r, v) in C[0, 1]2. We conclude that

lim
n→∞

J(Tn)
n5/4 =

∫ 1

0
rn(t)dt+ o(1) d−→

∫ 1

0
r(t)dt def= Y.

This integral is the object of study in [13], wherein it is shown that

Y
def=
∫ 1

0
r(t)dt d= 1√

12σ
√
η N ,

where N is a standard normal variable, η is given by

η =
∫

[0,1]2
C(s, t)ds dt,

and η,N are independent. The odd moments of Y are zero, as this is the case for N , and by
[13, Theorem 1.1], for k ≥ 0

E
[
Y 2k] = 1

(12σ)k
(2k!)

√
π

2(9k−4)/2Γ((5k − 1)/2)
ak,

where a1 = 1 and for k ≥ 2,

ak = 2(5k − 4)(5k − 6)ak−1 +
k−1∑
i=1

aiak−i.

In particular ([13, Theorem 1.2]),

E
[
Y 2k] ∼ 1

(12σ)k
2π3/2β

5 (2k)1/2(10e3)−2k/4(2k) 3
4 ·2k,

as k →∞, where β = 0.981038 . . . . Further analysis of the moments of η and Y , including
the moment generating function and tail estimates, can be found in [13].

The last bit of Theorem 6 which remains to be proved is that E
[
etYn

]
→ E

[
etY
]
for all

fixed t ∈ R. Since we have already shown Yn
d−→ Y , we can apply the Vitali convergence

theorem once we have shown that the sequence etYn is uniformly integrable. See Section 5.1
of [4] for details.
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Abstract
We study a random walk that prefers to use unvisited edges in the context of random cubic
graphs, i.e., graphs chosen uniformly at random from the set of 3-regular graphs. We establish
asymptotically correct estimates for the vertex and edge cover times, these being n logn and
3
2n logn respectively.
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1 Introduction

Our aim in this paper is to analyse a variation on the simple random walk that may tend to
speed up the cover time of a connected graph. A simple random walk on a graph is a walk
which repeatedly moves from its currently occupied vertex v to one of its neighbours, chosen
uniformly at random. The vertex cover time TVcov(G) of a simple random walk on a graph G
is the expected number of steps needed to visit each vertex of G, defined as the maximum
over all starting vertices. Feige [9, 10] showed that for any graph G on n vertices,

(1− o(1))n logn ≤ TVcov(G) ≤ (1 + o(1)) 4
27n

3.

When G is chosen uniformly at random from the set of d-regular graphs, Cooper and Frieze
[6] showed that w.h.p.4 G is such that TVcov(G) is asymptotically equal to d(d−1)

2(d−2)n logn.
In recent years, variations of the simple random walk have been introduced with the aim

of achieving faster cover times. In this paper we do this by choosing to walk along unvisited
edges whenever possible. This variation is just one of several possible approaches which
include non-backtracking walks, see Alon, Benjamini, Lubetzky and Sodin [3], or walks that
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are biased toward low degree vertices, see Cooper, Frieze and Petti [8], or any number of
other ideas.

The papers [4], [13] describe the random walk model considered here, which uses unvisited
edges when available at the currently occupied vertex. If there are unvisited edges incident
with the current vertex, the walk picks one u.a.r.5 and makes a transition along this edge. If
there are no unvisited edges incident with the current vertex, the walk moves to a random
neighbour. In [4] this walk was called an unvisited edge process (or edge-process), and in
[13], a greedy random walk. We use the name biased random walk for the same process. For
random d-regular graphs where d = 2k (d even), it was shown in [4] that the biased random
walk has vertex cover time Θ(n), which is best possible up to a constant. The paper also
gives an upper bound of O(nω) for the edge cover time. The ω factor comes from the fact
that cycles of length at most ω exist w.h.p. In [7], the constant for the vertex cover time was
shown to be d/2.

I Theorem 1. Let d ≥ 4 be even and suppose G is chosen u.a.r. from the set of d-
regular graphs. W.h.p., G is such that the vertex cover time of the biased random walk is6
TVcov(G) ≈ dn/2.

This is faster than any of the other random graph models mentioned here by a factor of logn,
and the biased random walk generally performs well on even-degree graphs. Orenshtein and
Shinkar [13, Lemma 2.9] showed that in an even-degree graph, the biased random walk has
cover time at most that of the simple random walk plus the number of edges in the graph.
Briefly, this is because there are at most two vertices incident to an odd number of unvisited
edges at any time. In the random setting this means that the most likely scenario is that
traversing an unvisited (random) edge will bring the walk to a vertex incident to at least one
more unvisited edge, and the walk will find a large number of unvisited edges in succession.
This is no longer true in odd-degree graphs. The paper [4] included experimental data for the
performance of red-blue walks on odd degree regular graphs. Namely, for d = 3 the vertex
cover time is Θ(n logn) and decreases rapidly with increasing d.

Random walks have applications in networks where each vertex only has local information,
e.g. each vertex knows only of its immediate neighbours. For example, random walks provide
efficient routing algorithms in Wireless Sensor Networks [15]. The vertex cover time measures
the expected number of steps needed to spread information to each vertex of the network. A
drawback of biased random walks in general applications is that it requires O(|E|) additional
memory usage, but in networks with independently acting agents, the additional memory for
each agent is O(∆) where ∆ denotes the maximum degree of the network.

1.1 Our results
Let G = (V,E) be a connected cubic (i.e. 3-regular) (multi)graph on an even number n of
vertices. Consider the following random walk process, called a biased random walk. Initially
color all edges red, and pick a starting vertex v0. At any time, if the walk occupies a vertex
incident to at least one red edge, then the walk traverses one of those red edges chosen
uniformly at random, and re-colors it blue. If no such edge is available, the walk traverses
a blue edge chosen uniformly at random. For s ∈ {1, . . . , n} let CV (s) denote the number
of steps taken by the walk until it has visited s vertices, and similarly let CE(t) denote the
number of steps taken to visit t ∈ {1, . . . , 3n/2} edges.

5 We use u.a.r. for uniformly at random.
6 We say that an ≈ bn if lim an/bn = 1.
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We will let G be a random graph, and we use EG (X) to denote the expectation of X
with the underlying graph G fixed. Note that a cubic graph on n vertices contains exactly
3n/2 edges.

I Theorem 2. Let s, t be such that n− n log−1 n ≤ s ≤ n and (1− log−2 n) 3n
2 ≤ t ≤ 3n/2.

Let ε > 0 also be fixed. Suppose G is chosen uniformly at random from the set of cubic
graphs on n vertices. Then w.h.p., G is connected and

EG (CV (s)) = (1± ε)n log
(

n

n− s+ 1

)
+ o(n logn), (1)

EG (CE(t)) =
(

3
2 ± ε

)
n log

(
3n

3n− 2t+ 1

)
+ o(n logn). (2)

Here a = b± c is taken to mean a ∈ [b− c, b+ c]. Note in particular that this shows that
the expected vertex and edge cover times are asymptotically n logn and 3

2n logn w.h.p.,
respectively. The same statement is true with the word “graphs” replaced by “configuration
multigraphs” (defined in Section 3). Thus, taking s = n and t = 3n/2 we have the following
corollary.

I Corollary 3. Suppose G is chosen uniformly at random from the set of cubic graphs on n
vertices. W.h.p., G is such that the vertex cover time TVcov(G) of G is asymptotically equal
to n logn and the edge cover time TEcov(G) is asymptotically equal to 3

2n logn.

Cooper and Frieze [6] showed that w.h.p. the vertex cover time for a simple random walk
on a random d-regular graph on n vertices is asymptotically equal to d−1

d−2n logn. The
argument there also shows that the edge cover time of a random d-regular graph on n vertices
is asymptotically equal to d(d−1)

2(d−2)n logn. For d = 3 these values are 2n logn and 3n logn
respectively and are to be compared with n logn and 3

2n logn. For a non-backtracking random
walk, Cooper and Frieze [7] show that the vertex and edge cover times are asymptotically
n logn and 3

2n logn respectively. Interestingly, these values coincide with the results in
Corollary 3.

1.2 Outlook
Our proof relies on the fact that the set of vertices incident to exactly one unvisited edge
coincides with the set of vertices visited exactly once by the biased random walk, modulo the
head and tail of the walk. This is no longer true when d ≥ 5, and additional analysis would
be required to extend the method to larger degrees. We expect the walk to behave similarly
for higher degrees and conjecture that Corollary 3 generalizes to TVcov(Gd) ≈ 1

d−2n logn and
TEcov(Gd) ≈ d

2(d−2)n logn for the random d-regular graph Gd, for any odd d ≥ 3.
For fixed graphs, the behaviour of the greedy random walk is not well understood. See

[13] for a list of open problems, including questions regarding transience and recurrence on
infinite lattices.

2 Outline proof of Theorem 2

We will choose the multigraph G according to the configuration model. Each vertex v of G
is associated with a set P(v) of 3 configuration points. We set P = ∪vP(v) and generate G
by choosing a pairing µ of P uniformly at random. The pairing µ is exposed along with the
biased random walk. See Section 3 for more details on the configuration model.

AofA 2018
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Starting at a uniformly random configuration point x1 ∈ P , we define W0 = (x1). Given
a walk Wk = (x1, x2, . . . , x2k+1), the walk proceeds as follows. Set x2k+2 = µ(x2k+1), thus
exposing the value of µ(x2k+1) if not previously exposed. If x2k+2 belongs to a vertex
v which is incident to some red edge (other than (x2k+1, x2k+2) which is now recoloured
blue), the walk chooses one of the red edges uniformly at random, setting x2k+3 to be the
corresponding configuration point. Otherwise, x2k+3 is chosen uniformly at random from
P(v). Set Wk+1 = (x1, . . . , x2k+3). We will refer to x1 and x2k+1 (and the vertices to which
they belong) as the tail and head ofWk, respectively. We will also refer to {x1, x2, . . . , x2k+1}
as the points of P that have been visited.

Define partial edge and vertex cover times

CE(t) = min{k : Wk spans t edges}, (3)
CV (t) = min{k : Wk spans t vertices}. (4)

We will mainly be concerned with the partial edge cover time, and write C(t) = CE(t) from
this point on.

For t ∈ {1, 2, . . . , 3n
2 } we define a subsequence of walks by

W (t) = WC(t)−1 = (x1, x2, . . . , x2k+1) (5)

where k is the smallest integer such that |{x1, x2, . . . , x2k+1}| = 2t− 1. In other words, W (t)
denotes the walk up to the point when 2t− 1 of the members of P have been visited. Thus
throughout the paper:

Time t is measured by the number of edges t that have been visited at least once.
The parameter δ = δ(t) is given by the equation

t = (1− δ)3n
2 . (6)

δ(t) is important as a measure of how close we are to the edge cover time.
The walk length k is measured by the number of steps taken so far. Equation (5) relates
t and k.

A cubic graph G chosen u.a.r. is connected w.h.p. (this follows from Lemma 8 (i) below)
and we will implicitly condition on this in what follows. The bulk of the paper will be spent
proving the following lemma.

I Lemma 4. For any fixed ε > 0 and (1− log−2 n) 3n
2 ≤ t ≤

3n
2 ,

E (C(t)) =
(

3
2 ± ε

)
n log

(
3n

3n− 2t+ 1

)
+ o(n logn) (7)

for n large enough. Furthermore, for n− n
logn ≤ s ≤ n,

(1− ε)n log
(

n

n− s+ 1

)
≤ E (CV (s)) ≤ (1 + ε)n log

(
n

n− s+ 1

)
. (8)

Expectations in Lemma 4 are taken over the full probability space. In particular, if G denotes
the set of graphs,

3
2n log

(
3n

3n− 2t+ 1

)
≈ E (C(t)) = 1

|G|
∑
G∈G

EG (C(t)) .
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We can strengthen Lemma 4 to stating that almost every G satisfies EG (C(t)) ≈ E (C(t)),
and similarly for CV (s) (proof omitted in this extended abstract). Theorem 2 will then
follow.

An essential part of the proof of Lemma 4 is a set of recurrences for the random variables
Xi(t), where Xi(t) is the number of vertices incident with i = 0, 1, 2, 3 untraversed edges at
time t, t = 1, 2, ..., 3n/2 (note that the graph contains exactly 3n/2 edges). Ignoring in this
extended abstract the set X2(t), which can only contain the tail vertex, the recurrences are

E (X3(t+ 1) |W (t)) = X3(t)− 3X3(t)
3n− 2t+ 1 , (9)

E (X1(t+ 1) |W (t)) = X1(t)− 2X1(t)
3n− 2t+ 1 + 3X3(t)

3n− 2t+ 1 , (10)

and we have X0(t) = n −X1(t) −X2(t) −X3(t). These recurrences suggest that at time
t = (1− δ) 3n

2 with δ = o(1) we have X1(t) ≈ 3nδ and X3(t) ≈ nδ3/2, and this is proven in
the full paper version.

We will argue that for most of the process, it takes approximately 3n/(3n− 2t+ 1) steps
of the walk to increase time by one. As the process finishes at time 3n/2 we see that the
edge cover time should be approximately

3n/2∑
t=1

3n
3n− 2t+ 1 ≈

3
2n logn,

as claimed in Corollary 3.
Given that X3(t) ≈ nδ3/2, we would expect X3(t) to be zero when δ is smaller than n−2/3

or equivalently, when 3n/2 − t is less than n1/3. Thus we would expect that vertex cover
time to be

3n/2−n1/3∑
t=1

3n
3n− 2t+ 1 ≈ n logn,

as claimed in Corollary 3. In this extended abstract we omit further details in calculating
the vertex cover time.

We separate the proof of Lemma 4 into phases. Define

δ0 = 1
log logn, δ1 = log−1/2 n, δ2 = log−2 n, δ3 = n−2/3 log4 n and δ4 = n−1 log11 n

and set

ti = (1− δi)
3n
2 for i = 0, 1, 2, 3, 4. (11)

The first phase, in which the first t1 edges are discovered, will not contribute significantly
to the cover time.

I Lemma 5. Let δ1 = log−1/2 n and t1 = (1− δ1) 3n
2 . Then

E (C(t1)) = o(n logn).

Between times t1 and t4 we bound the time taken between discovering new edges. The proof,
in Section 6, will be split into the ranges t1 ≤ t ≤ t3 and t3 ≤ t ≤ t4.

AofA 2018
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I Lemma 6. Let ε > 0. For t1 ≤ t ≤ t4 and n large enough,

E (C(t+ 1)− C(t)) = (3± ε) n

3n− 2t +O(logn).

Note that because 3n
2 − t1 = O(δ1n), the O(logn) term only contributes an amount

O(nδ1 logn) = o(n logn) to the the edge cover time.
Finally, the following lemma shows that the final log11 n edges can be found in time

o(n logn).

I Lemma 7. For t > t4 and n large enough,

E (C(t)− C(t4)) = o(n logn).

We note now that Lemma 4 follows from Lemmas 5, 6 and 7.

3 Structural properties of random cubic graphs

The random cubic graph is chosen according to the configuration model, introduced by
Bollobás [5]. Each vertex v ∈ [n] is associated with a set P(v) of 3 configuration points,
and we let P = ∪vP(v). We choose u.a.r. a perfect matching µ of the points in P. Each
µ induces a multigraph G on [n] in which u is adjacent to v if and only if µ(x) ∈ P(v) for
some x ∈ P(u), allowing parallel edges and self-loops. Here we collect some properties of
random cubic graphs, chosen according to the configuration model. Any simple cubic graph
is equally likely to be chosen under this model.

I Lemma 8. Let G denote the random cubic graph on vertex set [n], chosen according to
the configuration model. Let ω tend to infinity arbitrarily slowly with n. Its value will always
be small enough so that where necessary, it is dominated by other quantities that also go to
infinity with n. Then w.h.p.,
(i) In absolute value, the second largest eigenvalue of the transition matrix for a simple

random walk on G is at most 0.99.
(ii) G contains at most ω3ω cycles of length at most ω,
(iii) The probability that G is simple is Ω(1).

Friedman [11] showed that for any ε > 0, the second largest eigenvalue of the transition
matrix is at most 2

√
2/3 + ε w.h.p., which gives (i). Property (ii) follows from the Markov

inequality, given that the expected number of cycles of length k ≤ ω can be bounded by
O(3k). For the proof of (iii) see Frieze and Karoński [12], Theorem 10.3. Note that (iii)
implies that any property which holds w.h.p. for a configuration multigraph chosen u.a.r.,
also holds w.h.p. for a simple cubic graph chosen u.a.r.

Let G(t) denote the random graph formed by the edges visited by W (t). Let Xi(t)
denote the set of vertices incident to i red edges in G(t) for i = 0, 1, 2, 3. Let X(t) =
X1(t)∪X2(t)∪X3(t). Let G∗(t) denote the graph obtained from G(t) by contracting the set
X(t) into a single vertex, retaining all edges. Define λ∗(t) to be the second largest eigenvalue
of the transition matrix for a simple random walk on G∗(t).

We note that if Γ is a graph obtained from G by contracting a set of vertices, retaining
all edges, then λ(Γ) ≤ λ(G), see [2, Corollary 3.27]. This implies that λ∗(t) = λ(G∗(t)) ≤
λ(G) ≤ 0.99 for all t. Initially, for small t, we find that w.h.p. G∗(t) consists of a single
vertex. In this case there is no second eigenvalue and we take λ∗(t) = 0. This is in line with
the fact that a random walk on a one vertex graph is always in the steady state, as the only
possible probability measure on a singleton is the trivial measure.
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4 Hitting times for simple random walks

We are interested in calculating E (C(t+ 1)− C(t)), i.e. the expected time taken between
discovering the tth and the (t+ 1)th edge. Between the two discoveries, the biased random
walk can be coupled to a simple random walk on the graph induced by W (t) which ends as
soon as it hits a vertex of X. We will be able to calculate the hitting time as a consequence
of X having a special structure as in the following definition.

I Definition 9. Let G = (V,E) be a cubic graph. A set S ⊆ V is a root set of order `
if (i) |S| ≥ `5, (ii) the number of edges with both endpoints in S is between |S|/2 and
(1/2 + `−3)|S|, and (iii) there are at most |S|/`3 paths of length at most ` between vertices
of S that contain no edges between a pair of vertices in S.

Root sets of large order may be thought of as sets that contain an almost-perfect matching,
and most of whose vertices are otherwise separated by a large distance. We can calculate the
expected hitting time for such sets.

I Lemma 10. Let ω tend to infinity arbitrarily slowly with n. Suppose G is a cubic graph
on n vertices with positive eigenvalue gap, containing at most ω3ω cycles of length at most ω.
If S is a root set of order ω, then the expected hitting time of S for a simple random walk
starting at a uniformly chosen vertex is

E (H(S)) ≈ 3n
|S|

.

5 The structure of X

Eventually the biased random walk will spend the majority of its time at vertices in X0, i.e.
vertices with no red incident edges. To bound the cover time, we will bound the time taken
to hit X = X1 ∪X2 ∪X3, which may be thought of as the boundary of X0.

Let Wk, k ≥ 0 denote the biased random walk after 2k + 1 walk steps have been taken.
Say that a fixed finite walk W is feasible if Pr {Wk = W} > 0 for some k ≥ 0, and fix a
feasible walk W . Let t be the time associated with W as indicated in (5). Let Y denote
the subset of vertices in X1(t) that were visited and left exactly once by W . Note that
|Y4X1| ≤ 1, as the tail v0 and head vk of the walk are the only vertices which may be in
X1 after being visited twice and then only when v0 = vk. Indeed, the first time a vertex v is
visited, a feasible walk must enter and exit v via distinct edges. Color all vertices of Y green.
We can write Y = X1(t) \ {v0}.

Given a feasible walk W , define a green bridge to be a part of the walk starting and
ending in V \ Y , with any internal vertices being in Y . Note also that it is not necessary for
a green bridge to contain any vertices of Y . Form the contracted walk 〈W 〉 by replacing any
green bridge by a single green edge between the two endpoints of the bridge, with the walk
orientation intact. Let [W ] denote the pair of (contracted walk, set), [W ] = (〈W 〉, Y ), noting
that 〈W 〉 contains no vertex of Y .

We define an equivalence relation on the set of feasible walks by saying that W ∼W ′ if
and only if [W ] = [W ′]. See Figure 1. Thus the only way that W,W ′ differ is as to where
the vertices in Y are placed on the green bridges.

I Lemma 11. Let k > 0 and suppose W is such that Pr {Wk = W} > 0. If [W ] = (〈W 〉, Y )
and 〈W 〉 contains φ green edges, then

Pr {Wk = W | [Wk] = [W ]} = 1
|[W ]| = 1

(φ+ |Y | − 1)|Y |
,

where (a)b = a(a− 1) · · · (a− b+ 1).
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Figure 1 Two equivalent walks, and a visual representation of their equivalence class. Numbers
represent order of traversal. Unvisited edges and vertices are not displayed, and edges visited exactly
once are dashed. Lemma 11 shows that the walks are equiprobable.

We can now view the biased random walk as a walk on the equivalence class [W (t)].
Any time a green edge in [W (t)] is visited, the probability that the edge corresponds to a
nontrivial path in a randomly chosen W (t) ∈ [W (t)] is about X1(t)/Φ(t), where Φ(t) denotes
the number of green edges in W (t). This provides a precise recursion for E (Φ(t)) similar to
those for X1(t), X3(t), which we use to prove the following. Recall δ0 = 1/ log logn. W.h.p.,

|X1(t)| ∼ 3nδ when δ ≤ δ1, (12)

|X3(t)| ∼ nδ3/2 when δ ≤ δ1, (13)

Φ(t) ≥ n(δ0δ)1/2 when δ3 ≤ δ ≤ δ1. (14)

Suppose δ3 ≤ δ ≤ δ1. As X1(t) = o(Φ(t)), when W (t) ∈ [W (t)] is chosen uniformly at
random, the vertices of X1(t) are sprinkled into the much larger set of green edges, and are
expected to be spread far apart. This will imply that X1(t) is a root set of order ω, and as
X1(t) makes up almost all of X(t) by (12), the latter is also a root set of order ω. When
δ ≤ n−2/3, the same technique can be applied with a little more work.



C. Cooper, A.M. Frieze, and T. Johansson 16:9

6 Calculating the cover time

6.1 Early stages
With t1 = (1 − log−1/2 n) 3n

2 , we show that E (C(t1)) = o(n logn). Suppose W (t) =
(x1, x2, . . . , x2k−1) for some t and k ≥ 1. If x2k−1 ∈ P(X(t)) then x2k = µ(x2k−1) is uniformly
random inside P(X(t)), and since C(t+ 1) = C(t) + 1 in the event of x2k ∈ P(X2 ∪X3), we
have

E (C(t+ 1)− C(t)) ≤ 1 + E (C(t+ 1)− C(t) | x2k ∈ P(X1)) Pr {x2k ∈ P(X1)}, (15)

We use the following theorem of Ajtai, Komlós and Szemerédi [1] to bound the expected
change when x2k ∈ P(X1).

I Theorem 12. Let G = (V,E) be a d-regular graph on n vertices, and suppose that each of
the eigenvalues of the adjacency matrix with the exception of the first eigenvalue are at most
λG (in absolute value). Let Z be a set of cn vertices of G. Then for every `, the number of
walks of length ` in G which avoid Z does not exceed (1− c)n((1− c)d+ cλG)`.

The set Z of Theorem 12 is fixed. In our case the exit vertex u of the red walk is chosen
randomly from X1(t). This follows from the way the red walk constructs the graph in the
configuration model. The subsequent walk now begins at vertex u and continues until it hits
a vertex of Yu = X1(t) \ {u} (or more precisely Yu ∪X2(t)). Because the exit vertex u is
random, the set Bu = Yu ∪X2(t) ∪X3(t) differs for each possible exit vertex u ∈ X1(t). To
apply Theorem 12, we split X1(t) into two disjoint sets A,A′ of (almost) equal size. For
u ∈ A, instead of considering the number of steps needed to hit Bu, we can upper bound
this by the number of steps needed to hit B′ = A′ ∪X2 ∪X3.

Let Z(`) be a simple random walk of length ` starting from a uniformly chosen vertex of
A. Thus Z(`) could be any of |A|3` uniformly chosen random walks. Let c = |B′|/n. The
probability p` that a randomly chosen walk of length ` starting from A has avoided B′ is at
most

p` ≤
1

(|X1(t)|/2)3` (1− c)n(3(1− c) + cλG)` ≤ 2(1− c)n
|X1(t)| ((1− c) + cλ)`,

where λ ≤ .99 (see Lemma 8) is the absolute value of the second largest eigenvalue of the
transition matrix of Z. Thus

EA (H(B′)) ≤
∑
`≥1

p` ≤
2(1− c)n
|X1(t)|

1
c(1− λ) . (16)

As |B′| = |X1|/2 + |X3|, we have

E (C(t+ 1)− C(t) | x2k ∈ P(X1(t))) = O

(
(n− |X3|)n

|X1| (|X1|+ |X3|)

)
. (17)

Using (12), (13), and other bounds for |X1(t)|, |X3(t)|,

E (C(t1)) =
t1∑
t=1

E (C(t)− C(t− 1)) = o(n logn).

Details are omitted in this extended abstract.
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6.2 Later Stages
We will now use Lemmas 10 and 11, together with Definition 9 and equations (12) – (14).
For t = (1 − δ) 3n

2 with δ ≤ δ1 = log−1/2 n we set ω = ω(t) = log(− log δ) and define the
events (with X(t) = X1(t) ∪X2(t) ∪X3(t))

A(t) = {|X1(t)− 3nδ| = O(ω−1δn)}, (18)
B(t) = {X(t) is a root set of order ω}. (19)

and set E(t) = A(t) ∩ B(t). As a consequence of Lemma 10, equation (16) and the fact that
E
(
X(t)

)
= 3n− 2t+ o(3n− 2t), we have

E (C(t+ 1)− C(t)) = (3± ε) n

3n− 2tPr {E(t)}+O

(
n

3n− 2t

)
Pr
{
E(t)

}
+O(logn). (20)

Here the O(logn) and ε terms account for the number of steps needed to take for the random
walk Markov chain to mix to within variation distance ε of the stationary distribution π,
at which time we apply Lemma 10. Here we rely on λ∗(t) ≤ 0.99. In the event of E(t) we
use the fact that X(t) = Ω(3n − 2t), which follows from (13) and the well-known hitting
time bound 1

1−λ
n

X(t) (see e.g. Jerrum and Sinclair [14]) to conclude that the hitting time is
O(n/(3n− 2t)).

The bound (12) for |X1(t)| implies that A(t) occurs w.h.p. for any fixed t ≥ t1 and we
will prove that B(t) also occurs w.h.p. Lemma 6 will follow. The relatively simple proof of
Lemma 7 is sketched at the end.

I Lemma 13. Fix t and let δ = (3n− 2t)/3n. If δ1 = log−1/2 n ≥ δ ≥ δ4 = n−1 log11 n then,

Pr {E(t)} = 1− o(1).

Proof. Fix some t, δ with t1 ≤ t ≤ t3. Expose [W (t)]. As in (12) and (14), w.h.p.,

Φ(t) ≥ (δ0δ)1/2n, (21)
|X1(t)| = 3δn+O(ω−1δn). (22)

As already remarked, this shows that Pr {A(t)} = 1− o(1). By (13), w.h.p. X3(t) ≈ nδ3/2 =
o(X1(t)). We can now show that X(t) = X1(t)∪X2(t)∪X3(t) is a root set of order ω w.h.p.
Here ω is chosen to satisfy (25) below.

Let Et denote the set of t edges discovered by the walk, and Ect the set of (random) edges
yet to be discovered. The number of edges inside X(t) is given by

e(X(t)) = |Ect |+ |E(X1 ∪X2) ∩ Et| (23)

where |Ect | = (X1 + 2X2 + 3X3)/2, so

|Ect | =
|X1|

2 +O(δ1/2
1 ) = |X1|

2 +O(ω−3)

for ω3 = o(δ−1/2
0 ).

We bound the number of paths of length at most ω between vertices of X1 on edges of
Et, showing that the number is O(|X1|/ω3). Note that such paths include E(X1) ∩ Et, so
that the bound implies |E(X1) ∩ Et| = O(|X1|/ω3).
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Let u, v ∈ X1. Suppose u is placed on some green edge f1. There are at most 3ω green
edges at distance at most ω from f1, so as v is placed in a random green edge,

Pr {d(u, v) ≤ ω} = O

(
3ω

Φ

)
= O

(
3ω

n(δ0δ)1/2

)
.

So the expected number of pairs u, v ∈ X1 at distance at most ω is bounded by∑
u,v∈X1

Pr {d(u, v) ≤ ω} = O

(
|X1|23ω

n(δ0δ)1/2

)
= O(nδ−1/2

0 δ3/23ω) = o(|X1|/ω3), (24)

if we choose

ω33ω = o
(

(δ0/δ)1/2
)
. (25)

w.h.p. the number of paths is O(|X1|/ω3) by the Markov inequality. This shows that X(t)
is a root set of order ω w.h.p.

We show in the full paper version that w.h.p., E(t3) holds with enough room to spare so
that E(t) must hold for t3 ≤ t ≤ t4. J

For t ≥ t4, we use the bound

E (C(t+ 1)− C(t)) ≤ 1
1− λ

n

|X(t)|
,

see e.g. Jerrum and Sinclair [14], to conclude that E (C(3n/2)− C(t4)) = o(n logn).
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Abstract
We investigate the genus g(n,m) of the Erdős-Rényi random graph G(n,m), providing a thorough
description of how this relates to the function m = m(n), and finding that there is different
behaviour depending on which ‘region’ m falls into.

Existing results are known for whenm is at most n2 +O(n2/3) and whenm is at least ω
(
n1+ 1

j

)
for j ∈ N, and so we focus on intermediate cases.

In particular, we show that g(n,m) = (1 + o(1))m2 whp (with high probability) when n �
m = n1+o(1); that g(n,m) = (1 + o(1))µ(λ)m whp for a given function µ(λ) when m ∼ λn for
λ > 1

2 ; and that g(n,m) = (1 + o(1)) 8s3

3n2 whp when m = n
2 + s for n2/3 � s� n.

We then also show that the genus of fixed graphs can increase dramatically if a small number
of random edges are added. Given any connected graph with bounded maximum degree, we find
that the addition of εn edges will whp result in a graph with genus Ω(n), even when ε is an
arbitrarily small constant! We thus call this the ‘fragile genus’ property.
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1 Introduction

1.1 Background and motivation
The Erdős-Rényi random graph G(n,m) (taken uniformly at random from the set of all
labelled graphs with vertex set [n] = {1, 2, . . . , n} and exactly m edges) and the binomial
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random graph Gn,p (the graph on [n] where every edge occurs independently at random
with probability p) have been a source of fascination for many decades, producing numerous
exciting results (see, for example, [3], [5], and [6]).

In this work, we are interested in the genus of a graph. A graph is said to have genus g if
this is the minimum number of handles that must be attached to a sphere in order to be
able to embed the graph without any crossing edges. Hence, the simplest case when g = 0
corresponds to planar graphs.

The genus is one of the most fundamental properties of a graph, and plays an important
role in a number of applications and algorithms (e.g. colouring problems and the manufacture
of electrical circuits). It is naturally intriguing to consider the genus of a random graph, and
such matters are also related to random graphs on surfaces (see, for example, Question 8.13
of [7] and Section 9 of [4]).

The genus of the binomial random graph Gn,p was first studied in [1], and it was shown
that this is (1 + o(1))pn

2

12 with high probability (whp for short, meaning with probability
tending to 1 as n→∞ – see Definition 7) if p2(1− p2) ≥ 8(logn)4

n . A particularly notable
consequence of this result (by taking p = 1

2 ) is that the classical uniform random graph G(n)
(taken uniformly at random from the set of all labelled graphs on [n]) must then have genus
(1 + o(1))n

2

24 whp.
As noted in [1], results for the genus of Gn,p can be transferred into analogous results for

the genus g(n,m) of G(n,m). Taking into account the work in both [1] and [16] (the latter
of which deals with a substantially wider range for p), these show that g(n,m) = (1 + o(1))m6
whp when m = Θ(n2) and that g(n,m) = (1 + o(1)) jm

2(j+2) whp when n1+ 1
j+1 � m� n1+ 1

j

for j ∈ N.
Separately, important work has also been carried out to determine the probability that

G(n,m) is planar (i.e. has zero genus) when m is comparatively small. In particular, it is
now well-known that G(n,m) is planar whp when m < n

2 − ω
(
n2/3) (see [14]) and that

lim inf P[G(n,m) is planar] > 0 when m = n
2 + O

(
n2/3) (see [14], and see [15] for exact

limiting probabilities).
It is our aim here to now bridge the gap between the m� n1+ 1

j+1 and m = n
2 +O

(
n2/3)

results. We provide a thorough description of this intermediate region, finding that there is
different behaviour depending on whether (i) n � m = n1+o(1), (ii) m ∼ λn for λ > 1

2 , or
(iii) m = n

2 + s for s > 0 satisfying n2/3 � s� n.
We then turn our attention to a related problem, concerning the genus of a graph that is

partially random. Here, we take an arbitrary connected graph H with bounded maximum
degree, and examine the supergraph G formed by adding some random edges to H (this
type of model is sometimes called ‘smoothed analysis’ or a ‘randomly perturbed’ graph, see
e.g. [2], [8], [9], and [11]).

Rather surprisingly, we find that G will whp have high genus, even if H has low genus
and the number of random edges added is relatively small. We thus call this the ‘fragile
genus’ property.

1.2 Main results and techniques
The main contributions of this paper are two-fold. Firstly, we obtain a complete picture of
g(n,m) for all values of m by producing precise results for the previously uncharted regions.
Secondly, we then initiate the study of how the genus of a fixed graph is affected when
random edges are added, discovering the fragile genus property.
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We now present our main results in detail. In the first of these, we consider g(n,m)
for the region when n � m = n1+o(1) (e.g. this would be the case for a function such as
m = n lnn). Note that this is not an area that is covered by existing work. However, we
obtain the following tight bounds:

I Theorem 1. Let m = m(n) satisfy n� m = n1+o(1). Then with high probability

(1− o(1))m2 ≤ g(n,m) ≤ m

2 .

Perhaps the most obvious gap in previous knowledge concerns the case when m is linear
in n, but above the threshold for planarity. We show that the genus behaves smoothly in
this region:

I Theorem 2. Let m(n) ∼ λn for some fixed λ > 1
2 . Then with high probability

g(n,m) = (1 + o(1))µ(λ)m,

where

µ(λ) = 1
4λ2

∞∑
r=1

rr−2

r! (2λe−2λ)r + 1
2

(
1− 1

λ

)
is a strictly positive, monotonically increasing, continuous function satisfying µ(λ)→ 0 as
λ→ 1

2 and µ(λ)→ 1
2 as λ→∞.

One of the most fascinating areas of study in random graphs has been the behaviour of
G(n,m) when m is close to n

2 , as many important features have been found to emerge around
this key point. Here, we examine in detail the slightly supercritical regime when m = n

2 + s

for s > 0 satisfying n2/3 � s� n (i.e. precisely the region between the planarity threshold
and the linear case dealt with in Theorem 2), showing exactly how the genus grows:

I Theorem 3. Let m(n) = n
2 + s(n), where s = s(n) satisfies s > 0 for all n and n2/3 �

s� n. Then with high probability

g(n,m) = (1 + o(1)) 8s3

3n2 .

All these results are summarised in Table 1, which gives an exciting picture of how the
genus g = g(n,m) behaves as m grows. In particular, it is intriguing to see that the ratio of
g to m increases from 0 to 1

2 until m becomes superlinear in n, after which it then decreases
from 1

2 to 1
6 .

Our proofs typically utilise Euler’s formula. Given a graph G, this states that the genus
g(G) satisfies

g(G) = 1
2(e(G)− |G| − f(G) + κ(G) + 1), (1)

where e(G) is the number of edges of G, |G| is the number of vertices of G, f(G) is the
number of faces of G when embedded on a surface of minimal genus (i.e. a sphere to which
g(G) handles have been attached), and κ(G) is the number of components of G.

Consequently, our results often involve first establishing new bounds for the number of
faces of G(n,m) (for instance, via the number of short cycles).

For the proof of Theorem 3, in order to attain the required level of accuracy, we note
that we actually find it better to deal directly with the 2-core of G(n,m), rather than with
the entire graph.
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Table 1 A summary of g := g(n,m).

m = Θ(n2) g = (1 + o(1)) m
6 whp See [16]

n
1+ 1

j+1 � m� n
1+ 1

j g = (1 + o(1)) jm
2(j+2) whp See [16]

m = Θ
(
n

1+ 1
j

)
(1 + o(1)) (j−1)m

2(j+1) See [16]

≤ g ≤ (1 + o(1)) jm
2(j+2) whp

n� m = n1+o(1) (1− o(1)) m
2 ≤ g ≤

m
2 whp Theorem 1

m ∼ λn, λ > 1
2 g = (1 + o(1))µ(λ)m whp, Theorem 2

where µ(λ)→ 0 as λ→ 1
2

and µ(λ)→ 1
2 as λ→∞

m = n
2 + s, g = (1 + o(1)) 8s3

3n2 whp Theorem 3

s > 0 and n2/3 � s� n

m− n
2 ∼ cn

2/3 limn→∞ P(g = 0) = r(c) ∈ (0, 1), See [14]

where r(c)→ 1 as c→ −∞

and r(c)→ 0 as c→∞

m < n
2 − ω

(
n2/3) g = 0 whp See [14]

We now turn our attention to our final main result, which concerns the fragile genus
property. Here, we take an arbitrary connected graph H with bounded maximum degree,
and a random graph R on the same vertex set, and we consider the genus g(G) of the graph
G = H ∪R. We make an interesting discovery, finding that g(G) will whp be rather large,
even if H and R are both planar:

I Theorem 4. Let ∆ be a fixed constant, and let H = H(n,∆) be a connected graph with n
vertices and maximum degree at most ∆. Let k = k(n)→∞ as n→∞, and let R = R(n, k)
be a random graph on V (H) consisting of exactly k edges chosen uniformly at random from(
V (H)

2
)
. Let G = G(n,∆, k) = H ∪R. Then with high probability

g(G) = Θ (max {g(H), k}) .

The proof of Theorem 4 exploits a result from [10] for decomposing the base graph H into
various pieces. We construct a particular minor of G where each of these pieces is condensed
into a vertex (note that the genus of G is at least the genus of any of its minors), and we
find that we can obtain our result by applying Theorem 2 to this minor.

The remainder of the paper is structured as follows: in Section 2, we state the relevant
terminology, notation, and key facts; in Section 3, we focus on g(n,m), proving Theorem 1
and providing sketch-proofs of Theorem 2 and Theorem 3; in Section 4, we present the fragile
genus property, giving a sketch-proof of Theorem 4; and finally, in Section 5, we discuss the
contiguity of G(n) and G(n,m) with random graph models of given genus.
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Figure 1 An embedding with faces of length six and four.

2 Preliminaries and notation

In this section, we provide details of the notation and definitions that will be used throughout,
and then also present two results concerning the equivalence of Gn,p and G(n,m).

Let us first note that we shall always take n and m = m(n) to be integers satisfying
n > 0 and m ≥ 0, even if this is not always explicitly stated.

We start with the definitions of the standard random graph models:

I Definition 5. We shall let G(n,m) denote a graph taken uniformly at random from the
set of all labelled graphs on the vertex set [n] := {1, 2, . . . , n} with exactly m edges.

We shall let Gn,p denote a graph on [n] where every edge occurs independently at random
with probability p, and we shall use G(n) to denote Gn, 1

2
(i.e. a graph taken uniformly at

random from the set of all labelled graphs on [n]).

Next, we state the notation to be used for various key characteristics:

I Definition 6. Given a graph G, we shall use g(G) to denote the genus of G, κ(G) to
denote the number of components of G, and f(G) to denote the number of faces of G when
embedded on a surface of genus g(G).

We also define g(n,m) := g(G(n,m)), κ(n,m) := κ(G(n,m)), and f(n,m) := f(G(n,m)).
Given a particular embedding of a graph, we shall use the length of a face to mean the

number of edges with a side in the face, counting an edge twice if both sides are in the face
(for example, the embedding shown in Figure 1 has one face of length 6 and one face of
length 4).

We now also provide details of our order notation:

I Definition 7. Given non-negative functions a(n) and b(n), we shall use the following
notation:

a(n) = Ω(b(n)) means there exists a constant c > 0 such that a(n) ≥ cb(n) for all large n;
a(n) = O(b(n)) means there exists a constant C such that a(n) ≤ Cb(n) for all large n;
a(n) = Θ(b(n)) means a(n) = Ω(b(n)) and a(n) = O(b(n));
a(n) = ω(b(n)) or a(n)� b(n) means that, given any constant K, we have a(n)

b(n) > K for
all large n (i.e. a(n)

b(n) →∞ as n→∞);
a(n) = o(b(n)) or a(n)� b(n) means that, given any constant ε > 0, we have a(n)

b(n) < ε

for all large n (i.e. a(n)
b(n) → 0 as n→∞);

a(n) ∼ b(n) means a(n) = (1 + o(1))b(n).

We shall say that a random event Xn happens with high probability (whp) if P(Xn)→ 1
as n → ∞. Given a non-negative random variable a(n) and a non-negative function b(n),
we adapt the above deterministic definitions by replacing ‘for all large n’ with ‘whp’. For
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example, a(n) = o(b(n)) whp or a(n)� b(n) whp means that, given any constant ε > 0, we
have a(n)

b(n) < ε whp.
We shall always take all asymptotics to be as n→∞, even if this is not always explicitly

stated.

We shall shortly present the two aforementioned equivalence results for Gn,p and G(n,m).
However, we first require the following definition:

I Definition 8. We say that a property is monotone increasing if whenever an edge is added
to a graph with the property, then the resulting graph also has the property. Similarly, we
say that a property is monotone decreasing if whenever an edge is deleted from a graph
with the property, then the resulting graph also has the property. We say that a property is
monotone if it is either monotone increasing or monotone decreasing.

We may now state the main equivalence result:

I Theorem 9 (see, for example, Proposition 1.15 of [6]). Given m = m(n), let p = p(n) = m

(n
2) .

Then if a monotone property holds whp for Gn,p, it also holds whp for G(n,m).

Note that, for any function x = x(n), the property that g(G) ≤ x is monotone, as is the
property that g(G) ≥ x.

Unfortunately, the same cannot be said if we replace g(G) with f(G), the number of
faces of G when embedded on a surface of minimal genus. For instance, let C+

4 denote the
graph formed be adding one edge to C4, let K−5 denote the graph formed be removing one
edge from K5, and note that we have f (C4) = 2, f

(
C+

4
)

= 3, f
(
K−5

)
= 6, and f (K5) = 5

(observe that the first three graphs are planar, while K5 has genus one). Hence, adding an
edge can actually increase or decrease (or have no impact on) f(G).

However, the function g(G)− e(G) is certainly monotone decreasing (one way to see this
is to note that Euler’s formula gives f(G)− e(G) = κ(G) + 1− |G| − 2g(G), and κ(G) and
g(G) are clearly monotone decreasing and monotone increasing, respectively). Using this,
we may in fact still apply Theorem 9 to derive a useful equivalence result for the number of
faces:

I Corollary 10. Let m = m(n)→∞ as n→∞, let p = p(n) = m

(n
2) , and suppose x = x(n)

is a function such that f (Gn,p) ≤ x whp. Then

f(n,m) ≤ x+ o(m) whp.

Proof. We are required to show that, given any constant ε > 0, we have f(n,m) < x+ εm

whp.
Note that e (Gn,p) has variance

(
n
2
)
p(1− p) ≤ m, and hence has standard deviation at

most m1/2, which is o(m) since m→∞. Thus, since e (Gn,p) has expectation exactly m, it
follows that, given any constant ε > 0, we have e (Gn,p) > (1− ε)m whp. Therefore, since
f (Gn,p) ≤ x whp, we then have f (Gn,p)− e (Gn,p) < x− (1− ε)m whp.

Now recall our observation that f(G)−e(G) is a monotone decreasing function, from which
it follows that the property that a graph satisfies f(G)− e(G) < x− (1− ε)m is monotone
increasing. Hence, we may apply Theorem 9, thus obtaining f(n,m) −m < x − (1 − ε)m
whp, i.e. f(n,m) < x+ εm whp, as desired. J
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3 The genus of G(n,m)

In this section, we provide an illustration of some of the techniques employed in the exploration
of g(n,m) by proving Theorem 1, which will involve first obtaining bounds on f(n,m) in
Lemma 11 and Corollary 12. We then also give sketch-proofs of Theorem 2 and Theorem 3.

I Lemma 11. Let m = m(n) satisfy both m→∞ as n→∞ and m� n1+ 1
j for some fixed

j ∈ N. Then

f(n,m) ≤ (1 + o(1)) 2
j + 2m whp.

Proof. We will use the Gn,p model with p = m

(n
2) , and show that the number of faces is

at most (1 + o(1)) 2
j+2
(
n
2
)
p whp (we will then be done, by an application of Corollary 10).

Thus, we are required to show that, given any constant ε > 0, the number of faces is at most
(1 + ε) 2

j+2
(
n
2
)
p whp.

We will follow a similar argument to that used in the proof of Theorem 1.2 of [16], which
involves showing that whp Gn,p will have few short cycles, and hence few small faces, and
hence few faces in total.

Note that the expected number of cycles in G = Gn,p of length at most j + 1 is

j+1∑
i=1

(
n

i

)
i!
2ip

i ≤
j+1∑
i=1

nipi

2i ≤
j+1∑
i=1

(np)i

≤ (j + 1) max
{
np, (np)j+1} (since either np ≤ 1 or np ≥ 1)

= O
(
max

{
np, (np)j+1})

= O
(
(np) max

{
1, (np)j

})
= o(n2p)

(
since 1� n and np = nm(

n
2
) � n2+ 1

j

n2 = n
1
j

)
.

Thus, by Markov’s inequality, we can say that whp G has no more than 1
2(j+2)ε

(
n
2
)
p cycles

of length at most j + 1.
Let us now consider an embedding of G. Note that the statement of this lemma is

certainly true if G is acyclic (since then there is only one face), so we may assume that G is
not acyclic, in which case every face of the embedding must contain a cycle.

Let f ′ denote the number of faces in this embedding with length at most j + 1. Then
every such face must contain a cycle of length at most j + 1, and every such cycle can only
be included in at most two faces. Hence, whp we have

f ′ ≤ 1
j + 2ε

(
n

2

)
p. (2)

Now let f denote the total number of faces in this embedding, and observe that

2e(G) ≥ 3f ′ + (j + 2)(f − f ′) = (j + 2)f − (j − 1)f ′.
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Thus, we have

f ≤ 2
j + 2e(G) + j − 1

j + 2f
′ ≤ 2

j + 2e(G) + f ′

≤ 2
j + 2e(G) + 1

j + 2ε
(
n

2

)
p whp by (2)

≤ 2
j + 2

(
1 + ε

2

)(n
2

)
p+ 2

j + 2
ε

2

(
n

2

)
p whp

= (1 + ε) 2
j + 2

(
n

2

)
p,

and so we are done. J

We now obtain our aforementioned corollary, which gives a useful bound on the number
of faces f(n,m) when m ≤ n1+o(1):

I Corollary 12. Let m = m(n) satisfy both m→∞ as n→∞ and m ≤ n1+o(1). Then

f(n,m) = o(m) whp.

Proof. We are required to show that, given any constant ε > 0, we have f(n,m) < εm whp.
We may simply choose a value j ∈ N such that j > 2(1+ε)

ε − 2, in which case 2
j+2 <

ε
1+ε .

Then, by Lemma 11, we have

f(n,m) < (1 + ε) 2
j + 2m whp

< (1 + ε) ε

1 + ε
m

= εm,

and so we are done. J

We may now easily derive Theorem 1:

Proof of Theorem 1. The upper bound holds for all m – we simply use Euler’s formula

g(n,m) = 1
2(m− n− f(n,m) + κ(n,m) + 1)

from (1), and observe that n ≥ κ(n,m) and f(n,m) ≥ 1.
The lower bound also follows from Euler’s formula, using n = o(m) and f(n,m) = o(m)

whp by Corollary 12. J

Theorem 2 is obtained similarly:

Sketch of Proof of Theorem 2. The proof again utilises Euler’s formula and Corollary 12.
For Theorem 1, the role of the number of components κ(n,m) was insignificant, since we
had m� n ≥ κ(n,m). However, since we now have m = O(n), this time we find that we do
require accurate information on κ(n,m), and we extract this from Theorem 6.12 of [3]. J

The proof of Theorem 3 is more intricate:
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Figure 2 An embedding with two large faces.

Sketch of Proof of Theorem 3. Recall that the proof of Lemma 11 involved bounding the
number of small faces via calculations on the number of short cycles. Clearly, this may
greatly over-estimate the number of small faces if there are actually many large faces that
consist of a short cycle with large trees rooted on the cycle (see Figure 2).

Consequently, in order to achieve the desired level of accuracy for Theorem 3, much of the
proof will this time involve working directly with the 2-core of the giant component instead
of with the entire graph (note that whp this determines the overall genus, and also alleviates
any need to compute the number of components).

Thus, we shall proceed towards an application of Euler’s formula for the 2-core of the
giant component, which will involve us first needing to establish bounds for the number of
faces in the 2-core of the giant.

Our strategy here is to begin by examining the number of ‘short’ cycles in G(n,m) that
also satisfy some additional properties; then to use this to bound the number of such cycles
in the giant component; then (by careful consideration of the additional properties) to bound
the total number of short cycles in the giant component (and hence in the 2-core of the
giant); then to use this to bound the number of short faces in the 2-core of the giant; and
then, finally, to separately bound the number of large faces in the 2-core of the giant (via
the number of edges).

We start by utilising work from [13] on cycles in G(n,m). For our region when m = n
2 + s

for s > 0 satisfying n2/3 � s � n, results are given here concerning the number of cycles
in G(n,m) that both (a) have length at most in

s , for fixed i ∈ N, and (b) satisfy certain
technical properties involving the neighbouring vertices and the trees rooted on the cycles.

In particular, it is shown that the number of these cycles tends in probability to a random
variable that has a Poisson distribution with mean λ(i), for a given monotonically increasing
function λ, and hence that the number of such cycles is concentrated around λ(i).

We extend this latter result to cover the case when i(n) is a function of n, as long as i(n)
grows sufficiently slowly.

Next, we construct a specific function i(n) with i(n)→∞ for which λ(i(n)) also grows
very slowly. For this function, we manage to show that the number of cycles in G(n,m) of
length at most i(n)n

s with the aforementioned technical properties is still only o
(
s3

n2

)
whp.

The key factor here is that s3 � n2.
We then move to the giant component of G(n,m). By utilising further useful results

from [13], we are able to show that whp all cycles of length at most i(n)n
s in the giant

component will actually satisfy all of the various technical properties.
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Thus, we find that the total number of cycles of length at most i(n)n
s in the giant

component of G(n,m) (or, equivalently, in the 2-core of the giant component) must be
o
(
s3

n2

)
whp. Hence, the number of faces of length at most i(n)n

s in the 2-core of the giant

must be o
(
s3

n2

)
whp too.

We then consider the number of faces of length at least i(n)n
s in the 2-core of the giant.

By results from [12] and [13], the number of edges in the 2-core of the giant is known to be
Θ
(
s2

n

)
whp, and so the number of such faces can only be O

(
s3

i(n)n2

)
whp. Crucially, our

earlier work to ensure that i(n)→∞ then implies that this is o
(
s3

n2

)
.

Hence, putting everything together, we find that the total number of faces in the 2-core
of the giant is also o

(
s3

n2

)
whp.

We then finish with an appropriate application of Euler’s formula, using existing results
from [12] and [13] on the number of vertices and edges in the 2-core of the giant. Note
that our bound for the number of faces is sufficiently precise to achieve the desired level of
accuracy. J

4 The fragile genus property

In this section, we provide a sketch-proof of Theorem 4, which shows that the genus of any
given connected graph with bounded degree can increase dramatically if a small number of
random edges are added.

Sketch of Proof of Theorem 4. Note that adding an edge can only increase the genus by
at most one, so we certainly have g(G) ≤ g(H) + k ≤ 2 max {g(H), k}. Also, we clearly have
g(G) ≥ g(H). Hence, it just remains to show that g(G) ≥ Ω(k) whp.

The result for lim infn→∞ k
n >

1
2 can be obtained simply by applying our results on the

genus of G(n,m) to R (with m = k), and so we may assume that k ≤ n, say.
Our proof involves contracting carefully chosen identically-sized pieces of the graph (we

use ‘piece’ to mean a connected subgraph) into ‘super-vertices’ – note that this cannot increase
the genus. We then show that the uniform random graph induced by these super-vertices
and the random edges will whp be sufficiently dense for us to be able to apply Theorem 2.

We start by splitting the base graph H into t = Θ(k) connected pieces V1, V2, . . . , Vt
(hence our earlier assumption that k = O(n)), plus a few (o(n)) vertices that do not belong
to any of these pieces.

Using a decomposition result from [10], we may select the pieces in such a way that we
have

5n∆2

k
≤ |Vi| ≤

10n∆3

k
(3)

for all i, and so

(1− o(1)) k

10∆3 ≤ t ≤
k

5∆2 . (4)

Let us note that the value of t has been carefully arranged here. It will be crucial for our
later calculations that we have t = Ω(k), but also that t

k is not too large.
As mentioned, we shall wish to condense pieces of our graph into super-vertices. However,

rather than contracting the entire pieces V1, V2, . . . , Vt, for each i we instead select a connected
subpiece Ui ⊂ Vi with size |Ui| = s := mini |Vi|. This will be important to ensure uniformity,
so that we can later apply Theorem 2.
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Figure 3 A graph G and the corresponding graph Γ.

We then contract each of these subpieces U1, U2, . . . , Ut, and ignore any vertices not in
these subpieces. Formally, this means that we define an auxiliary random graph Γ with
vertex set [t], where two vertices i, j ∈ [t] are connected by an edge if and only if there is an
edge of R going between Ui and Uj (see Figure 3, where thick lines denote the edges of R
– note in particular that this example has no edge in Γ between vertex 1 and vertex 3, as
there is no edge in G between U1 and U3).

Observe that Γ is a minor of G, and hence that g(G) ≥ g(Γ). Thus, since we deliberately
chose t to be large enough that t = Ω(k) (recall (4)), it will suffice to show that g(Γ) = Ω(t)
whp.

Note that the number of edges in Γ is not equal to k, since we only include edges between
our chosen subpieces, and we only include at most one edge for each such pair Ui, Uj .

In order to obtain a bound for e(Γ), we consider the edges of R one-by-one (in a random
order). Note that e(Γ) is then precisely equal to the number of edges of R which satisfy the
two properties that

(a) the edge lies between a vertex of Ui and a vertex of Uj for i 6= j;
and (b) no previous edges of R lie between these same two sets Ui and Uj .

Observe that the probability that an edge of R satisfies both (a) and (b) is always at least((
t
2
)
− (k − 1)

)
s2(

n
2
) ,

since there are at least
(
t
2
)
− (k − 1) ways to choose a pair Ui, Uj which do not already have

an edge of R between them, and then s ways to choose a vertex from Ui, and s ways to
choose a vertex from Uj .

By (3) and (4), this probability is at least (1− o(1)) 1
4∆2 , and so we can certainly say that

whp at least k
5∆2 of the k edges of R will satisfy conditions (a) and (b). Thus, e(Γ) ≥ k

5∆2

whp.
Crucially, the fact that we chose t so that t ≤ k

5∆2 (recall (4)) consequently means that
we have e(Γ) ≥ t whp.

We then let Γ∗ be the random graph formed by considering just t (randomly chosen)
edges of Γ. Since each set Ui had exactly the same number of vertices, this graph Γ∗ is in
fact a uniform random graph with t vertices and t edges. Thus, by Theorem 2, we have
g(Γ∗) = Θ(t) whp, and so g(Γ) = Ω(t) whp, as required. J

Note that Theorem 4 implies the remarkable fact that whp G = H ∪R will have Ω(n)
genus even if H is a planar graph and k = εn for some very small (but positive) ε! We thus
call this the ‘fragile genus’ property.
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Let us conclude this section by also remarking that for lim supn→∞ k
n <

1
2 , the restriction

on the maximum degree in Theorem 4 is essential, since otherwise we could take H to
be a star (note that whp the random graph R would consist only of trees and unicyclic
components, and would consequently be outerplanar, and so the overall graph G would then
have genus zero).

5 Discussion

As mentioned in the introduction, one of our motivations for studying the genus of G(n,m)
comes from recent work on random graphs on surfaces. In particular, one may define Sg(n)
to be a graph taken uniformly at random from the set of all labelled graphs on [n] with genus
at most g, and Sg(n,m) to be a graph taken uniformly at random from the set of all labelled
graphs on [n] with exactly m edges and with genus at most g. It is then natural to ask when
these graphs will be contiguous with G(n) and G(n,m).

It immediately follows from the work in [1] that G(n) and Sg(n) are certainly contiguous
for any g(n) satisfying g(n) ≥ (1 + ε)n

2

24 for any ε > 0 (and also for some g(n) satisfying
g(n) = (1 + o(1))n

2

24 ), since G(n) will have genus at most (1 + o(1))n
2

24 whp.
Conversely, G(n) and Sg(n) are certainly not contiguous for any g(n) satisfying g(n) ≤

(1 − ε)n
2

24 for any ε > 0 (and also not for some g(n) satisfying g(n) = (1 + o(1))n
2

24 ), since
there is then a discrepancy with respect to the property of having genus greater than g (note
P[Sg(n) has genus > g] = 0, by definition, but P[G(n) has genus > g]→ 1 as n→∞).

By the same arguments, similarly precise results for the contiguity of G(n,m) and Sg(n,m)
for the various different regions of m can now also be obtained.
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18:2 Maximal Independent Sets and Maximal Matchings in Subcritical Graph Classes

1 Introduction

In this extended abstract we consider labelled, loopless and simple graphs only. For a graph
G = (V (G), E(G)), a subset J of V (G) is said to be independent if, for any pair of vertices x
and y contained in J , the edge {x, y} does not belong to E(G). An independent set J of a
graph G is said to be maximal if any other vertex of G that is not contained in J is adjacent
to at least one vertex of J . A subset N of the edge set E(G) is called a matching if every
vertex x of G is incident to at most one edge of N . A matching N is called maximal if it
cannot be extended to a bigger matching by adding an edge from E(G) \N .

The purpose of this paper is to enumerate maximal independent sets and maximal
matchings (by means of symbolic methods) and to study their size distribution (using
complex analytic tools) in certain classes of graphs including trees, cactus graphs, outerplanar
graphs and series-parallel graphs. For simplicity we will only consider vertex labelled graphs,
thus making the combinatorial analysis as well as the analytic one considerably simpler.
However, in principle it is also possible to consider unlabelled graphs. We use the concept
of generating function in order to follow the classical connectivity-decomposition scheme,
first starting with the rooted blocks, i.e. maximal 2-connected components, then going to
the level of rooted connected graphs and finally to general (not necessarily connected and
unrooted) graphs.

Let G denote a proper class of vertex labelled graphs, which means that the vertices of
a graph with n vertices are labelled with the labels {1, 2, . . . , n}. We denote by Gn the set
of graphs in G with n vertices. For a graph G ∈ G we denote by I(G) the set of maximal
independent sets of G and by

In =
⋃
G∈Gn

I(G)× {G}

the system of all maximal independent sets of graphs of size n. More precisely, every maximal
independent set J is indexed by the corresponding graph, this is formally done by taking
pairs (J,G). Similarly, we denote by M(G) the set of maximal matchings of G and by

Mn =
⋃
G∈Gn

M(G)× {G}

the system of all maximal matchings of graphs of size n.
In this extended abstract, we present precise enumerative results on In and Mn. In

particular, we will apply our method to two important graph families: Cayley trees and
series-parallel graphs. In principle our results can be extended to other graph classes that
have a so-called subcritical analytic structure, we will make this more precise in Subsection 2.3
(for instance, cactus graphs and outerplanar graphs also satisfy this analytic scheme). For
the mentioned graph classes we have the following universal structure in the asymptotic
enumeration formula for the number of graphs on n vertices, for n large enough:

gn = |Gn| ∼ c n−5/2ρ−nn!,

where c > 0 and ρ is the radius of convergence of the (exponential) generating function
G(x) =

∑
n≥0 gn

xn

n! associated to the graph class under study. The first result is an asymptotic
estimate for both |In| and |Mn|:
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I Theorem 1. Let G either be the class of vertex labelled trees, cactus graphs, outerplanar
graphs or series-parallel graphs, and let ρ be the radius of convergence of the generating
function G(x) associated to G. Then we have

|In| ∼ A1 n
−5/2ρ−n1 n! and |Mn| ∼ A2 n

−5/2ρ−n2 n!,

where A1, A2, ρ1, ρ2 are positve constants with 0 < ρ1 < ρ and 0 < ρ2 < ρ.

As a direct corollary we obtain:

I Corollary 2. Let G be as in Theorem 1 and let AIn be the average number of maximal
independent sets in a graph of size n in G and AMn be the average number of matchings in
a graph of size n in G. Then it holds that

AIn = |In|
gn
∼ C · αn and AMn = |Mn|

gn
∼ D · βn,

where C,D, α, β are positive constants and α and β are larger than 1.

The second main result concerns the distribution of the respective size of maximal
independent sets and matchings. The following theorem shows that the limiting distribution
follows a central limit theorem with linear expectation and variance:

I Theorem 3. Let G either be the class of vertex labelled trees, cactus graphs, outerplanar
graphs or series-parallel graphs. Furthermore, let SIn denote the size of a uniformly randomly
chosen maximal independent set in In and SMn the size of a uniformly randomly chosen
matching inMn. Then,

E[SIn] = µn+O(1), Var[SIn] = σ2
1n+O(1),

E[SMn] = λn+O(1), Var[SMn] = σ2
2n+O(1),

for some constants µ, λ > 0 and σ2
1 , σ

2
2 > 0. Moreover, SIn and MIn satisfy a central limit

theorem:

SIn − E[SIn]√
Var[SIn]

d→ N(0, 1) and SMn − E[SMn]√
Var[SMn]

d→ N(0, 1).

Apart for constants C and D in Corollary 2, all the other appearing constants can be
computed explicitly to any degree of precision. The following table lists some of them:

Family α µ β λ

Trees 1.273864 0.463922 1.313080 0.285910
Cactus graphs 1.282413 0.429472 1.371652 0.268268
Series-parallel graphs 1.430394 0.269206 1.470167 0.254122

Let us mention that in [13], Meir and Moon obtained the estimate of Theorem 1 and the
expectation in Theorem 3 for maximal independent sets in Cayley trees, plane trees and
binary trees. Our contribution generalises their work, providing a precise limiting distribution
for the size of maximal independent sets in Cayley trees.

Finally, let us briefly discuss the extremal versions of those problems. In the literature,
one can find two such directions. One of them, started by Wilf [17] who was motivated by
the design of an algorithm to compute the chromatic number, consists in characterising the
extremal instances of a given family of graphs containing the maximum number of maximal
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independent sets (see [9], [15] and [18]), as well as maximum independent sets (see [19] and
[12]). Furthermore, the maximum number of both maximal matchings [10] and maximum
matchings [11] have been treated. The other direction consists in bounding the size of a
maximum matching in a graph [3]. However, the problems discussed in this extended abstract
seem to be of a different nature.

It is worth noticing that in [3], the authors also give tight bounds on the size of a maximal
matching in 3-connected planar graphs and in graphs with bounded maximum degree.

Structure of the extended abstract

Section 2 introduces the necessary background, namely the language of generating functions
and how they apply to graph decompositions in terms of their connectivity, as well as the
analytic concepts needed in the context of subcritical graph classes. Later, in Section 3 we
obtain a system of functional equations encoding maximal independent sets in subcritical
graph classes. We then analyse it using complex analytic tools in Subsection 3.2. And in
Section 4 we apply our results to the families of Cayley trees and series-parallel graphs. The
reader will finally find the analoguous scheme for maximal matchings in an appendix at the
end of the extended abstract.

2 Preliminaries

2.1 Generating functions
We follow the notation from [6]. A labelled combinatorial class is a set A together with a
size measure, such that if n ≥ 0, then the set of elements of size n, denoted by An, is finite.
Each element a of An is built from n atoms (typically, vertices in graph classes) assembled
in a certain way, the atoms bearing distinct labels in the set {1, . . . , n}. We always assume
that a combinatorial class is stable under graph isomorphism, namely, a ∈ A if and only if
all graphs a′ isomorphic to a are also elements of A.

In enumerative problems, it is often useful to use the exponential generating function
(shortly the EGF) associated to the labelled class A:

A(x) :=
∑
n≥0

|An|
n! xn, [xn]A(x) = |An|

n! .

In our setting, we use the (exponential) variable x to encode vertices.
We can root the elements of a class A by distinguishing one of the items and discounting it,

which means that we reduce the size function by 1. Since we assume that our combinatorial
class is stable under graph isomorphism, this procedure can be performed by taking the item
with the largest label as the root. The corresponding new rooted class will be denoted by A◦.
Since every element of A correponds uniquely to an element of A◦, but the corresponding
term xn/n! in the generating function is replaced by xn−1/(n− 1)! (for an element of size
n), the correponding generating function satisfies

A◦(x) = A′(x).

Similarly, we can consider a pointed structure A• by distinguishing one of the items without
discounting it. Since there are n different ways of choosing an item (for an element of size n),
the corresponding term xn/n! in the generating function is replaced by nxn/n! = xn/(n− 1)!
which leads to the relation

A•(x) = xA′(x).
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Finally, we will deal with the set construction of classes: given a labelled combinatorial
structure A, the set construction Set(A) takes all possible sets of elements in A. The
corresponding generating function is then exp ((A(x)), where A(x) is the generating function
associated to A.

2.2 Graph decompositions
A block of a graph G is a maximal 2-connected subgraph of G. A graph class G is said to be
block-stable if it contains the graph e, the unique connected graph with two labelled vertices,
and satisfies that a connected graph G belongs to G if and only if any one of its blocks is in
G. The class G is also said to be connected component-stable when any graph G is in G if
and only if all connected components of G belong to G. For a graph class G, we denote by
C and B the families of connected and 2-connected graphs in G, respectively. In particular,
if G is a block-stable and connected-component stable class of graphs, then the following
combinatorial decomposition holds:

G = Set(C), C• = • × Set(B◦ ◦ C•).

The previous formulas read as follows: first, each graph in G is a set of elements in C.
Secondly, a pointed connected graph in C• can be decomposed as the root vertex, and a set
of pointed blocks (the ones incident with the root vertex) where we substitute on each vertex
a rooted connected graph. See [1, 4, 8] for details. These expressions translate into equations
of EGF in the following way:

G(x) = exp(C(x)), C•(x) = x exp(B◦(C•(x))).

See [16] for further results on graph decompositions and connectivity on graphs.

2.3 Asymptotics for subcritical graph classes
We call a block-stable and vertex labelled graph class subcritial if ηB′′(η) > 1, where η
denotes the radius of convergence of B(x). In particular this is satisfied if B′′(x)→∞ as
x → η−. Cayley trees, cactus graphs, outerplanar graphs and series-parallel graphs are
subcritical. The main analytic property of subcritical graph classes is that they have many
universal asymptotic behaviours, see [2, 5, 14, 7].

In our context, we will just use the fact that the property ηB′′(η) > 1 ensures that the
functional equation C•(x) = x exp(B◦(C•(x))) has solution C•(x) that has a squareroot
singularty at its radius of convergence ρ and, thus, a local expansion of the form

C•(x) = xC ′(x) = c0 + c1

(
1− x

ρ

)1/2
+ c2

(
1− x

ρ

)
+ c3

(
1− x

ρ

)3/2
+ · · · , (1)

where ρ is given by ρ = c0e
−B′(c0) and 0 < c0 = C•(ρ) < η is given by the equation

c0B
′′(c0) = 1. Furthermore c1 < 0. Note that the singular behaviour of B(x) at its radius of

convergence η is irrelevant for the singular behaviour of C•(x) = xC ′(x), we only make use
of the (analytic) behaviour of B′(x) around x = c0 < η.

From (1), and if we assume that the class is also connected component-stable, it follows
that C(x) and G(x) = eC(x) have the following singular behaviour around their common
radius of convergence ρ:

C(x) = c0 + c2

(
1− x

ρ

)
+ c3

(
1− x

ρ

)3/2
+ · · · ,

G(x) = g0 + g2

(
1− x

ρ

)
+ g3

(
1− x

ρ

)3/2
+ · · · ,
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where c3 and g3 are positive. If we further assume that x = ρ is the only singularity on
the circle of convergence |x| = ρ which is satisfied for all our cases, and for proper positive
constants c′, c′′, it then follows that (see for instance [6])

|Cn| = n! [xn]C(x) ∼ c′n−5/2ρ−nn! and |Gn| = n! [xn]C(x) ∼ c′′n−5/2ρ−nn!.

3 Counting in block-stable graph classes

In this section, we consider block-stable vertex labelled graph classes and set up functional
equations for counting maximal independent subsets and maximal matchings. We use the
notation B for the family of 2-connected blocks in a block-stable graph class G and C for the
family of connected graphs in G.

3.1 Maximal independent sets in block-stable graph classes
A coloured block is a pair (I, b) consisting of a block b ∈ B together with a distinguished
independent set I of b (note that I can be any independent set of b and not only a maximal
one). Let B(x, y0, y1, y2) be the generating function enumerating coloured-blocks, where
the variable x marks vertices. The extra variables encodes the following: y0 corresponds to
vertices of I, y1 corresponds to vertices adjacent to a vertex in I (i.e. at distance one from I),
and y2 corresponds to all other vertices, that is to vertices at distance at least two from I.

Similarly, a pointed coloured block is a pair (I, b◦) consisting of a pointed block b◦ ∈ B◦
together with a distinguished independent set I of b. Let Bi = Bi(x, y0, y1, y2) be the
generating function counting pointed coloured blocks, where the pointed vertex is at distance
exactly i from I, for i ∈ {0, 1}, and at distance at least 2 (case i = 2). In those cases, the
pointed-vertex must neither be encoded by x or by any yi, for i ∈ {0, 1, 2}. Hence,

Bi = 1
x
· ∂B
∂yi

, for i ∈ {0, 1, 2}.

A coloured graph (J, g) is a pair consisting of a connected graph g ∈ C and of a maximal
independent set J of g. We can define pointed coloured graphs similarly to coloured blocks.
Let C = C(x, y0, y1) be the generating function counting coloured-graphs, where y0 and y1
have the same meaning as in coloured blocks. For i ∈ {0, 1}, let Ci = Ci(x, y0, y1) be the
generating functions enumerating pointed coloured-graphs, for which the pointed vertex is at
distance exactly i from J . Those two generating functions are given by

Ci = 1
x
· ∂C
∂yi

, for i ∈ {0, 1}. (2)

We finally need an auxiliary class. A special pointed coloured-graph is a pair (J, g◦) where
J is an independent set of g which becomes maximal when adding the pointed vertex to J .
In other words, a special pointed coloured-graph is obtained from a coloured-graph pointed
at a vertex in J by removing it from J . We denote the corresponding counting formula
by C2(x, y0, y1). Finally, observe that given a coloured-graph (J, g), the independent set J
together with the vertices of g at distance one from J define a partition of V (g). Hence, the
following equalities hold:

∂C

∂x
= y0

x

∂C

∂y0
+ y1

x

∂C

∂y1
= y0C0 + y1C1. (3)

Obviously we also have

G(x, y0, y1) = exp(C(x, y0, y1)),
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B1

B2

B0

B0

B1

B0

B1

B1

B1

Figure 1 Left is a connected series-parallel graph with a maximal independent set I (vertices
circled in red) and pointed at a vertex at distance one from I. Right is its block-decomposition.
Pointed vertices are coloured in white.

where G(x, y0, y1) denotes the corresponding generating function of coloured graphs in G.
The following lemma describes connected structures in terms of their block-decomposition
(see Figure 1 for an example). Thus, if we know B(x, y0, y1, y2) (or just Bi(x, y0, y1, y2), for
each i ∈ {0, 1, 2}), then we can determine ∂C

∂x (x, y0, y1) and consequently C(x, y0, y1) and
G(x, y0, y1).

I Lemma 4. With the above notations, the following system of equations holds:

C0 = exp(B0(x, y0C0, y1(C1 + C2), y1C1)),
C1 = (exp(B1(x, y0C0, y1(C1 + C2), y1C1))− 1) · C2,

C2 = exp(B2(x, y0C0, y1(C1 + C2), y1C1)).
(4)

Proof. Let us start by finding an expression for C0 and let (I, g◦) be a pointed coloured-graph
whose pointed vertex is in I. Following the decomposition of graphs into blocks, observe that
the pointed vertex of g◦ determines a set of pointed coloured-blocks (Ji, b◦i ) (with i = 1, . . . , k
for a certain k) for which the root of each b◦i belongs to Ji, i.e. coloured-blocks with the
pointed vertex in Ji (and hence, counted by B0). Observe that the independent sets Ji can be
extended to I by pasting pointed coloured-graphs on each of their vertices (and completing
the graph to g◦).

Without loss of generality, let us now fix a j ∈ {1, . . . , k} and analyse the pair (Jj , b◦j ).
First, to every vertex of b◦j in Jj must be attached a coloured-graph (L, h◦) whose root is in
L, i.e. a coloured-graph counted by C0. In terms of generating functions, this translates to
the substitution of y0 by y0C0. Second, to each vertex of b◦j at distance one from Jj , the
root of the pointed coloured-graph (L, h◦) attached to it can either be at distance one or
more from L. This then translates to the substitution of y1 by y1(C1 + C2). Finally, if a
vertex of b◦j is at distance at least two from Jj , then the root of the coloured-graph (L, h◦)
attached to it must be at distance one from L, as we need to extend the independent set
to a maximal one. This translates to the substitution of y2 by y1C1 and the first equation
of (4) holds. The study of C2 is obtained following the exact same arguments as in C0.

Let us finally discuss the equation for C1. Assume that (I, g◦) is a pointed coloured-graph
and that (Ji, b◦i ) (for i = 1, . . . , k) are the pointed coloured-blocks incident with the pointed
vertex of g◦. In particular, for each i ∈ {1, . . . , k} the pointed vertex of b◦i is either at
distance one or at least two from Ji. Nevertheless, observe that there exists at least one of
the pointed-blocks (Jj , b◦j ) whose pointed vertex is at distance one from Jj . This gives us
that

C1 = exp≥1(B1(x, y0C0, y1(C1 + C2), y1C1)) · exp(B2(x, y0C0, y1(C1 + C2), y1C1))
= C2 (exp(B1(x, y0C0, y1(C1 + C2), y1C1))− 1) .

Which concludes the argument. J
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3.2 Asymptotic Analysis
We study next the analytic structure of the solutions of the systems (4) and (9) provided
that the functions Bi behave in a proper way that is similar to the behaviour of B(x) in the
case of sub-critical graph classes. Under these hypothesis (see Lemma 5) it is then very easy
to prove Theorems 1 and 3 which will be done at the end of this subsection. For the sake of
brevity we only discuss the system (4), the analysis of (9) runs along the same lines.

First we note that the functions Bi(x, y0, y1, y2) are actually functions in three variables
since a monomial xnyk0

0 yk1
1 yk2

2 can only appear if k0 + k1 + k2 = n, that is, we have
Bi(x, y0, y1, y2) = Bi(1, xy0, xy1, xy2) or equivalently Bi(x, y0, y1, y2)
= Bi(xy2, y0/y2, y1/y2, 1). However, it is more convenient to work with all four variables
x, y0, y1, y2. If y0, y1, y2 are positive real numbers then the function x 7→ B(x, y0, y1, y2) is a
power series with non-negative coefficients. Hence the radius of convergence of this function
coincides with its dominant singularity in x. We will denote this radius of convergence by
R(y0, y1, y2). Similarly for the solution functions C0, C1, C2 of the System (4) we denote by
ρi(y0, y1), i = 0, 1, 2, the radius of convergence with respect to x when y0, y1 are positive real
numbers.

I Lemma 5. Suppose that the function R(y0, y1, y2) extends to an analytic function
R(y0, y1, y2) for a sufficiently small neighbourhood around the positive real numbers. Fur-
thermore assume that for all positive real numbers y0, y1, y2 we have

lim
x→R(y0,y1,y2)−

∂2B

∂y2
i

(x, y0, y1, y2) =∞ (5)

for at least one of the i ∈ {0, 1, 2}. Then the solutions C0, C1, C2 of the system (4) have the
property that the functions ρi(y0, y1), i = 0, 1, 2, coincide and extend to an analytic function
ρ(y0, y1) for a sufficiently small neighbourhood around the positive real numbers. Moreover,
the dominant singularity is of squareroot type and we have a local expansion of the form

Ci(x, y0, y1) = ci,0(y0, y1) + ci,1(y0, y1)
(

1− x
ρ1(y0,y1)

)1/2

+ ci,2(y0, y1)
(

1− x
ρ1(y0,y1)

)
+ · · · ,

(6)

where ci,1(y0, y1) < 0 (for positive real y0, y1) and that extends to sufficiently small neigh-
bourhood in x, y0, y1 around the positive real numbers.

Proof. We recall some basic facts on (positive) systems of functional equations that are
taken from [4]. Suppose that we have a system of three equations of the form

C = F (x,C,D,E),
D = G(x,C,D,E),
E = H(x,C,D,E),

in unknown functions C = C(x), D = D(x), E = E(x), where F,G,H are power series with
non-negative coefficients. We also assume that the system is strongly connected which means
that no subsystem can be solved before solving the whole system. We set

∆ =

∣∣∣∣∣∣
1− FC −FD −FE
−GC 1−GD −GE
−HC −HD 1−HE

∣∣∣∣∣∣
the functional determinant of the system {C − F = 0, D −G = 0, E −H = 0} and let r be
the spectral radius of the Jacobian matrix of the right hand-side of the system of equations.
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Note that r = 1 implies that ∆ = 0. We also assume that there is a unique non-negative
solution C(0), D(0), E(0) for x = 0 with the property that r < 1, which also shows that
∆ 6= 0. Thus by iteration, the solution for x = 0 extends to power series solutions C(x),
D(x), E(x) with non-negative coefficients and a positive radius of convergence. By the
strongly connectedness assumption, this radius of convergence ρ is the same for all three
solutions functions C(x), D(x), E(x). By the theory given in [4], this radius of convergence
is determined by the condition r = 1 provided that we are still working within the region of
convergence of F , G, and H. The condition r = 1 can be also witnessed by the condition
∆ = 0 or equivalently by the condition

FDGEHC +FEGCHC

(1−FC )(1−GD)(1−HE) + GEHD

(1−GD)(1−HE) + FEHC

(1−FC )(1−HE) + FDGC

(1−FC)(1−GD) = 1. (7)

Note that the left hand-side is smaller than 1 for x = 0 and C = C(0), D = D(0), E = E(0)
and is strictly increasing in x. Thus, in order to find ρ we just have to find the value for
which the left hand-side hits the value 1. If we are still inside the region of convergence of F ,
G, and H, then it follows that the solution functions C(x), D(x), E(x) have a squareroot
singularity of the form (1) at x = ρ1.

In our special situation all the above assumptions concerning positivity, strongly connec-
tedness etc. are satisfied. Now let us also observe that ∂2B

∂y2
0
→∞ implies that FC →∞, since

F (x) = exp(B0(x, y0C, y1(D +E), y1D) and B0 = 1
x
∂B
∂y0

(note the two different meanings of
y0). Similar observations hold for GD and HE . Thus, it is clear that (7) is satisfied inside
the region of convergence of F , G and H. We recall the fact that the left hand-side of (7) is
smaller than 1 for x = 0 and strictly increasing in x. J

Finally we show that under the hypothesis of Lemma 5, it is immediate to deduce our
main results Theorem 1 and Theorem 3: from (6) and (3) it follows that C(x, y0, y1) can be
represented as

C(x, y0, y1) = c0(y0, y1)+c2(y0, y1)
(

1− x

ρ1(y0, y1)

)
+c3(y0, y1)

(
1− x

ρ1(y0, y1)

)3/2
+· · · ,

where c3(y0, y1) > 0 for positive real y0, y1. Thus, if we set y0 = y1 = 1 and ρ1(1, 1) = ρ1,
then we have

C(x, 1, 1) = c0(1, 1) + c2(1, 1)
(

1− x

ρ1

)
+ c3(1, 1)

(
1− x

ρ1

)3/2
+ · · · ,

and consequently

G(x, 1, 1) =
∑
n≥0
|In|

zn

n! = exp(C(x, 1, 1))

= g0(1, 1) + g2(1, 1)
(

1− x

ρ1

)
+ g3(1, 1)

(
1− x

ρ1

)3/2
+ · · · .

This directly implies Theorem 1 for the case of maximal independent sets by standard
singularity analysis (see [6]). We just have to observe that x0 = ρ = ρ(1, 1) is the only
singularity on the circle of convergence. However, this follows from the fact that there exists
graphs of all sizes n ≥ 1.
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Finally, if we set y1 = 1 then we have

G(x, y0, 1) =
∑
n≥0

E[ySIn
0 ] |In|

zn

n! = exp(C(x, y0, 1))

= g0(y0, 1) + g2(y0, 1)
(

1− x

ρ1(y0, 1)

)
+ g3(1, 1)

(
1− x

ρ1(y0, 1)

)3/2
+ · · ·

Hence, a direct application of [4, Theorem 2.35] implies a central limit theorem of the
proposed form, as well as the asymptotic expansions for the expected value and variance.
This proves Theorem 3 for the case of maximal independent sets.

What remains is to check condition (5). We work this out in details for trees and series-
parallel graphs in Section 4. The other cases (cactus graphs and outerplanar graphs) can
be handled in a similar way and this will be covered in the paper version of this extended
abstract.

4 Applications

Our first application concerns the most basic subcritical graph class, namely Cayley trees.
We note that the case of maximal independent sets was already discussed in [13]. We will
then deal with the class of series-parallel graphs.

4.1 Maximal independent sets in trees
In both structures (maximal independent sets and maximal matchings), we proceed following
the block-decomposition of trees, and we explicitly give the generating functions B0, B1
and B2. Notice that in a tree, blocks are reduced to single edges. The computations of the
constants given in Table 1 are obtained by computing the branch point of the corresponding
system, using the explicit expressions for B0, B1 and B2.

We first give the generating functions counting the rooted blocks carrying an independent
set. From the possible choices of an independent set in a single edge, namely B(x, y0, y1, y2) =
x2

2
(
2y0y1 + y2

2
)
, we obtain that

B0 = xy1, B1 = xy0, B2 = xy2.

Thus, the following property holds:

lim
x→∞

∂2B

∂y2
2

= lim
x→∞

x =∞.

So Lemma 5 applies in the case of maximal independent sets in trees, which completes the
proof.

4.2 Maximal independent sets in series-parallel graphs
We are now concerned with the generating functions of the labelled series-parallel graphs
carrying a maximal independent set. As above, the vertices of the graphs carrying an
independent set I are said to be of type i (i ∈ {0, 1}), when they are at distance i from I,
and of type 2 otherwise. We will now explicit the classical decomposition of graphs in terms
of networks.
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Series-parallel networks

A series-parallel network Dij is a labelled graph with an oriented edge ij that is distinguished
and whose endpoints, called the poles, are unlabeled and respectively of type i and j. Observe
that by symmetry Dij = Dji, so we can restrict the range of the pairs of indexes ij to
the set {00, 01, 02, 11, 12, 22}. The network Dij is either the single rooted edge eij , where
e01 = e22 = y and eij = 0 otherwise, a series network counted by the generating function
Sij , or a parallel network counted by the generating function Pij . We then specify those
generating functions via the following positive system of 18 equations and 18 unknowns:

Dij = eij + Sij + Pij ,

Sij = Di0xy0(D0j − S0j) + (Di1 +Di2)xy1(D1j − S1j) + (Di1y1 +Di2y2)x(D2j − S2j),
P00 = exp≥2(S00),
P01 = y exp≥1(S01 + S02) + exp≥2(S01) + exp≥1(S01) exp≥1(S02),
P02 = exp≥2(S02),
P11 = exp≥2(S11) + exp≥1(S11)(y exp(2S12 + S22) + exp≥1(2S12 + S22))

+ (1 + y) exp≥1(S12)2 exp(S22),
P12 = y exp≥1(S12) exp(S22) + exp≥2(S12) + exp≥1(S12) exp≥1(S22),
P22 = y exp≥1(S22) + exp≥2(S22).

In order to proceed further, we eliminate Dij from this system to obtain a posit-
ive and strongly connected system of equations for Sij = Sij(x, y, y0, y1, y2) and Pij =
Pij(x, y, y0, y1, y2), where the right hand-side consists of entire functions (note that for the
equations defining Sij , the term Dij−Sij = eij+Pij , which makes the whole system positive).
Thus, all functions have a common singular behaviour that is (again) of squareroot type:

Sij(x, y, y0, y1, y2) = s0;ij(y, y0, y1, y2) + s1;ij(y, y0, y1, y2)
(

1− x

ρ(y, y0, y1, y2)

)1/2
+ · · ·

and

Pij(x, y, y0, y1, y2) = p0;ij(y, y0, y1, y2) + p1;ij(y, y0, y1, y2)
(

1− x

ρ(y, y0, y1, y2)

)1/2
+ · · · ,

where s1;ij(y, y0, y1, y2) < 0 and p1;ij(y, y0, y1, y2) < 0 for positive y, y0, y1, y2.

2-connected series-parallel graphs

The next step is to relate these network generating functions with the generating function
B(x, y, y0, y1, y2) of independent sets in 2-connected series parallel graphs. Note that an
added variable y takes into account the number of edges. In the (usual) counting procedure
for series parallel graphs, we have the property that ∂B

∂y = x2

2 exp(S(x, y)), where S(x, y)
denotes the generating function of series networks (similarly to the above). The combinatorial
property behind this relation is that an edge-rooted series-parallel graph (that corresponds
to the generating function ∂B

∂y ) can be seen as a series-parallel network between the two
vertices of the root-edge, consisisting of this edge and a collection of series-networks between
the two vertices.
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In our present situation we have a similar property, namely

∂B

∂y
= x2y0y1 exp(S01 + S02) + x2

2 y
2
2 exp(S22) + x2y1y2 exp≥1(S12) exp(S22)

+ x2

2 y
2
1 (exp(S11 + 2S12 + S22)− 2 exp(S12 + S22) + exp(S22)) .

This is immediate by considering all possible situation for the rooted edge. Observe that,
despite the negative terms, ∂B∂y is in fact a positive function of the generating functions {Sij}.
Hence, ∂B∂y has also a squareroot singularity:

∂B

∂y
= b0(y, y0, y1, y2) + b1(y, y0, y1, y2)

(
1− x

R(y, y0, y1, y2)

)1/2
+ · · · ,

where b1(y, y0, y1, y2) < 0 for positive y, y0, y1, y2. Next, by applying the proof method of
[4, Lemma 2.28], we can integrate ∂B

∂y with respect to y and then take the derivative with
respect to y0 and obtain the same kind of squareroot singularity for ∂B

∂y0

∂B

∂y0
= b1,0(y, y0, y1, y2) + b1,1(y, y0, y1, y2)

(
1− x

R(y, y0, y1, y2)

)1/2
+ · · · ,

and consequently the following representation of ∂
2B
∂y2

0
:

∂2B

∂y2
0

= b2,−1(y, y0, y1, y2)
(

1− x

R(y, y0, y1, y2)

)−1/2
+ b2,1(y, y0, y1, y2) + · · · ,

which implies that (5) holds for i = 0. This completes the proof for maximal independent
sets in series-parallel graphs.
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A Maximal matchings

A.1 Maximal matchings in block-stable classes of graphs
In this subsection we deal with the case of maximal matchings. Most of the definitions and
concepts are the natural analogues of the ones developed in the case of maximal independent
sets. Hence, we will skip unnecessary repetitions.

A matched block is a triple (I,M, b) with a block b ∈ B, a matching M in b, and an
independent set I of b, and where no element of I is incident to an edge in M . In other
words, we split the set of vertices of b in three disjoint subsets: matched vertices, vertices
in I, and the rest. A pointed matched block is a triple (I,M, b◦), where b◦ ∈ B◦ and M

and I are respectively a matching and an independent set of b, and where again no element
of I is incident to any edge in M . Let B(x, z0, z1, z2) be the generating function counting
matched blocks, where the variable x marks vertices, z0 marks vertices in I, z1 marks vertices
matched by M , and z2 the remaining ones. For i ∈ {0, 1, 2}, let Bi = Bi(x, z0, z1, z2) be the
generating function counting pointed matched blocks where the pointed vertex is either in I,
is incident with M or none of the previous cases. In particular,

Bi = 1
x
· ∂B
∂zi

, for i ∈ {0, 1, 2}.

A matched graph is a triple (I,M, g) consisting of a connected graph g in C ⊆ G, a
matching M of g, and an independent set I ⊂ V (g) \ V (M). Similarly, a pointed matched
graph is a triple (M, I, g◦) where now g◦ is a pointed graph. Let C(x, z0, z1, z2) be the
generating function counting matched graphs, where x, z0, z1 and z2 respectively mark
vertices, vertices incident with I, vertices incident with M , and the rest of the vertices.
Notice that when z2 = 0, C := C(x, z0, z1) = C(x, z0, z1, 0) encodes matched graphs where
M is maximal. For each i ∈ {0, 1, 2}, let us define the following generating function

Ci = Ci(x, z0, z1) = 1
x
· ∂C
∂zi

(x, z0, z1, 0).
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Observe then that C0 counts pointed matched graphs, where the matching is maximal and
the pointed vertex belongs to the independent set, C1 counts pointed matched graphs, where
the matching is maximal and the pointed vertex belongs to the matching, whereas C2 counts
pointed matched graphs, where the matching is not necessarily maximal and the pointed
vertex does not belong to either the independent set or the matching. In the latter case, the
matching is maximal except for possibly the pointed vertex, which might be unmatched and
adjacent to other unmatched vertices. In particular, this implies that the generating function
of pairs of connected graphs and maximal matchings is given by

∂C

∂x
= z0C0 + z1C1. (8)

The main idea behind this encoding of the problem is that vertices in the independent set I
play the role of vertices that will not be matched in the block decomposition. In particular,
we exploit independence in order to ensure that the matching cannot be extended. On the
other hand, the set of vertices that are unmatched and not in I will be matched by an
attached block of the decomposition.

The following lemma relates all the previous generating functions. Note that the generating
functions C(x, z0, z1, 0) and G(x, z0, z1) = exp(C(x, z0, z1)) directly follow from the solution
of the next system.

I Lemma 6. The following equalities hold:

C0 = exp(B0(x, z0C0, z1C2, z1C1)),
C1 = C2 B1(x, z0C0, z1C2, z1C1),
C2 = exp(B2(x, z0C0, z1C2, z1C1)).

(9)

Proof. Let (M, I, g◦) be a pointed matched graph, with pointed vertex v. Suppose first that
v ∈ I, i.e. the case counted by C0. It therefore is the pointed vertex of a (possibly empty)
set of adjacent pointed blocks (Ij ,Mj , b

◦
j ), in which v ∈ Ij , and is not adjacent to any other

pointed block. This means that all the pointed blocks adjacent to v are counted by B0.
Suppose next that v ∈ V (M), i.e. the case counted by C1. Then the edge of M incident with
v must belong to a single pointed block whose pointed vertex (v) is incident to an edge of
the respective matching. Hence, attached to v are this one block together with any number
(possibly null) of pointed blocks counted by B2, since v is already incident to an edge of
a matching. Suppose finally that we are in the case counted by C2. Then v is neither in
I nor in V (M). Therefore, any block attached to it must not have its pointed vertex in
an independent set or incident to and edge of a matching. This means that v belongs to a
(possibly empty) set of blocks counted by B2.

Let now {(Ii,Mi, b
◦
i ) : i = 1, . . . k} be the pointed blocks in the decomposition of (M, I, g◦)

and fix a j ∈ {1, . . . k}. Then using the same arguments as just above, we see that to a vertex
in Ij must be attached a pointed matched graph counted by C0, to a vertex in V (Mj) one
counted by C2 and to any other vertex must be attached a pointed matched graph counted
by C1, as we need to extend the matching to maximality. J

A.2 Maximal matchings in trees
Observe that in this case B(x, z0, z1, z2) = x2

2
(
2z0z2 + z2

1 + z2
2
)
, which gives

B0 = xz2, B1 = xz1, B2 = x(z0 + z2).

Hence, we are in a similar situation as above and Lemma 5 applies. This completes the proof
for maximal matchings in trees.
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A.3 Maximal matchings in series-parallel graphs
We proceed similarly to Subsection 4.2. Let G be a series-parallel graph with a matching M
and an independent set I such that I ∩ V (M) = ∅. A vertex v of G is said to be of type 0
when v ∈ I, of type 1 when v ∈ V (M) and of type 2 otherwise.

Series-parallel networks

Let Dij(x, y, z0, z1, z2) be the exponential generating function counting matchings in series-
parallel networks whose poles are of type i and j. As before, observe that Dij = Dji and
for ij ∈ {00, 01, 02, 11, 12, 22}, define Sij and Pij to be the generating functions counting
matchings in networks that are respectively series and parallel.

The following system of 18 equations and 18 unknowns holds:

Dij = eij + Sij + Pij,

Sij = (Di0 − Si0)xz0D0j + (Di1 − Si1)xz1D2j + (Di2 − Si2)x(z1D1j + z2D2j),
P00 = exp≥2(S00),
P01 = S01(y exp(S02) + exp≥1(S02)),
P02 = y exp≥1(S02) + exp≥2(S02),
P11 = (yS11 + (1 + y)S2

12) exp(S22) + (y + S11) exp≥1(S22),
P12 = S12(y exp(S22) + exp≥1(S22)),
P22 = y exp≥1(S22) + exp≥2(S22),

where this time e02 = e11 = e22 = y and eij = 0.

2-connected series-parallel graphs

It remains to check the relevent analytic properties of
B(x, y, z0, z1, z2) in order to assure that Lemma 5 can be applied. Eliminating Dij from the
above system, we again get a positive and strongly connected system of equations for the
set of generating functions {Sij , Pij}, where the right hand-side consists of entire functions.
In particular, the functions Sij and Pij all have a common singular behaviour that is of
squareroot type.

And we have that

∂B

∂y
= x2z0z1S01 exp(S02) + x2z0z2 exp(S02) + x2z1z2S12 exp(S22)

+ x2

2 z
2
2 exp(S22) + x2

2 z
2
1
(
S11 + S2

12 + 1
)

exp(S22).

Finally, using the very same arguments as in the case of maximal independent sets, we
show that (5) is satisfied in the context of maximal matchings in series-parallel graphs. Thus
completing the proof.
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1 Introduction

A planar map is a connected planar graph (loops and multiple edges are allowed) embedded
into the plane up to homeomorphism. A map is rooted if a vertex v is chosen from the map
and a half-edge e is chosen from all the edges incident to v, and called the root vertex and
root edge, respectively. Moreover, a planar map separates the plane into several connected
regions called faces. The root face in a rooted map is the face which is on the left side of e
(sometimes the root face is defined as the right side of e, but this does not make a principle
difference). Without loss of generality we may assume that the root face is the infinite (or
outer) face, in particular the root edge e is then adjacent to the outside face. In this paper,
all maps we consider are rooted and planar. By convenience we also include the trivial map
that consists just of one vertex and one face (which are also rooted). It is well known that

there are precisely Mn =
2 · 3n

(2n
n

)
n(n+ 1) different rooted planar maps with n edges [12]. In what

1 Supported by the Austrian Science Fund FWF, project F50-02, that is part of the SFB “Analytic and
Enumerative Combinatorics”.

2 Supported by the Austrian Science Fund FWF, project F50-02, that is part of the SFB “Analytic and
Enumerative Combinatorics”.

© Michael Drmota and Guan-Ru Yu;
licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.drmota@tuwien.ac.at
https://orcid.org/0000-0002-6876-6569
mailto:guan-ru.yu@tuwien.ac.at
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 The Number of Double Triangles in Random Planar Maps
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Figure 1 Degenerate cases of double triangles that are represented as bold edges.

follows we assume that for any fixed n every map with n edges is equally likely. Hence every
parameter of rooted planar maps can be considered as a random variable related to random
planar maps with n edges.

The main goal of this paper is to prove the following theorem:

I Theorem 1. The number Xn of edges with valency 3 faces on both sides in a random
planar map with n edges satisfies a central limit law, i.e.,

Xn − E[Xn]
Var[Xn]1/2 → N (0, 1), (1)

where E[Xn] = µn+O(1) and Var[Xn] = σ2n+O(1), and µ, σ are positive constants.

I Remark. We cannot derive a simple analytic expression µ and σ since our analysis is
implicitly based on an infinite system of equations. So they are definitely hard to compute,
even in an approximate sense.

In an slight abuse of notation we will call the occurrence of an edge with valency 3 faces
on both sides a double triangle. Namely there are some degenerate cases as Figure 1 shows
(in the first case we identify vertices a and c and then also the edges ab and bc so that we
havee two double triangles between two triangles; in the second case, we identify vertices b
and d and then the edges ab and ad so that a bridge represents a double triangle).

The background of this result is a widely believed conjecture that the number of pattern
occurrences in planar maps (and many related graph classes) obeys a central limit theorem.
For (general) planar maps there are only very few results in this direction, see [7, 4] for the
number of faces of given valency or [9] for triangulation patterns in 2-connects triangulations
and quadrangulations patterns in simple quadrangulations. We also want to mention that
the expected number of occurrences of a given pattern in a random planar map with n edges
is asymptotically linear: EXn ∼ cn for some constant c > 0. This follows from the fact
that random planar maps have a Benjamini-Schramm limit, see [8, 1, 10, 11]. As mentioned
before it is expected that Xn satisfies a central limit theorem in all cases. However, it seems
that this is out of reach at the moment. Even the simplest case beyond face-pattern that
is considered in this paper requires a thorough and delicate analysis for the combinatorial
part as well as for the analytic part. We use an approach that is in principle close to that of
[7], namely we use generating functions, set up a system of catalytic functional equations
(Section 2) and finally provide a proper analytic extension of the classical Quadratic Method
[3, 12] (Section 3).
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2 Combinatorics

Our goal is to set up a recursive structure of planar maps that is suitable to take occurrence
of double triangles into account. For this purpose we distinguish between three different
cases: the initial case (a map without any edge, denoted by •), the bridgeable case (maps,
where the root edge is a bridge, denoted by D(b)) and the non-bridgeable case (maps, where
the root edge is not a bridge, denoted by D(n)):

D = •+D(b) +D(n).

We let D(z, u, w) be the ordinary generating function

D(z, u, w) =
∑

n,k,`≥0
dn,k,`z

nukw`,

where dn,k,` is the number of planar maps with n edges, valency k on its root face and `
edges that represent double triangles, where edges on the root face are not considered. For
the sake of brevity, we denote D(z, u, w) by D and D(z, 1, w) by D(1). (The same rule will
be applied to other generating functions.)

Clearly, the initial case corresponds to the generating function 1 and the bridgeable case
to zu2D2. The non-bridgeable case is split into two different classes: D7 denotes the class
where the second face (the face on the right side of the root edge) has valency not equal to 3
and DB denotes the class where the second face has valency 3. This means that we have
D = 1 + zu2D2 +D7 +DB, where D7 and DB are the corresponding generating functions
of D7 and DB, respectively.

I Lemma 2. The generating functions D = D(z, u, w), D7 = D7(z, u, w), and DB =
DB(z, u, w) satisfy the following system of equations:

D = 1 + zu2D2 +D7 +DB,

D7 = zu
D(1)− uD

1− u − zu−1 (D − 1− u[u1]D
)
, (2)

DB = zu−1 (D − 1− u[u1]D
)

+ (w − 1) ·
[
z2uD + (w + 1)

(
zu−1DB − z[u1]DB

)
− z2u(w − 1)DDB

− (w − 1)
(
z2DB(1)− uDB

1− u − z2DB(1)− z2u−2 (DB − u[u1]DB − u2[u2]DB
))]

.

I Remark. If w = 1 the system collapses to the well-known catalytic equation for the
generating function M(z, u) = D(z, u, 1) of planar maps:

M(z, u) = 1 + zu2M(z, u)2 + zu
M(z, 1)− uM(z, u)

1− u . (3)

Proof. We have already discussed the first equation of (2). Thus, we can concentrate on the
non-bridgeable case. Here we relate the original map with the resulting map, where we have
removed the root edge. Actually it is more transparent to consider the reverse process of
adding a new root edge that cuts across the root face. This operation separates the root face
into two faces. For instance, there are five possible situations of cutting across a root face of
valency 4 as Figure 2 shows, and which have the following effect to the variable u:

u4 7→ z(u5 + u4 + u3 + u2 + u).

AofA 2018
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Figure 2 Cutting-across-process.

α-edge

β-edge

root edge root face second
face

α-face

β-face

Figure 3 Definition of the α and β-edge and face.

When we consider D7, we have to discount the case where the second face has valency 3.
In the cutting-across-process, we take out the situation that the new-appearing second face
has valency 3. The corresponding effect with the root face of valency r is

ur 7→ z(ur+1 + ur + · · ·+ u2 + u1) +
{
−zur−1 , if r ≥ 2
0 , if r = 0 or 1.

So the corresponding generating function of D7 is given by

D7 = zu
D(1)− uD

1− u − zu−1 (D − 1− [u1]D
)
.

Next, we consider maps whose second face is of valency 3 and whose generating function is
DB. We introduce some notations. When the second face has valency 3, the edges following
the root edge in clockwise order are called the α-edge and the β-edge. One side of the α-edge
is the second face, we call the face on the other side the α-face. Similar to the α-face, the
β-face is the face incident to the β-edge. Note that the α-face and the β-face might coincide
(see Figure 3).

For describing the class DB, we consider four different cases: both the α-face and the
β-edge are equal to the root face (denoted by Dα,βB ), only the α-face is equal to the root face
(denoted by DαB), only the β-face is equal to the root face (denoted by DβB) and neither the
α-face nor the β-face is equal to the root face (denoted by DD) (see Figure 4). Thus, we
have DB = Dα,β

B +Dα
B +Dβ

B +DD.
The maps corresponding to the class Dα,βB can be divided into a triangle and three maps.

Thus, we have Dα,β
B = z3u3D3.

The maps corresponding to the class DαB and DβB can be divided into a map and a map
stuck together with a triangle attached to an edge (see the left part of Figure 5). The
structure of a map stuck together with a triangle attached to an edge has either the property
that this edge corresponds to a double triangle or not (see the right of Figure 5).

If this edge is (resp. is not) a double triangle, we can think of it as adding two edges to a
map which belong to DB (resp. D7). The effect of these two additional edges is that the
number of edges increased by 2 and the valency of the outside (root) face increased by 1.
Hence, Dα

B = Dβ
B = z2u

(
wDB +D7

)
D.
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3 3 3 3 3

Figure 4 Four different cases of DB.

3 = +
3 3

3 3
33

Figure 5 A map in Dα
B or Dβ

B can be divided into a map and a map stuck together with a triangle
at an edge. This edge corresponds to a double triangle or not.

For the fourth class DD we need to consider three different cases. The first one is when
the α-edge is different from the β-edge but the α-face equals to the β-face (denoted by Dd

D).
The second one is when the α-edge is different from the β-edge and the α-face is different
from the β-face (denoted by D$D ). The third one is when the α-edge equals to the β-edge.
In this case, both the α-face and the β-face are equal to the second face (denoted by DψD)
(see Figure 6). By definition we have DD = Dd

D +D$
D +Dψ

D.
When we deal with the maps in Dd

D, the α-face coincides with the β-face if both of them
have valency 3, in particular, both the α-edge and the β-edge represent double triangles.
Therefore, we have to take care of the valency of the α-face and of the β-face. For this
purpose we consider the so-called “border-(α,β)-path”, that starts from the α-edge, goes
clockwise along the border of the α-face and finishes at the β-edge but dones not include the
α-edge nor the β-edge. We distinguish between three different cases by considering the length
of the border-(α,β)-path (denoted by |(α, β)|): |(α, β)| = 0 , |(α, β)| = 1 and |(α, β)| ≥ 2.
The corresponding sets of maps are denoted by Dd0

D , Dd1
D , and D

d≥2
D respectively, see Figure

7. From the above relation, we have Dd
D = Dd0

D + Dd1
D + D

d≥2
D and (similar to the above

considerations) they can be further decomposed which leads to the following relations:

Dd0
D =z3uD

[
w2 (w[u1]DB + [u1]D7

)
+
(
D(1)− [u1]D

)]
,

Dd1
D =z3w2(wDB +D7 + zu2D2) + z3 (D(1)− 1) (D − 1), (4)

D
d≥2
D =z2D(1)

(
zu
D(1)− uD

1− u − z(D − 1)− zuD
)
,

The proof is given in the Appendix A.1.
Next, DψD is the class of maps that combines maps and an edge inside a loop. The edge

inside the loop is a double triangle. Thus, we have Dψ
D = z2uwD.

Finally, we discuss the class D$D . By distinguishing whether the α-face and the β-face
have valency 3 we have to consider four different situations: neither the α-face nor the β-face
has valency 3 (denoted by D⊗

D), only the β-face has valency 3 (denoted by DβD), only the
α-face has valency 3 (denoted by DαD) and both the α-face and the β-face have valency 3
(denoted by Dα,βD ): D$

D = D⊗
D +Dβ

D +Dα
D +Dα,β

D .

AofA 2018
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3

3 3 3

Figure 6 Three different cases of DD.

3 3
3 3

Figure 7 Three different cases of the length of the border-(α,β)-path of the maps in Dd
D.

When we study the class D⊗
D, we need to build up maps, where the second face has

valency 3 and neither the α-face nor the β-face has valency 3. We start with D7 and do
the cutting across process that adds an edge starting from the end point of the root edge of
the map. In cutting across process (see Figure 2) we always keep the second face valency
different from 3 and the outside face valency greater than 1 (in order to make sure that the
new α-edge and the new β-edge exist). In a second step we add an edge to complete the
construction (see the left of Figure 8).

We have to be careful in the cutting across process. For example, if the root face valency
equals r before we start the process, we have to avoid the case, where the root face valency
would get r − 1 in cutting across process. This means that the cases r = 0, 1, 2 have to be
considered separately. If r = 0 or r = 1 the root face valency r − 1 in cutting across process
can not appear, and when r = 2 the resulting root face of valency r − 1 = 1 is also excluded.
The effect on the variable u is therefore

ur 7→ z(ur+1 + ur + · · ·+ u2 + u1)− zu1 +
{
−zur−1 , if r ≥ 3
0 , if r = 0 or 1 or 2.

After adding an edge in second step we obtain the following relations for the corresponding
generating function: D⊗

D is

D⊗
D = zu−1

(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

.

By using similar ideas (by using DB instead) and by observing that the new β-edge will
be a double triangle (see the right of Figure 8) we obtain

Dβ
D = zu−1w

(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

.

By symmetry we have Dα
D = Dβ

D.
In order to describe the class Dα,βD we need to adjust both the root face and the face (we

call this face clockwise-face) on the right of the clockwise-edge have valency 3 (see Figure 9),
where the clockwise-edge is the edge in clockwise direction of the root edge on the outside
face. Suppose that DB is the class of maps, where both the root face and the clockwise-face
have valency 3, we have Dα,β

D = zu−1w2DB.
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Figure 8 Construction of a map contained in D⊗
D and Dβ

D, respectively.

3

3

3

3

root
face

second
face

clockwise-
face

clockwise-
edge

root
edge

Figure 9 Definition of clockwise-edge and clockwise-face. Relation between DB and Dα,β
D .

The class DB is a subclass of DB. Hence, we can get DB by eliminating some cases
of DB. When we consider the clockwise-edge and the clockwise-face of DB, we have five
different cases. The first three cases where the clockwise-edge is not a bridge, and first, where
the clockwise-face has valency 3, second, where the clockwise-face has valency not equal to
3 and third, where the clockwise-face is equal to the second face. In the fourth case the
clockwise-edge is a bridge and in the last the clockwise-edge does not exist (see Figure 10).

The first case of DB is precisely DB.
The second case of DB (clockwise-face has valency not equal to 3) corresponds precisely

to the first step of the construction of DβD in Figure 8. Hence, the corresponding generating
function is given by

zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
)
.

The only difference to Dβ
D is the factor zu−1w.

In the third case of DB we have to consider several subcases that lead to the following
generating function:

z2u2wD[u1]DB + z2u2D[u1]D7 + z2uwDB + z2uD7 + z3u3D2.

In the fourth case of DB the second face has valency 3 and the clockwise-edge is a bridge.
Thus, it corresponds to the generating function zu2DDB.

Finally, in the last case the root face valency equals 1 and the second face has valency 3.
Consequently its corresponding generating function is u[u1]DB.

Summing up, the generating function of DB is given by

DB = DB − zu2DDB − u[u1]DB

−
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

−
(
z2u2D[u1]D7 + z2u2wD[u1]DB + z2uD7 + z2uwDB + z3u3D2) .

By collecting all these parts and by applying some simplifications (that are described in
the Appendix A.2) we obtain the third equation of the system (2). J

AofA 2018
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Figure 10 Five different cases of DB.

3 Asymptotic analysis

In order to analyze the system of equations (2) we apply a 2-step procedure that is in
principle close to that of [7]. In the first step we eliminate the terms [u1]D, [u1]DB, and
[u2]DB so that the system (2) is transferred into a catalytic system of equations that will be
solved then in a second step.

I Lemma 3. Suppose that D = D(z, u, w), D7 = D7(z, u, w), and DB = DB(z, u, w) are the
solution functions of the system (2). Then there exist analytic functions Kij(z, w, x0, x1, x2)
(for |z| < 1

2 , |x0| < 2, |x1| < 2, |x2| < 2, and |w − 1| < η for some sufficiently small η > 0),
i ∈ {0, 1, 2}, j ∈ {1, 2} such that for j ∈ {1, 2}

[uj ]D(z, u, w) = K0,j
(
z, w,D(z, 1, w), D7(z, 1, w), DB(z, 1, w)

)
,

[uj ]D7(z, u, w) = K1,j
(
z, w,D(z, 1, w), D7(z, 1, w), DB(z, 1, w)

)
,

[uj ]DB(z, u, w) = K2,j
(
z, w,D(z, 1, w), D7(z, 1, w), DB(z, 1, w)

)
.

Proof. We rewrite the system (2) into an equivalent one. We substitute in all instances
D7 = D1 − zu−1(D− 1− u[u1]D) and DB = D2 + zu−1(D− 1− u[u1]D) so that we obtain
a system of the form

D = 1 + zu2D2 +D1 +D2, D1 = zu
D(1)− uD

1− u , D2 = (w − 1)H, (5)

where H is equal to

z2uD + (w + 1)
(
zu−1 (D2 − u[u1]D2

)
+ z2u−2 (D − 1− u[u1]D − u2[u2]D

))
+ (w − 1)

(
− z2uDD2 − z3D(D − 1− u[u1]D)− z2u

D2(1)−D2

1− u − z3uD(1)−D
1− u − z3

+ z2u−2 (D2 − u[u1]D2 − u2[u2]D2
)

+ z3u−3 (D − 1− u[u1]D − u2[u2]D − u3[u3]D
))

.

Next we consider the functions D, D1, D2 as power series in u:

D = 1 +
∑
`≥1

d`u
`, D1 =

∑
`≥1

d1,`u
`, D2 =

∑
`≥1

d2,`u
`,

and rewrite the system (5) into an infinite system of equations:

d` = z

`−2∑
j=0

djd`−2−j + zD(1)− z
`−2∑
j=0

dj + (w − 1)[u`]H,

d1,` = zD(1)− z
`−2∑
j=0

dj , (6)

d2,` = (w − 1)[u`]H,
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where ` ≥ 1, d0 := 1, and [u`]H is equal to

z2d`−1 + (w + 1)(zd2,`+1 + z2d`+2) + (w − 1)
[
− z2

`−2∑
i=0

did2,`−1−i − z3
`−2∑
i=0

did`−i

− z2

(
D2(1)−

`−1∑
i=0

d2,i

)
− z3

(
D(1)−

∑̀
i=0

di

)
+ z2d2,`+2 + z3d`+3

]
.

Note that we have not substituted D(1), D1(1), and D2(1). In a final step we use the
substitutions y0,` = d`v

`, y1,` = d1,`v
`, y2,` = d2,`v

`, ` = 1, 2, . . . (and y0,0 = 1) for some
parameter v > 0 to rewrite (6) to

y0,` = zv2
`−2∑
j=0

y0,jy0,`−2−j + zD(1)v` − zv2
`−2∑
j=0

y0,jv
`−2−j + (w − 1)H`, (7)

y1,` = zD(1)v` − zv2
`−2∑
j=0

y0,jv
`−2−j , y2,` = (w − 1)H`,

where

H` = z2vy0,`−1 + (w + 1)(zv−1y2,`+1 + z2v−2y0,`+2)

+ (w − 1)
[
− z2v

`−2∑
i=0

y0,iy2,`−1−i − z3
`−2∑
i=0

y0,iy0,`−i + z2v−2y2,`+2 + z3v−3y0,`+3

− z2

(
v`D2(1)− v

`−1∑
i=0

y2,iv
`−1−i

)
− z3

(
v`D(1)−

∑̀
i=0

y0,iv
`−i

)]
.

Now we consider D(1), D1(1), and D2(1) as new variables x0, x1, and x2 and rewrite the
system (7) into a new system

y0,` = zv2
`−2∑
j=0

y0,jy0,`−2−j + zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j + (w − 1)H̃`, (8)

y1,` = zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j , y2,` = (w − 1)H̃`,

where H̃` results from H` by this substitution. The solution functions yi,` = yi,`(z, w, x0, x1,

x2) are now considered as functions in z, w, x0, x1, x2 and in a next step we will show that
these functions are actually analytic in these variables (in a certain range). Of course, if we
have proved this assertion then we can obtain, for example,

d` = d`(z, w) = y0,`(z, w,D(z, 1, w), D1(z, 1, w), D2(z, 1, w))v−`

as an analytic function in z, w,D(z, 1, w), D1(z, 1, w), D2(z, 1, w). This also proves the lemma
after re-substituting D7 and DB in terms of D, D1, and D2.

The idea of solving (8) is to consider it as a fixed point equation in a complete metric
space and to solve it with the help of Banach’s fixed point theorem. For this purpose we
have to adjust the parameter v > 0 so that the right hand side of (8) is a contraction. More
precisely we set y0 = (y0,`)`≥1, y1 = (y1,`)`≥1, y2 = (y2,`)`≥1, and y = (y0,y1,y2) and
consider the `1 norm ‖y‖1 = ‖y0‖1 + ‖y1‖1 + ‖y2‖1, where

‖yj‖1 =
∑
`≥1
|yj,`|, j ∈ {0, 1, 2}.

AofA 2018
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Furthermore we define the mapping T : `1(C)3 → `1(C)3 by T(y) = (T0(y),T1(y),T2(y)),
where

T0(y) =

zv2
`−2∑
j=0

y0,jy0,`−2−j + zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j + (w − 1)H̃`


`≥1

,

T1(y) =

zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j


`≥1

, T2(y) =
(
(w − 1)H̃`

)
`≥1 ,

where z, w are considered as complex parameters and v > 0 will be chosen in a proper way.
Clearly, a fixed point of T is a solution of (8).

By definition it follows that

‖T0(y)‖1 ≤ v2|z| (1 + ‖y0‖1)2 + v

1− v |zx0|+
v2

1− v |z| (1 + ‖y0‖1)

+ |w − 1|
v2 P0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
,

‖T1(y)‖1 ≤
v

1− v |zx0|+
v2

1− v |z| (1 + ‖y0‖1) ,

‖T2(y)‖1 ≤
|w − 1|
v2 P0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
,

where P0 is some polynomial with non-negative coefficients. Similarly we get

‖T0(y)−T0(z)‖1 ≤
(
v2|z| (2 + ‖y0‖1 + ‖z0‖1) + v2|z|

1− v

)
‖y0 − z0‖1

+ |w − 1|
v2 P̃0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
‖y− z‖1,

‖T1(y)−T1(z)‖1 ≤
v2|z|
1− v ‖y0 − z0‖1,

‖T2(y)−T2(z)‖1 ≤
|w − 1|
v2 P̃0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
‖y− z‖1,

where P̃0 is another polynomial with non-negative coefficients.
Thus, given upper bounds Z, X0, X1, X2, and Y for |z|, |x0|, |x1|, |x2|, and ‖y‖1 it is

easy to choose v > 0 and η > 0 such that for |w − 1| ≤ η the mapping T maps the set
{y ∈ `1(C)3 : ‖y‖1 ≤ Y } into itself and is a contraction, too. This shows that (8) has
a unique solution that can be obtained as the uniform limit of the iterations Tk(0). By
definition it is clear that all components of Tk(0) are analytic functions in z, w, x0, x1, x2.
Hence, the limits are analytic, too. This completes the proof of the lemma. J

We now go back to the original system (2) and substitute [u1]D, [u1]DB, and [u2]DB by
the analytic functions Kij given by Lemma 3 so that it can be rewritten as

D = 1 + zu2D2 +D7 +DB,

D7 = Q1(z, u, w,D,D(1), D7, D7(1), DB, DB(1)),
DB = Q2(z, u, w,D,D(1), D7, D7(1), DB, DB(1))



M. Drmota and G.-R. Yu 19:11

with proper functions Q1, Q2. This is a catalytic system of three equations. In order to
make our analysis a little bit easier we eliminate D and D(1) by using the first equation. By
substituting D (and similarly D(1)) by

D =
1−

√
1− 4zu2(1 +D7 +DB)

2zu2

in the second and the third equation we finally obtain a system of two equations that we
represent in the form

P1(z, u, w,D7, D7(1), DB, DB(1)) = 0, P2(z, u, w,D7, D7(1), DB, DB(1)) = 0

for proper functions P1, P2 (that are by the way non-linear in D7, D7(1), DB, DB(1)).
We recall now a method by Bousquet-Mélou and Jehanne [2] on catalytic equations of

the form

P (z, u,M(z, u),M1(z)) = 0,

where M1(z) is usually M(z, 1) or M(z, 0) and P = P (z, u, x0, x1) is usually a polynomial
(however, the method also works with proper regularity conditions for P ). The first step is
to find functions u(z), y(z), and f(z) that satisfy the system of equations

P (z, u(z), y(z), f(z)) = 0,
Pu(z, u(z), y(z), f(z)) = 0, (9)
Px0(z, u(z), y(z), f(z)) = 0,

where Pu and Px0 denote the partial derivatives ∂P
∂u and ∂P

∂x0
, respectively. Then we can set

M1(z) = f(z) and can recover M(z, u) – if necessary – from the equation

P (z, u,M(z, u), f(z)) = 0. (10)

This method generalizes the classical Quadratic Method and can be extended in various ways.
It is also possible to guarantee unique power series solutions etc., for details we refer to [2].

We emphasize here some further extensions. First we can directly add a parameter
w or several parameters w = (w1, . . . , wk) into the equation without any change of the
method. From P (z, u,w,M(z, u,w),M1(z,w)) = 0 we, thus, obtain the solutions M1(z,w)
and M(z, u,w).

It was shown in [7] and [6] that the solution function M1(z) of a catalytic equation (10)
that is singular at z = ρ has usually a singularity of the form

M1(z) = g(z) + h(z)
(

1− z

ρ

)3/2
, (11)

where g(z) and h(z) are analytic at z = ρ. This is in particular true for the generating
function M(z, 1) that counts planar maps and is the solution of the catalytic equation (3):

M(z, 1) = 18z − 1 + (1− 12z)3/2

54z2 .

Here ρ = 1/12 is the radius of convergence of M(z, 1). Since M(z, 1) = D(z, 1, 1) it also
follows that D(z, 1, 1) and consequently the functions D7(z, 1, 1) and DB(z, 1, 1) have the
same kind of singularity at z = 1/12. What we show next (and which is actually the main
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property that will be used to prove the central limit theorem) is that we have the same kind
of singular behavior if we add some parameters. In particular we will show that D(z, 1, w)
can be represented as

D(z, 1, w) = gD(z, w) + hD(z, w)
(

1− z

ρ(w)

)3/2
, (12)

where gD, hD and ρ are analytic at z = 1/12 and w = 1.
We will first consider one catalytic equation and will then generalize it to a system.

I Lemma 4. Suppose thatM(z, u,w) and M1(z,w) are the solutions of the catalytic equation
P (z, u,w,M(z, u,w),M1(z,w)) = 0, where the function P (z, u,w, x0, x1) is analytic and
M1(z,1) has a singularity at z = ρ0 of form (11) with g(ρ0) 6= 0, h(ρ0) 6= 0 such that for
z = ρ0, u = u0, x0 = M(ρ0, u0,1), x1 = M1(ρ0,1), and w = 1 we have3

P = 0, Pu = 0, Px0 = 0, Px1 6= 0, Px0x0Puu = P 2
x0u.

Furthermore, let z = ρ(w), u = u0(w), x0 = x0(w), x1 = x1(w) for w close to 1 be defined
by ρ(1) = ρ0, u0(1) = u0, x0(1) = M(ρ0, u0,1), x1(1) = M1(ρ0,1) and by the system

P = 0, Pu = 0, Px0 = 0, Px0x0Puu = P 2
x0u.

Then for w close to 1 the function M1(z,w) has a local singular representation of the form

M1(z,w) = g(z,w) + h(z,w)
(

1− z

ρ(w)

)3/2
, (13)

where g(z,w), h(z,w) are analytic at z = ρ0 and w = 1 and satisfy g(ρ0,1) = g(ρ0) 6= 0,
h(ρ0,1) = h(ρ0) 6= 0.

The Proof is an adaption of the methods of [7]. The essential step is to represent (with the
help of the Weierstrass preparation theorem) the function P locally around z = ρ0, u = u0,
x0 = M(ρ0, u0,1), x1 = M1(ρ0,1), and w = 1 by

P (z, u,w, x0, x1) = K(z, u,w, x0, x1)
(
(x0 −G(z, u,w, x1))2 −H(z, u,w, x1))

)
,

where all appearing functions are analytic and we have K(ρ0, u0,1,M(ρ0, u0,1),M1(ρ0,1)) 6=
0, G(ρ0, u0,1,M1(ρ0,1)) = M(ρ0, u0,1) and H(ρ0, u0,1,M1(ρ0,1)) = 0. The system (9)
translates into a smaller system of the form H(z,w, u(z,w), f(z,w)) = 0, Hu(z,w, u(z,w),
f(z,w)) = 0 which is suitable to extract the singular behavior of the form (13). In particular
the condition Px0x0Puu = P 2

x0u is equivalent to Huu = 0. Now we proceed as in [7], observe
the singular expansion for M1(z,w) of the form (13) and by comparing it with (11) we also
get the properties g(ρ0,1) = g(ρ0) 6= 0, h(ρ0,1) = h(ρ0) 6= 0.

In the case of a system of two catalytic equations P1 = 0, P2 = 0 (in unknown functions
M(z, u,w), M1(z,w), N(z, u,w), N1(z,w)) we apply an elimination procedure to reduce it
to a single catalytic equation so that Lemma 4 can be applied. We consider first the second
equation and replace M(z, u,w), M1(z,w) by two new variables v0, v1:

P2(z, u,w, v0, v1, N,N1) = 0

3 The notation Px denotes the partial derivative with respect to x – and similarly for partial derivatives
with respect to other variables or for higher order derivatives.
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and solve this catalytic equation in order to obtain solution functions N = N(z, u,w, v0, v1)
and N1 = N1(z,w, v0, v1). Then we substitute these solutions into the first equation and
obtain a single catalytic equation for M = M(z, u,w), M1 = M1(z,w):

P1(z, u,w,M,M1, N(z, u,w,M,M1), N1(z,w,M,M1)) = 0.

Finally we apply Lemma 4 and obtain the proposed singular representation. The only thing
that has to be checked is that P2,NNP2,uu 6= P 2

2,Nu and P2,N1 6= 0 so that the functions
N = N(z, u,w, v0, v1) and N1 = N1(z,w, v0, v1) are analytic in the region of interest. In our
special situation this is easy to check. With this method we obtain singular representations
for D7(z, 1, w) and DB(z, 1, w) and consequently (12) for D(z, 1, w).

The Proof of Theorem 1 is now almost immediate. Let Yn denote the number of edges
in a random planar map with n edges that represent double triangles but are not on the root
face. Then we have

D(z, 1, w) =
∑
n≥0

MnE[wYn ] zn,

where Mn = [zn]M(z, 1) denotes the number of planar maps with n edges. By a direct
application of [5, Theorem 2.35] it follows that Yn satisfies a central limit theorem of the form
(1) with expected value and variance asymptotically proportional to n. The only difference
between Xn and Yn is the number of edges on the root face that represent a double triangle.
However, if Xn and Yn are different then the root face has valency 3 which means that the
difference between Xn and Yn is at most 3. Hence, the central limit theorem (as well as
asymptotics for expected value and variance) of Yn transfers directly into a corresponding
central limit theorem for Xn which completes the proof of Theorem 1.
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A Appendix

A.1 Proof of the relations (4)
In the first part of the Appendix, we present a proper decomposition of the sets Dd0

D , Dd1
D ,

and D
d≥2
D that translate into the system (4).

In order to represent Dd0
D (and consequently the generating function of Dd0

D ) which
corresponds to the case |(α, β)| = 0, the main argument will focus on the valency of the
α-face (that equals to that of the β-face) which depends on the outside (root) face valency
of the map between (or inside) the α-edge and the β-edge. If this map has root face
valency 1, then the α-face has valency 3 which means the α-edge and the β-edge are both
double triangles. Moreover, in case this map has root face valency 1, if this map belongs
to DB (the second face has valency 3), then the root edge of this map will become a
double triangle after putting this map into the chink between the α-edge and the β-edge
and vice versa. Therefore, we have z3uDw2 (w[u1]DB + [u1]D7

)
. Contrarily, if this map

has root face valency not equal to 1, then the valency of the α-face is not equal to 3,
it corresponds to z3uD

(
D(1)− [u1]D

)
. Thus, the corresponding generating function is

Dd0
D = z3uD

[
w2 (w[u1]DB + [u1]D7

)
+
(
D(1)− [u1]D

)]
.

If |(α, β)| = 1 which corresponds to the class Dd1
D the border-(α,β)-path is just an edge

and the valency of the α-face (and of the β-face) is three (because of the α-edge, the β-edge
and the border-(α,β)-path) plus the outside (root) face valency of the map inside this triangle.

If the map inside the triangle has no edge (which means the corresponding generating
function of the map is 1), then the α-face has valency 3 which means that both the α-
edge and the β-edge represent double triangles. And whether the edge that equals to the
border-(α,β)-path corresponds to a double triangle or not depends on the other incident
face of this edge. The face on the other side may or may not have valency 3 and also may
equal to the outside face (see the above case of Figure 11). Hence this part corresponds to
z3w2(wDB +D7 + zu2D2). If the map (inside the triangle) has some edges (corresponding
to the generating function D(1) − 1), then the valency of α-face is not equal to 3 which
means that neither the α-edge nor the β-edge correspond to a double triangle, and the edge
that equals to the border-(α,β)-path must not correspond to a double triangle. We also
have to distinguish between three different coases fo the other incident face (see the below
case of Figure 11). This part corresponds to z3 (D(1)− 1) (DB +D7 + zu2D2) which can
be simplified to z3 (D(1)− 1) (D − 1) by the first equation of (2). Summing up we get the
corresponding generating function of Dd1

D as follows:

Dd1
D = z3w2(wDB +D7 + zu2D2) + z3 (D(1)− 1) (D − 1).

Finally D
d≥2
D is easier to describe, since the α-face (that is equal to the β-face) has

valency not equal to 3. So we do not have to care about whether the α-edge and the β-edge
are double triangles. We can directly decompose the map into two parts: one is a map with
second face valency greater than 3 (the length of the border-(α,β)-path greater than 2 and
plus the root edge), the other one is a map with plus edges (see Figure 12).

http://dx.doi.org/10.1007/s10959-016-0707-3
http://dx.doi.org/10.1007/s10959-016-0707-3
http://dx.doi.org/10.4153/CJM-1963-029-x
http://dx.doi.org/10.4153/CJM-1963-029-x
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3 3

3 3

Figure 11 Decomposition of Dd1
D : In the first (upper) case the the map (inside the triangle) has

no edge, whereas in the second (below) case this map is non-trivial. In both case we have the right
side face of the border-(α,β)-path is different to the root face and its valency is either equal to 3 or
not, or it equals the root face.

3 +≥ 3

Figure 12 Decompose a map that belongs to D
d≥2
D into two parts.

The first map class can be counted with the help of a cutting across process (see Figure
2) where we have take out the situation where the new-appearing second face has valency 1
or 2. The corresponding effect to ur is

ur 7→ z(ur+1 + ur + · · ·+ u2 + u1)− z(ur+1 + ur) +
{

0 , if r ≥ 1
zu0 , if r = 0

which leads to zuD(1)−uD
1−u − z(D − 1) − zuD. After combining this with a map plus two

edges (which is counted by z2D(1)) we have,

D
d≥2
D =z2D(1)

(
zu
D(1)− uD

1− u − z(D − 1)− zuD
)

which completes the proof of (4).

A.2 Simplification of the representation of DB

In the second part of the Appendix we prove that DB can be simplified into the form that is
given in (2).
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After collecting all parts of DB that are described in the Proof of Lemma 2 we obtain

DB = z3u3D3 + 2z2uD
(
wDB +D7

)
+ z3uD

[
w2 (w[u1]DB + [u1]D7

)
+
(
D(1)− [u1]D

)]
+ z3w2(wDB +D7 + zu2D2) + z3 (D(1)− 1) (D − 1)

+ z2D(1)
(
zu
D(1)− uD

1− u − z(D − 1)− zuD
)

+ z2uwD

+ zu−1
(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

+ 2zu−1w

(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

+ zu−1w2DB − z2uw2DDB − zw2[u1]DB

− zu−1w2
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

− zw2 (z2uD[u1]D7 + z2uwD[u1]DB + z2D7 + z2wDB + z3u2D2) .
We use the first two terms of the 2nd line and the first three terms of the 3rd line to cancel
the last line. We also cancel the third term of the 2nd line and the third term of the 4th line.
Moreover, we cancel part of the last term of the 3rd line and the second term of the 4th line.

DB = z3u3D3 + z2uD
(
wDB +D7

)
+ z2uD

(
wDB +D7

)
− z3uD[u1]D − z3(D − 1) + z2D(1)

(
zu
D(1)− uD

1− u

)
+ z2uwD

+ zu−1
(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

+ 2zu−1w

(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

+ zu−1w2DB − z2uw2DDB − zw2[u1]DB

− zu−1w2
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

.

We now rewrite DB according to the appearing power of w and separate as follows:

DB = A0 + wA1 + w2A2

= A0 +A1 +A2 + (w − 1)A1 + (w2 − 1)A2

= (A0 +A1 +A2) + (w − 1) (A1 + (w + 1)A2)

where A0, A1, A2 are explicit functions in z, u,D,D7, DB, [u1]D, [u2]D, [u1]D7, [u2]D7,

[u1]DB, [u2]DB.

In order to show that this representation can be simplified to the form in (2) we first
have to show that A0 +A1 +A2 = zu−1 (D − 1− u[u1]D

)
. By summing up the expressions
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of A0 +A1 +A2 (and cancelling already two terms) we get

z3u3D3 + z2uD
(
DB +D7

)
+ z2uD

(
DB +D7

)
− z3uD[u1]D − z3(D − 1) + z2D(1)

(
zu
D(1)− uD

1− u

)
+ z2uD

+ zu−1
(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

+ zu−1
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

+ zu−1DB − z2uDDB − z[u1]DB.

Now by using the relation DB +D7 = D − 1− zu2D2, we can deduce two properties:

F1 : [u1]DB + [u1]D7 = [u1](D − 1− zu2D2) = [u1]D,
F2 : [u2]DB + [u2]D7 = [u2](D − 1− zu2D2) = [u2]D − z.

We combine the 3rd and 4th line by applying F1 and F2 and use the last term of it to cancel
z3 in the 2nd line. Then, applying the relation D = 1 + zu2D2 +D7 +DB in the 1st line,
we obtain

z2uD(D − 1) + z2uD
(
DB +D7

)
− z3uD[u1]D − z3D + z2D(1)

(
zu
D(1)− uD

1− u

)
+ z2uD

+ z2uD(1)− uD + zu3D2 − zuD(1)2

1− u − z2u−2 (D − 1− zu2D2 − u[u1]D − u2[u2]D
)

+ zu−1DB − z2uDDB − z[u1]DB.

We cancel some terms from 1st, 2nd, and 4th. Next, We introduce the notation K :=
zuD(1)−uD

1−u and use it in the 2nd and 3rd line:

z2uD2 + z2uDD7 − z3uD[u1]D − z3D + z2D(1)K
− z2D(1) + zu−1K − z2(uD +D(1))K − z2u−2 (D − 1− zu2D2 − u[u1]D − u2[u2]D

)
+ zu−1DB − z[u1]DB.

After canceling some terms from the first two lines and applying DB = D− 1− zu2D2 −D7
in the 3rd line we obtain

z2uD2 + z2uDD7 − z3uD[u1]D − z3D

− z2D(1) + zu−1K − z2uDK − z2u−2 (D − 1− zu2D2 − u[u1]D − u2[u2]D
)

+ zu−1(D − 1− zu2D2 −D7)− z([u1]D − [u1]D7).

We apply D7 = K − zu−1(D − 1 − u[u1]D) in the 1st and 3rd line and apply [u1]D7 =
[u1]K − [u1]zu−1 (D − 1− u[u1]D

)
= [u1]K − z[u2]D in the 3rd. After simplifying we obtain

z2uD2 − z2D(1) + zu−1K + zu−1(D − 1− zu2D2 −K)− z([u1]D − [u1]K).

We replace now K by D − 1− zu2D2 and apply [u1]K = [u1]D so that we have

z2uD2 − z2D(1) + zu−1 (D − 1− zu2D2)
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which reduces to zu−1(D − 1− zuD(1)).
Finally we observe that we have relation

[u1]D = [u1](1 + zu2D2 + zu
D(1)− uD

1− u ) = z[u0]D(1)− uD
1− u = zD(1)

which implies that we actually end up with

A0 +A1 +A2 = zu−1(D − 1− zuD(1)) = zu−1(D − 1− u[u1]D)

as proposed.
Finally we apply some simplifications to A1 and A2. Recall that the second term of DB

is (w − 1) (A1 + (w + 1)A2). It is clear that

A1 = 2z2uDDB + z2uD + 2zu−1P (DB)
A2 = zu−1DB − z2uDDB − z[u1]DB − zu−1P (DB)

where

P (DB) =
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

.

After canceling some terms we finally get that A1 + (w + 1)A2 is equal to

z2uD + (w + 1)
(
zu−1DB − z[u1]DB

)
− z2u(w − 1)DDB − zu−1(w − 1)P (DB)

which completes the proof.



Fixed Partial Match Queries in Quadtrees
Amalia Duch
Universitat Politècnica de Catalunya
duch@cs.upc.edu

https://orcid.org/0000-0003-4371-1286

Gustavo Lau
Universitat Politècnica de Catalunya
glau@cs.upc.edu

https://orcid.org/0000-0002-3460-9186

Conrado Martínez
Universitat Politècnica de Catalunya
conrado@cs.upc.edu

https://orcid.org/0000-0003-1302-9067

Abstract
Several recent papers in the literature have addressed the analysis of the cost Pn,q of partial
match search for a given fixed query q –that has s out of K specified coordinates– in different
multidimensional data structures. Indeed, detailed asymptotic estimates for the main term in the
expected cost Pn,q = E {Pn,q} in standard and relaxed K-d trees are known (for any dimension
K and any number s of specified coordinates), as well as stronger distributional results on Pn,q
for standard 2-d trees and 2-dimensional quadtrees. In this work we derive a precise asymptotic
estimate for the main order term of Pn,q in quadtrees, for any values of K and s, 0 < s < K,
under the assumption that the limit of Pn,q/nα when n→∞ exists, where α is the exponent of
n in the expected cost of a random partial match query with s specified coordinates in a random
K-dimensional quadtree.
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1 Introduction

One of the fundamental features of any hierarchical multidimensional data structure such as
quadtrees is to efficiently support partial match (PM) queries. These queries are as follows.
Given a collection F of K-dimensional (K ≥ 2) tuples of the form x = (x0, . . . , xK−1), with
each xi (0 ≤ i < K) belonging to a totally ordered domain Di, and a query q = (q0, . . . , qK−1)
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20:2 Fixed Partial Match Queries in Quadtrees

such that qi ∈ Di ∪ {∗} (0 ≤ i < K), the goal of a PM query is to find all those tuples in F
such that xi matches qi whenever qi 6= ∗. Coordinates such that qi 6= ∗ are called specified,
otherwise they are called unspecified; we assume that the number s of specified coordinates
satisfies 0 < s < K.

The average-case analysis of PM queries in random quadtrees and other multidimensional
data structures has a long history. In the case of quadtrees, a fundamental milestone was
the paper by Flajolet, Gonnet, Puech, and Robson [7] where the authors proved that the
expected cost of random PM queries with s specified coordinates in random K-dimensional
quadtrees of n nodes is βs,K nα(s/K) + l.o.t. for some constant βs,K ; and α = α(s/K) the
unique real solution in [0, 1] of the indicial equation

(α+ 2)s(α+ 1)K−s = 2K . (1)

The exponent α turns out to be exactly the same as in the expected cost of random PM
queries in standard K-d trees. It was not until 2003 that Chern and Hwang [2] obtained an
explicit expression for βs,K , for general s and K, this is:

βs,K = 1
(2K−s − 1)Γ(α+ 1)K−sΓ(α+ 2)s

∏
2≤j≤K

Γ(α− αj)
Γ(−αj)

, (2)

for 0 < s < K and K ≥ 2 and where Γ is the Gamma function and the αj ’s are the roots
of equation (1) and α = α1 > <(α2) ≥ · · · ≥ <(αK). Note that Chern and Hwang [2] used
the indicial equation for α+ 1 so they gave a formula for βs,K as a function of α′j = αj + 1,
j = 1, . . . ,K − 1.

In 2011 fixed PM queries were studied for the first time in 2-dimensional quadtrees by
Curien and Joseph [3] where the authors computed the expected cost E {Pn,q} of a fixed
PM query in 2-dimensional quadtrees. In particular, they showed that if q = (q, ∗), then
Pn,q = E {Pn,q} ∼ ν1,2 · (q · (1− q))α/2 · nα, where α = α(1/2) = (

√
17− 3)/2 is the same

exponent as in the expected cost for random PM queries [7], and ν1,2 = Γ(2α+2)Γ(α+2)
2Γ3(α+1)Γ2(α2 +1) .

The asymptotic distribution was obtained for this particular case by Broutin, Neininger and
Sulzbach in 2012 [1].

In this work, we extend the results of [3] to give a precise asymptotic estimate of the
expected cost of a fixed PM query in random K-dimensional quadtrees, for general K and s.
In particular, we show that this cost is of the form

νs,K ·

 ∏
i:qi 6=∗

qi(1− qi)

α/2

· nα + l.o.t.,

where νs,K is a constant that depends on s, K and the particular query q and α = α(s/K)
is the same as for random PM queries (see above).

The paper is organised as follows. In Section 2 we give some preliminaries. We explain
our methodology in Section 3 through the simplest case K = 2 (Subsection 3.1). We continue
with the general case of arbitrary s and K (Subsection 3.2). To complete the analysis one
needs to solve an integral equation; that is the subject of Subsection 3.3. Section 4 contains
some final remarks as well as some future lines of work.

2 Preliminaries

Let F be a collection of n multidimensional records, each one endowed with a K-dimensional
key x = (x0, . . . , xK−1), with coordinate xj drawn from a totally ordered domain Dj . For
convenience, here we will assume that, for all 0 ≤ j < K, Dj = [0, 1].
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Figure 1 A 2-dimensional quadtree of file F = {A,B,C,D,E, F,G} and the partition that it
induces of the space. In this example F00 = {G}, F01 = {B,C,E} and F0∗ = {B,C,E,G}.

I Definition 1. A quadtree T of size n is a 2K-ary tree storing a collection F of n K-
dimensional records. T is either empty (when n = 0) or each one of its n nodes holds a key
from F , such that the root node of T stores a record with key x and pointers to 2K subtrees,
that hold the remaining n− 1 records of F . Every subtree of T , let say Tw, is associated to
a bitstring w = w0w1 . . . wK−1 ∈ {0, 1}K , in such a way that Tw is a quadtree, and for any
key y ∈ Tw, it holds that yj ≤ xj if wj = 0 and yj > xj if wj = 1, for all 0 ≤ j < K.

Any quadtree of size n induces a partition of the domain into (2K − 1)n+ 1 regions, each
corresponding to a leaf (or equivalently empty subtree) in the quadtree. An example of a
quadtree and the partition of the space that it induces is shown in Figure 1. To build a
quadtree starting from an empty tree, each insertion of a new record with key x follows a
path from the root to a leaf; at each step, we compare x and the key at the current node
to determine in which of the 2K subtrees the insertion should continue recursively, and the
process ends when a leaf is reached and it is replaced by a new node containing x and 2K
empty subtrees. The region associated to the substituted leaf is called the bounding box of
the subtree rooted at x. Following the same convention used for the names of the subtrees,
we will denote by Bw the bounding boxes of subtrees Tw associated to the tree rooted at x
and by Fw the subset of data points of F that fall inside Bw.

Consider a string v over the alphabet Σ = {0, 1, ∗}. We define as L(v) the set of binary
strings matching v; that is, where each occurrence of the symbol ∗ stands for a 0 or a 1. For
instance, L(001) = {001}, L(0∗1) = {001, 011} and L(1∗∗00) = {10000, 10100, 11000, 11100}.
With this notation let us define the following extension of the notion of bounding box
Bv =

⋃
w∈L(v)

Bw.

Likewise Fv is the union of the (disjoint) Fw’s with w matching v. For example, in two
dimensions B∗∗ = [0, 1]2 is the bounding box of the root of the quadtree, F0∗ is the subset of
all those keys with first coordinate smaller than the first coordinate of the root, that is, the
ones stored in T00 and T01 (see Figure 1).

To perform a PM search with query q, the quadtree is recursively explored as follows.
First, we check whether the root x matches q or not, to report it in the former case. Then,
we make recursive calls in all the 2K−s subtrees Tw such that the first s bits of w are such
that wi = 0 whenever qi 6= ∗ and qi ≤ xi, and wi = 1 whenever qi 6= ∗ and qi > xi, 0 ≤ i < s,
and the remaining K − s bits can be either 0 or 1.

One key observation about the PM search in quadtrees (or similar data structures) is
that, except for eventual matches, only the relative ranks of the coordinates matter. Let
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20:4 Fixed Partial Match Queries in Quadtrees

us call the rank vector of a query q the vector r(q) = (r0, . . . , rK−1) such that ri = ∗, if
qi = ∗, and ri is the number of records x in the collection F such that xi ≤ qi (0 ≤ ri ≤ n),
if qi 6= ∗. Then for any two given queries q and q′ with equal rank vectors r(q) = r(q′) the
PM procedure described above will visit exactly the same set of nodes of the tree. In our
analysis, we shall be using rank vectors instead of the queries themselves (as done in [6]) and
consider, for instance, the cost Pn,r of a PM query with given rank vector r in a random
quadtree of size n. The probability model for random quadtrees that we will use throughout
this work is that the tree is built by inserting in any order n keys drawn independently at
random (coordinate by coordinate) from a continuous distribution. For the sake of simplicity,
we can safely assume that the distribution is Uniform(0, 1). Because of the symmetry of the
model we can also assume that the s specified coordinates of q are the first s coordinates,
0 < s < K, and therefore that q = (q0, . . . , qs−1, ∗, . . . , ∗) and r = (r0, . . . , rs−1, ∗, . . . , ∗).
We shall write hence q = (q0, . . . , qs−1) and r = (r0, r1, . . . , rs−1) with the convention that
the implicit K − s remaining components are all ∗’s.

3 Analysis

Our goal in this section is to find the expected cost Pn,r = E {Pn,r}, measured as the number
of visited nodes, of a PM query with a fixed rank vector r in a random quadtree of n nodes.

In order to show our methodology and to give some intuition on the problem we are
going to start our analysis with the easiest case K = 2 in Subsection 3.1. Afterwards, in
Subsection 3.2, we analyze the general case.

In both subsections we are going to obtain a recurrence for Pn,r. Then, in order to solve
the general recurrence, we translate it into an integral equation whose solution will give us
the leading term in the asymptotic estimate for Pn,r. The solution of the integral equation is
given in Subsection 3.3.

3.1 The case K = 2
Given a 2-dimensional quadtree T , its root splits the space into four rectangles: B00 (south-
west of the root), B01 (north-west of the root), B10 (south-east of the root) and B11
(north-east of the root). These four rectangles are the corresponding bounding boxes of the
four subtrees T00, T01, T10 and T11 from Definition 1. Recall also that B0∗ = B00 ∪B01 and
B∗0 = B00 ∪B10 are, respectively, the rectangles west and south of the root. For any string
u ∈ {0, 1, ∗}2, the number of data points in Bu (equivalently, the cardinality of Fu) will be
denoted Nu. For a random quadtree the Nu’s are random variables.

Let us now address the recurrence for Pn,r, and to simplify let us write Pn,r0 , as r = (r0, ∗).
The basis of recursion is trivially P0,r0 = 0. If n > 0, let j = (j0, j1) be the rank vector of the
root. Since q contains only one specified coordinate, the relation between j0 and r0 determines
whether the query intersects either B0∗ or B1∗. If r0 ≤ j0, then the query intersects B0∗;
otherwise it intersects B1∗. In our recurrence for Pn,r0 the value j0 = N0∗ = |F0∗| run
from r0 to n − 1, leading to a non-empty intersection of B0∗ and the query, or from 0 to
r0 − 1, leading to a non-empty intersection of B1∗ and the query. Because of the randomness
assumptions, each possible value of N0∗ has probability 1/n and hence this factor will weight
the expected cost of the PM query conditioned to N0∗ = j0.

The number of data points in B0∗ is j0 by definition, and the number of data points
in B1∗ is n − 1 − j0. If the query intersects B0∗ then the rank of the query with respect
to B0∗ is still r0, but if it intersects B1∗ then its rank with respect to B1∗ is r0 − 1 − j0.
So the contribution to Pn,r0 coming from the recursive traversal of B0∗ involves a set of j0
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Figure 2 A partial match in a two-dimensional quadtree. The first diagram shows the case
r0 ≤ j0, the second one the case j0 < r0 and the third one how the east-west symmetry converts the
second case into the first one.

points and the rank of the query is r0 while the contribution coming from B1∗ involves a set
n − 1 − j0 points and, because of the symmetry Pn,r0 = Pn,n−r0 , the rank of the query is
n− r0. Hence, we can reduce the case j0 < r0 to the case r0 ≤ j0, see Figure 2.

In the general case we would have to consider 2s regions Bw described by bitstrings
w = w0 · · ·ws−1 ∗ · · · ∗, where each wi is 0 or 1 depending on whether ri ≤ ji or not; as we
consider all possible j, the query will intersect these 2s different regions, and we will be able
to use these “east-west” symmetry considerations to reduce their analysis to the analysis of
one of them, say, B00...0∗...∗.

Let us come back to K = 2. The region B0∗ is the union of the two bounding boxes B00
and B01 (in general we will consider regions Bw that contain 2K−s bounding boxes) and
our goal is to use further symmetries to reduce the analysis of the cost of traversing both
bounding boxes to the analysis of just traversing one of them, say, B00.

Let Qj0,r0 be the contribution to the expected cost of a PM query due to the recursive
call in T00, when the query has rank r0 in the first coordinate and given that there are
j0 ≥ r0 nodes to the west of the root.

Suppose that N00 = n00. The rank vector of the query in the recursive call to T00 will be
(r̂0, ∗), and the contribution to the expected cost will then be Pn00,r̂0 . So it only remains to
determine: a) the probability that N00 = n00, given the rank vector of the root j and, b) the
probability that the rank vector of the query with respect to B00 is (r̂0, ∗). Let us define
the subsets of data points F ′v and the corresponding bounding boxes B′v like Fv and Bv,
but with respect to the given query, instead of the root. The value r̂0 is the number of data
points in the intersection between B00 and B′0∗, see Figure 2. We will use R〈0〉 := |F00 ∩F ′0∗|.

In general, 〈i〉 := ∗i0∗K−1−i, so using this convention, we can also write N〈0〉 = j0 and
|F ′〈0〉| = r0. Conditioned on the sizes of F00, F〈0〉 and F ′〈0〉, the random variable R〈0〉 obeys
a hypergeometric distribution:

Pr
{
R〈0〉 = r̂0 | N00 = n00,N〈0〉 = j0, |F ′〈0〉| = r0

}
=
(
n00
r̂0

)(
j0−n00
r0−r̂0

)(
j0
r0

) .

Now if we look at the contribution to the expected cost due to the traversal of T01, we
have that N01 = j0 − n00 and the rank of the query with respect to B01 is (r0 − r̂0, ∗).
The fact that the second coordinate is unspecified allow us to do the analysis above with
n01 instead of n00 and we would have obtained symmetric formulas. We can exploit this
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20:6 Fixed Partial Match Queries in Quadtrees

north-south symmetry that will give us a factor of 2. Taking into account the visit to the
root and our discussion so far we can write

Pn,r0 = 1 + 2
n

(
r0−1∑
j0=0

Qn−1−j0,n−r0 +
n−1∑
j0=r0

Qj0,r0

)
, (3)

where, for n0∗ ≥ r, we have

Qj0,r0 =
j0∑

n00=0
Pr
{
N00 = n00 | N〈0〉 = j0

} r0∑
r̂0=0

((
n00
r̂0

)(
j0−n00
r0−r̂0

)(
j0
r0

) Pn00,r̂0

)
. (4)

To complete the recurrence for Pn,r0 we need only to obtain the probability thatN00 = n00,
conditioned on N〈0〉 = j0. Since N〈1〉 can take any value in [0..n−1] with identical probability,
the number of points in B00 will take any value between 0 and j0 with identical probability
1/(j0 + 1). Plugging this probability and (4) into (3) yields to the desired recurrence for
Pn,r0 .

An asymptotic estimate of the main term of Pn,r0 follows by deriving an integral equation
for f(z0) := limn→∞ Pn,z0n/n

α and solving that integral equation. We give the details of
the derivation of the integral equation in the case of K = 2 in Lemma 4.

3.2 The general case
Let r = (r0, r1, . . . , rs−1) be the query rank vector and let j = (j0, . . . , js−1) be the first s
coordinates of the rank vector for the root of the random quadtree. Thus we have that ji
is the value of |F〈i〉| = N〈i〉. These K strings of the form 〈i〉 constitute a “basis” in the
sense that we can obtain any region Bw by complementation (B∗i1∗K−1−i = B∗···∗ \B〈i〉) and
intersection of the appropriate B〈i〉’s.

Like we did for K = 2 our goal is to use the symmetries of the problem to reduce the
whole analysis to the analysis of the contribution to the total cost of one particular subtree,
namely, T0s . Again, call Qj,r the contribution of the recursive call in T0s , conditioned to
ri ≤ ji for all i, 0 ≤ i < s. This condition guarantees that the PM search will recursively
continue in that subtree.

Then, because of the K − s symmetries on unspecified coordinates (like the north-south
symmetry of the case K = 2) and because of the s symmetries for specified coordinates (like
the east-west symmetry when K = 2), we can express Pn,r in terms of Qj,r ’s. In particular,
considering all the possibilities for j gives a factor 1/ns, and a summation over all bitstrings
w of length s to cover the cases where the query intersects Bw. Finally the factor 2K−s
stems from the 2K−s bounding boxes that each Bw contains. Hence,

Pn,r = 1 + 2K−s

ns

∑
w∈{0,1}s

∑
j0

· · ·
∑
js−1

Qj′w(j),r′w(r), (5)

where the summation ranges are ri ≤ ji ≤ n− 1 if wi = 0, and 0 ≤ ji ≤ ri − 1 if wi = 1, and
the rank vectors j′w = (j′0, . . . , j′s−1) and r′w = (r′0, . . . , r′s−1) are defined as follows: if wi = 0
then j′i = ji and r′i = ri, otherwise if wi = 1 then j′i = n− 1− ji and r′i = n− ri.

For any i, 0 ≤ i < K, we will denote 0i the string 0i∗K−i, that is, a string of length K
consisting of i zeros, followed by K − i ∗’s.

The method to obtain a formula for Qj,r consists of the following steps: 1) First we use
Lemma 5 to obtain the probability distribution of the number of data points N0s in the
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“corner” hyperrectangle, by intersecting the sets F〈0〉, F〈1〉, . . . , F〈s−1〉, with sizes j0, . . . ,
js−1, respectively. This will be expressed by s − 1 “hypergeometric” sums that will give
us the probability that N0s = `s; 2) Given that the last K − s coordinates are unspecified,
and conditioned on ji = N〈i〉, 0 ≤ i < s, all the potential sizes of N〈i〉 = |F〈i〉|, s ≤ i < K,
are equiprobable. This will be expressed by K − s “uniform” sums that will allow us to
derive the probability distribution for N0K , and 3) Now conditioning on N0K = |F0K |, and
given r we intersect F0K with each of F ′〈0〉, F ′〈1〉, . . . , F ′〈s−1〉 to obtain the components of
r0K = (r̂0, . . . , r̂s−1). We will denote R〈i〉 = |F0K ∩ F ′〈i〉| the random variable that gives the
i-th component of r0K . As in the case K = 2, the probability distribution of the R〈i〉’s is
hypergeometric and it will lead to s additional “hypergeometric” sums.

Therefore the general formula for Qj,r is:

Qj,r =
js−1∑
`s=0

Pr
{
N0s = `s

∣∣∣∣∣
s−1∧
i=0
N〈i〉 = ji

}
×

`s∑
`K=0

Pr
{
N0K = `K

∣∣∣∣∣N0s = `s

}

×
∑

r0K =(r̂0,...,r̂s−1)

Pr
{
s−1∧
i=0
R〈i〉 = r̂i

∣∣∣∣∣N0K = `K ,

s−1∧
i=0
|F ′〈i〉| = ri

}
× P`K ,r0K . (6)

We can expand this last expression as:

Qj,r =
js−1∑
`s=0
· · ·

j1∑
`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)(
n−1
j1

) · · ·

(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)(
n−1
js−1

) )

× 1
`s + 1

`s∑
`s+1=0

· · · 1
`K−1 + 1

`K−1∑
`K=0

`K∧r0∑
r̂0=0

(
`K
r̂0

)(
j0−`K
r0−r̂0

)(
j0
r0

) · · ·
`K∧rs−1∑
r̂s−1=0

(
`K
r̂s−1

)(
j1−`K

rs−1−r̂s−1

)(
js−1
rs−1

) P`K ,(r̂0,...,r̂s−1), (7)

where we have used x ∧ y = min(x, y) to stress the intersections that are involved in each
case, e.g. r̂i ranges from 0 to `K ∧ ri since the number of data points is given by |F0K ∩F ′〈i〉|;
with |F0K | = N0K = `K and F ′〈i〉 = ri.

To derive the integral equation corresponding to the recurrence above we can use arguments
similar to those in the case K = 2. We give all the details of this derivation, as well as other
necessary technical lemmas in Apprendix A.

I Lemma 2. If f(z0, . . . , zs−1) = limn→∞
Pn,r
nα exists, with α = α(s/K) the solution of

the indicial equation (1) and zi = limn→∞ ri/n, 0 < zi < 1, for all i, 0 ≤ i < s, then
f(z0, . . . , zs−1) is the unique solution of

f(z0, . . . , zs−1) =
(

2
α+ 1

)K−s
×

∑
w∈(0+1)s

{
∫
Iw0 (z0)

· · ·
∫
Iws−1 (zs−1)

f

(
ϕw0(z0, u0), . . . , ϕws−1(zs−1, us−1)

)

·
(
ψw0(u0) · · ·ψws−1(us−1)

)α
dus−1 · · · du0

}
, (8)

where I0(z) = [0, z], I1(z) = [z, 1], ψ0(u) = 1− u, ψ1(u) = u, ϕ0(z, u) = (1− z)/(1− u) and
ϕ1(z, u) = z/u, which satisfies the following boundary conditions:
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1. f(z0, . . . , zs−1) is symmetric on all variables, that is, for any i and j,

f(z0, . . . , zi, . . . , zj , . . . , zs−1) = f(z0, . . . , zj , . . . , zi, . . . , zs−1).

2. For any zi ∈ (0, 1), 0 ≤ i < s, f is symmetric with respect to the axis zi = 1/2, that is,

f(z0, . . . , zi, . . . , zs−1) = f(z0, . . . , 1− zi, . . . , zs−1).

3. For any i, 0 ≤ i < s,

lim
zi→0+

f(z0, . . . , zi, . . . , zs−1) = lim
zi→1−

f(z0, . . . , zi, . . . , zs−1) = 0.

4.

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
f(z0, . . . , zs−1) dz0 · · · dzs−1 = βs,K .

Proof. We will follow a procedure similar to the one in the proof of Lemma 4, which covers
the case K = 2.

The steps that we will give to obtain the integral equation for general K are:

1. Apply Lemma 6 to (7) s times in the s hypergeometric sums (the last sums over the r̂i’s)

2. Convert the K − s uniform sums (the middle sums over the `i’s, s < i ≤ K) into the
corresponding integral by passing to the limit. That gives K − s factors 1/(α+ 1).

3. Apply Lemma 7 once to the first s− 1 hypergeometric sums (over the `i’s, 2 ≤ i ≤ s).

4. Convert all the sums in (5) into integrals by passing to the limit.
Here, we use `i to denote the values that the random variables N0i can take, like we did in
subsection 3.2, and in particular in (6) and successive.

Defining f
(
r0
n , . . . ,

rs−1
n

)
:= Pn,r/n

α, where α is the solution of the indicial equation for
quadtrees, we get:

Qj,r

nα
=

js−1∑
`s=0
· · ·

j1∑
`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)(
n−1
j1

) · · ·

(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)(
n−1
js−1

) )

× 1
`s + 1

`s∑
`s+1=0

· · · 1
`K−1 + 1

`K−1∑
`K=0

`K∧r0∑
r̂0=0

(
`K
r̂0

)(
j0−`K
r0−r̂0

)(
j0
r0

) · · ·
`K∧rs−1∑
r̂s−1=0

(
`K
r̂s−1

)(
j1−`K

rs−1−r̂s−1

)(
js−1
rs−1

) × f
( r̂0

`K
, . . . ,

r̂s−1

`K

)(`K
n

)α
.

Hence, defining u0i = limn→∞(`i/n) for s ≤ i ≤ K, zi = limn→∞(ri/n) and ui =
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limn→∞(ji/n) for 0 ≤ i < K and applying Lemma 6 s times:

lim
n→∞

Qj,r

nα
= lim
n→∞

js−1∑
`s=0
· · ·

j1∑
`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)(
n−1
j1

) · · ·

(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)(
n−1
js−1

) )

× 1
`s + 1

`s∑
`s+1=0

· · · 1
`K−1 + 1

`K−1∑
`K=0

f
(r0

j0
, . . . ,

rs−1

js−1

)(`K
n

)α

= lim
n→∞

js−1∑
`s=0
· · ·

j1∑
`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)(
n−1
j1

) · · ·

(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)(
n−1
js−1

) )

× 1
u0s

∫ u0s

0
· · · 1

u0K−1

∫ u0K−1

0
f
( z0

u0
, . . . ,

zs−1

us−1

)
uα0Kdu0K . . . du0s+1

= lim
n→∞

js−1∑
`s=0
· · ·

j1∑
`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)(
n−1
j1

) · · ·

(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)(
n−1
js−1

) )

× f
( z0

u0
, . . . ,

zs−1

us−1

) uα0s

(α+ 1)K−s .

Replacing u0s by `s/n and applying Lemma 7 once to the first s− 1 hypergeometric sums
we obtain:

lim
n→∞

Qj,r

nα
= 1

(α+ 1)K−s f
( z0

u0
, . . . ,

zs−1

us−1

) s−1∏
i=0

uαi . (9)

Finally, introduce the following notation: I0(z) = [0, z], I1(z) = [z, 1], ϕ0(z, u) = (1−z)/(1−u)
and ϕ1(z, u) = z/u. Plugging (9) into (5)) and passing to the limit (the fourth step in the
procedure that we have described) yields the stated integral equation. J

Conditions 1 and 2 in the lemma follow from the combinatorics of the problem. By
symmetry, Pn,r = Pn,r′ for any permutation r′ of the rank vector r. Likewise, if r =
(r0, . . . , ri, . . . , rs−1) and r′ = (r0, . . . , ri−1, n − ri, ri+1, . . . , rs−1) then Pn,r = Pn,r′ . Con-
dition 3 needs an inductive argument in the number of non-extreme (zi 6= 0 and zi 6= 1)
coordinates. When all specified coordinates are extreme,say, z0 = z1 = . . . = zs−1 = 0 we
must have f = 0; indeed, it is very easy to prove that Pn,(0,...,0) = o(nα). We do not give
here a complete and detailed analysis when s0 ≤ s specified coordinates are extreme; the
computations and the reasoning is analogous to that carried out in [6] for K-d trees. Last
but not least, Condition 4 follows by summing the expected cost Pn,r over all possible rank
vectors r and dividing by (n+ 1)s: it must yield the known expected cost of a random partial
match query βs,Knα + o(nα). In terms of f , we must integrate f in the domain [0, 1]s to
obtain βs,K . For a detailed justification the reader can refer to [6]: it is straightforward to
adapt the discussion there to the case of quadtrees.

3.3 Solving the integral equation

From the integral equation (8) in Lemma 2 we can obtain an equivalent partial differential
equation (PDE) by application of the differential operators

Φj(f) = zj(1− zj)
∂2f

∂z2
j

+ α(2zj − 1) ∂f
∂zj
− α(α+ 1)f.
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Indeed, if we define the operator

Ii(f) = zα+1
i

∫ 1

zi

f(z0, . . . , zi−1, ui, zi+1, . . . , zs−1
dui

uα+2
i

+

(1 − zi)α+1
∫ zi

0
f(z0, . . . , zi−1, vi, zi+1, . . . , zs−1

dvi
(1− vi)α+2

then the integral equation (8) in Lemma 2 can be written as

f =
(

2
α+ 1

)K−s
I0(I1(· · · (Is−1(f) · · · ),

using the changes of variables ui := zi/ui and vi := (1− zi)/(1− ui).
Then, as

Φi(Ij(g)) = Ψi(g) = (2zi − 1) ∂g
∂zi
− 2αg

it follows that

Φ0(Φ1(· · · (Φs−1(f)) · · · ) =
(

2
α+ 1

)K−s
Φ0(Φ1(· · · (Φs−1(I0(I1(· · · (Is−1(f) · · · )) · · · ).

Now, since Φi’s and Ψi’s commute – Φi(Φj(g)) = Φj(Φi(g)), Ψi(Ψj(g)) = Ψj(Ψi(g)) – and
Φi(Ψj(g)) = Ψj(Φi(g)) for any i 6= j, we can manipulate the equation above to get

Φ0(Φ1(· · · (Φs−1(f)) · · · ) =
(

2
α+ 1

)K−s
Ψ0(Ψ1(· · · (Ψs−1(f) · · · )

or (
Φ0 ◦ Φ1 ◦ · · · ◦ Φs−1 −

(
2

α+ 1

)K−s
Ψ0 ◦Ψ1 ◦ · · · ◦Ψs−1

)
(f) = 0, (10)

which is the sought PDE, succintely expressed in terms of the linear differential operators Φi
and Ψi, i = 0, . . . , s− 1.

The resulting PDE is homogeneous and linear, hence it is natural to try to solve it
by separation of variables. The shape of equation (10) also cries out to try a solution in
separated variables. Therefore, we will assume that the solution to the integral equation (8)
is a function: f(z0, z1, . . . , zs−1) = φ0(z0) · φ1(z1) · · ·φs−1(zs−1).

Given that the function f is symmetric with respect to any permutation of its arguments,
we can also safely assume that all the functions φ0, φ1, · · · , φs−1 are the same function φ.
Rather than working with the PDE itself, we may use our assumption to rewrite equation (8)
as:

φ(z0) · φ(z1) · · ·φ(zs−1) =
(

2
α+ 1

)K−s s−1∏
i=0

(∫ zi

0
φ
( 1− zi

1− ui

)
(1− ui)αdui

+
∫ 1

zi

φ
( zi
ui

)
uαi dui

)
. (11)

If φ is a solution of the following equation

φ(z) =
(

2
α+ 1

)K−s
s

(∫ z

0
φ
( 1− z

1− u

)
(1− u)αdu+

∫ 1

z

φ
( z
u

)
uαdu

)
, (12)
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then it would be a solution of equation (11). As shown in [4],

φ(z) = µ
(
z(1− z)

)δ−1
, δ =

(
2

α+ 1

)K−s
s

,

is such a solution, where µ is an arbitrary constant and we have discarded additional terms
in the general solution based on symmetry considerations.

Because the exponent α is a solution to the indicial equation (1) it follows that δ = α
2 + 1

and hence the solution to (8) is:

f(z0, . . . , zs−1) = νs,K ·
s−1∏
i=0

(
zi(1− zi)

)α/2
,

where νs,K is a constant that depends on s and K only. To finish our derivation and to
obtain the value of νs,K we replace f by the expression above in Condition 4 of Lemma 2
and we get:

νs,K

(∫ 1

0

(
z(1− z)

)α/2
dz

)s
= νs,K

(
Γ(α/2 + 1)2

Γ(α+ 2)

)s
= βs,K ,

so we can use the expression for βs,K in Equation (2) to find an explicit formula for νs,K .
To argue unicity of the solution, we should begin noticing that the linear homogeneous

PDE satisfied by the function f has all real-analytic coefficients in the domain (0, 1)s, because
the coefficients of the operators Ψi and Φi are analytic too in that domain and the PDE
results from the composition of such operators.

Moreover, the highest derivative in the PDE is ∂2sf/∂z2
0 · · · ∂z2

s−1 and its coefficient∏
0≤i<s zi(1− zi) is clearly always positive in (0, 1)s, hence, the PDE is elliptic. Then, by

Holmgren’s theorem, any solution is real-analytic; and from Cauchy-Kovalevskaya theorem
it follows that it must be unique, since this last theorem guarantees that there is a unique
real-analytic solution (see for instance [8, 11]). Altogether, these results tell us that the
solution that we have found, starting from the ansatz that it admitted a representation in
separable variables, is unique.

It remains to verify by direct substitution that Pn,r = f(r/n)nα is a solution of re-
currence (5) replacing the independent term by o(1), which is the error resulting from
approximating the summations by integrals. With this our main result follows.

I Theorem 3. If limn→∞
Pn,r
nα exists then the expected cost Pn,r of a PM query with given

rank vector r such that ri = zin + o(n) for some zi ∈ (0, 1), 0 ≤ i < s, in a random
K-dimensional quadtree of size n is

Pn,r = νs,K

(
s−1∏
i=0

zi(1− zi)
)α/2

nα + o(nα),

where α is the unique solution in (0, 1) of

(α+ 2)s(α+ 1)K−s = 2K ,

νs,K = 1
(2K−s − 1)Γ(α+ 1)K−sΓ(α/2 + 1)2s

∏
2≤j≤K

Γ(α− αj)
Γ(−αj)

,

and the αj’s, with α = α1 > <(α2) ≥ · · · ≥ <(αK), are the roots of the indicial equation
above.
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Figure 3 Variation of the exponent α(s/K) (top-left), β(s,K) for K ∈ {8, 16, 32} (top-right) and
ν(s,K) for K ∈ {30, 32, 36} (bottom-left), as well as ν(s,K) for all 6 ≤ K ≤ 18 (bottom-right).

Figure 3 depicts how the exponent α = α(s/K), and the constants β(s,K) and ν(s,K)
vary with respect to s and K. In all cases, the x-axis is s/K to ease the comparison – α is
a function of s/K alone, but β and ν depend on both s and K. In the graphs for β(s,K)
and ν(s,K) we have drawn three curves in each case, corresponding to K = 8 (red), K = 16
(black) and K = 32 (blue) in the graph for β(s,K), and K = 30 (red), K = 32 (black) and
K = 36 (blue) in the graph for ν(s,K). Moreover in the graph of α(s/K) we have also
plotted 1− s/K (dashed line) for reference. For fixed K, β(s,K) is a convex function with a
minimum close to s = K/2 but slowly shifted to the right. Likewise, for fixed K, ν(s,K) is
a bell-shaped function with a single global maximum near s = K/2 but also slightly shifted
to the right (ν(s,K) is not defined for s = K). If we denote ν∗(K) = max0<s<K ν(s,K) the
graph shows that ν∗(K) grows with K. On the other hand, the graph and further numerical
computations suggest that there is a limiting curve β∞(x) = limK→∞ β(bxKc,K) that is a
lower bound for any β(s,K) as K →∞.

When s = 0 (no coordinate is specified), we have α(0) = β(0,K) = ν(0,K) = 1, despite
all these constant are not well defined when s = 0. Notice that for s = 0 the partial match
degenerates to a full traversal of the quadtree and visits its n nodes.

In the opposite situation, when all coordinates are specified, s = K, β and ν are undefined,
and α(1) = 0. The expected cost of a partial match is not Θ(1) = Θ(n0) but Θ(logn) as it is
actually an exact search.

4 Conclusions and Future Work

Our main result, Theorem 3, gives the main order term of the expected cost Pn,r of a PM
search with a fixed query of rank vector q, for quadtrees of any dimension K and any number
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of specified coordinates. It can be easily translated to an equivalent result in terms of the
coordinates qi of the query, namely,

Pn,q = νs,K ·

 ∏
i:qi 6=∗

qi(1− qi)

α/2

· nα + l.o.t.

under the assumption of uniformity of the coordinates of the data points (see, for instance,
[6]).

We show that quadtrees behave qualitatively as standard and relaxed K-d trees [6]. There
we conjectured that the form of the expected cost of a PM search with fixed query would
have the same “shape” for a wide variety of multidimensional data structures, excluding
those producing very balanced partitions of the space (e.g., quadtries, squarish K-d trees).
Duch and Lau [5] have disproved the conjecture, in its broadest terms, as it does not apply to
locally balanced K-d trees. However, it seems that the conjecture might hold for hierarchical
multidimensional data structures where: 1) no balancing of subtrees occurs; 2) the partition
at each node follows a fixed rule independent of the current data point.

From the methodological viewpoint, we systematically exploit the many symmetries that
appear in the problem to simplify its formulation and to make its mathematical manipulation
feasible.

Several open problems remain. To begin with, the existence of limn→∞
Pn,r
nα , which has

been rigorously proved for K = 2 in [3] (also in [1]); our result in that case coincides with
the previous ones. We are currently working in the proof of the existence of the required
limit for general K; meanwhile, our results follow from the – yet unproven – assumption
that such limit exists. We shall mention that there is compelling evidence that this is the
case. On the other hand, the existence of a limiting distribution for Pn,r/nα has been shown
only for the case of standard 2-d trees and 2-dimensional quadtrees, but not for other data
structures or larger dimensions, and this is a question worth of further study.

Another goal for future research, more technical in nature but also more ambitious, is
to develop tools that would allow a straightforward, (semi-)automatic derivation of the
recurrences or distributional equations, the proof of the existence of the limiting distribution,
the corresponding integral equations for the expectation and other higher order moments, etc.
This kind of techniques would ease the obtainment of results, such as the ones in previous
literature and the ones in this paper, for many other multidimensional data structures and it
might also open the door for “universality” results such as the ones conjectured in [6].
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A Technical Lemmas

I Lemma 4. If f(z) = limn→∞
Pn,r
nα exists, with α = α(1/2) the solution of the indicial

equation (1) when s = 1 and K = 2, and z = limn→∞ r/n, 0 < z < 1, then

f(z) = 2
α+ 1

(∫ z

0
f
( 1− z

1− u

)
(1− u)αdu+

∫ 1

z

f
( z
u

)
uαdu

)
. (13)

The symmetry Pn,r0 = Pn,n−r0 implies that in general f(z) = f(1 − z) and in particular
f
(

1−z
1−u

)
= f

(
1− 1−z

1−u

)
from where it follows that equation (13) is the same as the one for

standard 2d-trees (see [4]).

Proof. Let f(r0/n) := Pn,r0/n
α. Then we have that

Pa,(b,∗)

nα
= f

( b
a

)(a
n

)α
and therefore, substituting into (4)

Qj0,r0

nα
= 1
j0 + 1

j0∑
n00=0

r0∑
r̂0=0

((
n00
r̂0

)(
j0−n00
r0−r̂0

)(
j0
r0

) f
( r̂0

n00

)(n00

n

)α)

= 1
j0 + 1

j0∑
n00=0

r0∑
r̂0=0

((
n00
r̂0

)(
j0−n00
r0−r̂0

)(
j0
r0

) f
( r̂0

j0

j0
n

n

n00

)(n00

n

)α)
The last sum is the expected value of a function of a hypergeometric random variable.

Passing to the limit when n → ∞, Lemma 6 allows us to exchange the expected value
and the function. Therefore passing to the limit when n → ∞, with z = limn→∞(r/n),
u0∗ = limn→∞(j0/n), u00 = limn→∞(n00/n), and assuming that f is real analytic in Lemma 6
we can apply it to get:

lim
n→∞

Qj0,r0

nα
= 1
u0∗

∫ u0∗

0
f
(u00

u0∗

z

u0∗

u0∗

u00

)
uα00du00 = 1

u0∗

∫ u0∗

0
f
( z

u0∗

)
uα00du00

= 1
α+ 1f

( z

u0∗

)
uα0∗.

and similarly

lim
n→∞

Qn−1−j0,n−r0

nα
= 1

1− u0∗

∫ 1−u0∗

0
f
( 1− z

1− u0∗

)
uα00du00

= 1
α+ 1f

( 1− z
1− u0∗

)
(1− u0∗)α
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Since j0 = 0 =⇒ u0∗ = 0, j0 = r0 =⇒ u0∗ = z0 and in the limit j0 = r0− 1 =⇒ u0∗ =
z0, j0 = n − 1 =⇒ u0∗ = 1 and ∆j0

n → du0∗ replacing in (3) and passing to the limit we
obtain this integral equation:

f(z0) = 2
∫ z0

0

1
1− u0∗

f
( 1− z0

1− u0∗

)∫ 1−u0∗

0
uα00du00du0∗

+ 2
∫ 1

z0

1
u0∗

f
( z0

u0∗

)∫ u0∗

0
uα00du00du0∗

= 2
∫ z0

0

1
1− u0∗

f
( 1− z0

1− u0∗

) (1− u0∗)α+1

α+ 1 du0∗ + 2
∫ 1

z0

1
u0∗

f
( z0

u0∗

) uα+1
0∗

α+ 1du0∗.

Replacing now in (3)), passing to the limit n→∞ and, to simplify, replacing u0∗ by u we
get the integral equation (13) in the statement of the Lemma. J

I Lemma 5. Given a random K dimensional quadtree with n data points the conditional
probability that N0K = `K given that N〈i〉 = n〈i〉 for 0 ≤ i ≤ K − 1 is:

Pr
{
N0K = `K

∣∣∣∣∣
K−1∧
i=0
N〈i〉 = n〈i〉

}
=

n〈i〉K−2∑
`K−1=0

· · ·
n〈2〉∑
`3=0

n〈1〉∑
`2=0

((`1
`2

)(
n−1−`1
n〈1〉−`2

)(
n−1
n〈1〉

)
(
`2
`3

)(
n−1−`2
n〈2〉−`3

)(
n−1
n〈2〉

) · · ·

(
`K−2
`K−1

)(
n−1−`K−2

n〈K−2〉−`K−1

)(
n−1

n〈K−2〉

) (
`K−1
`K

)(
n−1−`K−1
n〈K−1〉−`K

)(
n−1

n〈K−1〉

) )
. (14)

Proof. In the base case K = 2 given n, N〈0〉 ≡ N0∗ = n0∗ and N〈1〉 ≡ N∗0 = n∗0, the
probability that the intersection of the rectangles B〈0〉 = B0∗ and B〈1〉 = B∗0 contains
`2 = n00 nodes is the probability of having `2 = n00 successes in n∗0 draws without
replacement from a population of size n− 1 that contains n0∗ successes. It is n− 1 instead of
n because the root cannot be in the intersections. Therefore the distribution is hypergeometric:

Pr {N00 = n00 | N0∗ = n0∗,N∗0 = n∗0} =
(
n0∗
n00

)(
n−1−n0∗
n∗0−n00

)(
n−1
n∗0

) .

Assume that the lemma is true for K dimensions. We can do the inductive step based on
writing the intersection of K + 1 sets as an intersection of K sets followed by the intersection
of two sets:

K⋂
i=0

F∗i0∗K−i =
(K−1⋂
i=0

F∗i0∗K−i
)
∩ F∗K0 = F0K∗ ∩ F∗K0 = F0K+1 .

Taking into account all the possible values of N0K∗, we have:

Pr
{
N0K+1 = n0K+1

∣∣∣∣∣
K∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}

=
n∗K−10∗∑
n0K∗=0

(
Pr
{
N0K∗ = n0K∗

∣∣K−1∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}

× Pr
{
N0K+1 = n0K+1

∣∣∣∣∣N0K∗ = n0K∗,N∗K0 = n∗K0

})

=
n−1∑

n0K∗=0

(
Pr
{
N0K∗ = n0K∗

∣∣K−1∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}
×

(
n0K∗
n0K+1

)(
n−1−n0K∗
n∗K0−n0K+1

)(
n−1
n∗K0

) )
,
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applying the inductive hypothesis (14) (adding a ∗ to the end of each string) completes the
proof. Notice that we have used `i instead of n0i∗K−i and n〈i〉 = n∗i0∗K−1−i in the statement
of the theorem. J

I Lemma 6. Given a random two dimensional quadtree let N0∗, N∗0 and N00 be respectively
the random variables of the number of nodes west, south and south-west of the root. If f is
a real analytic function [9] in (0, 1), limn→∞ n0∗/n = u0∗ and limn→∞ n∗0/n = u∗0, where
u0∗, u∗0 ∈ (0, 1), then

lim
n→∞

E
{
f

(
N00

n

) ∣∣∣N0∗ = n0∗,N∗0 = n∗0

}
= lim
n→∞

n∗0∑
n00=0

((
n0∗
n00

)(
n−n0∗
n∗0−n00

)(
n
n∗0

) f
(n00

n

))

= lim
n→∞

n∗0∑
n00=0

((
n0∗
n00

)(
n−n0∗
n∗0−n00

)(
n
n∗0

) f
(n00

n

))
= f(u0∗u∗0). (15)

Proof. For simplicity, in the hypergeometric probability formulas we have replaced n− 1 by
n as in the limit they are the same.

Since f is real analytic all derivatives of f exist in (0, 1) and we can write, for some
x0 ∈ (0, 1),

f(x) =
∞∑
i=0

ai(x− x0)i =
∞∑
i=0

ai

i∑
k=0

(
i

k

)
(−x0)i−kxk.

Since the series on the right side converges we can use the linearity of expectations:

E {f(x)} =
∞∑
i=0

ai

i∑
k=0

(
i

k

)
(−x0)i−kE

{
xk
}
.

Therefore we only need to prove the lemma for f(x) = xk. If Xn,m,N is a hypergeometric
random variable with parameters n, m, and N then [10]:

E
{
Xk
n,m,N

}
= nm

N
E
{

(Xn−1,m−1,N−1 + 1)k−1} .
Based on that it is easy to prove by induction that for every k ∈ N there are integers ck,i,
with ck,k = 1, such that:

E
{
Xk
n,m,N

}
=

k∑
i=0

ck,i
nimi

N i
.

Therefore if f(x) = xk:

E
{
f

(
N00

n

) ∣∣∣N0∗ = n0∗,N∗0 = n∗0

}
= E

{
N k

00
nk

∣∣∣N0∗ = n0∗,N∗0 = n∗0

}

=
∑k
i=0 ck,i

n
i

0∗n
i

∗0
ni

nk
=

k∑
i=0

ck,i
n
i
0∗n

i
∗0

nink
.

In the last sum the only term that does not go to zero as n→∞ is the last one, where i = k.
Given that ck,k = 1, we have:

lim
n→∞

E
{
N k

00
nk
∣∣N0∗ = n0∗,N∗0 = n∗0

}
= lim
n→∞

n
k

0∗n
k

∗0
nk

nk
= lim
n→∞

(n0∗

n

)k(n∗0
n

)k
= uk0∗u

k
∗0.

That proves the lemma for f(x) = xk. J
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The lemma can be generalised to any dimension K using mathematical induction on
the number of dimensions, again assuming that the function f is real analytic (in several
variables).

I Lemma 7. Given a random quadtree let N〈i〉 be the random variable of the number of data
points that have their i-th coordinate less than the i-th coordinate of the root and the rest of
the coordinates undetermined and let N0K be the random variable of the size of the cuboid
where all the coordinates have values lower than the respective coordinates of the root. If f is
real analytic in (0, 1)K , limn→∞ n〈i〉/n = ui for 0 ≤ i < K, where ui ∈ (0, 1), then

lim
n→∞

E

{
f

(
N0K

n

)∣∣∣∣∣
K−1∧
i=0
N〈i〉 = n〈i〉

}
= f

(
K−1∏
i=0

ui

)
.

Proof. The base case K = 2 has been proved. Assume that the lemma is true for K
dimensions. Then:

lim
n→∞

E

{
f

(
N0K+1

n

)∣∣∣∣∣
K∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}

= lim
n→∞

n−1∑
n0K+1 =0

Pr
{
N0K+1 = n0K+1

∣∣∣∣∣
K∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}
f

(
n0K+1

n

)

= lim
n→∞

n−1∑
n0K+1 =0

n−1∑
n0K∗=0

(
Pr
{
N0K∗ = n0K∗

∣∣K−1∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}

× Pr
{
N0K+1 = n0K+1

∣∣∣∣∣N0K∗ = n0K∗,N∗K0 = n∗K0

}
f
(n0K+1

n

)
= lim
n→∞

n−1∑
n0K∗=0

Pr
{
N0K∗ = n0K∗

∣∣K−1∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}

× E
{
f
(N0K+1

n

)
|N0K∗ = n0K∗,N∗K0 = n∗K0

}
= lim
n→∞

n−1∑
n0K∗=0

Pr
{
N0K∗ = n0K∗

∣∣K−1∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}
× f

(
lim
n→∞

n0K∗n∗K0
(n− 1)n

)

= lim
n→∞

E

{
f

(
lim
n→∞

N0K∗n∗K0
(n− 1)n

)∣∣∣∣∣
K−1∧
i=0
N∗i0∗K−i−10 = n∗i0∗K−i−10

}
.

Replacing n − 1 by n, because in the limit they are equivalent, and using the induction
hypothesis (adding 0 at the end of each string) we have:

lim
n→∞

E

{
f

(
N0K+1

n

)∣∣∣∣∣
K∧
i=0
N∗i0∗K−i = n∗i0∗K−i

}
= f

(
lim
n→∞

(K−1∏
i=0

n∗i0∗K−i−10
n∗K0

)
n∗K0
n

)

= f
(

lim
n→∞

K∏
i=0

n∗i0∗K−i

n

)
= f

( K∏
i=0

u∗i0∗K−i
)
.

J

I Lemma 8. The real function f(x) = xa(1 − x)a is real analytic, i. e. it is infinitely
differentiable and agrees with its Taylor series, in the interval (0, 1) for any real number a.
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Proof. By the binomial series, or Newton’s generalized binomial theorem, f1(x) = (1− x)a
is real analytic in (−1, 1) and f2(x) = xa = (1 + (x− 1))a is real analytic in (0, 2). Therefore
their product, f(x), is real analytic in (0, 1). J
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1 Introduction

Let Xn denote the (random) number of comparisons when sorting n distinct numbers using
the algorithm QuickSort. Clearly X0 = 0, and for n ≥ 1 we have the recurrence relation

Xn
L= XUn−1 +X∗n−Un + n− 1,

where L= denotes equality in law (i.e., in distribution); Xk
L= X∗k ; the random variable Un is

uniformly distributed on {1, . . . , n}; and Un, X0, . . . , Xn−1, X∗0 , . . . , X∗n−1 are all independent.
It is well known that

EXn = 2 (n+ 1)Hn − 4n,

where Hn is the nth harmonic number Hn :=
∑n
k=1 k

−1 and (from a simple exact expression)
that VarXn = (1 + o(1))(7− 2π2

3 )n2. To study distributional asymptotics, we first center
and scale Xn as follows:

Zn = Xn − EXn

n
.
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Using the Wasserstein d2-metric, Rösler [8] proved that Zn converges to Z weakly as n→∞.
Using a martingale argument, Régnier [7] proved that the slightly renormalized n

n+1Zn
converges to Z in Lp for every finite p, and thus in distribution; equivalently, the same
conclusions hold for Zn. The random variable Z has everywhere finite moment generating
function with EZ = 0 and VarZ = 7 −

(
2π2/3

)
. Moreover, Z satisfies the distributional

identity

Z
L= UZ + (1− U)Z∗ + g(U).

On the right, Z∗ L= Z; U is uniformly distributed on (0, 1); U,Z,Z∗ are independent; and

g(u) := 2u ln u+ 2(1− u) ln(1− u) + 1.

Further, the distributional identity together with the condition that EZ (exists and) vanishes
characterizes the limiting Quicksort distribution; this was first shown by Rösler [8] under
the additional condition that VarZ <∞, and later in full by Fill and Janson [1].

Fill and Janson [2] derived basic properties of the limiting QuickSort distribution L(Z).
In particular, they proved that L(Z) has a (unique) continuous density f which is everywhere
positive and infinitely differentiable, and for every k ≥ 0 that f (k) is bounded and enjoys
superpolynomial decay in both tails, that is, for each p ≥ 0 and k ≥ 0 there exists a finite
constant Cp,k such that

∣∣f (k)(x)
∣∣ ≤ Cp,k|x|−p for all x ∈ R.

In this paper, we study asymptotics of f(−x) and f(x) as x→∞. Janson [3] concerned
himself with the corresponding asymptotics for the distribution function F and wrote this:
“Using non-rigorous methods from applied mathematics (assuming an as yet unverified
regularity hypothesis), Knessl and Szpankowski [4] found very precise asymptotics of both
the left tail and the right tail.” Janson specifies these Knessl–Szpankowski asymptotics for F
in his equations (1.6)–(1.7). But Knessl and Szpankowski actually did more, producing
asymptotics for f , which were integrated by Janson to get corresponding asymptotics for F .
We utilize the same abbreviation γ := (2− 1

ln 2 )−1 as Janson [3]. With the same constant c3
as in (1.6) of [3], the density analogues of (1.6) (omitting the middle expression) and (1.7)
of [3] are that, as x→∞, Knessl and Szpankowski [4] find

f(−x) = exp
[
−eγx+c3+o(1)

]
(1)

for the left tail and

f(x) = exp[−x ln x− x ln ln x+ (1 + ln 2)x+ o(x)] (2)

for the right tail.
We will come as close to these non-rigorous results for the density as Janson [3] does

for the distribution function and we also obtain corresponding asymptotic upper bounds
for absolute values of derivatives of the density. Although our asymptotics for f imply the
asymptotics for F in Janson’s Theorem 1.1, it is important to note that in the case of upper
bounds (but not lower bounds) we use his results in the proofs of ours.

The next two theorems are our main results.

I Theorem 1.1. Let γ := (2− 1
ln 2 )−1. As x→∞, the limiting QuickSort density function f

satisfies

exp
[
−eγx+ln ln x+O(1)

]
≤ f(−x) ≤ exp

[
−eγx+O(1)

]
, (3)

exp[−x ln x− x ln ln x+O(x)] ≤ f(x) ≤ exp[−x ln x+O(x)]. (4)
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I Theorem 1.2. Given an integer k ≥ 0, as x → ∞ the kth derivative of the limiting
QuickSort density function f satisfies∣∣∣f (k)(−x)

∣∣∣ ≤ exp
[
−eγx+O(1)

]
, (5)∣∣∣f (k)(x)

∣∣∣ ≤ exp[−x ln x+O(x)]. (6)

I Remark. The non-rigorous arguments of Knessl and Szpankowski [4] suggest that the
following asymptotics as x→∞ obtained by repeated formal differentiation of (1)–(2) are
correct for every k ≥ 0:

f (k)(−x) = exp
[
−eγx+c3+o(1)

]
, (7)

f (k)(x) = (−1)k exp[−x ln x− x ln ln x+ (1 + ln 2)x+ o(x)]. (8)

But these remain conjectures for now. Unfortunately, for k ≥ 1 we don’t even know how
to identify rigorously the asymptotic signs of f (k)(∓x)! Concerning k = 1, it has long been
conjectured that f is unimodal. This would of course imply that f ′(−x) > 0 and f ′(x) < 0
for sufficiently large x.

As already mentioned, Fill and Janson [2] proved that or each p ≥ 0 and k ≥ 0 there
exists a finite constant Cp,k such that

∣∣f (k)(x)
∣∣ ≤ Cp,k|x|−p for all x ∈ R. Our technique for

proving the upper bounds in Theorems 1.1 and 1.2 is to use explicit bounds on the constants
Ck := C0,k together with the Landau–Kolmogorov inequality (see, for example, [9]).

Our extended abstract is organized as follows. In Section 2 we deal with preliminaries: We
restate (to render this extended abstract self-contained) the asymptotic results of Janson [3,
Theorem 1.1], bound Ck explicitly in terms of k, review the Landau–Kolmogorov inequality,
and recall an integral equation for f that is the starting point for our lower-bound results. In
Section 3 we establish the left-tail upper bounds on |f (k)| for k ≥ 0 claimed in (3) and (5). In
Section 4, we establish the right-tail upper bounds on |f (k)| for k ≥ 0 claimed in (4) and (6).
Sections 5 and 6 derive the stated lower bounds on the left and right tails, respectively, of f
using an iterative approach similar to that of Janson [3] for the distribution function.

2 Preliminaries

2.1 Janson’s asymptotic bounds on F

The upper bounds in the following main Theorem 1.1 of Janson [3] are used in our proof of
the upper bounds in our Theorems 1.1 and 1.2.

I Proposition 2.1. Let γ := (2− 1
ln 2 )−1. As x→∞, the limiting QuickSort distribution

function F satisfies

exp
[
−eγx+ln ln x+O(1)

]
≤ F (−x) ≤ exp

[
−eγx+O(1)

]
, (9)

exp[−x ln x− x ln ln x+O(x)] ≤ 1− F (x) ≤ exp[−x ln x+O(x)]. (10)

2.2 Explicit constant bounds for absolute derivatives
We also make use of the following two results extracted from [2, Theorem 2.1 and (3.3)].

I Lemma 2.2. Let φ denote the characteristic function corresponding to f . Then for every
real p ≥ 0 we have

|φ(t)| ≤ 2p
2+6p|t|−p for all t ∈ R.
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I Lemma 2.3. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 1

2π

∫ ∞
t=−∞

|t|k |φ(t)| dt.

Using these two results, it is now easy to bound f (k).

I Proposition 2.4. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 2k

2+10k+17.

Proof. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 1

2π

∫ ∞
t=−∞

|t|k |φ(t)| dt

≤ 1
2π

[∫
|t|>1
|t|k |φ(t)| dt+

∫
|t|≤1
|t|k |φ(t)| dt

]

≤ 1
2π

[∫
|t|>1

2(k+2)2+6(k+2)t−2 dt+
∫
|t|≤1
|t|k dt

]

≤ 1
π

[
2k

2+10k+16 + 1
k + 1

]
≤ 2k

2+10k+17,

as desired. J

2.3 Landau–Kolmogorov inequality

For an overview of the Landau–Kolmogorov inequality, see [6, Chapter 1]. Here we state
a version of the inequality well-suited to our purposes; see [5] and [9, display (21) and the
display following (17)].

I Lemma 2.5. Let n ≥ 2, and suppose h : (0,∞) → R has n derivatives. If h and h(n)

are both bounded, then for 1 ≤ k < n so is h(k). Moreover, there exist constants cn,k (not
depending on h) such that the supremum norm ‖ · ‖ satisfies

‖h(k)‖ ≤ cn,k ‖h‖1−(k/n) ‖h(n)‖k/n, 1 ≤ k < n.

Further, for 1 ≤ k ≤ n/2 the best constants cn,k satisfy

cn,k ≤ n(1/2)[1−(k/n)](n− k)−1/2
(
e2n

4k

)k
≤
(
e2n

4k

)k
.

2.4 An integral equation for f

Fill and Janson [2, Theorem 4.1 and (4.2)] produced an integral equation satisfied by f ,
namely,

f(x) =
∫ 1

u=0

∫
z∈R

f(z) f
(
x− g(u)− (1− u)z

u

)
1
u
dz du. (11)
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3 Left Tail Upper Bound for Absolute Derivatives

The left-tail upper bound (5) in Theorem 1.2 can be written in the equivalent form that, for
each fixed integer k ≥ 0, we have

lim sup
x→∞

(
γx− ln

[
− ln

∣∣∣f (k)(−x)
∣∣∣]) <∞, (12)

just as Janson’s left-tail upper-bound on F in (9) can be written

lim sup
x→∞

(γx− ln [− lnF (−x)]) <∞. (13)

In this section we prove (5) ≡ (12) in the strengthened form LHS(3.1) ≤ LHS(3.2), for which
the following proposition is clearly sufficient.

I Proposition 3.1. For each fixed k ≥ 0 we have

lim sup
x→∞

(
− ln

[
− ln

∣∣∣f (k)(−x)
∣∣∣]+ ln[− lnF (−x)]

)
≤ 0. (14)

Proof. Choosing any x and applying the Landau–Kolmogorov inequality Lemma 2.5 to the
function h defined for t ≥ 0 by h(t) := F (−x− t), we find for 0 ≤ k ≤ (n/2)− 1 that∣∣∣f (k)(−x)

∣∣∣ ≤ sup
t≥x

∣∣∣f (k)(−t)
∣∣∣

≤
[

e2n

4(k + 1)

]k+1

[F (−x)]1−[(k+1)/n]
[
sup
t≥x

∣∣∣f (n−1)(−t)
∣∣∣](k+1)/n

.

For n ≥ 2 we can bound the last supremum using Proposition 2.4 simply by

2(n−1)2+10(n−1)+17 = 2n
2+8n+8 ≤ 27n2

. (15)

Thus the argument of the lim sup in (14) can be bounded above by

− ln
[
1− k + 1

n
− ln ak + (k + 1)(7n ln 2 + lnn)

− lnF (−x)

]
,

with ak := [e2/(4(k + 1))]k+1. Letting n ≡ n(x)→∞ with n(x) = o(eγx) and again using
the upper bound from (9), the claimed inequality follows. J

4 Right Tail Upper Bound for Absolute Derivatives

In this section we establish the next proposition, a right-tail analogue of Proposition 3.1,
which [by Janson’s right-tail upper bound on F in (10)] implies the following strengthened
form of (6):

lim sup
x→∞

x−1
(
x ln x+ ln

∣∣∣f (k)(x)
∣∣∣) ≤ lim sup

x→∞
x−1 (x ln x+ ln [1− F (x)]) <∞.

I Proposition 4.1. For each fixed k ≥ 0 we have

lim sup
x→∞

x−1
(

ln
∣∣∣f (k)(x)

∣∣∣− ln [1− F (x)]
)
≤ 0. (16)
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Proof. Proceeding as in the proof of Proposition 3.1, for any x and any 0 ≤ k ≤ (n/2)− 1
we have∣∣∣f (k)(x)

∣∣∣ ≤ [ e2n

4(k + 1)

]k+1

[1− F (x)]1−[(k+1)/n]
[
sup
t≥x

∣∣∣f (n−1)(t)
∣∣∣](k+1)/n

;

we again bound the third factor by (15).
Thus the argument of the lim sup in (16) can be bounded above by

x−1[k+1
n (− ln[1− F (x)]) + ln ak + (k + 1)(7n ln 2 + lnn)],

again with ak := [e2/(4(k+1))]k+1. Letting n ≡ n(x) satisfy n(x) = ω(log x) and n(x) = o(x),
and now using the right-tail lower bound on F from (10), the claimed inequality follows. J

5 Left Tail Lower Bound on f

Our iterative approach to finding the left tail lower bound on f is similar to the method
used by Janson [3] for F . The following lemma gives us an inequality that is essential in this
section; as we shall see, it is established from a recurrence inequality. For z ≥ 0 define

mz :=
(

min
x∈[−z,0]

f (x)
)
∧ 1.

I Lemma 5.1. Given ε ∈ (0, 1/10), let a ≡ a(ε) := −g
( 1

2 − ε
)
> 0. Then for any integer

k ≥ 2 we have

mka ≥
(
2ε3m2a

)2k−2

.

We delay the proof of Lemma 5.1 in order to show next how the lemma leads us to the
desired lower bound in (3) on the left tail of f by using the same technique as in [3] for F .

I Proposition 5.2. As x→∞ we have

ln f(−x) ≥ −eγx+ln ln x+O(1).

Proof. By Lemma 5.1, for x > a we have

f(−x) ≥ mx ≥ m
(⌈x
a

⌉
a
)
≥
(
2ε3m2a

)2dx/ae−2

≥
(
2ε3m2a

)2x/a
,

provided ε is sufficiently small that 2ε3m2a < 1. The same as Janson [3], we pick ε = x−1/2

and, setting γ = (2− 1
ln 2 )−1, get 1

a = γ
ln 2 +O(x−1) and

ln f(−x) ≥ 2
γ

ln 2x+O(1) · ln
(
2ε3m2a

)
= eγx+O(1) ·

(
− 3

2 ln x+ lnm2a + ln 2
)

≥ −eγx+ln ln x+O(1). J

Now we go back to prove Lemma 5.1:

Proof of Lemma 5.1. By the integral equation (11) satisfied by f (and symmetry in u about
u = 1/2), for arbitrary z and a we have

f(−z − a) = 2
∫ 1/2

u=0

∫
y∈R

f(y)f
(
−z − a− g(u)− (1− u)y

u

)
1
u
dy du. (17)
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Since f is everywhere positive, we can get a lower bound on f(−z − a) by restricting the
range of integration in (17). Therefore,

f(−z − a) ≥ 2
∫ 1/2

u= 1
2−

ε
2

∫ −z+ε2

y=−z
f(y)f

(
−z − a− g(u)− (1− u)y

u

)
1
u
dy du. (18)

We claim that in this integral region, we have −z−a−g(u)−(1−u)y
u ≥ −z, which is equivalent

to y+ z ≤ −a−g(u)
1−u . Here is a proof. Observe that when ε is small enough and u ∈ [ 1

2 −
ε
2 ,

1
2 ],

we have

−a− g(u)
1− u ≥

g
( 1

2 − ε
)
− g

( 1
2 −

ε
2
)

1
2 + ε

2

≥
ε
2
∣∣g′( 1

2 −
ε
2
)∣∣

1
2 + ε

2
= ε

1 + ε

∣∣∣∣2 ln
(

1− 2ε
1 + ε

)∣∣∣∣
≥ 4ε2

(1 + ε)2 ≥ ε
2.

Also, in this integral region we have y + z ≤ ε2. So we conclude that y + z ≤ −a−g(u)
1−u .

Next, we claim that −z−a−g(u)−(1−u)y
u ≤ 0 in this integral region if z is large enough.

Here is a proof. Let −z−a−g(u)−(1−u)y
u = −z + δ with δ ≥ 0. Then in the integral region we

have 0 ≤ y + z = −a−g(u)−uδ
1−u . Therefore

δ ≤ −a− g(u)
u

≤
−a− g

( 1
2
)

1
2 −

ε
2

= 2
1− ε

[
g

(
1
2 − ε

)
− g

(
1
2

)]
≤ 2ε

1− ε

∣∣∣∣2 ln
(

1− 4ε
1 + 2ε

)∣∣∣∣
≤ 19ε2,

where the last inequality can be verified to hold for ε < 1/10. That means if we pick z large
enough, for example, z ≥ 20ε2, then −z−a−g(u)−(1−u)y

u = −z + δ will be negative. It can also
be verified that a ≥ 30ε2 for ε < 1/10.

Now consider ε < 1/10, an integer k ≥ 3, z ∈ [(k − 2)a, (k − 1)a], and x = z + a ∈
[(k − 1)a, ka]. Noting z ≥ a ≥ 30ε2 > 20ε2, by (18) we have

f(−x) ≥ 2 · ε2 ·m
2
z · ε2 · 2 ≥ 2ε3m2

(k−1)a.

Further, for x ∈ [0, (k − 1)a] we have

f (−x) ≥ m(k−1)a > 2ε3m2
(k−1)a

since 2ε3 < 1 and m(k−1)a ≤ 1 by definition. Combine these two facts, we can conclude that
for x ∈ [0, ka] we have f (−x) ≥ 2ε3m2

(k−1)a. This implies the recurrence inequality

mka ≥ 2ε3m2
(k−1)a.

The desired inequality follows by iterating:

mka ≥
(
2ε3
)2k−2−1

m2k−2

2a ≥
(
2ε3 ·m2a

)2k−2

. J
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6 Right Tail Lower Bound on f

Once again we use an iterative approach to derive our right-tail lower bound. The following
key lemma is established from a recurrence inequality. Define

c := 2[F (1)− F (0)] ∈ (0, 2)

and

mz := min
x∈[0,z]

f(x), z ≥ 0.

I Lemma 6.1. Suppose b ∈ [0, 1) and that δ ∈ (0, 1/2) is sufficiently small that g(δ) ≥ b.
Then for any integer k ≥ 1 satisfying

2 + (k − 1)b ≤ [g(δ)− b]/δ

we have

m2+kb ≥ (cδ)k−1m3.

We delay the proof of Lemma 6.1 in order to show next how the lemma leads us to the
desired lower bound in (4) on the right tail of f .

I Proposition 6.2. As x→∞ we have

f(x) ≥ exp[−x ln x− x ln ln x+O(x)].

Proof. Given x ≥ 3 suitably large, we will show next that we can apply Lemma 6.1 for
suitably chosen b > 0 and δ and k = d(x− 2)/be ≥ 2. Then, by the lemma,

f(x) ≥ m2+kb ≥ (cδ)k−1m3 ≥ (cδ)(x−2)/bm3, (19)

and we will use (19) to establish the proposition.
We make the same choices of δ and b as in [3, Sec. 4], namely, δ = 1/(x ln x) and

b = 1− (2/ ln x). To apply Lemma 6.1, we need to check that g(δ) ≥ b and 2 + (k − 1)b ≤
[g(δ) − b]/δ, for the latter of which it is sufficient that x ≤ [g(δ) − b]/δ. Indeed, if x is
sufficiently large, then

g(δ) ≥ 1 + 3δ ln δ = 1− 3
x ln x (ln x+ ln ln x) ≥ 1− 4

x ,

where the elementary first inequality is (4.1) in [3], and so

g(δ)− b ≥ 2
ln x −

4
x ≥

1
ln x > 0

and

g(δ)− b
δ

≥ 1/ ln x
1/(x ln x) = x.

Finally, we use (19) to establish the proposition. Indeed,

− ln f(x) ≤ x−2
b ln( 1

cδ )− lnm3

≤ x
1−(2/ ln x) [ln(x ln x) + ln( 1

c )]− lnm3

= x
1−(2/ ln x) ln(x ln x) +O(x).
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But
x

1− (2/ ln x) ln(x ln x)

= x

[
1 + 2

ln x +O

(
1

(log x)2

)]
(ln x+ ln ln x)

= (x ln x)
[
1 + 2

ln x +O

(
1

(log x)2

)](
1 + ln ln x

ln x

)
= (x ln x)

[
1 + ln ln x

ln x + 2
ln x + 2 ln ln x

(ln x)2 +O

(
1

(log x)2

)]
= x ln x+ x ln ln x+ 2x+ 2x ln ln x

ln x +O

(
x

log x

)
= x ln x+ x ln ln x+O(x).

So

− ln f(x) ≤ x ln x+ x ln ln x+O(x),

as claimed. J

Now we go back to prove Lemma 6.1, but first we need two preparatory results.

I Lemma 6.3. Suppose z ≥ 2, b ≥ 0, and δ ∈ (0, 1/2) satisfy g(δ) ≥ b and z ≤ [g(δ)− b]/δ.
Then

f(z + b) ≥ c δ mz.

Proof. By the integral equation (11) satisfied by f (and symmetry in u about u = 1/2), for
arbitrary z and b we have

f(z + b) = 2
∫ 1/2

u=0

∫
y∈R

f(y)f
(
z + b− g(u)− (1− u)y

u

)
1
u
dy du.

Since f is positive everywhere, a lower bound on f (z + b) can be achieved by shrinking the
region of integration:

f (z + b) ≥ 2
∫ δ

u=0

∫ z

y=0
f(y)f

(
z + b− g(u)− (1− u)y

u

)
1
u
dy du

≥ 2mz

∫ δ

u=0

∫ z

y=0
f

(
z + b− g(u)− (1− u)y

u

)
1
u
dy du

= 2mz

∫ δ

u=0

∫ z+b−g(u)
u

ξ=z+ b−g(u)
u

f(ξ) 1
1− u dξ du. (20)

The equality comes from a change of variables. We next claim that the integral of
integration for ξ contains (0, z − 1), and then the desired result follows. Indeed, if u ∈ (0, δ)
and ξ ∈ (0, z − 1) then

ξ < z − 1 < z−1
u ≤

z+b−g(u)
u ,

where the last inequality holds because b ≥ 0 and g(u) ≤ 1; and, because g(u) ≥ g(δ) and
g(δ) ≥ b and z ≤ [g(δ)− b]/δ, we have

ξ > 0 = z + b−g(u)
u − [z + b−g(u)

u ] ≥ z + b−g(u)
u − [z + b−g(δ)

u ]

≥ z + b−g(u)
u − [z + b−g(δ)

δ ] ≥ z + b−g(u)
u . J

AofA 2018
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I Lemma 6.4. Suppose b ≥ 0 and that δ ∈ (0, 1/2) is sufficiently small that g(δ) ≥ b. Then
for any integer k ≥ 2 satisfying

2 + (k − 1)b ≤ [g(δ)− b]/δ

we have

m2+kb ≥ c δ m2+(k−1)b.

Proof. For y ∈ [2 + (k − 1)b, 2 + kb], application of Lemma 6.3 with z = y − b yields

f(y) ≥ c δ my−b ≥ c δ m2+(k−1)b.

Also, for y ∈ [0, 2 + (k − 1)b] we certainly have

f(y) ≥ m2+(k−1)b > c δm2+(k−1)b.

The result follows. J

We are now ready to complete this section by proving Lemma 6.1.

Proof of Lemma 6.1. By iterating the recurrence inequality of Lemma 6.4, it follows that

m2+kb ≥ (c δ)k−1m2+b.

Lemma 6.1 then follows since b < 1. J
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Abstract
The paper deals with load balancing between one-server queues on a circle by a local choice
policy. Each one-server queue has a Poissonian arrival of customers. When a customer arrives
at a queue, he joins the least loaded queue between this queue and the next one, ties solved
at random. Service times have exponential distribution. The system is stable if the arrival-to-
service rate ratio called load is less than one. When the load tends to zero, we derive the first
terms of the expansion in this parameter for the stationary probabilities that a queue has 0 to
3 customers. We investigate the error, comparing these expansion results to numerical values
obtained by simulations. Then we provide the asymptotics, as the load tends to zero, for the
stationary probabilities of the queue length, for a fixed number of queues. It quantifies the
difference between policies with this local choice, no choice and the choice between two queues
chosen at random.
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1 Introduction

1.1 A load balancing policy
The paper deals with the impact of choice between two neighbors in a large set of queues.
Load balancing is present in a wide literature and includes various policies as choice, offloading,
redundancy or work stealing ([6], [17], [8] and others) for example. The two-choice policy
is a well-known distributed way to improve load balancing. See [14] and [12] for one-server
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queues. For this policy, the arriving customers choose two queues at random and join the
shortest one, ties being solved at random. The paper focuses on the case where only local
choice can be processed. This case occurs in many applications with geographical constraints,
like vehicle-sharing systems or cloud computing.

1.2 The model
The model we present is called local choice model. It consists in a set of N one-server queues
with infinite capacity where customers arrive at each queue according to independent Poisson
processes with rate λ, which means that inter-arrival times are independent with exponential
distribution with parameter λ. When a customer arrives at queue i, 1 ≤ i ≤ N , he chooses
between queues i and i+ 1 the least loaded one and joins it. By convention, queue N + 1
is queue 1. If queues i and i+ 1 have the same number of customers, he joins one of these
queues with probability 1/2. The service times are iid with exponential distribution with
parameter µ. When the customer is served, he leaves the system. All inter-arrival and service
times are independent. The load ρ is by definition λ/µ.

1.3 The problem
The main issue addressed in the paper concerns the marginal distribution of the number
of customers in one queue at equilibrium for the local choice model. We investigate the
asymptotics of the stationary probabilities for one queue as the load tends to zero. The
number N of queues is fixed throughout the paper. We compare them with the same
quantities for the random choice model, where an arriving customer chooses two queues at
random and joins the least loaded one and the no choice model, where a customer who arrives
at queue i is served at this queue.

The no choice model is simply N independent M/M/1 queues. The random choice model
is classical, see [14] and [12]. For ρ < 1, the limiting stationary tail probability, i.e. the limit
as N gets large of the stationary probability that a queue has more than k customers, is
doubly exponentially decreasing, more precisely is ρ2k−1, k ≥ 0. This doubly exponential
decrease is known in the literature as the power of choice. Indeed it is much smaller than the
tail probability ρk, k ≥ 0 in the no choice model as in the M/M/1 queue, the queue length
stationary distribution is geometric with parameter ρ. What is this tail probability for the
local choice model?

1.4 The results
They concern the local choice model previously described. In the paper, N is fixed and ρ < 1
to ensure the ergodicity of the queue length process. We consider the stationary probabilities
as analytical functions of parameter ρ. Based on some crucial arguments (see Lemmas 2
and 3), an induction procedure provides all the terms of the power series expansion. We
apply this procedure to find the first terms explicitly. Then, in the study of the marginal
distribution for one queue, it gives the first terms (at order 6) of the expansion in ρ of the
stationary probability that a queue has m customers, for small m (m ≤ 3). This expansion
is an approximation for the stationary probability at light traffic, which is compared to
simulations.

The main result of the paper gives the asymptotics as ρ tends to 0 of the stationary
probability that a queue has m customers, for any m. It is claimed in Proposition 8 that
these asymptotics are 2ρ2m−1 for N = 2 and 12(ρ/2)2m−1 for N ≥ 3. It gives the rate of



P. S. Dester, C. Fricker, and H. Mohamed 22:3

decay in parameter ρ of the stationary queue length at light traffic, which is ρ2 for N = 2
and (ρ/2)2 for N ≥ 3. In other words, compared to the N independent M/M/1 queues, the
local choice model does not lead an improvement as large as in the random choice model
which is doubly exponential.

1.5 Related work

The choice between two queues at random among N one-server queues is well understood
for N large via mean-field method for the late 90’s with [14] and [12] and knows a great
interest in literature. Nevertheless, local choice is a quite challenging open problem in
queueing theory. As far as we know, very few papers investigate the problem. For this
model, where the underlying graph is linear, more precisely a circle, and more generally for a
graph G = (V,E), [7] gives an approximation of the steady-state queue length distribution
which seems numerically accurate compared to simulations. This approximation, called
pair-approximation, is obtained from the empirical measure on pairs of neighbors. It is a
mean field limit as the graph gets large. But this limit, solution of an ODE, is hard to study
analytically. In [7], the expression of the ODE is explicitly given, but its equilibrium point is
investigated by numerical simulations.

The series expansion of the stationary probabilities in parameter ρ is the key tool in
[2] for the study of the JSQ model. It is the classical model of N queues, where arriving
customers join the shortest queue among all the queues. The paper gives asymptotics in
light traffic for the mean and the variance of the total number of customers at equilibrium.
Nevertheless the method to obtain them is quite different.

1.6 Related models

Some papers deal with such models, but without departure. They are called urn models in
computer science literature, and deposition models or crystal growth models in statistical
physics. The problems addressed in both cases are quite different.

THE URN MODEL. Urns are put at vertices of a finite graph G = (V,E) with |V | = N .
Arrival of balls are associated to edges. For each ball, an edge is chosen at random and
the ball is put in the least loaded of the two end-points of the edge. The problem of the
maximum number of balls per urn for N balls in N urns is investigated. The conclusion is
that the power of choice does not hold for d-regular graphs, d constant, as this maximum
is not in log logN (see [10], also [3] and references therein). But the main difference with
our study is that we deal with the stationary regime. The poor load balancing result in the
urn problem might come from the fact that with N balls in N urns, the equilibrium is not
reached.

THE CRYSTAL GROWTH MODEL. In this model, consider N sites 1, . . . , N . There is
also no departure. Particles arrive at each site, say i, at rate λ. If the two (respectively just
one or none) neighboring sites i − 1 and i + 1 have more particles than site i, the arrival
rate at the site i is β2, β1 and β0, respectively. [9, 1, 5] give ergodic conditions for the shape
process, which is Markov. Our arrival process is a variant of this model in the special case
where β0 = 0 and β2 = 2β1 (see Section 2 for details). Note that if we extend the local
choice model, to the case where the customers, arriving at queue i, choose between the two
neighboring queues i and i+ 1 with some probability α and do not choose otherwise, it will
still fit in this framework as a variant, but with β0 6= 0.

AofA 2018
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1.7 Outline
The paper is organized as follows. Section 2 gives the model description and the notations.
Section 3 leads to the induction procedure to obtain the power series expansion of the
stationary state probabilities of the model. Section 4 deals with the results for the marginal
distribution for one queue.

2 Model description and notations

Consider a system of N queues with infinite capacities, each of them served by one server at
rate µ. In all the following, queue N + 1 means queue 1. The arrival rate at each queue is
λ but the arriving customer at queue i joins the least loaded queue between queues i and
i+ 1, ties being solved at random. All inter-arrival and service times are independent with
exponential distribution. The i.i.d. Bernoulli variables with parameter 1/2 introduced to
solve the ties are independent of the previous random variables. By definition, ρ = λ/µ.

2.1 The state process
For 1 ≤ i ≤ N , let Xi(t) be the number of customers at queue i at time t and X(t) =
(Xi(t))1≤i≤N . The queue length process (X(t))t≥0 is a Markov process on state space NN
with Q-matrix Q, given for n = (n1, . . . , nN ) here and in all the following, by its non-negative
components, for 1 ≤ i ≤ N ,

Q(n, n+ ei) = λci(n)
Q(n, n− ei) = µ1ni>0

where c : N× NN −→ R+, called the contribution function, quantifies the amount of arrivals
at the different queues and (ei)1≤i≤N is the canonical basis of RN .

For our local choice model, this contribution function is called local choice function and is
denoted by clc. Function clc at queue i, depends only on the state of this queue and the two
neighboring queues i− 1 and i+ 1 and is defined by

clci (n) = d(ni, ni+1) + d(ni, ni−1) where d(k, l) = 1
21{k=l} + 1{k<l} (1)

with, by convention, n0 = nN and nN+1 = n1. Dispatching function d is the basis of our
local choice model since it implements the load balancing policy: join the least loaded among
two neighboring queues.
I Remark. The local choice function clc can also be defined by

clci (n) = ω(∆i−1n,−∆in),

in terms of the shape function ∆ defined by n 7→ ∆n = (∆1n, . . . ,∆Nn) where ∆jn =
nj − nj+1, 1 ≤ j ≤ N and the so-called deposition function ω given by

ω(a, b) = 1
2
(
1{a=0} + 1{b=0}

)
+ 1{a>0} + 1{b>0}, a, b ∈ Z. (2)

Note that the Gates-Wescott process studied in [5] is the shape process (∆X(t)) for the
model without departure associated to the following deposition function

ω(a, b) = β1{a>0}+1{b>0} , a, b ∈ Z, (3)

with β0, β1 and β2 > 0.
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3 An algorithm to compute the stationary distribution

In this section we study, for N fixed, the queue length process (X(t)) at stationarity. We
prove first that (X(t)) is ergodic for ρ < 1 if c = clc. See Proposition 1. For a general c, if
(X(t)) is ergodic, it has a unique invariant measure y = (yn, n ∈ NN ) on NN , solution of the
global balance equations∑

n′∈NN

y(n′)Q(n′, n) = 0, n ∈ NN . (4)

Our aim is not to solve these equations but rather look for an analytical solution for y of
the form

yn(ρ) =
∑
k≥0

αk(n)ρk, n ∈ NN .

Assuming the existence of ε > 0 such that the solution of the global balance equations yn(ρ)
has a serie expansion for 0 < ρ < ε, we prove that each αk, k ≥ 0, has a finite support.
See Lemma 4. Then we explain the algorithm to obtain by induction on k ≥ 0 the explicit
expressions of αk and compute explicitely the first terms.

3.1 Ergodicity for clc

For local choice, contribution function clc is given by equation (1). The following result gives
us the necessary and sufficient condition for ergodicity of the Markov state process (X(t)) in
this case.

I Proposition 1 (Ergodicity). For c = clc, the Markov process (X(t))t≥0 is ergodic if ρ < 1
and transient if ρ > 1.

The proof based on Foster’s criterion is postponed in Appendix.

3.2 Power series expansion in ρ of the stationary probabilities
For ρ such that (X(t)) is ergodic, let y(ρ) = (yn(ρ), n ∈ NN ) be its invariant measure, the
unique solution of the global balance equations(

N∑
i=1

1{ni>0} + ρ

N∑
i=1

ci(n)
)
yn(ρ) =

N∑
i=1

yn+ei(ρ) + ρ

N∑
i=1

1{ni>0}ci(n − ei)yn−ei(ρ), n ∈ NN (5)

obtained by plugging the expression of Q in equation (4).
We look for an invariant measure (yn, n ∈ NN ) satisfying the following condition.

(H0) There exists ε > 0, such that, for ρ ∈ [0, ε[ and n ∈ NN ,
yn(ρ) can be written as a series expansion of the form

yn(ρ) =
∑
k≥0

αk(n)ρk. (6)
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I Remark. In all the following, (H0) will be assumed. This question of analyticity of
stationary probabilities of a family of Markov chains depending on one parameter is the
major issue addressed by [16, Chapter IV] (see also [15, Chapter 7]). The main tool for
proving such analyticity is the Lyapunov function in Foster’s criterion for ergodicity. We
get a quadratic Lyapunov function to prove the ergodicity in Proposition 1 (see the proof
in Appendix A). But the dynamics of our model do not allow to apply the results of [16,
Chapter IV] or [15, Chapter 7], due to the contribution function part. This question is the
object of future work.

Moreover the following technical assumption∑
k≥0

∑
n∈NN

αk(n)ρk =
∑
n∈NN

∑
k≥0

αk(n)ρk, ρ < ε (7)

is used.

I Remark. According to Proposition 1, for c = clc, as analyticity requires the existence of
the stationary measure, thus implicitly the ergodicity of process (X(t)), it holds that ε ≤ 1.
Note that assumption (H0) could have been written with 1 instead of ε. We introduce ε in
(H0) of this form because some results in the following apply for more general c than clc,
where the ergodicity condition can be written ρ < ε.

Under assumption (H0), for each n ∈ NN , ρ 7→ yn(ρ) is C∞ on [0, ε[ and αk(n) =
y

(k)
n (0)/k!. Taking the k-th derivative in the global balance equations (5) with respect to ρ
and evaluating it at ρ = 0, it holds that, for any n ∈ NN and k ∈ N∗,(

N∑
i=1

1{ni>0}

)
αk(n) =

N∑
i=1

αk(n+ ei) +
N∑
i=1

1{ni>0}ci(n− ei)αk−1(n− ei)−
(

N∑
i=1

ci(n)
)
αk−1(n). (8)

3.3 Some crucial lemmas
Equation (8) allows us to prove that, for k fixed, αk has a finite support. It is the purpose
of Lemma 4. For that, we need to prove the two following technical lemmas. Lemma 2,
formulated with α for sake of simplicity, will be applied for each αk, k ≥ 1. Before that, let
us introduce the following set

Ak
def= {n ∈ NN , n1 + n2 + . . .+ nN = k}, k ∈ N. (9)

I Lemma 2. Let α : NN −→ R and k0 ∈ N∗ be such that, for n = (n1, . . . , nN ) with
|n| = n1 + · · ·+ nN > k0,
(i) α(n) ≥ 0,
(ii) the following recurrence equation holds,(

N∑
i=1

1{ni>0}

)
α(n) =

N∑
i=1

α(n+ ei), (10)

(iii)
∑
n,|n|>k0

α(n) <∞
then, for all n such that |n| > k0, α(n) = 0.
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Proof. Let k0 ∈ N∗ be fixed. First, we claim that, for any k > k0,

∑
n∈Ak

N∑
i=1

α(n+ ei) =
∑

n∈Ak+1

(
N∑
i=1

1{ni>0}

)
α(n). (11)

Indeed, for n ∈ Ak+1, for i such that ni 6= 0, α(n) can be written as α(n̂+ ei), for a unique
n̂ ∈ Ak. The number of elements in Ak that can generate n when we add them to ei is exactly
equal to the number of non-zero coordinates ni of n, 1 ≤ i ≤ N . Therefore, equation (11)
holds.

Then we replace
∑N
i=1 α(n + ei) in the left-hand side of (11) by the left-hand side of

equation (10). It yields, for any k > k0,

∑
n∈Ak

(
N∑
i=1

1{ni>0}

)
α(n) =

∑
n∈Ak+1

(
N∑
i=1

1{ni>0}

)
α(n).

Thus, for any k > k0,

∑
n∈Ak

(
N∑
i=1

1{ni>0}

)
α(n) = C (12)

where C is non-negative due to (i) and independent of k. As
∑N
i=1 1{ni>0} ≤ N ,∑

n∈Ak

Nα(n) ≥ C.

If C > 0,
∑
k>k0

∑
n∈Ak

α(n) diverges, since
∑
n∈Ak

α(n) ≥ C

N
> 0. But, this contradicts the

fact that
∑
n,|n|>k0

α(n) <∞. Thus C = 0. Using the fact that α(n) ≥ 0 in equation (12),
for all n such that |n| > k0, α(n) = 0. J

The following lemma is a key argument for both computing the αk(n) (see Section 3.4)
and in the proof of Lemma 4.

I Lemma 3. The following property holds:∑
n∈NN

αk(n) = 0, k > 0. (13)

Proof. Permuting the sums, by equation (7), it holds that, for ρ < ε,

∑
k≥0

( ∑
n∈NN

αk(n)
)
ρk =

∑
n∈NN

∑
k≥0

αk(n)ρk
 =

∑
n∈NN

yn(ρ) = 1.

as y(ρ) = (yn(ρ), n ∈ NN ) is a probability measure. The left-hand side of this equation is a
power series whose all the terms except the first one are null. It ends the proof. J

We can now prove the following result.

I Lemma 4. Let k ∈ N. For all n, |n| > k, αk(n) = 0.
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Proof. We prove this assertion by induction on k. Take k = 0. From equation (6), yn(0) =
α0(n). As the invariant measure for ρ = 0 (no arrival) is yn(0) = δ0N

, the Dirac mass
at (0, . . . , 0) ∈ NN denoted by 0N , the assertion is true for k = 0. Let k ∈ N be fixed.
If we suppose that the assertion holds for k′ ≤ k, then Lemma 2, applied to α = αk+1
and k0 = k + 1, guarantees that the assertion is true for k′ = k + 1. Indeed let us check
assertions (i), (ii) and (iii) for all n with |n| > k + 1. Let such a n be fixed. In equation (8),
α(k+1)−1(n) = α(k+1)−1(n− ei) = 0 since |n| > k and |n− ei| > k and induction assumption.
Therefore equation (8) is rewritten as equation (10), giving (ii). Moreover, by induction
assumption, in equation (6), αk+1(n) represents the first possible non-zero coefficient for
yn(ρ). This coefficient αk+1(n) ≥ 0, because otherwise, as

yn(ρ) ∼ρ→0 αk+1(n)ρk+1,

it would exist ρ such that yn(ρ) < 0, which is false as y(ρ) is a probability measure. It gives
(i). Eventually, by equation (13),

∑
n=(n1,...,nN ) αk+1(n) = 0 and, as

∑
|n|≤k+1 αk+1(n) is

finite, then
∑
|n|>k+1 αk+1(n) is finite too, which is (iii). J

3.4 Induction procedure
The algorithm to obtain all the coefficients αk(n) is an induction procedure on k ≥ 0. We
use that α0 = δ0N

and key equation (8). For k ≥ 1, assume that we know the coefficients
αk−1(n), for all n ∈ NN and find the coefficients αk(n), n ∈ NN . First, by Lemma 4,
αk(n) = 0 for |n| > k. Second we derive each coefficient αk(n) for n ∈ Ak, defined by
equation (9), as the left-hand side of equation (8). Indeed, in the right-hand side of the same
equation, the first term is null due to Lemma 4. The other terms are known as coefficients
for k − 1. By the same procedure, we compute the αk(n) for n ∈ Ak−1: Since n+ ei ∈ Ak,
we still know also the first term of the right-hand side of equation (8). Then we determine
the coefficients for n ∈ Ak−2, n ∈ Ak−3 and so on, until n ∈ A1. It remains to compute the
last coefficient αk(0N ). It is given by the additional equation (13) in Lemma 3.

I Remark. For Lemma 4 and the previous induction procedure, we do not use the specific
expression (1) of contribution function c. We just choose ρ in the domain of analyticity of
the yn, n ∈ NN . What follows remains valid for a general contribution function c satisfying
the following additional assumptions

(H1) For n ∈ NN , c1(n) + · · ·+ cN (n) = N.

(H2) c is invariant by cyclic permutation or reflection (reverse order).

More precisely, the second assumption means that, for such a permutation σ on {1, 2, ..., N},
for n ∈ NN and 1 ≤ i ≤ N , cσ(i)(σ(n)) = ci(n). These assumptions are obviously true for
the local choice function c = clc defined by equation (1).

3.5 Deriving the first terms
Let us derive the coefficients until order 3 under (H0), (H1) and (H2). It is given by the
following proposition.

I Proposition 5. For k = 0,

α0(n) = 1{n=0N}. (14)
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For k = 1,
α1(0N ) = −N,
α1(ei) = 1, 1 ≤ i ≤ N
α1(n) = 0 otherwise.

(15)

For k = 2, for i, j ∈ {1, 2, ..., N},
α2(0N ) = 1

2(N2 −Nc1(e1)),

α2(ei) = −N,
α2(ei + ej) = ci(ej),
α2(n) = 0 otherwise.

(16)

For k = 3, for all i, j, l ∈ {1, 2, ..., N}, i 6= j, j 6= l and l 6= i,

α3(0N ) = −
∑
n 6=0N

α3(n)
α3(ei) = 1

2 (N2 −Nc1(e1))
α3(ei + ej) = 1

2

(∑N
v=1 α3(ei + ej + ev)− 3Nci(ej)

)
,

α3(2ei) = 1
2

(∑N
v=1 ci(ev)ci(ei + ev)− 3Nci(ei)

)
,

α3(ei + ej + el) = 1
3 (ci(ej)cl(ei + ej) + cj(el)ci(ej + el)
+cl(ei)cj(el + ei)),

α3(2ei + ej) = 1
2 (ci(ej)ci(ei + ej) + ci(ei)cj(2ei)) ,

α3(3ei) = c1(e1)c1(2e1)
α3(n) = 0 otherwise.

(17)

Proof. For ρ = 0, the solution is yn(0) = 1{n=0N}, which gives the coefficients for k = 0. For
k = 1, 2 and 3, we use the method previously described and assumptions (H1) and (H2). J

It is interesting to notice that, for k = 0 and 1, the coefficients αk(n) do not depend
on the choice function c. It means that, for ρ sufficiently small, the choice policy does not
influence the system. For k ≥ 4, the expressions become huge, which is not a problem if
performed numerically.

4 Marginal distribution for one queue

Our objective is to study the expansion of the stationary probability that queue i, 1 ≤ i ≤ N ,
has m ∈ N customers assuming an analytical solution for y. We give the series expansion
at order 6, for small m (m ≤ 3), for the local choice contribution function. Moreover
we investigate the accuracy of this expansion, compared to numerical values obtained by
simulations. Then the main result of the section provides the first term of the expansion for
every m ≥ 1.

As our system is invariant by cyclic permutation, by assumption (H2), for m ∈ N and
i ∈ {1, . . . , N}, the probability that queue i has m customers does not depend on i. This
probability, denoted by πm(ρ), is given by

πm(ρ) =
∑

n=(n1,...,nN ),n1=m

yn(ρ). (18)
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Under assumption (H0) that yn(ρ) is analytical on [0, ε[, πm(ρ) has a series expansion, that
can be written as

πm(ρ) =
∑
k≥0

φk(m)ρk, 0 ≤ ρ < ε (19)

where φk(m) = π
(k)
m (0)/k! is given from equation (6) by

φk(m) = 1{m≤k}
∑

n2+n3+...+nN≤k−m

αk(m,n2, n3, ..., nN ). (20)

4.1 Expansion for a general contribution function

Note that, in equation (20), φm(m) is the first possibly non-null coefficient of the expansion
of πm(ρ). This follows directly from Lemma 4. Moreover this coefficient is derived in the
following proposition, which also gives the third order expansion of the πm’s.

I Proposition 6. If the choice function c satisfies (H0), (H1) and (H2), then

π0(ρ) = 1− ρ,
π1(ρ) = ρ− c1(e1)ρ2 +

(
Nc1(e1)−

∑N
j=1 c1(e1 + ej)c1(ej)

)
ρ3 +O(ρ4),

π2(ρ) = c1(e1)ρ2 −
(
Nc1(e1)−

∑N
j=2 c1(e1 + ej)c1(ej)

)
ρ3 +O(ρ4),

πm(ρ) =
(∏m−1

j=1 c1(je1)
)
ρm +O(ρm+1), m ≥ 3

(21)

where ρ tends to 0.

Proof. Equation (21) comes straightforwardly from equation (19) and two intermediate
results, Lemma 9 and Lemma 10, postponed in Appendix. Note that, as at equilibrium the
rates of incoming and outgoing customers are the same, i.e., Nλ = Nµ(1 − π0), it gives
another way to obtain that π0(ρ) = 1− ρ. J

4.2 Expansions for the local choice contribution function

Equation (21) can be rewritten in the case of the local choice function c = clc defined by
equation (1). It gives the following result.

I Corollary 7. For the local choice function clc, for N ≥ 3

π0(ρ) = 1− ρ, π1(ρ) = ρ− 3
2ρ

3 +O(ρ4),

π2(ρ) = 3
2ρ

3 +O(ρ4), πm(ρ) = O(ρm+1), m > 2.

For N = 2, the coefficient 3/2 of ρ3 is replaced by 2.

The main point is that φm(m) is null in this case. The aim will be to find the first non
vanishing term of the expansion of πm(ρ) for every m ≥ 1. It is the purpose of Section 4.6.
Let us begin by giving more terms in the previous series expansion.
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Figure 1 Invariant distribution π = (πm,m ∈ N) of the number of customers in one queue for a
set of N queues with local choice.

4.3 Further expansions for the local choice function
As the amount of cases to analyze grows exponentially with k, it is rather difficult to obtain
further series expansions. The following expansions are obtained with help of mathematical
software. For that, we observe the following property, which remains to be proved, that for
each k ∈ N, there exists N0(k) such that if N > N0(k), for each m ≥ 1, φk(m) does not
depend on N . For small values of k, it is easy to see that this property holds, given the
recurrence equation and the local choice function. Using this, from global balance equations
(5) for some N sufficiently large, the following result holds. For ρ < 1 tending to 0,

π0(ρ) = 1− ρ

π1(ρ) = ρ− 3
2ρ

3 + 11
8 ρ

4 − 7
3ρ

5 + 10727
2880 ρ

6 +O(ρ7)

π2(ρ) = 3
2ρ

3 − 11
8 ρ

4 + 47
24ρ

5 − 1583
320 ρ

6 +O(ρ7)

π3(ρ) = 3
8ρ

5 + 11
9 ρ

6 +O(ρ7)

πi(ρ) = O(ρ7), i > 3.

4.4 Validation by simulation
In Figure 1, we investigate numerically the accuracy of the previous expansion. Recall that
π is the stationary queue length distribution of any queue in this symmetric system of N
queues. In figure 1a, we plot πm for m = 0, 1, 2 and 3 as a function of ρ given by simulation
and by the series expansion at order 6. The conclusion is that the previous series expansion
gives a quite good approximation for small values of ρ (ρ ≤ 0.3), reasonable for ρ ≤ 0.4.
Figure 1b gives the distribution for different small values of ρ. It indicates that, as ρ increases,
the distribution deviates from a geometric distribution. Moreover, the series expansion gives
a quite good approximation for ρ ≤ 0.4.

4.5 No choice policy: the case of independent queues
For the case where each queue receives independently customers at rate λ and serves them
at rate µ, the contribution function becomes ci(n) = 1, n ∈ NN and i ∈ N. We can easily
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verify that

αk(n) = (−1)k−|n|
(

N

k − |n|

)
1|n|≤k

satisfies equation (8), where |n| = n1 + . . .+nN . Using equation (20), we have for any r ∈ N,
0 ≤ r ≤ k,

φk(k − r) = (−1)r
r∑
i=0

(−1)i
(
N − 2 + i

i

)(
N

r − i

)
= (−1)r1{r≤1}. (22)

The term
(
N−2+i

i

)
comes from the fact that we need to distribute the remaining i customers

in the remaining N−1 queues. The last equality, of the form ar = br for all r ∈ N, is obtained
proving that the generating functions

∑
r≥0 arzr and

∑
r≥0 brzr are equal by developing the

product

1 + z = (1 + z)N 1
(1 + z)N−1 .

With straightforward algebra, plugging equation (22) in equation (19), we retrieve that the
stationary distribution π(ρ) = (πm(ρ),m ∈ N) for one queue is the geometric distribution
with parameter ρ, as each queue is a M/M/1 queue with arrival-to-service-rate ratio ρ = λ/µ.

4.6 Main result: Asymptotics for the stationary queue length
distribution in light traffic

Let us then present the main result.

I Proposition 8. For the local choice function clc defined by equation (1) and under as-
sumption (H0), for m ≥ 2, the stationary probability πm(ρ) that a queue has m customers
verifies

πm(ρ) =

12
(ρ

2

)2m−1
+O(ρ2m) if N ≥ 3

2ρ2m−1 +O(ρ2m) if N = 2

when ρ tends to zero.

Proposition 8 guarantees that, for ρ sufficiently small, the probability of having m

customers in the queue follows a geometric decay of parameter ρ2/4 as m grows. The
following table illustrates where the local choice is situated.

Table 1 Comparison of asymptotics for the stationary probability that a queue has more than k
customers in light traffic (as parameter ρ tends to 0) for different allocation policies, N ≥ 3.

Allocation
policy uk =

∑
k≥k

πm

No-choice ∼ ρm

Local choice ∼ (ρ/2)2k−1

Random choice ∼ ρ2k−1
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As expected, the performance of local choice policy is between the other two policies.
However, for light traffic, its behavior is closer to no choice than to random choice. Indeed,
the two first asymptotics are exponential while the third one is double exponential in ρ.

The light-traffic asymptotics obtained in this paper are for the limit when t tends to
+∞ first and then N tends to +∞, since the asymptotic result is independent of N for
N ≥ 3, while from mean-field approximation for the random choice model the limit is when
N first and then t tends to +∞. The comparison we made is rigorous and justified by the
interchange of the order of these two limits, see [14].
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A Proof of Proposition 1

Proof. Assume that ρ < 1. We prove ergodicity by Foster’s criterion for Markov processes
based on a Lyapunov function (see for example [13, Proposition 8.14]). Here the Lyapunov
function f is quadratic, given by f(n) = n2

1 + · · ·+ n2
N , n = (n1, . . . , nN ).

Let us denote |n| =
∑N
i=1 ni. The infinitesimal generator is given by

Lf(n) =
∑
n′∈NN

Q(n, n′)(f(n′)− f(n))

=
N∑
i=1

λci(n)(f(n+ ei)− f(n)) + 1ni>0µ(f(n− ei)− f(n)), (23)

for f : NN → R with finite support. With straightforward algebra, using equation (1), it
holds that

n1c
lc
1 (n) + · · ·+ nNc

lc
N (n) ≤ |n| and clc1 (n) + · · ·+ clcN (n) = N. (24)

This gives

L(f)(n) = λ

N∑
i=1

clci (n)((ni + 1)2 − n2
i ) + µ

N∑
i=1

1ni>0((ni − 1)2 − n2
i ) (25)

= 2λ
N∑
i=1

clci (n)ni + λ

N∑
i=1

clci (n)− 2µ
N∑
i=1

ni + µ

N∑
i=1

1ni>0

≤ (λ+ µ)N − 2(µ− λ)|n|.

By the equivalence of norms in RN , there is a constant C > 0 such that, for all n,
√
f(n) ≤

C−1|n| where |n| = n1 + · · ·+ nN . Thus, if f(n) > K then |n| ≥ C
√
K. As ρ = λ/µ < 1, K

can be chosen large enough to get γ = −(λ+ µ)N + 2(µ− λ)C
√
K > 0.

Thus, by equation (25), if f(n) > K then L(f)(n) ≤ −γ. Moreover the set F = {n ∈
NN , f(n) ≤ K} is finite and the random variables sup0≤s≤1 f(X(s)) and

∫ 1
0 L(f)(X(s))ds

are integrable. Indeed,

sup
0≤s≤1

f(X(s)) ≤ C−2 sup
0≤s≤1

|X(s)|2 ≤ C−2(NλN ([0, 1[)2

where the arrival process in the system, denoted by NλN , is a Poisson process with intensity
λNds, as the sum of the N independent Poisson processes with parameter λ of arrivals at
the N queues. Using again equation (25),∫ 1

0
L(f)(X(s))ds ≤ (λ+ µ)N.

Thus, the Markov process (X(t))t≥0 is ergodic if ρ < 1.
If ρ > 1, we apply [13, Theorem 8.10], a simplified version of a Lamperti’s result, to

prove the transience of the embedded Markov chain (Mn) at jump times of (X(t)). It
gives the transience of (X(t)). Let g be defined by g(n) = n1 + · · · + nN . Using that
clc1 (n) + . . .+ clcN (n) = N , see equation (24), for all n ∈ NN ,

En(g(M1)− g(n)) = Lg(n) = λ

N∑
i=1

ci(n)− µ
N∑
i=1

1{ni>0} ≥ (λ− µ)N > 0.
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Moreover, for all n ∈ NN ,

En(|g(M1)− g(n)|2) =
∑
n′∈NN

Q(n, n′)|g(n′)− g(n)|2

= λ

N∑
i=1

ci(n) + µ

N∑
i=1

1{ni>0} ≤ (λ+ µ)N,

thus supn∈NN En(|g(M1)− g(n)|2) <∞. The sufficient conditions for applying [13, Theorem
8.10] hold. It ends the proof. J

B Two lemmas

I Lemma 9. For integer k, 0 ≤ k ≤ 3, the coefficients φk(m), m ∈ N , are given by

φ0(0) = 1, and φ0(m) = 0, m > 0,
φ1(0) = −1, φ1(1) = 1 and φ1(m) = 0, m > 1,
φ2(0) = 0, φ2(1) = −c1(e1), φ2(2) = c1(e1) and φ2(m) = 0, m > 2,

φ3(0) = 0, φ3(1) = −φ3(2) = Nc1(e1)−
N∑
j=1

c1(e1 + ej)c1(ej),

φ3(3) = c1(e1)c1(2e1) and φ3(m) = 0, m > 3.

Proof. We use, for k ≤ 3, the expressions of αk given by Proposition 5 to compute φk. J

I Lemma 10. For k ≥ 1, φk(k) = αk(ke1) =
∏k−1
j=1 c1(je1).

Proof. For k ∈ N∗, by equation (20), φk(k) = αk(ke1). Taking n = ke1 in equation (8),

αk(ke1) =
N∑
i=1

αk(ke1 + ei) + c1((k − 1)e1)αk−1((k − 1)e1)−Nαk−1(ke1).

By Lemma 4, for any i, 1 ≤ i ≤ N , αk(ke1 + ei) = 0 and αk−1(ke1) = 0. It gives that

φk(k) = c1((k − 1)e1)φk−1(k − 1).

This recurrence equation in φk(k) leads to the desired result, since φ1(1) = 1. J

C Proof of Proposition 8

Proof. In the proof, the following definition will be used.

I Definition 11. The state n = (n1, . . . , nN ) exists at order k if and only if, in equation (6),
αk(n) 6= 0.

First step. To prove Proposition 8, the first step is to obtain that, for a state n = (n1, . . . , nN )
existing at order k, the maximum possible queue length is dk/2e. Indeed, by Lemma 4, n
exists at order k only if |n| ≤ k. Moreover, the following result holds.

I Lemma 12. Let k ∈ N and n = (n1, . . . , nN ) ∈ NN . If |n| ≤ k and n1 > dk/2e then
αk(n) = 0.

Proof. The following assertion is proved by induction on p ≥ 0.
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(Bp) For k ∈ N and n = (ni)1≤i≤N , if |n| = k − p and n1 > dk/2e then αk(n) = 0.

Let us prove (B0). Let k ∈ N and n such that |n| = k and n1 > dk/2e. As |n| = k, by
Lemma 4, for each i, 1 ≤ i ≤ N , αk(n+ ei) = αk−1(n) = 0. Thus equation (8) is rewritten as(

N∑
i=1

1{ni>0}

)
αk(n) =

N∑
i=1

1{ni>0}c
lc
i (n− ei)αk−1(n− ei). (26)

As |n| ≤ k and n1 > dk/2e, n2 + nN ≤ k − n1 < k − dk/2e < n1. Thus n2 + nN ≤
k − dk/2e − 1 < n1 − 1.

It means that each neighboring queue of queue 1 has strictly less than n1 − 1 customers.
Thus the contribution on queue 1 for our local choice function clc defined by equation (1)
gives clc1 (n− e1) = 0 and equation (26) can be rewritten(

N∑
i=1

1{ni>0}

)
αk(n) =

N∑
i=2

1{ni>0}c
lc
i (n− ei)αk−1(n− ei). (27)

Therefore, state n exists at order k only if there is i1 6= 1 such that αk−1(n− ei1) 6= 0. But
|n− ei1 | = k− 1 and we can repeat the previous arguments for k− 1 instead of k and n− ei1
instead of n, with (n − ei1)1 > dk/2e ≥ d(k − 1)/2e, and so on until we obtain n1e1. In
conclusion, n exists at order k only if αn1(n1e1) 6= 0. It contradicts Lemma 10. Therefore
αk(n) = 0.

Assume now, for p ≥ 1, that (Bp−1) is true, and prove (Bp). For that, let k ∈ N and n be
such that |n| = k − p and n1 > dk/2e. By induction assumption (Bp−1), applied to k and
n+ ei as |n+ ei| = k − (p− 1), then to k − 1 and n as |n| = k − 1− (p− 1), it holds that
αk(n+ ei) = αk−1(n) = 0. Then the arguments used for (B0) give that αk(n) = 0. It ends
the proof. J

One can then deduce easily the following result.

I Lemma 13. Let m be in N∗. The first possibly non vanishing term of the expansion
when ρ tends to zero of the stationary probability πm(ρ) that a queue has m customers is
φ2m−1(m)ρ2m−1.

Proof. For m ∈ N, by definition, see (19), πm(ρ) =
∑
k≥0 φk(m)ρk with

φk(m) =
∑

n=(m,n2,...,nN )
|n|≤k

αk(m,n2, . . . , nN ).

If k < 2m− 1 then, for n = (m,n2, . . . , nN ) such that |n| ≤ k, n1 = m > dk/2e. Thus, by
Lemma 12, all the αk(m,n2, . . . , nN ) in the right-hand side of the previous equation are null
for k < 2m− 1. It ends the proof. J

Second step. Moreover the states which exist at order k = 2m− 1 with one queue with
the maximum value m correspond just to two neighboring queues with m and j < m. It is
given by the following lemma.

I Lemma 14. If |n| ≤ k = 2m − 1 (k odd), n1 = m and there exists two distinct j and l,
different from 1, such that nj > 0 and nl > 0 then αk(n) = 0.

Proof. The following assertion is proved by induction on p ≥ 0
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(Bp) For k = 2m− 1, m ∈ N, for n such that |n| = k − p, n1 = m, nj > 0 and nl > 0 with j
and l distinct, different from 1, then αk(n) = 0.

Let us prove (B0). Let k = 2m−1 and n chosen as indicated. As |n| = k, by Lemma 4, for each
i, 1 ≤ i ≤ N , one gets αk(n+ ei) = αk−1(n) = 0. As before, using Lemma 2, equation (26)
holds. By assumption, as in the proof of Lemma 12, it holds that each neighboring queue
of queue 1 has strictly less than n1 − 1 customers, which yields c1(n − e1) = 0. Thus
equation (26) can be rewritten equation (27). We conclude as in the proof of Lemma 12. J

Step 3. We distinguish two cases:
Case 1: N ≥ 3. From equation (20) and applying Lemma 14,

φ2m−1(m) =
m−1∑
i=1

α2m−1(m, i, 0, ...0) +
m−1∑
i=1

α2m−1(m, 0, ..., 0, i) + α2m−1(m, 0, ..., 0)

then by symmetry,

φ2m−1(m) = 2
m−1∑
i=1

α2m−1(m, i, 0, ...0) + α2m−1(m, 0, 0, ...0). (28)

This means that only these terms are non null. The rest of the proof consists in deriving
them.

Let n1 and n2 be chosen as follows: n1 = (k + 1)/2 and n2 = (k − 1)/2. Using the same
arguments as in Lemma 12, equation (8) gives, for k = 2m− 1 with m integer and m ≥ 2,

2α2m−1(m,m− 1, 0, ..., 0) = 1
2α2(m−1)(m− 1,m− 1, 0, ..., 0). (29)

Let k = 2m, and n = (m,m, 0, ..., 0). For m ∈ N, m ≥ 2, as clc2 (m,m − 1, 0, ..., 0) = 1,
equation (8) gives

2α2m(m,m, 0, ..., 0) = 2α2m−1(m,m− 1, 0, ..., 0). (30)

Combining equations (29) and (30), for m ≥ 3,

α2m−1(m,m− 1, 0, ..., 0) = 1
22α2m−3(m− 1,m− 2, 0, ..., 0)

and then, using equation (17) to show that α3(2, 1, 0, ..., 0) = 3/8, for m ≥ 3,

α2m−1(m,m− 1, 0, ..., 0) = 1
22(m−2)α3(2, 1, 0, ..., 0) = 3

22m−1 . (31)

Then, for n = (m, i, 0, ..., 0), for 0 < i < m− 1, from equation (8),

2α2m−1(m, i, 0, ..., 0) = α2m−1(m, i+ 1, 0, ..., 0).

By induction and using equation (31), for 0 < i < m− 1,

α2m−1(m, i, 0, ..., 0) = 1
2m−1−iα2m−1(m,m− 1, 0, ..., 0) = 3

22m−1
1

2m−1−i . (32)

With similar arguments and then using equation (32) for i = 1,

α2m−1(m, 0, 0, ..., 0) = α2m−1(m, 1, 0, ..., 0) + α2m−1(m, 0, ..., 0, 1) (33)

= 6
22m−1

1
2m−2 .
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Plugging equations (31), (32) and (33) in equation (28),

φ2m−1(m) = 2 3
22m−1 + 2

m−2∑
i=1

3
22m−1

1
2m−1−i + 6

22m−1
1

2m−2

= 6
22m−1

(
m−1∑
i=1

1
2m−1−i + 1

2m−2

)
= 12

22m−1

Using it in Lemma 13 gives the result.
Case 2: N = 2. With similar arguments, equation (28) is rewritten in this case

φ2m−1(m) =
m−1∑
i=1

α2m−1(m, i) + α2m−1(m, 0).

while equations (29) and (30) become 2α2m−1(m,m − 1) = α2(m−1)(m − 1,m − 1) and
2α2m(m,m) = 2α2m−1(m,m− 1). Following exactly the same lines as in case 1, one gets

φ2m−1(m) =
m−1∑
i=1

1
2m−1−i + 1

2m−2 = 2.

It ends the proof. J
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Table 1 A summary of shape parameters and discrete structures for which the distributional
behavior changes from normal to non-convergence.

structure parameter non-convergence refined asymptotics

recursive trees nodes with depths
divisible by m

m ≥ 7 [16, 17]

m-ary search trees size m ≥ 27 [15]
d-dimensional
quadtrees number of leaves d ≥ 9 this paper

to one of the existing nodes. In such a tree with n nodes, let Mn denote the number of nodes
with depth (distance from the root) divisible by m where m ≥ 2 is fixed. Set

ωn =
{
n, if 6 - m;
n logn, if 6 | m.

Then, in [11], the following result was proved: if 2 ≤ m ≤ 6, we have

Mn − n/m√
ωn

d−→ N(0, σ2
m), (1)

where σm > 0; for all other m, we have that Mn with the standard normalization, i.e.,
(Mn − n/m)/

√
Var(Mn), does not converge to a fixed limit law.

A similar result holds if the depths of nodes are required to fall into another residue
class. Moreover, the same phase change phenomenon is present in random binary search
trees, too; see [11]. Also, several other shape parameters in diverse families of random trees
have been proved to exhibit a similar phase change behavior from distributional convergence
to distributional non-convergence, e.g., the size of m-ary search trees proved by Chern and
Hwang [4] (see also Mahmoud and Pittel [14] and Lew and Mahmoud [13] for preliminary
results) and the number of leaves in random point quadtrees proved by Chern, Fuchs, and
Hwang [2]; see Table 1 for a summary of these results and [2, 4] for many more examples.

After the above results have been published, subsequent research has focused on clarifying
the stochastic behavior in the non-convergence regime; e.g. see [2], Chern, Fuchs, Hwang,
and Neininger [3], Chauvin and Pouyanne [1], Fill and Kapur [6], and [11]. This line of
research has recently culminated in the realization that subtracting a sufficiently large number
of suitable random variables leads to a central limit theorem. To give some more details,
consider again the above random variable Mn. Set r = b(m− 1)/6c and

ζk := cos
(

2πk
m

)
and ηk := sin

(
2πk
m

)
.

Following a technique developed by Neininger [18] in a refined analysis of the complexity of
the randomised Quicksort algorithms, it was proved by the second author of this extended
abstract and Neininger [16, 17] that there exist complex random variables Ξ1, . . . ,Ξr such
that

1
√
ωn

(
Mn −

n

m
− 2

r∑
k=1
<
(
Ξkniηk

)
nζk

)
d−→ N(0, σ2

m)

with σm > 0. Note that this result yields (1) as a special case.
The proof of the above result made use of a natural martingale process related to random

recursive trees. Moreover, another proof method (also using the martingale process) was
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Table 2 Value of p in (3) for small values of d.

d 1, . . . , 8 9, . . . , 17 18, . . . , 26 27, . . . , 34
p 0 1 2 3

proposed by the second author in [15], where the above result was extended to generalized
Pólya urns; see Janson [10] for background. The latter result contains both the above result
and a similar result for m-ary search trees; see Table 1.

The purpose of this work is to propose yet another approach which does not make use of
the martingale process (the possibility of such an approach was already announced in [17]).
The advantage of such a method is that it can be applied to random discrete structures
which do not admit such a process. This is for instance the case for random point quadtrees
which we use in this work as guiding example. Other applications of our approach in the
context of, e.g., generalized m-ary search trees and gridtrees (where there are again no natural
martingale processes) will be discussed in the journal version of this extended abstract.

We first recall the definition of random point quadtrees (which for brevity will be called
random quadtrees in the sequel). Fix a dimension d and consider an infinite sequence of
stochastically independent points chosen uniformly at random from the d-dimensional unit
cube. Then, the first point is stored in the root which has 2d subtrees that correspond to
the 2d quadrants into which the d-dimensional unit cube is split by the first point. These
subtrees contain the points which fall into these quadrants respectively. Moreover, subtrees
are built recursively via the same process. The resulting tree after n steps is called random
quadtree of size n.

In such a tree of size n, let Ln denote the number of leaves. Then, in [2], the following
phase change result was proved: if 1 ≤ d ≤ 8, then

Ln − κdn√
n

d−→ N(0, σ2
d),

where σd > 0 and

κd = 1− 2
d
ξ′(1), (2)

where ξ(s) is given in (4); for all other d, we have that Ln with the standard normalization
does not converge to a fixed limit law. (For d = 1, the result goes back to Devroye [5].)

The main result of this extended abstract is the following extension of this result which
gives an asymptotic expansion of the limit behavior in the style of [15, 16, 17].

I Theorem 1. Let d ≥ 1. Then, there exist complex random variables Z1, . . . ,Zp such that

1√
n

(
Ln − κdn− 2

p∑
k=1
<(Zkniβk )nαk

)
d−→ N(0, σ2

d), (3)

where σd > 0. Here,

αk := 2 cos
(

2πk
d

)
− 1 and βk := 2 sin

(
2πk
d

)
and p is the largest number in {0, . . . , bd/2c} with αk > 1/2; see Table 2.
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We conclude the introduction with a discussion of the proof of Theorem 1 and an outline
of the manuscript. Following [18, 16], the proof relies on the following three steps:
(i) the construction of the limiting random variables Z1, . . . ,Zp,
(ii) an expansion of the variance of the residual Ln − κdn− 2

∑p
k=1 <(Zkniβk )nαk , and

(iii) general techniques to deduce the asymptotic normality (3) from (ii) from a distributional
recurrence for the sequence of residuals.

In the literature, step (iii) in the present context has been carried out relying on two
different techniques which both apply with straightforward modifications in our setting: the
contraction method [18, 16] and the method of moments [9]. As this part does not involve
significantly new arguments, we refrain from discussing the details in this extended abstract
and refer the reader to the journal version of this work (to come).

The remainder of the manuscript is organized as follows. In Section 2, we give an explicit
construction of the quadtree sequence and state known asymptotic expansions for the mean
number of leaves. Section 3 is dedicated to step (i) and uses contraction arguments; the
proofs are found in Appendix A.

The most technical part of the work, step (ii), crucially relies on a recursive distributional
decomposition of the residual sequence and asymptotic transfer theorems developed in Chern,
Fuchs, and Hwang [2] for general parameters in quadtrees. This part, worked out in Section
4, is based on conceptually novel ideas since second moments cannot be computed by direct
means exploiting a martingale structure. Proofs of technical lemmas required here are
collected in the Appendix B.

2 Preliminaries

Let us start with an explicit construction of the quadtrees. To this end, let Y (i), i ≥ 1 be a
sequence of independent random variables following the uniform distribution on [0, 1]d. We
define a sequence of 2d-ary trees T0, T1, . . . where Ti stores the values Y (1), . . . , Y (i) as follows:
initially, we start with an empty tree T0 consisting of a placeholder associated with the unit
cube. Y (1) replaces the placeholder thereby creating a tree T1 consisting of a root node to
which we associate 2d placeholders which are assigned the 2d rectangular regions in which the
components of Y (1) partition the unit cube. (In computer science, these placeholders are often
called external nodes.) Inductively, having constructed the tree Tn storing Y (1), . . . , Y (n)

with 1 + (2d − 1)n placeholders corresponding to 1 + (2d − 1)n regions partitioning the
unit cube, we obtain the tree Tn+1 by storing Y (n+1) in the placeholder associated with the
rectangle containing Y (n+1) and adding 2d placeholders which are assigned the rectangular
regions in which Y (n+1) partitions the aforementioned rectangle.

We let Ln denote the number of leaves in the random quadtree Tn. Set µn := E[Ln]. To
describe the asymptotic behavior of µn, it is necessary to introduce some terminology from
[7]: first, for s ∈ C \ {0}, let [s] := 1− 2d

sd . Then, for n ∈ N, n ≥ 3, we define the d-analogue
of the factorial as

[n]! := [3] · [4] · · · [n] and [2]! := 1.

Let A := {2ωk − j : k ∈ {0, . . . , d− 1}, j ∈ N}. The definition of [n]! extends holomorphically
to complex numbers s ∈ C \A through

[s]! :=
∞∏
j=1

[j + 2]
[j + s] , and [∞]! := [3] · [4] · [5] · · · .
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Flajolet et al. [7], showed that, for all n ≥ 2,

µn =
n∑
k=0

(
n

k

)
(−1)kµ∗k with µ∗k =


0, k = 0
−1, k = 1
−
∑k
j=2

[k]!
[j]! , k ≥ 2.

From here, standard techniques relying on Nörlund-Rice integrals for meromorphic functions
arising in the analysis of finite differences such as, e.g. [8, Theorem 2], allow to derive
asymptotic expansions of µn (as n→∞) of arbitrary precision. In particular, following the
notation in [7], with

ξ(s) := s− 1
[∞]! +

∞∑
j=2

(
1

[j]! −
1

[s+ j − 1]!

)
, (4)

one finds

µn = κdn− 2
∑

1≤k≤bd/2c,αk>0

<
(
γkn

iβk
)
nαk +O(1), (5)

where κd is given in (2) and, with λk = αk + iβk for k = 1, . . . , bd/2c with αk > 0,

γk = −λk + 1
d

Γ(−λk)ξ(λk)[λk + 1]!.

Here, Γ(·) denotes the Gamma function. The details of the argument show that γk 6= 0 for all
k ≥ 1, αk > 0, so no term in the asymptotic expansion (5) vanishes. For later purposes, note
that αk 6= 1/2 for all k = 1, . . . , d− 1, since the converse would imply the existence of a k-th
root of unity with real part 3/4. But any rational real part of a root of unity takes values in
the set {0,−1/2, 1/2, 1,−1} since, with ω := α1 + iβ1, the value 2<(ωk) = ωk + ωd−k is an
algebraic integer for any 1 ≤ k ≤ d.

3 A family of limiting random variables

As opposed to the applications discussed in [18, 16, 17], there is no natural martingale
process associated with the sequence Ln, n ≥ 1. Therefore, it is necessary to construct the
limiting random variables Z1, . . . ,Zp in Theorem 1 in an ad-hoc way guided by the recursive
distributional decomposition of Ln. In this section, we give the details of this construction.

Let T be the complete infinite 2d-ary tree represented in standard Ulam-Harris notation
by

T =
⋃
i≥0
{0, . . . , 2d − 1}i.

Through the canonical embedding of the sequence T0, T1, . . . of increasing trees into T, to
any v ∈ T, we shall associate a random integer `(v) ≥ 1 such that Y (`(v)) is stored at node
v. (Clearly, as the fill-up level of Tn grows to infinity, `(v) exists for all nodes v ∈ T.) For
` ≥ 1, let I` be the rectangle corresponding to the placeholder in T`−1 which contains Y (`).
Define Ỹ(`) as the vector of components of Y (`) relative to the boundaries of I`. Formally,
with I` = [i∧1 , i∨1 ]× · · · × [i∧d , i∨d ], we set

Ỹ(`)
k =

Y
(`)
k − i∧k
i∨k − i∧k

, k = 1, . . . , d.
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Finally, for v ∈ T, let

U (v) := Ỹ(`(v)).

By construction, {U (v) : v ∈ T} is a family of independent random variables with the uniform
distribution on [0, 1]d. While the placeholders associated with the nodes in the tree Tn give
rise to a partition of the unit cube, the construction of the limiting random variables relies
on different decompositions of the unit cube traversing T level-wise. To this end, to every
v ∈ T and 0 ≤ j ≤ 2d − 1, writing j =

∑d
k=1 εk2k−1 with ε1, . . . , εd ∈ {0, 1}, we associate

the random variables ∆(v)
j := V

(v)
1 · · ·V (v)

d , where

V
(v)
k :=

{
U

(v)
k , if εk = 0

1− U (v)
k , if εk = 1.

Note that
∑2d−1
j=0 ∆(v)

j = 1. Subsequently, write ∆(v) = (∆(v)
0 , . . . ,∆(v)

2d−1).
Let k ∈ {1, . . . , d − 1} with αk > 1/2 and define a family of random variables {Z(v)

n,k :
n ≥ 0, v ∈ T} as follows: first, set Z(v)

0,k = γk for all v ∈ T. Then, for n ≥ 1 and v ∈ T, we
recursively define

Z(v)
n,k :=

2d−1∑
j=0

(
∆(v)
j

)λk

· Z(vj)
n−1,k.

Note that, for all n ≥ 0, we have Z(v)
n,d−k = Z(v)

n,k. Let Π∅ := 1, and, recursively, for v ∈ T
and j = 0, . . . , 2d − 1,

Πvj = ∆(v)
j Πv.

Then, we have the following forward expression for Z(∅)
n,k :

Z(∅)
n,k = γk

∑
|v|=n

Πλk
v .

Analogous expansions can be stated for Z(v)
n,k, v ∈ T. Let F−1 be the trivial σ-field, and, for

n ≥ 0, set Fn = σ
(
U (v) : v ∈ T, |v| ≤ n

)
. It follows immediately from the previous display

that Z(∅)
n,k, n ≥ 0 is a martingale with respect to the filtration Fn, n ≥ −1.

This martingale has the following important property.

I Proposition 2. For all v ∈ T there exists a random variable Z(v)
k such that, almost surely

and with respect to all moments,

Z(v)
n,k → Z

(v)
k . (6)

We have
(i) the random variables Z(v)

k , v ∈ T are identically distributed,
(ii) Z(v0)

k , . . . ,Z(v(2d−1))
k ,∆(v) are stochastically independent and

Z(v)
k =

2d−1∑
j=0

(
∆(v)
j

)λk

· Z(vj)
k ,
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(iii) the law of Z(∅)
k is the unique distribution satisfying E[Z(∅)

k ] = γk,E[|Z(∅)
k |2] <∞ and

Z(∅)
k

d=
2d−1∑
j=0

(
∆(∅)
j

)λk

· Z∗,(j)k , (7)

where Z∗,(0)
k , . . . ,Z∗,(2d−1)

k are independent copies of Z∗,(∅)k , independent of ∆(∅).
In the remainder of the manuscript, we agree to drop the upper index ∅ when referring to
the quantities Z(∅)

k , k = 1, . . . , p and ∆(∅)
j , j = 0, . . . , 2d − 1 and U (∅)

j , j = 1, . . . , d.
Below, we will need the following property of the Zk’s which follows from Leckey [12];

see Appendix A.

I Proposition 3. Let 1 ≤ k ≤ p. The vector (<(Zk),=(Zk)) has a Schwartz density f on
R2, that is, f is infinitely differentiable, where f and all its derivatives decay faster to zero
at infinity than any polynomial.

4 The variance of the residual

In the final chapter of the manuscript, we discuss the techniques to prove step (ii) outlined
in the introduction. Let

L∗n := Ln − κdn− 2
p∑
k=1
<
(
Zkniβk

)
nαk + δn,

where δn is deterministic such that E[L∗n] = 0. (Exact scaling simplifies arguments in the
following.) By (5), we have δn = O

(
nmax(αp+1,0)). (One actually has αp+1 > 0 for all

d > 11.) For j = 0, . . . , 2d − 1, let Nj be the size of the j-th subtree of the root and
L

(j)
n be the number of leaves it contains. Given ∆0, . . . ,∆2d−1, the vector (N0, . . . , N2d−1)

has the multinomial distribution with parameter (n− 1; ∆0, . . . ,∆2d−1). We now set up a
distributional recurrence for L∗n. As Zk =

∑2d−1
j=0 ∆λk

j Z
(j)
k it follows that

L∗n =
2d−1∑
j=0

(
L(j)
n − κdNj + δNj − 2

p∑
k=1
<
(
Z(j)
k N iβk

j

)
Nαk
j

)
+ rn +Dn

=:
2d−1∑
j=0

L(j)
n + rn +Dn, (8)

where

rn := δn −
2d−1∑
j=0

δNj − κd, and Dn := 2
2d−1∑
j=0

p∑
k=1
<
(
Z(j)
k

(
Nλk
j − (∆jn)λk

))
.

By the construction of the quadtree,
(
L(0)
n , . . . ,L(2d−1)

n

)
d=
(
L̄

(0)∗
N0

, . . . , L̄
(2d−1)∗
N2d−1

)
, where(

L̄
(0)∗
k

)
k≥0

, . . . ,
(
L̄

(2d−1)∗
k

)
k≥0

are independent copies of the process (L∗k)k≥0. Note that

(N0, . . . , N2d−1) and {U (v) : v ∈ T \ {∅}} are independent. Note however, that Dn and(
L(0)
n , . . . ,L(2d−1)

n

)
are not stochastically independent, not even given (∆, N0, . . . , N2d−1),

since both quantities involve Z(j)
k , j = 0, . . . , 2d − 1, k = 1, . . . , p.
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4.1 An asymptotic expansion for the variance
The remainder of this extended abstract is devoted to the proof of the following proposition.

I Proposition 4. There exists 0 < σd <∞ such that, as n→∞,

Var(L∗n) = σdn+ o(n).

Of course, as δn = o(
√
n), the same asymptotic expansion applies to the variance of the

residual sequence L∗n − δn. To prove the proposition, note that, from (8), straightforward
calculations reveal that, with a(n) := E

[
(L∗n)2

]
, we have

a(n) = 2dE[a(N0)] + E
[
r2
n

]
+ E

[
D2
n

]
+ 2E [Dnrn] + 2E

[
Dn

2d−1∑
j=0

L(j)
n

]
=: 2dE[a(N0)] + b(n). (9)

This is the quadtree recurrence (see Lemma 5 below). Our aim is to apply the asymptotic
transfer theorems for it developed in Chern, Fuchs, and Hwang[2]. To this end, we need to
understand the asymptotic behavior of the additive sequence b(n) in the last display. In
particular, we would like to use the following result from [2].

I Theorem 5 ([2], Theorem 2(i)). Consider the quadtree recurrence

an = bn + 2d
∑

0≤j<n
πn,jaj , (n ≥ 1),

where a0 = 0 and

πn,j = P (N0 = j) =
(
n− 1
j

)∫ 1

0
uj(1− u)n−1−j (− log u)d−1

(d− 1)! du.

If bn = o(n) and the series
∑
n≥1 bn/n

2 converges, then an = κn+ o(n) for some κ ∈ R.

For infinite sum representations of the limiting constant κ, we refer to [2]. The theorem does
not exclude the case that κ = 0, which explains the necessity of the following lemma, whose
proof is deferred to the Appendix B.

I Lemma 6. In the set-up of the previous theorem, assume that
(a) (i) bn is non-negative for all n, and (ii) bn is positive for at least one n, or
(b) (i) an is non-negative for all n, and (ii) bn is positive for all n large enough.
Then, an = Ω(n).

We also need the following two lemmas, where the first is a straightforward implication
of the multivariate central limit theorem for (N0, . . . , N2d−1), while the technical proof of
the second lemma is given in the Appendix B.

I Lemma 7 (Multivariate central limit theorem). Let z ∈ C with 1/2 ≤ <(z) < 1. In
distribution, in C2d ,(

Nz
0 − (∆0n)z

nz−1/2 , . . . ,
Nz

2d−1 − (∆2d−1n)z

nz−1/2

)
→ X,

where Xi = z · ∆z−1
i Yi with Y = Σ1/2 · N , where N = (N0, . . . ,N2d−1) has the standard

multivariate normal distribution, (∆0, . . . ,∆2d−1) and N are stochastically independent, and
the covariance matrix Σ satisfies

Σi,j =
{

∆i(1−∆i) if i = j,

−∆i∆j if i 6= j.
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I Lemma 8. We have the following asymptotic expansions:
(i) for any z ∈ C with 0 < <(z) < 1 and ε > 0, we have, as n→∞,

E[Nz
0 ] = E [∆z

0]nz + z(z − 1)
2 E

[
(1−∆0) ∆z−1

0
]
nz−1 +O(nε−1).

(ii) For any z ∈ C with 1/2 < <(z) < 1 and fixed p ∈ N \ {0}, we have

‖Nz
0 − (∆0n)z‖p = |z|

∥∥∥∆<(z)/2
0

√
1−∆0

∥∥∥
p
‖N0‖p n

<(z)−1/2 + o(n<(z)−1/2).

(iii) For any z ∈ C with 0 < <(z) < 1/2 and fixed p ∈ N \ {0}, we have

‖Nz
0 − (∆0n)z‖p = O(1).

The first step to show Proposition 4 is to verify that the contribution of the mixed term
in b(n) is asymptotically negligible.

I Lemma 9. As n→∞, we have E
[
Dn

∑2d−1
j=0 L(j)

n

]
= O(nα1−1/2).

Proof. First of all, note that E
[
r2
n

]
= O(n2 max(αp+1,0)) since δn = O

(
nmax(αp+1,0)) and

Nj ≤ n for all j = 0, . . . , 2d − 1. As Z(j)
k and (Nj ,∆j) are stochastically independent, it

follows from part (ii) of the previous lemma that

E
[ ∣∣∣Z(j)

k

(
Nλk
j − (∆jn)λk

)∣∣∣2 ] = E
[
|Zk|2

]
E
[ ∣∣∣Nλk

0 − (∆0n)λk

∣∣∣2 ] = O(n2αk−1).

A standard application of the Cauchy-Schwarz inequality shows that E
[
D2
n

]
= O(n2α1−1).

Next, by independence of quantities defined in subtrees, we obtain

E
[
Dn

2d−1∑
j=0

L(j)
n

]
= 2

2d−1∑
j=0

E
[
L(j)
n

p∑
k=1
<
(
Z(j)
k

(
Nλk
j − (∆jn)λk

)) ]
. (10)

Conditionally on {N0 = n0, . . . , N2d−1 = n2d−1} where n0 + · · ·+ n2d−1 = n− 1, we have
(i) the random variables (∆0, . . . ,∆2d−1), (Z(j)

1 , . . . ,Z(j)
p ,L(j)

n ) are stochastically independ-
ent, and

(ii) (Z(j)
1 , . . . ,Z(j)

p ,L(j)
n ) is distributed like (Z1, . . . ,Zp, L∗nj

).
To estimate (10), consider the terms

E
[
L(j)
n <(Z(j)

k (Nλk
j − (∆jn)λk ))

]
=
n−1∑
`=0

P (Nj = `)E [L∗`<(Zk)]E
[
<
(
`λk − (∆jn)λk

)]
−
n−1∑
`=0

P (Nj = `)E [L∗`=(Zk)]E
[
=
(
`λk − (∆jn)λk

)]
.

By the trivial bound E[(L∗n)2] = O(n2), it follows from the Cauchy-Schwarz inequality that
there exists a constant C > 0 such that

max {E [L∗n<(Zk)] ,E [L∗n=(Zk)]} ≤ Cn.

Therefore,∣∣∣E [L(j)
n <(Z(j)

k (Nλk
j − (∆jn)λk ))

]∣∣∣ ≤ 2Cn
∣∣∣E [Nλk

j − (∆jn)λk

]∣∣∣ . (11)

AofA 2018



23:10 Refined Asymptotics for Quadtrees

From part (i) of the previous lemma, it follows that the right hand side of (11) grows at
most of the order nαk . Overall, this shows that

E
[
Dn

2d−1∑
j=0

L(j)
n

]
= O(nα1).

Combining the bounds on E
[
r2
n

]
,E
[
D2
n

]
and the last display, Theorem 5 yields Var(L∗n) =

O(n). Repeating the last steps using this improved bound concludes the proof. J

The previous proposition suggests that the order of magnitude of the additive term in (9)
is max{n2 max(αp+1,0), n2α1−1}. For most values of d, we have 2α1 − 1 > 2αp+1. Indeed, for
9 ≤ d ≤ 10, 000, there exist only 31 values ranging from d = 15 to d = 8598 for which the
converse is true. It is important to note that, for all d ≥ 9, we have 2α1 − 1 6= 2αp+1 since
the contrary would imply that ω + ωd−1 − ωp+1 − ωd−p−1 = 1/2 which is impossible since
the left hand side is an algebraic integer. In particular, in light of Theorem 5 and Lemma 6,
the following two propositions verifying that b(n)→∞ are the missing pieces to conclude
the proof of Proposition 4.

I Proposition 10. Let αp+1 > 0, that is, d > 11 and

W :=
2d−1∑
i=0

∆λp+1
i =

d∏
i=1

(
U
λp+1
i + (1− Ui)λp+1

)
.

For x ∈ R, let

Φ(x) := 2<
(
γ2
p+1E

[
(1−W )2] e2iβp+1x

)
+ 2|γp+1|2E

[
|1−W |2

]
.

Φ is a smooth periodic function with period π/βp+1, amplitude 2|γp+1|2|E
[
(1−W )2] | and

min
x∈R

Φ(x) = 2|γp+1|2
[
E
[
|1−W |2

]
−
∣∣E [(1−W )2]∣∣] > 0.

As n→∞,

E
[
r2
n

]
= Φ(logn)n2αp+1 +O(nαp+1+αp+2).

I Proposition 11. Let (∆, Y ) be as in Lemma 7 and stochastically independent of
Z(0)

1 , . . . ,Z(2d−1)
1 . Set

W =
2d−1∑
j=0

λ1Z(j)
1 ∆λ1−1

j Yj .

For x ∈ R, define

Ψ(x) := 2<
(
E
[
W2] e2iβp+1x

)
+ 2E

[
|W|2

]
.

Ψ is a smooth periodic function with period π/βp+1, amplitude 2|E
[
W2] | and

min
x∈R

Ψ(x) = 2
(
E
[
|W|2

]
−
∣∣E [W2]∣∣) > 0.

As n→∞, we have

E[D2
n] = Ψ(logn)n2α1−1 + o(n2α1−1).
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The proofs of these propositions are very similar and we only present the proof of Proposition
11 which is more involved.

Proof of Proposition 11. By definition, Ψ has period π/βp+1. Next, for any z ∈ C, it is
easy to see that the global maximum and minimum of the function x 7→ <(z exp(ix)) are |z|
and −|z|. This implies the remaining claims on the shape of Ψ. minx∈R Ψ(x) > 0 follows
from triangle inequality upon verifying that arg(W) is not almost surely constant. This, in
turn follows from that fact that, for any given (affine) line L ⊆ C, we have P (Z1 ∈ L) = 0.
This is an immediate corollary of the fact that (<(Z1),=(Z1)) admits a density on R2 (see
Proposition 3). For the asymptotic expansion of Dn, note that, following the steps involving
the Cauchy-Schwarz inequality and the bounds stated in the proof of Proposition 9, it is
straightforward to verify that

E
[
D2
n

]
= 4E


2d−1∑

j=0
<
(
Z(j)

1

(
Nλ1
j − (n∆j)λ1

))2
+O(nα1+α2−1).

By the multivariate central limit theorem stated in Lemma 7, the first term is asymptotically
equivalent to Ψ(logn)n2α1−1 which proves the expansion. J
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A Appendix A

Proof of Proposition 2. These arguments are well-known. By construction,

Z(v)
n+1,k −Z

(v)
n,k =

2d−1∑
j=0

(
∆(v)
j

)λk

·
(
Z(vj)
n,k −Z

(vj)
n−1,k

)
,

and therefore

∆(v)
n := E

[∣∣∣Z(v)
n+1,k −Z

(v)
n,k

∣∣∣2]

= E
[∣∣∣Z(v)

n,k −Z
(v)
n−1,k

∣∣∣2] 2d−1∑
j=0

E
[(

∆(v)
j

)2αk
]

=: q ·∆(v)
n−1,

where we used that the claims of part (i) and part (ii) of this proposition also hold if
Z

(v)
k is replaced by Z(v)

n,k (from construction). As 0 < q < 1, it immediately follows that
E
[∣∣Z(v)

n,k

∣∣2], n ≥ 1 is a bounded sequence. Since Z(v)
n,k, n ≥ 1 is a martingale, the sequence

converges almost surely and in L2 by the L2-convergence theorem for martingales. This
shows (6).

(i) and (ii) follow from the construction (see the comment succeeding the above display).
(iii) follows from a standard contraction argument for probability measures on C with

mean γk and finite second moment. Convergence of p-th moments is proved inductively using
p = 2 as base case; details will be given in the journal version of this paper. J

Proof of Proposition 3. Leckey [12] recently established a set of conditions under which
solutions of fixed-point equations such as (7) admit Schwartz densities. More precisely,
since we have already seen that Zk has finite moments of all orders, applying [12, Theorem
4.2] in conjunction with Remark 4.9 only requires to verify conditions (A1) - (A5) from
Definition 4.1. The only condition which is not trivially satisfied is (A4): the support of Zk
ought to be in general position, that is, contain three points z1, z2, z3 which do not lie on a
line. For all x ∈ [0, 1], the vector (x, 1− x, 0, 0, . . . , 0) lies in the support of ∆. Therefore,
(xλk , (1− x)λk , 0, 0, . . . , 0) lies in the support of ∆λk . Hence, for any z in the support of Zk,
also (xλk + (1− x)λk )z lies in the support of Zk. As the support of Zk contains a non-zero
element and βk 6= 0, this concludes the proof. J

B Appendix B

Proof of Lemma 6. We start with part (a). Let n0 be the first index such that bn0 > 0. Set

b̃n =
{

0, if 1 ≤ n ≤ n0

bn + 2dπn,n0bn0 , if n ≥ n0 + 1

https://arxiv.org/abs/1604.02964
https://arxiv.org/abs/1612.08930
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and denote by ãn the corresponding sequence. Obviously, an ≥ ãn and thus it suffices to
prove the claim for the sequence ãn. Note that by the above definition

b̃n ≥ c
logd n
n

, (n ≥ n0 + 1)

for some positive c > 0 since

πn,j = 1
d! ·

logd n
n

(
1 +O

(
1

logn

))
for fixed j (see Lemma 4 in [7]). We now claim that

ãn ≥ d
(
n+ 1

2d − 1

)
, (n ≥ n0 + 1) (12)

for some d > 0 which will be chosen below. We prove this claim by induction. Clearly, the
claim is true for n = n0 + 1. Next, in order to prove the induction step, plug the above claim
into the recurrence for ãn. This yields

ãn ≥ d2d
∑

0≤j<n
πn,j

(
j + 1

2d − 1

)
− d2d

∑
0≤j<n0+1

πn,j

(
j + 1

2d − 1

)
+ c

logd n
n

≥ d
(
n− 1 + 2d

2d − 1

)
+ (c− dK) logd n

n

≥ d
(
n+ 1

2d − 1

)
,

where in the second estimate we used

2d
∑

0≤j<n
j · πn,j = E

2d−1∑
`=0

N`

 = n− 1

and

2d
∑

0≤j<n0+1
πn,j

(
j + 1

2d − 1

)
≤ K logd n

n

which follows from (12). Moreover, the last estimate follows if d is chosen such that
0 < d ≤ c/K. This concludes the induction step and thus also the proof.

(b) Assume that bn > 0 for all n ≥ n0. The claim follows from part (a) by setting

b̃n =
{

0, if 1 ≤ n < n0,

bn, if n ≥ n0

and noting that the corresponding sequence ãn satisfies an ≥ ãn. J

Proof of Lemma 8. Throughout the proof, let α = <(z). Further, here, and subsequently,
we write Bin(n − 1, u) for a random variable with binomial distribution with parameters
n− 1 and u.

(i) By construction, ∆0 is distributed as exp(−Γ∗(d)), where Γ∗(d) is a random variable
with the Gamma distribution with density ((d− 1)!)−1td−1 exp(−t) for t > 0. It follows that
∆0 has density ((d− 1)!)−1(− log t)d−1 for t ∈ (0, 1). Hence,∣∣E [Nz

0 1[0,n−1+ε](∆0)
]∣∣ ≤ E

[
Bin(n, n−1+ε)

]α P (∆0 ≤ n−1+ε) ≤ Cn−1+ε logn.
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Next, by part (i) of the (well-known) postponed Lemma 12 below, we have

E
[
Nz

0 1[n−1+ε,1](∆0)
]

= E
[
∆z

01[n−1+ε,1](∆0)
]
nz

+ z(z − 1)
2 E

[
(1−∆0) ∆z−1

0 1[n−1+ε,1](∆0)
]
nz−1 +O(nε−1).

Dropping the indicators on the right hand side only adds a negligible error term as∣∣E [∆z
01[0,n−1+ε)(∆0)

]∣∣ ≤ n(−1+ε)<(z)−1+ε logn with a similar computation for the second
summand.

(ii) We have

E
[∣∣Nz

0 − (∆0n)z
∣∣p]

≤ 2p((d− 1)!)−1(E [Bin(n− 1, 1/n)αp] + 1)
∫ 1/n

0
(− log u)d−1du

+ ((d− 1)!)−1
∫ 1

1/n
(− log u)d−1E

[
|(Bin(n− 1, u))z − (un)z|p

]
du.

Part (ii) of Lemma 12 below shows that the integral in the second summand is bounded by

C

∫ ∞
1/n

(− log u)d−1
(

(un)p(α−1/2) + (un)pαe−Cun
)
du = O(np(α−1/2)).

As ∫ 1/n

0
(− log u)d−1du = 1

n
(logn)d−1(1 +O((logn)−1)),

it follows that

‖Nz
0 − (∆0n)z‖p = O

(
nα−1/2

)
.

This shows that the marginals in the mutivariate central limit theorem stated in Lemma 7
converge with respect to all moments. This shows (ii). (iii) follows along similar lines. J

I Lemma 12. Let z ∈ C with 0 < α := <(z) < 1. We have the following asymptotic
expansions:
(i) for any ε > 0 sufficiently small, as n→∞, uniformly in n−1+ε ≤ u ≤ 1,

E[Bin(n, u)z] = (nu)z + z(z − 1)
2 (1− u) (nu)z−1 +O(nε−1).

(ii) For p ∈ N \ {0}, there exists a constant C > 0 such that

E
[∣∣Bin(n, u)z − (nu)z

∣∣p]
≤ C

(
1(0,1/n)(u) + 1[1/n,1](u)

(
(un)p(α−1/2) + (un)pαe−Cun

))
.

Proof. (i) On [1/2, 3/2], we have

xz = 1 + z(x− 1) + z(z − 1)
2 (x− 1)2 + γ(x)(x− 1)3,
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for some function γ which is bounded on [1/2, 3/2]. Let A = {Bin(n, u)/(nu) ∈ [1/2, 3/2]}.
Plugging x = Bin(n, u)1A/(nu) into the last display and taking the expectation gives

E[Bin(n, u)z1A]
(nu)z = 1 + zE

[
Bin(n, u)1A

nu
− 1
]

+ z(z − 1)
2 E

[(
Bin(n, u)1A

nu
− 1
)2
]

+O
(
E

[(
Bin(n, u)1A

nu
− 1
)3
])

.

By Chernoff’s inequality, since u ≥ n−1+ε, we have P (A) ≤ C1 exp (−C2n
ε) for some

universal constants C1, C2 > 0. Hence, dropping the indicator 1A in all expectations in the
last display adds a negligible error term.

(ii) For u ≤ 1/n, we can bound E
[
Bin(n, u)αk

]
≤ E

[
Bin(n, 1/n)αk

]
→ E

[
Pαk

]
as

n→∞. (Here, P denotes a random variable with the Poisson distribution and mean one.)
Obviously, (nu)αk ≤ 1. This shows one part of the inequality. For the more interesting case
u ≥ 1/n, first observe that

E
[∣∣Bin(n, u)z − (nu)z

∣∣p]
≤ 2k

(
E [|Bin(n, u)α − (nu)α|p] + E

[∣∣∣∣Bin(n, u)α · log Bin(n, u)
nu

∣∣∣∣p])
=: 2k(f1(u, n) + f2(u, n)).

Set En = {Bin(n, u) > (nu)/2} and define

f1(u, n) = E [|Bin(n, u)α − (nu)α|p 1En
] + E

[
|Bin(n, u)α − (nu)α|p 1Ec

n

]
=: g1(u, n) + h1(u, n),

and

f2(u, n) = E
[∣∣∣∣Bin(n, u)α · log Bin(n, u)

nu

∣∣∣∣p 1En

]
+ E

[∣∣∣∣Bin(n, u)α · log Bin(n, u)
nu

∣∣∣∣p 1Ec
n

]
=: g2(u, n) + h2(u, n),

We now give bounds on g1, g2, h1 and h2. Let %(t) = (1 + t)α. Then, |%′(t)| ≤ α21−α for all
t ≥ −1/2. Thus, by the postponed Lemma 13 below,

g1(u, n) = (nu)αpE
[∣∣∣∣%(Bin(n, u)− nu

nu

)
− 1
∣∣∣∣p 1En

]
≤ (α21−α)p(nu)p(α−1)E [|Bin(n, u)− nu|p] ≤ C(un)p(α−1/2)

for some C > 0. Next, we consider g2. Let ψ(t) = tα| log t|. As ψ′ is bounded on [1/2,∞),
by, say C1 > 0, we have

g2(u, n) = (nu)αpE
[
ψ

(
Bin(n, u)− nu

nu

)p
1En

]
≤ C1(nu)p(α−1)E [|Bin(n, u)− nu|p] ≤ C2(un)p(α−1/2).
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for some C2 > 0. Next, by the Cauchy-Schwarz inequality and the postponed Lemma 13
below,

h1(u, n) ≤ E
[
|Bin(n, u)− nu|2pα

]1/2
P (Ecn)1/2

≤ C1(nu)pα/2e−Cun

for some C > 0. Since ψ in bounded on [0, 1] by, say C > 0, we also have

h2(u, n) ≤ (nu)αpE
[
ψ

(
Bin(n, u)

nu

)p
1Ec

n

]
≤ (nu)αpe−Cun.

This concludes the proof. J

I Lemma 13. For any real r ≥ 1 there exists a constant C > 0 such that, for all n ≥ 1 and
u ∈ [0, 1], we have

E [|Bin(n, u)− nu|r] ≤ C(nu)r/2.

Proof. By Jensen’s inequality, we may restrict ourselves to the case of integer r. Using
Bernstein’s inequality, we obtain

E [|Bin(n, u)− nu|r] = r

∫ ∞
0

yr−1P (|Bin(n, u)− nu| ≥ y) dy

≤ r
∫ ∞

0
yr−1 exp

(
− y2

2nu+ 2y/3

)
dy

≤ r
∫ 6nu

0
yr−1 exp

(
− y2

6np

)
dy + r

∫ ∞
6nu

yr−1e−ydy.

Sustituting x = y/
√

6nu, one finds that the first term is bounded by C(nu)k/2 for all n ≥ 1
and u ∈ [0, 1]. The second summand is O(exp(−αnp)) for any α < 6. J
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Abstract
Many physical models undergo phase transitions as some parameter of the system is varied. This
phenomenon has bearing on the convergence times for local Markov chains walking among the
configurations of the physical system. One of the most basic examples of this phenomenon is the
ferromagnetic Ising model on an n× n square lattice region Λ with mixed boundary conditions.
For this spin system, if we fix the spins on the top and bottom sides of the square to be + and
the left and right sides to be −, a standard Peierls argument based on energy shows that below
some critical temperature tc, any local Markov chainM requires time exponential in n to mix.

Spin glasses are magnetic alloys that generalize the Ising model by specifying the strength of
nearest neighbor interactions on the lattice, including whether they are ferromagnetic or antifer-
romagnetic. Whenever a face of the lattice is bounded by an odd number of edges with ferromag-
netic interactions, the face is considered frustrated because the local competing objectives cannot
be simultaneously satisfied. We consider spin glasses with exactly four well-separated frustrated
faces that are symmetric around the center of the lattice region under 90 degree rotations. We
show that local Markov chains require exponential time for all spin glasses in this class. This
class includes the ferromagnetic Ising model with mixed boundary conditions described above,
where the frustrated faces are on the boundary. The standard Peierls argument breaks down
when the frustrated faces are on the interior of Λ and yields weaker results when they are on
the boundary of Λ but not near the corners. We show that there is a universal temperature T
below which M will be slow for all spin glasses with four well-separated frustrated faces. Our
argument shows that there is an exponentially small cut indicated by the free energy, carefully
exploiting both entropy and energy to establish a small bottleneck in the state space to establish
slow mixing.
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24:2 Slow Convergence of Spin Glass Models

1 Introduction

The celebrated Ising model on the Cartesian lattice is a fundamental model for ferromagnetism
and one of the simplest models demonstrating an order-disorder phase transition. Each
configuration σ in the state space Ω = {−1,+1}n2 consists of an assignment of a + or −
spin to each of the vertices, and the Gibbs (or Boltzmann) distribution assigns weight

π(σ) = e−βH(σ)/Z(β),

where

H(σ) = −
∑

(i,j)∈E

σiσj

is the Hamiltonian (or energy) of the system, β = 1/T is inverse temperature, and Z(β) =∑
σ∈Ω e

−βH(σ) is the normalizing constant known as the partition function. In Sections 3 and 4
it will be convenient to write the probability of a configuration in terms of λ = e2β = e2/T ,
where λ can be seen as the weight assigned to edges whose endpoints are assigned like spins.

Physicists characterize when there is a phase transition in a physical model by asking
whether there is a unique limiting conditional distribution on finite subregions as the lattice
size grows. The Gibbs distribution is defined as any limiting measure, but this limit might
not be unique. For example, for the Ising model on Z2 at sufficiently low temperatures,
the probability of an interior vertex being assigned + will be much higher if the boundary
vertices were hard-wired to be + than if they were hard-wired to be −, and this difference
persists in the limit. The infinite volume Ising model was solved exactly by Onsager in 1944
[23], showing that there is a critical value βc = ln(1 +

√
2)/2 such that for β < βc (i.e., high

temperature), the limiting distribution is unique, and for β > βc (i.e., low temperature),
spins on the boundary of the region persist and there are multiple limiting distributions.
The all-plus and the all-minus boundary conditions are known to be extremal [1, 12]. and all
other infinite-volume Gibbs measures are convex combinations of these extremal measures.

A related effect has been observed in the context of mixing times of local Markov chains for
the Ising model on finite lattice regions with free boundaries (i.e., boundary vertices can take
on either spin). The mixing time τ(M) of a chainM, i.e., the number of steps required so
that the distribution over configurations is close to its stationary distribution, also undergoes
a phase change. When β is small, local dynamics are known to be efficient [18, 19, 15], while
when β is large, local chains require exponential time to converge to equilibrium [31]. At
low enough temperature, the Gibbs distribution strongly favors configurations that have
predominantly one spin, and it will take exponential time to move from a mostly + state to
a mostly − one using moves that only change o(n2) sites at a time [17].

Mixing times of Markov chains are known to be sensitive to boundary conditions. For
example, local chains on Ising configurations are conjectured to converge in polynomial time
at all temperatures for the “all +” boundary condition where all vertices on the boundary
are hard-wired to have + spins. While still open, Martinelli [16] showed mixing is indeed sub-
exponential at all temperatures with all + boundary conditions and subsequently Lubetsky
et al. [15] showed that the chain converges in quasi-polynomial time. However, a standard
Peierls argument can be used to show that when there are mixed boundary conditions with
4 connected components of like spins on the boundary, alternating “+,−,+,−”, then the
chain again will be slow at low temperatures. In particular, for mixed boundary conditions
where we fix the boundary to be + on all vertices on the vertical sides of the boundary and −
on the horizontal, then the chain provably requires time exponential in n at sufficiently low
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temperature. For “p-shifted mixed boundary conditions” where we rotate the mixed boundary
conditions clockwise p units, [6] for the Ising model establish bounds on the temperature
below which convergence is slow, but they do not easily extend to other cases we consider.

Similar questions can be examined in the context of spin glasses, or magnetic alloys that
are a natural generalization of the ferromagnetic and antiferromagnetic Ising models. We
are given a graph G = (V,E) and a set of couplings Jij ∈ {−1,+1} for each edge (i, j) ∈ E.
The state space Ω = {−1,+1}V , where a configuration assigns a spin to each vertex in V .
For a spin glass configuration σ ∈ Ω, the Hamiltonian is defined as

H(σ) = −
∑

(i,j)∈E

Jijσ(i)σ(j)

and the Gibbs distribution is defined as for the Ising model as π(σ) = e−βH(σ)/Z(β).
When all the Jij = +1, this model is precisely the ferromagnetic Ising model on G; when

all the Jij = −1, it is antiferromagnetic. In general, the behavior of a spin glass is much
richer than simple models of magnetism because of the presence of frustration, or competition
between local interactions. In the case of G = Λ, a square region in the lattice, a face of Λ is
frustrated when Jij = −1 for an odd number of edges around the face. No setting of the sites
on the corners of such a face will satisfy all four edges, i.e., make each Jijσ(i)σ(j) = 1. Even
finding the ground states (or most likely configurations) reduces to solving an optimization
problem that can be NP-hard (see, e.g., [2]. It will be convenient to refer to the dual lattice
Λ = (V ,E) and refer to a frustrated face f of Λ by the frustrated vertex v = f in V .

Here, we study spin glasses with exactly four well-separated frustrated vertices in order
to understand the long-range interactions and their effects on mixing times. Notice that
the Ising model with p-shifted mixed boundary conditions is a special case, where all four
frustrated squares lie just inside the boundary. Models with well-separated defects are widely
studied to understand long-range correlation; for example, in seminal work, Ciucu [4] studied
the monomer-dimer model with a constant number of monomers to establish a connection
with electrical networks and settle a nearly century old conjecture about long-range effects
due to the separation of the monomers. It is natural to consider similar questions in the
context of spin glasses with a few well-separated frustrated vertices.

We show that there is a universal temperature T below which the Markov chainM will
be slow for any spin glass with exactly four frustrated vertices defining the corners of a (not
necessarily axis-aligned) square in Λ. We identify a bottleneck in the state space by looking
at the how the free energy (i.e., lnZ/n2) changes as a parameter of the system is varied.

I Theorem 1.1. Let Λ be the kn× kn lattice region, k ≥ 2. Suppose that four distinguished
faces f1, .., f4 are symmetric around the center of the lattice region under 90 degree rotations.
There is a universal temperature T = 0.360 . . . such that the Glauber dynamics M for the
spin glass model on Λ with f1, ..., f4 the faces with frustration has mixing time τ(M) ≥ ecn,
for some constant c > 0, whenever t < T .

As a corollary, this gives a universal bound on the temperature for the Ising model with
p-shifted mixed boundary conditions.

The proof of Theorem 1.1 requires several innovations. The standard argument to show
slow mixing is based on the conductance of the Markov chain. The key is showing that the
state space Ω can be partitioned into two sets, S and its complement SC , such that getting
from S to some subset SC requires passing through a small cutset C ⊂ SC , and the stationary
weights π(S) and π(SC) are both exponentially larger than π(C). This establishes that the
chain has low conductance, which implies it takes exponential time to converge to equilibrium
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[13]. The main ingredient is typically a Peierls argument [24], which introduces a map Ψ
from C to S ∪ SC . Typically Ψ is chosen so that for all σ ∈ C, we have π(Ψ(σ)) ≥ π(σ)ecn,
mapping elements of C to configurations with exponentially larger weight. If we can show
that Ψ is nearly injective (i.e., the cardinality of the inverse image of each configuration is
bounded by a polynomial), then we can conclude that π(C) is exponentially small.

In our setting, there is not always a natural candidate map that increases the probability
of a configuration exponentially. In fact, the standard map gives no guaranteed increase to
the stationary probability when each side of the boundary has close to an equal number of +
and − spins (when p = 0.5 and the boundary changes spin at the center of the four sides of
the boundary). In this case, we exploit the low entropy of C by defining an injective map
from C × 2cn → Ω, for some c > 0. The map never decreases the weight of a configuration,
so we again can conclude that π(C) is exponentially small. As we vary p, the free energy of C
remains small compared to the two sides of the cut due to a derease in energy (when p is
close to 0) or due to entropy (when p is close to 0.5); all other cases rely on both.

An important technical contribution in our proofs is in the construction of a new injective
map. The contour representation of a spin glass configuration consists of edges in the
dual lattice that cross edges e = (i, j) where Jijσ(i)σ(j) = −1; in this representation the
frustrated vertices in the dual lattice have odd degree and all other vertices have even degree.
Because of this property the contour representation can be decomposed into a even cycles
(closed contours) and two long paths whose endpoints are the four frustrated vertices. In the
standard case of the Ising model with alternating side boundary conditions, we can define an
injective map that shifts the paths connecting the four frustrated vertices to paths with much
shorter length, and therefore much larger probability. The new paths can be added along the
boundary by shifting closed contours. In our case we cannot do this since we cannot always
construct maps to configurations with larger probability. Therefore we define a map to a set
of configurations of at least equal probability. To complete the proof we require a careful map
that allows us to reconstruct the original path, the new path, and the closed contours that
are intersected when the new path is added. Verifying that the map is injective now requires
a very sensitive combinatorial encoding and decoding that is likely of independent interest.

2 Preliminaries

We review some standard background on Markov chains, convergence times, and the Ising
model that are required for our results.

2.1 Markov chains and mixing times
LetM be an ergodic, reversible Markov chain with arbitrary finite state space S, transition
probability matrix P , and stationary distribution π. Let P t(x, y) be the t-step transition
probability from x to y, and let ||·, ·|| denote total variation distance.

I Definition 2.1. For ε > 0, the mixing time is defined as

τ(ε) = min{t : max
x∈S

∑
y∈S
||P t

′
(x, y), π(y)|| ≤ ε, for all t′ ≥ t}.

A Markov chain is rapidly (or polynomially) mixing if the mixing time is bounded above by
a polynomial in logS, the length of a description of a state in S. A chain is slowly mixing if
the mixing time is bounded below by an exponential function. The conductance, introduced
by Jerrum and Sinclair [13], is useful to bound the mixing time [13].
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Figure 1 States with (a) positive orientation, (b) orientation 0, (c) negative orientation.

I Definition 2.2. For a Markov chain with stationary distribution π, the conductance Φ is

Φ = min
S:0<π(S)≤1/2

∑
x∈S,y 6∈S π(x)P (x, y)

π(S) .

I Theorem 2.3 (Jerrum and Sinclair [13]). The mixing time of a Markov chain with conduc-
tance Φ satisfies:

τ(ε) ≥
(

1− 2Φ
2Φ

)
ln ε−1.

To establish slow mixing, our strategy will be to define a set S along with sets T ⊂ SC and
C ⊂ SC \ T in the state space, such that π(S) = π(T ) and π(C)/π(S) < e−cn and such that
getting from S to SC in the Markov chain requires going through C.

In this paper, we will focus on the simplest local Markov chainM for the Ising and spin
glass models, known as Glauber dynamics, which connects pairs of configurations whose spins
differ on at most one vertex. In a given step, the chain picks any vertex v ∈ Λ at random and
changes the spin with the appropriate transition probabilities so that the chain converges to
the Gibbs distribution π. For our models, the transition probabilities ofM are defined as

P (σ, τ) = 1
2n2 min

(
1, π(τ)
π(σ)

)
,

if |{i : σi 6= τi}| = 1, and with all remaining probability stay at the current configuration.

2.2 The Contour representation of the Ising and spin glass models
It will be convenient to view Ising and spin glass configurations in terms of contours. For
every configuration σ ∈ Ω, there is a contour representation Γ(σ) in Λ, the planar dual to
Λ. We define Λ = (V ,E) by letting V correspond to the centers of unit squares in Λ and
edges E connect any two vertices whose corresponding squares share an edge in Λ. An
edge e′ ∈ E that is dual to e = (i, j) ∈ E is in Γ(σ) if Jijσ(i)σ(j) = −1 and we omit it if
Jijσ(i)σ(j) = +1. For the Ising model where all the Jij = +1, the contour representation
Γ(σ) is precisely the set of edges separating + and − components in σ. Note that we can
reconstruct the spin configuration σ from the contour representation (given a single spin) if
we know the values of {Jij}. The weight of a configuration σ is determined by Γ(σ), and
there is a weight-preserving bijection between the configurations of any two spin glasses with
the same set of frustated vertices.

For the spin glass model considered here, all vertices of V \ {v1, ..., v4} have even degree
in Γ(σ) and the frustrated vertices {v1, ..., v4} will have odd degree. It follows that Γ(σ)
must be the union of two paths terminating at the frustated vertices, along with even cycles.
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(Note that these paths and cycles can intersect each other, and therefore are not necessarily
unique.) In all that follows, it will be convenient to shift the primal lattice Λ by (−1/2,−1/2)
so that the vertices of Λ are integral. Now, recall that we assume that the four frustrated
vertices lie on the boundary of a 2n × 2n square S within Λ centered at (n, n), and they
are the corners of a (not necessarily axis-aligned) square. Without loss of generality, we
label these so that v1 lies on the top side of S and is the ith vertex from the upper left
corner for some 0 ≤ i ≤ n. Setting p = i/2n, v1 is at a distance of 2pn from the upper left
corner, v2 is on the right side of S a distance of 2pn from the upper right corner, v3 is on
the bottom of S a distance of 2pn from the lower right corner, and v4 is on the left side of S
a distance of 2pn from the lower left corner. The key to all of our arguments is how the two
long paths in Γ(σ) pair up these frustrated vertices. Let α(σ) be the length of the shortest
path in Λ from the connected component of Γ(σ) containing v1 to the connected component
containing v4 (if v1 a nd v4 are connected, α(σ) = 0). Likewise, let β(σ) be the length of the
shortest path between the component containing v1 and the component containing v2. Let
γ(σ) = β(σ)− α(σ) be the orientation of the configuration σ. We partition the state space
Ω into a disjoint union Ω = ∪i∈Z Ωi, where σ ∈ Ωi if γ(σ) = i.

The partition of Ω into ∪iΩi allows us to define a cut in the state space in order to
bound the conductance. In particular, we let Ω− = ∪i<0 Ωi and Ω+ = ∪i>0 Ωi, and we
observe that Ω = Ω− ∪ Ω0 ∪ Ω+. We specify a subset of C ⊂ Ω0 that will be critical to
defining the cut as C = {σ ∈ Ω0 : α(σ) = β(σ) = 0} (i.e., the configurations in which v1 is
connected to both v2 and v4). See Figure 1. Finally, we define C∗ = C ∪ Ω−1 ∪ Ω1 to be the
configurations where the paths connecting the frustrated vertices are within distance 1 of
each other. Following [25], for configurations in C, we partition the cross into two paths, one
from v1 to v3 and a one from v2 to v4; we do the same for configurations in Ω−1 and Ω1,
although it may be necessary to add a single “defect” that encodes where one or both of
these paths incurs a jump by one unit. To move from a configuration in Ω− to one in Ω+

using Glauber dynamics, we must pass through a configuration in C∗. We will show that
the probability of C is exponentially small, and this will allow us to argue that the Glauber
dynamics requires exponential time to converge to equilibrium.

3 Slow Mixing for the Ising model with Mixed Boundaries

We start with the standard approach used to show slow mixing when the boundary conditions
alternate spins on the boundary of a (2n + 1) × (2n + 1) lattice region Λ. Here Λ is the
2n× 2n lattice region centered in Λ. This will motivate the approach used in the general
spin glass setting (when the frustrated vertices are not necessarily on the boundary of Λ)
and will elucidate the difficulties in generalizing this simpler result.

Fix 0 ≤ p ≤ 1/2 and let q = 1− p. We define v1 = (2pn, 2n), v2 = (2n, 2qn), v3 = (2qn, 0)
and v4 = (0, 2pn). Recall that all vertices on the boundary between v1 and v2 and between
v3 and v4 are assigned + and the others are assigned −. The vertices v1, ..., v4 define the
endpoints of a pair of paths in each configuration. (There may be more than one choice
of paths.) Using the strategy outlined in Section 2.2, we recall that C consists of those
configurations where there are paths from v1 to both v2 and v4 (and therefore also to
v3). Using the notion of “fault lines” introduced in [25], we note that this is the set of
configurations that contain a horizontal fault line, i.e.,. a path from v2 to v4, and a vertical
fault line, i.e., a path from v1 to v3. When both fault lines are present (and intersect) we call
their union a cross. We define the cross so that it is a maximal component of the contour
representation of the configuration.
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Let C be a cross in Λ. As we will show in Lemma 4.1, the minimum length of C is
L = 6n − 4np. We write the length as |C| = L + `, for some ` ≥ 0. Let CC be the set of
configurations in C that have C as their cross.

We will write the weight of a configuration σ as λ−H(σ), λ = eβ = e1/T , and note that
the energy H(σ) is the number of edges in the contour representation of σ.

I Lemma 3.1. For any cross C, we have

π(CC) ≤ λ−(2n−4pn+`).

Proof. We define the injective map ψC : CC → Ω so that π(ψC(σ)) = π(σ)λ(L−4n+`) for any
fixed C. Given this map, we find

1 = π(Ω) ≥
∑
σ∈CC

π(ψC(σ)) =
∑
σ∈CC

π(σ)λ(L−4n+`) = λ(2n−4pn+`)π(CC).

The map ψC is defined by removing C; then, along the upper-left boundary of Λ between v1
and v4 we add each edge not in σ and remove each edge in σ; then, along the lower-right
boundary of Λ between v3 and v2 we add each edge not in σ and remove each edge in σ. J

I Theorem 3.2. Let Λ ⊂ Z2 be an (2n + 1) × (2n + 1) lattice region and 0 ≤ p ≤ 1/2
define a family of balanced mixed boundary conditions on Λ. Let Ω be the set of all Ising
configurations and let C be the Ising configurations containing a cross. Then

π(C) ≤ f(n)e−cn,

for some polynomial f(n) and constant c > 0, whenever λ(1−2p) > 3(3−2p).

Proof. By Lemma 3.1,

π(C) ≤
∑
C

λ−(2n−4pn+`) ≤
∑
`≥0

λ−(2n−4np+`)3(6n−4np+`) ≤ 4n2(3(3−2p)λ−(1−2p))2n,

which is exponentially small when λ(1−2p) > 3(3−2p). The second inequality holds because
there are at most 3(6n−4np+`) ways to choose a cross of length 6n− 4np+ `. J

Thus, when λ(1−2p) > 3(3−2p) we have that the size of the cut is exponentially small, and
therefore the conductance of the graph is also exponentially small. By Theorem 2.3, this
implies that the chain takes exponential time to mix.

I Corollary 3.3. Glauber dynamics for the Ising model on Λ with balanced mixed boundary
conditions takes time at least ecn to mix, for some constant c > 0, when λ(1−2p) > 3(3−2p).

Notice that this gives λ > 27 when p = 0 and λ > 3(2(k+1)+1) when p = 1/2− 1/2k and when
p = 1/2 this fails to give any useful bound.

4 Slow Mixing for Frustrated Spin Glasses Using Free Energy

We will now proceed to extend the result in Section 3 by establishing slow mixing below
some temperature for spin glasses with four well-separated frustrated vertices.

In this setting we define Λ as the kn× kn lattice region, k ≥ 2, centered at (n, n). Four
distinguished faces are symmetric around the center of the lattice region under 90 degree
rotations. The centers of these faces are four vertices v1, .., v4 in Λ. As in Section 2.2 we
define C to be the set of contour configurations in which v1 is connected to both v2 and
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(a) (b)

Figure 2 (a) A minimal cross is shown in black, with two possible monotone paths in green. Any
monotone path in either shaded region is possible. (b) A staircase is shown in black, together with
the part of a cross containing a path from v1 to v4. The green arrow shows the direction edges of σ
are shifted in the region bounded by the middle section of the staircase and the cross.

v4, and we define the cross C in such a configuration as the component containing v1. The
argument in Section 3 fails when p = 1/2, in particular when ` = o(n). The length of the
cross C in that case is 4n+ `, and our injective map ψC removes C and replaces it with two
paths of total length 4n. The difference in energy, H(σ) −H(ψC(σ)) = `, is too small to
show that σ has exponentially small probability.

The remedy comes from noticing that in exactly the case ` = o(n), C is nearly a minimal
cross and there are many alternative choices of ψC . We will allow any monotone path that,
in order to ensure loss of energy, does not intersect C. The set of possible paths is illustrated
in Figure 2(a). We have the following lemma, whose proof appears in the Appendix.

I Lemma 4.1. Let Sn be the 2n× 2n axis-aligned square whose sides contain v1, .., v4. For
some ` ≥ 0, |C| = 6n−4pn+`. If ` < 2pn there are two (2n−2pn−`)×(2pn−`) rectangular
regions on opposite corners of the interior of Sn that contain no edges of C.

Our new strategy is to use all possible choices of ψC , thereby defining an exponential
family of images. We will define a function ΨC that involves mapping a configuration σ ∈ CC
to the union of possible ψC(σ) defined by different pairs of monotone paths. Figure 2(a) also
shows the tradeoff between energy and entropy for our method. As p decreases, the energy
loss due to the map increases. As the width of each shaded area decreases, the number of
possible paths,

( 2n
2np
)
, also decreases. This is what we mean by a decrease in entropy.

Just as we needed ψC to be injective in Section 3, we would like our new map to have
the property that two different configurations map to disjoint sets of configurations. Instead,
we define ΨC to pass a small amount of “side information,” and with this definition we will
get a disjointness property that serves our purpose. The side information is in the form of
tokens placed on certain edges along each of the two paths that define the configuration σ is
mapped to. Formally, for each path this information is encoded as a binary string of length
2n: 0 for any plain edge, 1 for an edge with a token. The nice property that will make this
side information small is that no two adjacent edges of a path are occupied by tokens.

Let B(m) be the set of binary strings of length m with no consecutive 1’s. Let B = BC =
B(2n−`). Formally, we will define a function ΨC : CC → 2Ω×B×B that has the nice properties
in the following lemma. To get our hands on the set of mapped configurations minus the
tokens, we define the projection operator Π : 2Ω×B×B → 2Ω, so that Π({σi, bi, b′i}) = {σi}.
Formally, Π ◦ΨC is the map from one configuration to a set of configurations.

In the following lemmas, fix 0 ≤ p ≤ 1/2 and let L = 6n− 4np.
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I Lemma 4.2. Let C be a maximal cross of length |C| = L + `. There exists a function
ΨC : CC → 2Ω×B×B such that ∀σ, σ′ ∈ CC , σ′′ ∈ Π ◦ΨC(σ),

ΨC(σ) ∩ΨC(σ′) = ∅,

|ΨC(σ)| =
(

2n− 2`
2pn− `

)2
,

and H(σ′′) ≤ H(σ)− (2n− 4np+ `).

We postpone constructing the function ΨC (and proving Lemma 4.2) until the next
subsection. Theorem 4.5 is an analogue of Theorem 3.2 that gives an exponential bound for
all p, 0 ≤ p ≤ 1/2. As a corollary of Theorem 4.5, we will prove our main result, Theorem 1.1,
asserting slow mixing for spin glasses with frustration.

We first bound the probability of the set of configurations containing a given cross C.

I Lemma 4.3. For any maximal cross C of length |C| = L+ ` we have

π(CC) ≤ π(Π ◦ΨC(CC))λ−(2n−4np+`)φ4n−2`+1
/(

2n− 2`
2np− `

)2
, (1)

where φ = (1 +
√

5)/2.

Proof. It is well known that |B(m)| is the mth Fibonacci number, which is within 1 of φm.
Each σ′′ ∈ Π ◦ΨC(σ) appears in at most |B|2 ≤ φ4n−2`+1 elements of ΨC(σ). The bound
on H(σ′′) in Lemma 4.2, gives π(σ′′) ≥ π(σ)λ−(2n−4np+`) and the two equalities imply

π(Π ◦ΨC(CC)) ≥
∑
σ∈CC

π(σ)λ(2n−4np+`)φ−(4n−2`+1)
(

2n− 2`
2np− `

)2
. (2)

The inequality follows by replacing
∑
π(σ) with π(CC). J

Our main theorems establishing slow mixing of Glauber dynamics for spin glasses with
well-separated frustrated vertices (Theorems 4.5 and 1.1) depend on the following technical
lemma regarding the set C` of configurations containing maximal crosses of fixed length L+ `:
C` = ∪{CC : |C| = L + `}. The idea of the lemma is to show that π(C`) is exponentially
small, where the constant in the exponent is independent of `. This also means that the free
energy ln π(C`)/n is less than some negative constant. Since there are polynomially many
values of `, it will follow that the whole set C is exponentially small.

I Lemma 4.4. Let C` be the spin glass configurations where v1, .., v4 are all connected by a
maximal cross of length L+ `. Then for λ ≥ 256 we have

π(C`) ≤ 2−0.2n poly(n). (3)

Proof. Let s = 1/2− p and r = `/n. We will actually prove that

π(C`) ≤ λ−8sn (3/λ)rn 2n[(4−2r) log2 φ+L(r,s)+P(r,s)−T (r,s)] poly(n) , (4)

where

L(r, s) = (2 + 4s+ r)h( r

2 + 4s+ r
),

P(r, s) = (2 + 4s)h( 2s
1 + 2s ),

T (r, s) = max(0, 4− 4r)h(1
2 −

s

1− r ),
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and h(x) = −x log2(x)− (1− x) log2(1− x). Then we will show that the right-hand side of
Equation 4 is less than 2−0.2n.

First, we establish Equation 4. Each C consists of vertical path connecting v1 to v3
and a horizontal path connecting v2 to v4. The vertical path contains a minimal vertical
path of 2n vertical edges and 2n − 4pn horizontal edges. There are

(4n−4pn
2n−4pn

)
=
(2n+4sn

4sn
)

choices of minimal vertical path. There is one choice of minimal horizontal path, which
contains only horizontal edges connecting v2 and v4 to the vertical path. Then there are(6n−4np+`

`

)
=
(2n+4sn+rn

rn

)
ways to choose the locations of the ` extra edges, and 3 possible

directions for each extra edge. Applying Lemma 4.3 and Stirling’s formula,

π(C`) ≤
(

6n− 4np+ `

`

)(
4n− 4pn
2n− 4pn

)
3` max
|C|=L+`

π(CC)

≤ 2(2n+4sn+rn)h(r/(2+4s+r))2(2n+4sn)h(2s/(1+2s))3rn

· λ−(8sn+rn)φ4n−2rn+12−2(2n−2rn)h((1−r−2s)/(2−2r)).

Equation 4 follows immediately by collecting the terms in the exponents.
By taking logs and dividing by n it follows that log2 π(C`)/n ≤ F(r, s), where

F(r, s) = (−r − 8s) log2 λ+ r log2 3 + (4− 2r) log2 φ+ L(r, s) + P(r, s)− T (r, s)

It remains to show that F(r, s) ≤ −0.2, for all s, r, 0 ≤ s ≤ 1/2, r > 0, and large enough λ.
L(r, 0) is concave as a function of r, L(r, s) and P(r, s) are concave as functions of s, and

−T (r, s) is convex as a function of s. We numerically approximate the concave functions
with a tangent line and the convex function with a secant, yielding these results:

L(r, 0) ≤ 0.5 + 2.9r; P(r, s) ≤ 0.5 + 12s;
L(r, s) ≤ 0.5 + 2.9r + 2rs ≤ 0.5 + 3.9r; −T (r, s) ≤ −4 + 4r + 8s.

Also, r log2 3 < 1.5r and (4− 2r) log2 φ < (2.8− 1.4)r. Adding terms, for λ ≥ 256, we get

F(r, s) ≤ (−r − 8s) log2 λ+ 8r + 20s− 0.2 ≤ −0.2. J

We now state the key theorem bounding the probability of the set C of configurations
containing crosses.

I Theorem 4.5. Let Ω be the set of all spin glass configurations in a kn×kn square lattice Λ
centered at (n, n), k ≥ 2. Suppose that four distinguished vertices v1, .., v4 lie on the boundary
of an axis-aligned 2n× 2n square S centered in Λ, and these four vertices form the corners
of a (not necessarily axis-aligned) square (i.e., they are shifted by 2p around the boundary of
S). Let C be the set of configurations in which v1 is connected to both v2 and v4. Then for
λ ≥ 256 we have

π(C) ≤ 2−0.2npoly(n). (5)

Proof. Since ` has at most (cn)2 values, π(C) ≤ (cn)2 max` π(C`) ≤ 2−0.2npoly(n). J

Proof of Theorem 1.1. Set T = 2/ ln 256 = 0.360.... Let t < T . The state space Ω contains
the two disjoint subsets Ω− and Ω+, separated by a cut set C∗ consisting of all configurations
within two steps of C. We have π(C∗) < π(C)poly(n) and by symmetry π(Ω−) = π(Ω+). The
conductance Φ satisfies

Φ ≤
∑
σ∈Ω−,σ′∈ΩC π(σ) Pr(σ, σ′)

π(Ω−) ≤ 4 · π(C∗) ≤ 2−0.1n, for large enough n. (6)

Therefore the Markov chain mixes slowly. J
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Figure 3 (a) A staircase and patch that share edges (left), and an encoding that loses information
(right). (b) A staircase and patch with the default path (left), and an encoding that preserves
information (right).

4.1 Construction of the Map

In this section we will construct the map ΨC using pairs of paths as shown in Figure 2(a).
An upper staircase with respect to a cross C of length L+ ` is a path of min(`, 2pn) west
edges starting at v1 followed by zero or more west and south edges, followed by min(`, 2pn)
south edges ending at v4. We refer to the section of west and south edges as the “middle
2n− 2 min(`, 2pn) edges.” We define a lower staircase to be a path v3 to v2, which, when the
configuration is rotated 180°, becomes an upper staircase. Note that the edges on a staircase
need not be edges of a particular configuration. Given upper and lower staircases, we will
map σ ∈ CC to some σ′ ∈ Ω, marking certain edges with tokens. We will show that one can
reconstruct σ from C, σ′, and the marked edges, that no two marked edges are adjacent,
and H(σ′) ≤ H(σ)− |C|+ 4n, implying Lemma 4.2.

Our map is motivated by the map ψC in the proof of Lemma 3.1. In fact, the construction
is the same along the first min(`, 2pn) edges and last min(`, 2pn) edges: we add each edge
not in σ and remove each edge in σ. Along the middle section of the staircase that contains
west and south edges, our map must encode the locations of the staircase edges in σ′ without
increasing H(σ′). The basic strategy is to remove C, shift edges in σ away from the staircase,
toward the removed edges of C, then add the edges of the staircase.

Let SU be an upper staircase and SL be a lower staircase. The simple regions in the
interior of C ∪ SU ∪ SL may be two-colored gray and white, with the exterior, denoted R,
colored gray. Regions separated by an edge in C ∩ SU or C ∩ SL will have the same color.
We assume in what follows that ` < 2pn. In particular, SU and SL do not both contain
edges in any one region boundary. When ` ≥ 2pn, SU and SL are contained in the boundary
of the 2n× 2n square Sn, and the proof of Lemma 3.1 applies.

By Lemma 4.1 there is one white simple region R whose boundary contains the middle
2n − 2` edges of SU . The map will shift edges of σ in R southeast, and it will shift the
corresponding region bounded by the middle 2n− 2` edges of SL northwest. See Figure 2(b).

We may assign a + or − to each site in R ∪R so that the sites adjacent to C are + and
the edges of σ restricted to R ∪ R are exactly those edges between two neighboring sites
of opposite sign. We define a patch to be a connected set of − sites in R ∪ R. The outer
boundary of a patch is the unique cycle of edges in the configuration that, when traversed
counterclockwise, has sites inside the left of each edge and sites outside to the right.

A naive map would remove C from the configuration and add the upper staircase and
lower staircase to the configuration. The flaw in this approach is that σ cannot always
be reconstructed when part of a staircase coincides with part of the boundary of a patch.
Figure 3(a) shows an upper staircase in black that shares edges with a patch, shown in blue.
Adding the staircase creates double edges. The natural recourse is removing double edges
while preserving degrees, but shared edges are no longer recoverable from such a map.
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(a) (b)

Figure 4 (a) The components to encode. (b) The contour pieces defining the map.

Our map modifies the naive approach by shifting the staircases before adding them to
the configuration, and shifting edges that are between the staircases toward the empty space
left behind after the removal of C. Let S be the maximal contiguous section of SU that
forms part of the boundary of R and contains the middle 2n− 2` edges of SU . We define the
default path to be S shifted one step east. It consists of alternating west and south sections.
The first south (northernmost) edge of each south section, and the first west edge of each
west section, are each incident to S at just one vertex (with the exception of the first edge of
S if it is a south edge preceded in SU by a south edge). All other edges on the default path
are on S or not incident to it. The last south and last west edges are defined accordingly.

Figure 3(b) shows the same staircase and patch, with the default path in red. σ is mapped
to σ′ by starting with the union of the patch and the default path, and removing double
edges. The default path can be reconstructed from σ′, because it contains the first-south
and first-west edges of the default path. This is the information that was missing from the
previous mapping. The mapping contains no more energy than the original.

A subtler problem of lost information arises when the staircase enters the interior of a
patch. We define an interior edge of S to be one that bounds two − sites. Each maximal
contiguous segment of interior edges of S divides a patch into two patches, which we refer to
as the above-patch (or A-patch) and the below-patch (or B-patch).

To solve the problem of interior segments, we triple each interior edge of the staircase,
shifting the staircase and the B-patch one step east, and shifting the B-patch one step south.
The drawing on the left of Figure 4(a) shows the staircase in black and the patch in blue
before the two shifting steps, and the drawing on the right shows the default path in red and
the two patches after the shifts. After the shifts, our mapping removes all double edges.

The doubled interior edges of the default path consist of all interior west edges of the
A-patch except the last-west edge of each west section, and all interior south edges of the
below patch except the last-south edge of each south section.

This mapping has the one final problem that it increases the energy of the configuration.
This problem can be illustrated by labeling the edges as in Figure 4(b). EA and EB (blue)
are exterior edges of the A-patch and B-patch, respectively. IA and LW (orange) are south
and last-west interior edges of the A-patch, resp. IB and LS (purple) are west and last-south
interior edges of the B-patch, resp. FI, FW, and FS (red) are the first interior edge and all
first-west and first-south edges of the default path, resp. FE and SE (red) are the first and
second “exterior” edges of the default path following this segment of interior edges. The first
exterior edge will not be interior to any patch, but the second exterior edge may be interior
to this or another patch.

The increase in energy is caused by the “detours” at FS-LW and FW-LS. The final
mapping step is to flip the signs of sites bounded by corners of those two types and to place
a token at each such site. The Appendix presents the map steps in detail.
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4.2 Reconstruction
The default path (and hence σ restricted to RL) can be reconstructed from σ′, before
token-placing, as it contains all of the first-west and first-south edges. Starting from the FI
edge, the default path continues until it encounters the first FS or FW edge. Then it changes
direction and the FS or FW edge inductively plays the role of the FI edge. The rest of the
interior segment is reconstructed by induction on the number of south and west sections.

Reconstructing the default path in the presence of tokens is the same recursive process,
except we look ahead one step. If the next edge has a token, we flip the adjacent site before
proceeding. The adjacent site is unambiguous because it is between the A- and B-patches.
The Appendix presents the reconstruction steps in detail.

4.3 Energy loss
Before token-placing and sign-flipping, σ′ has more energy than H(σ)− |C|+ 4n. The EA
and EB naturally correspond 1-1 to the edges of the original patch. The IA and IB edges
correspond 1-1 to the interior segment of the staircase. The excess energy consists of one
pair of edges, FS-LW or FW-LS, for each corner of the interior segment, plus two more edges,
the FI edge and one LW or LS edge incident to FE.

The mapping solves this problem by short-circuiting the corners. Each FS-LW pair occurs
as part of a segment FS-LW-IA that form three sides of a site, and each FW-LS pair occurs
as part of a segment FW-LS-IB that also form three sides. The mapping flips the sign of
each such site, replacing three edges with one, and places a token at the flipped site.

Two such sites may be adjacent. This happens when an IA or IB section is one edge long.
Then one of the two sites is bounded by an FS-LW-IA-FW segment or an FW-LS-IB-FS
segment. In either case the mapping replaces four edges with zero. One sign-flip in the first
traversal removes the excess energy of both sites, and one token is placed. It also flips one
edge of the adjacent site, ensuring that no two tokens will be adjacent. (See Figure 5(a) steps
(d)-(f).) Each sign-flip in the second traversal converts three edges to one, canceling excess
energy due to this site. In this case, this site will not be adjacent to another token site.

The two remaining excess edges are the FI edge and one LW or LS edge. Suppose it
is LW (the case of LS is similar). If FE and a LW form a double edge or SE and an EB
form a double edge (the case pictured), the mapping removes the double edge, cancelling the
excess energy. In the remaining case FE is an FS edge, SE is an FW edge, and the segment
LW-FE-SE forms three sides of a site. The mapping flips the sign of that site and places a
token. No two tokens are placed on adjacent sites. In the case considered in the previous
paragraph, SE is not an interior edge of any patch, because the site is on the exterior side of
FE. The first interior edge of a patch does not bound a site with a token.
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A Appendix

Proof of Lemma 4.1. The minimal cross contains a path from v1 to v3 and a path from v2
to v4. First let’s assume that each of these is minimal. Then they each have length 4n− 4pn
and the total length of the cross is 8n− 8pn− |o|, where o is the length of the overlapping
segments. Orient the edges along each path from v1 to v3 so that the edges all go right or
down, and orient the path from v2 to v4 so that they go down or left. Then the overlapping
segments are oriented the same way in both paths if the edge is vertical and in opposite
directions if the edge is horizontal. But all horiztonal edges on the path from v2 to v4 after
this shared edge are left of the edge, and those on the path from v1 to v3 are to the right;
similarly, if they share a horizonal edge, all subsequent vertical edges must be to the left of
the edge on one path and to the right on the other. Therefore, the overlapping segment must
all be vertical or all horizontal. Furthermore, all the vertical edges that overlap have to lie
between v2 and v4 and have length at most 2n− 4pn; likewise if the horizontal edges that
overlap since they lie between v1 and v3. It follows that when the two paths are minimal
|o| ≤ 2n− 4pn and the length of the cross is at least 6n− 4pn.

If either of the paths from v1 to v3 and v2 to v4 is not minimal, then the overlap can
contain both horizontal and vertical edges. Notice that the overlapping segments must be
contignuous along either path or the cross would contain a cycle, contradicting minimality. If
this overlapping segment contains edges oriented both left and right (or down and up), then
it can be shortened, again violating minimality. Therefore the overlapping segment must go
down and left or down and right. If down and left, then the path from v1 to v3 has an extra
edge to the right for each horizontal edge in the overlapping segment; if down and right then
the path from v2 to v4 has an extra edge for each horiztonal edge in the overlap. Finally,
if the number of vertical edges in the overlap exceeds the vertical distance between v2 and
v4, then the path between them must contain at least that many additional vertical edges.
Summing all of these up, we find that if there are 2n− 4pn+ k edges in the overlap, then the
sum of the lengths of the two paths must be at least 8n− 8pn+ k. Subtracting the length of
the overlapping segment, we again find that the length of the cross is at least 6n− 4pn.

If the cross is nearly minimal, with length 6n − 4pn + `, the picture is similar. The
paths from v1 to v3 and v2 to v4 must also be nearly minimal, each having length at most
4n− 4pn+ ` and the length of the overlapping segments must be at least 2n− 4pn− `. It
follows that the path from v1 to v3 lies in a 2n− 4pn+ `× 2n rectangle, the path from v2
to v4 lies in a 2n× 2n− 4pn+ ` rectangle, and the overlapping segments lie in the center
2n− 4pn+ `× 2n− 4pn+ ` square. The overlapping segments do not have to be contiguous,
but the distance between segments is at most `. We find, by a similar argument to before,
that all but ` edges on the overlap must have the same orientation, horiztonal or vertical. If
the overlap is mostly vertical, then the 2pn − ` × 2n − 2pn − ` rectangles adjacent to the
upper-left and lower-right corners of the region cannot contain any edges from the cross.
Similiarly, if the overlapping segments are mostly horizontal, then there cannot be any edges
from the cross in the 2n − 2pn − ` × 2pn − ` rectangles incident to the upper-right and
bottom-left corners of the region. J
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(a) (b)

Figure 5 (a) The map: blue edges are the patch boundary, black edges are the staircase, red
edges are the default path, and green edges are the final mapping. (b) Reconstruction steps: blue
edges are the patch boundary, green edges are the mapping, black edges are the staircase, and red
edges are the default path.

A.1 Map Steps
Given σ ∈ CC pick an upper staircase SU and a lower staircase SL. Remove C from σ. Along
the initial segment of ` edges and final segment of ` edges of SU , add each edge not in σ and
remove each edge in σ. Let S be the middle 2n− 2` edges of SU .
1. Add S. If this doubles an edge, label one copy on the staircase and the other above

(below) the staircase if it is on the boundary of an A-patch (B-patch).
2. Triple each interior edge of S. Label one copy on the staircase, the second above the

staircase, and the third below the staircase. (Figure 5(a) step (b).)
3. Shift every edge on or below the staircase one step east.
4. Shift every edge below the staircase one step south. (Figure 5(a) step (c).)
5. Remove every double edge. (After the two shifts there are no triple edges.) (Figure 5(a)

step (d).)
6. Traverse the default path twice from start to end (Figure 5(a) steps (e), (f)):

a. First traversal: if the current edge and the next edge are interior FW or FS edges,
then put a token on the site bounded by these two edges and flip its sign.

b. Second traversal: if the current edge is either an interior FS or FW edge that is part
of an FS-LW-IA or FW-LS-IB segment, or an SE edge that is FW or FS and is the
third leg of an LW-FS-FW or LS-FW-FS segment, then flip the site bounded on three
sides by the segment and place a token on it.

For SL, rotate the configuration 180°, repeat steps 1-6, and rotate back.

A.2 Reconstruction steps
Given σ′, the following steps reconstruct σ. For subpaths of the upper staircase that bound
a white region to the left,
1. Infer and traverse the edges of the default path from start to end, but do not add them

to the configuration. The first edge will be a west edge. Inductively, at a current edge,
the next edge will be one of two possible edges that we’ll call straight, for the edge that
continues in the current direction, and turning, for the other edge.
a. if there is a token by the next edge, flip the sign of the token site. (Figure 5(b) steps

(c), (d), (f).)
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b. if the turning edge exists in the configuration (possibly after flipping), it is the next
edge. (Figure 5(b) steps (b), (c), (d), (f).)

c. otherwise the straight edge is the next edge; add it to the configuration if it doesn’t
exist. (Figure 5(b) steps (b), (e).)

2. Shift every edge in the white region to the left one step north.
3. Shift every edge in the white region to the left one step west.
For subpaths of the upper staircase that bound a white region to the right, reflect σ across the
line y = x, apply steps 1-3, and reflect back. For the lower staircase, rotate the configuration
180 degrees, repeat the process, and rotate back.
4. Remove all double edges.
5. Add C to the configuration.
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Abstract
We investigate the number of variables in two special subclasses of lambda-terms that are restric-
ted by a bound of the number of abstractions between a variable and its binding lambda, and by
a bound of the nesting levels of abstractions, respectively. These restrictions are on the one hand
very natural from a practical point of view, and on the other hand they simplify the counting
problem compared to that of unrestricted lambda-terms in such a way that the common methods
of analytic combinatorics are applicable.

We will show that the total number of variables is asymptotically normally distributed for
both subclasses of lambda-terms with mean and variance asymptotically equal to C1n and C2n,
respectively, where the constants C1 and C2 depend on the bound that has been imposed. So
far we just derived closed formulas for the constants in case of the class of lambda-terms with a
bounded number of abstractions between each variable and its binding lambda. However, for the
other class of lambda-terms that we consider, namely lambda-terms with a bounded number of
nesting levels of abstractions, we investigate the number of variables in the different abstraction
levels and thereby exhibit very interesting results concerning the distribution of the variables
within those lambda-terms.
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1 Introduction

The lambda calculus was invented by Church and Kleene in the 30ies as a tool for the
investigation of decision problems. Today it still plays an important role in computability
theory and for automatic proof systems. Furthermore, it represents the basis for some
programming languages, such as LISP. For a thorough introduction to the lambda calculus
we refer to [1]. This paper does not require any preliminary knowledge of lambda calculus
in order to follow the proofs. Instead we will study the basic objects of lambda calculus,
namely lambda-terms, by considering them as combinatorial objects, or more precisely as a
special class of directed acyclic graphs (DAGs).
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I Definition 1 (lambda-terms, [9, Definition 3]). Let V be a countable set of variables. The
set Λ of lambda-terms is defined by the following grammar:
1. every variable in V is a lambda-term,
2. if T and S are lambda-terms then TS is a lambda-term, (application)
3. if T is a lambda-term and x is a variable then λx.T is a lambda-term. (abstraction)

The name application arises, since lambda-terms of the form TS can be regarded as
functions T (S), where the function T is applied to S, which in turn can be a function
itself. An abstraction can be considered as a quantifier that binds the respective variable
in the sub-lambda-term within its scope. Both application and repeated abstraction are
not commutative, i.e., in general the lambda-terms TS and ST , as well as λx.λy.M and
λy.λx.M , are different (with the exceptions of T = S and none of the variables x or y
occurring in M , respectively). Each λ binds exactly one variable (which may occur several
times in the terms), and since we will just focus on a special subclass of closed lambda-terms,
each variable is bound by exactly one λ.

We will consider lambda-terms modulo α-equivalence, which means that we identify
two lambda-terms if they only differ by the names of their bound variables. For example
λx.(λy.(xy)) ≡ λy.(λz.(yz)). There is a combinatorial interpretation of lambda-terms that
considers them as DAGs and thereby naturally identifies two α-equivalent terms to be equal.
Combinatorially, lambda-terms can be seen as rooted unary-binary trees containing special
additional directed edges. Note that in general the resulting structures are not trees in
the sense of graph theory, but due to their close relation to trees (see Definition 2) some
authors call them lambda-trees or enriched trees. We will call them lambda-DAGs in order
to emphasise that these structures are in fact DAGs, if we consider the undirected edges of
the underlying tree to be directed away from its root.

I Definition 2 (lambda-DAG, [9, Definition 5]). With every lambda-term T , the corresponding
lambda-DAG G(T ) can be constructed in the following way:
1. If x is a variable then G(x) is a single node labeled with x. Note that x is unbound.
2. G(PQ) is a lambda-DAG with a binary node as root, having the two lambda-DAGs G(P )

(to the left) and G(Q) (to the right) as subgraphs.
3. The DAG G(λx.P ) is obtained from G(P ) in four steps:

a. Add a unary node as new root.
b. Connect the new root by an undirected edge with the root of G(P).
c. Connect all leaves of G(P ) labelled with x by directed edges with the new root, where

the root is start vertex of these edges.
d. Remove all labels x from G(P ). Note that now x is bound.

Obviously, applications correspond to binary nodes and abstractions correspond to unary
nodes of the underlying Motzkin-tree that is obtained by removing all directed edges. Of
course in the lambda-DAG some of the vertices that were former unary nodes might have
gained out-going edges, so they are no unary nodes in the lambda-DAG anymore. However,
when we speak of unary nodes in the following, we mean the unary nodes of the underlying
unary-binary tree, that forms the skeleton of the lambda-DAG.

Since the skeleton of a lambda-DAG is a tree, we sometimes call the variables leaves (i.e.,
the nodes with out-degree zero), and the path connecting the root with a leaf (consisting of
undirected edges) is called a branch. There are different approaches as to how one can define
the size of a lambda-term ([4], [11]), but within this paper the size will be defined as the
total number of nodes in the corresponding lambda-DAG.
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Figure 1 The lambda-DAGs representing the terms λx.((λy.(xy))x) and
(λx.(x(λy.y))(λx.(λy.xy)).

Recently rising interest in the number and structural properties of lambda-terms can be
observed, due to the direct relationship between these random structures acting as computer
programs and mathematical proofs ([7]). At first sight lambda-terms appear to be very simple
structures, in the sense that their construction can easily be described, but so far no one has
yet accomplished to derive their asymptotic number. However, the asymptotic equivalent of
the logarithm of this number can be determined up to the second-order term (see [5]). The
difficulty of counting unrestricted lambda-terms arises due to the fact that their number
increases superexponentially with increasing size. Thus, if we translate the counting problem
into generating functions, then the resulting generating function has a radius of convergence
equal to zero, which makes the common methods of analytic combinatorics inapplicable.
This fast growth of the number of lambda-terms can be explained by the numerous possible
bindings of leaves by lambdas, i.e., by unary nodes. Consequently, lately some simpler
subclasses of lambda-terms, which reduce these multiple binding possibilities, have been
studied, e.g. lambda-terms with prescribed number of unary nodes ([4]), or lambda-terms
in which every lambda binds a prescribed ([5],[2],[9]) or a bounded ([6],[2],[9]) number of
leaves. In this paper we will investigate structural properties of lambda-terms with a bounded
number of abstractions between every variable and its binding lambda and lambda-terms
with a bounded number of nesting levels of abstractions, which both have been introduced
in [3] and [4]. From a practical point of view these restrictions appear to be very natural,
since the number of abstractions in lambda-terms which are used for computer programming
is in general assumed to be very low compared to their size.

Particular interest lies in the number and distribution of the variables within these special
subclasses of lambda-terms. We will show within this paper that the total number of leaves in
lambda-DAGs with bounded number of abstractions between the leaves and their respective
binding lambdas as well as in lambda-terms with bounded number of nested abstractions
is asymptotically normally distributed with mean and variance asymptotically Cn and C̃n,
respectively, where the constants C and C̃ depend on the bound that has been imposed. For
the latter class of lambda-terms we will also investigate the number of leaves on the different
abstraction levels (so called unary levels, cf. Definition 11), which shows a very interesting
behaviour. We will see that on the lower unary levels, i.e., near the root of the lambda-DAG,
there are very few leaves, while the majority of the leaves is located at the upper unary levels
and these two domains will turn out to be strictly separated.

For lambda-terms that are locally restricted by a bounded number of abstractions located
between the leaves and their binding lambdas the number of unary levels is not bounded and
will tend to infinity for increasing size. The expected number of unary levels is unknown,
which implies that the correct scaling cannot be determined. Thus, we have not been
able to establish results concerning the leaves in the different unary levels for this class of
lambda-terms so far. Nevertheless, further studies on this subject seem to be very interesting
already for the simpler combinatorial class of Motzkin-trees.
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2 1 1
1

1 3

2 2 2
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3 3

Figure 2 The lambda-DAG of the term λx.((λy.xy)(λz.(z(λt.tx))z)), where left the unary length
of all bindings, and right the unary height of the leaves is depicted at the respective leaves.

2 Main results

In this section we will introduce the basic definitions and summarize the main results that
will be presented in this paper.

First, we will investigate the total number of leaves in lambda-DAGs with bounded unary
length of their bindings, i.e., with a bounded number of abstractions between each leaf and
its binding lambda.

I Definition 3 (unary length of a binding, [4, Definition 1]). Consider a lambda-term T and
its associated lambda-DAG G(T ). The unary length of the binding of a leaf e by some
abstraction v in T (directed edge from v to e in G(T )) is defined as the number of unary
nodes on the path connecting v and e in the underlying Motzkin tree (cf. Figure 2, left).

Our first main result is the asymptotic distribution of the number of variables in random
closed lambda-terms with bounded unary length of their bindings.

I Theorem 4. Let Xn be the total number of leaves in lambda-DAGs of size n where the
unary length of each binding is at most k. Then Xn is asymptotically normally distributed
with

EXn ∼
k√

k + 2k
n, and VXn ∼

k2

2
√
k(
√
k + 2k)2

n, as n −→∞.

I Remark 5. Note that the number of leaves equals the number of binary nodes plus one.
For k = 1 this implies that expections of the number of unary, the number of binary nodes,
and the number of leaves are all asymptotically equal. Since the subtree attached to a unary
node cannot contain further unary nodes, asymptotically almost all such trees are only a
single leaf. So, almost all unary nodes are on the fringe of the tree.

On the other hand, as k → ∞, we have EXn −→ n
2 , and VXn −→ 0 for k −→ ∞. So,

we can expect that a general lambda-term has o(n) unary nodes and looks therefore like a
slightly perturbed binary tree. So far, nothing isknown on the distribution of the locations
of the unary nodes.

Next we turn to lambda-terms of bounded unary height.

I Definition 6 (unary height, [4, Definition 1]). Consider a lambda-term T and its associated
lambda-DAG G(T ). The unary height hu(v) of a vertex v of G(T ) is defined as the number
of unary nodes on the path from the root to v in the underlying Motzkin tree.

The unary height of the lambda-term T is defined as the maximum number of unary
nodes occurring in the separate branches of the underlying Motzkin tree (cf. Figure 2, right).
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Table 1 The coefficients occurring in the variance and the mean k = 1, . . . , 12 and some larger
values close to 135, the next value of some special sequence (cf. Definition 10), which is indicated
by the lines in bold. The second column tells the number of (nested) radicands which must be
considered for the determination of the dominant singularity.

bound k j + 1 B′′(1) +B′(1)−B′(1)2 B′(1)
1 2 0 0
2 2 0.0385234386 0.4381229337
3 2 0.0210625856 0.4414407371
4 2 0.0167136805 0.4463973717
5 2 0.0148700270 0.4504258849
6 2 0.0138224393 0.4536185043
7 2 0.0131157948 0.4561987871
8 3 0.048 0.4
9 3 0.0582322465 0.4566104777
10 3 0.0470481360 0.4560418340
11 3 0.0396601986 0.4560810348
12 3 0.0345090124 0.4564489368
...

...
...

...
133 3 0.0077469541 0.4821900098
134 3 0.0077234960 0.4822482745
135 4 0.0108490182 0.4782608696

I Theorem 7. Let ρk(u) be the root of smallest modulus of the function z 7→ Rj+1,k(z, u),
where

Rj+1,k(z, u) = 1−4(k−j)z2u−2z+2z

√
1− 4(k − j + 1)z2u− 2z +

√
...+ 2z

√
1− 4kz2u,

and let us define B(u) = ρk(u)/ρk(1).
If B′′(1) + B′(1) − B′(1)2 6= 0, then the total number of leaves in lambda-DAGs with

bounded unary height at most k is asymptotically normally distributed with asymptotic mean
µn and asymptotic variance σ2n, where µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2.

I Remark 8. The requirement B′′(1) +B′(1)−B′(1)2 6= 0 obviously results from the fact
that otherwise the variance would be equal to zero. However, this inequality seems to be very
difficult to verify, since B(u) = ρk(1)

ρk(u) and we do not know anything about the function ρk(u),
except for some crude bounds and its analyticity. In Table 1 we give inter alia the coefficients
B′′(1) +B′(1)−B′(1)2 and B′(1) for the variances and the mean values, respectively, for
the first few values for k.

I Remark 9. No clear conclusion can be inferred from the numerical values given in Table 1.
The mean seems to be slightly increasing, except for the special values belonging to the
sequence given in Definition 10. But k = 10 is another exception in the interval k = 9, . . . , 134
(not listed completely). The variance seems decreasing in any interval between two special
values. If k belongs to the special sequence given in Definition 10 then we observe irregularities.

Lambda-terms of bounded unary height have been studied in [4], where a very unusual
behaviour has been discovered. The asymptotic behaviour of the number of lambda-terms
belonging to this subclass differs depending on whether the bound for the unary height is an
element of a certain sequence (Ni)i≥0, which will be given in Definition 10, or not (in Table 1
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unary level 0

unary level 1

unary level 2

unary level 3

Figure 3 Underlying Motzkin tree of e.g. the lambda term λx.((λy.yx)(λz.(z(λt.tx))z)), where
the different unary levels are encircled.

the rows belonging to elements of this sequence are therefore in bold). Though the behaviour
of the counting sequences differs for these two cases, the result in Theorem 7 concerning
lambda-terms of bounded unary height is the same after all. However, the method of proof
is different in the two cases. For our subsequent results the distinction of cases will have an
impact on the asymptotic behaviour of the investigated structures. Thus, we will have to
distinguish between these two cases.

I Definition 10 (auxiliary sequences (ui)i≥0 and (Ni)i≥0, [4, Definition 6]). Let (ui)i≥0 and
(Ni)i≥0 be the integer sequence defined by u0 = 0, ui+1 = u2

i + i + 1 for i ≥ 0, and
Ni = u2

i − ui + i, for i ≥ 0.

Finally, in the last section we investigate the number of leaves in lambda-DAGs with
bounded unary height that are located in the different unary levels throughout the tree.

I Definition 11 (unary level). A node is said to be in the i-th unary level, if there are exactly
i unary nodes on the branch from the root to that node (the node itself is not counted).
Thus, the i-th unary level contains all nodes with unary height i (cf. Figure 3).

The following theorem includes the results that we will present in Section 5, where we
show that the number of leaves near the root of the lambda-DAG, i.e., in the lower unary
levels, is very low, while there are many leaves in the upper unary levels. Furthermore these
two domains are strictly separated and the “separating level”, i.e., the first level with many
leaves, depends on the bound of the unary height. We will show a very interesting behaviour,
namely that, with growing bound of the unary height, the number of leaves within the unary
level that is directly below the critical separating level increases, until the bound reaches a
certain number, which makes this adjacent leaf-filled level become the new separating level.

I Theorem 12. Let ρ̃k,l(u) be the root of smallest modulus of the function z 7→ R̃j+1,k(z, u),
where

R̃i,k(z, u) = 1−4(k−j)z2−2z+

√
...+ 2z

√
1− 4(k − l)z2u− 2z + 2z

√
...+ 2z

√
1− 4kz2,

i.e., the u is inserted only in the (l + 1)-th radicand, and let us define B̃l(u) = ρ̃k,l(u)
ρ̃k,l(1) .

1. If k ∈ (Nj , Nj+1), then the average number of leaves in the first k − j unary levels is
O(1), as n −→∞, while it is θ(n) for the last j + 1 unary levels.
In particular, if B̃′′l (1) + B̃′l(1)− B̃′l(1)2 6= 0, the number of leaves in each of the last j + 1
unary levels (i.e., l = 0, . . . , j) is asymptotically normally distributed.
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l = k
unary level 0

unary level k − jl = j

unary level kl = 0

O(1) leaves

θ(n) leaves,
number of leaves

normally distributed

Figure 4 Summary of the mean values of the number of leaves in the different unary levels for
the case k ∈ (Nj , Nj+1) in lambda-terms of unary height at most k.
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l = k
unary level 0

unary level k − jl = j

unary level k − j + 1l = j − 1

unary level kl = 0
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√
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θ(n) leaves,
number of leaves

normally distributed

Figure 5 Summary of the mean values of the number of leaves in the different unary levels for
the case k = Nj in lambda-terms with unary height at most k.

2. If k = Nj, then the average number of leaves in the first k − j unary levels is O(1), as
n −→∞, while the average number of leaves in the j-th unary level is θ(

√
n). The last j

unary levels have asymptotically θ(n) leaves.
In particular, if B̃′′l (1) + B̃′l(1)− B̃′l(1)2 6= 0, the number of leaves in each of the last j
unary levels (i.e., l = 0, . . . , j − 1) is asymptotically normally distributed.

3 Total number of leaves in lambda-terms with bounded unary
length of bindings

In this section we investigate the asymptotic number of all leaves in lambda-terms with
bounded unary length of their bindings (cf. Definition 3). In order to get some quantitative
results on this restricted class of lambda-terms we will use the well-known symbolic method
(see [8]) and therefore we introduce certain combinatorial classes as it has been done in [4]: Z
denotes the class of atoms, A the class of application nodes (i.e., binary nodes), U the class
of abstraction nodes (i.e., unary nodes), and P̂(i,k) the class of unary-binary trees such that
every leaf e can be labelled in min{hu(e) + i, k} ways. The classes P̂(i,k) can be specified by

P̂(k,k) = kZ + (A× P̂(k,k) × P̂(k,k)) + (U × P̂(k,k)),
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and

P̂(i,k) = iZ + (A× P̂(i,k) × P̂(i,k)) + (U × P̂(i+1,k)) for i < k.

Translating into generating functions with z marking the size and u marking the number
of leaves, and solving for P̂ (i,k)(z, u) yields

P̂ (i,k)(z, u) =
1− 1[i=k]z −

√
R̂k−i+1(z, u)

2z ,

with R̂1,k(z, u) = (1− z)2 − 4kuz2, R̂2,k(z, u) = 1− 4(k− 1)z2u− 2z + 2z2 + 2z
√
R̂1,k(z, u),

and R̂i,k(z, u) = 1− 4(k − i+ 1)z2u− 2z + 2z
√
R̂i−1,k(z, u),for 3 ≤ i ≤ k + 1.

Since the class P̂(0,k) is isomorphic to the class Gk of lambda-terms where all bindings
have unary lengths not larger than k, we get for the corresponding bivariate generating
function

Gk(z, u) = P̂ (0,k)(z, u) =
1−

√
R̂k+1,k(z, u)

2z .

From [4] we know that the dominant singularity of Gk(z, 1) comes from the innermost
radical and is of type 1

2 . Due to continuity arguments this implies that in a sufficiently
small neighbourhood of u = 1 the dominant singularity ρ̂k(u) of Gk(z, u) comes also from
the innermost radical and is also of type 1

2 . By calculating the smallest positive root of
R̂1,k(z, u) we get ρ̂k(u) = 1

1+2
√
ku

. Now we will determine the expansions of the radicands in
a neighbourhood of the dominant singularity ρ̂k(u).

I Proposition 13. Let ρ̂k(u) be the root of the innermost radicand R̂1,k(z, u), i.e., ρ̂k(u) =
1

1+2
√
ku

. Then

R̂1,k(ρ̂k(u)(1− ε), u) =
(

2ρ̂k(u)− 2ρ̂2
k(u) + 8kuρ̂2

k(u)
)
ε+O(ε2),

R̂j,k(ρ̂k(u)(1− ε), u) = cj ρ̂
2
k(u) + 4ρ̂2

k(u)((ku) 1
4 +
√

2ku)∏j
l=2
√
cl

√
ε+O(ε 3

2 ),

for 2 ≤ j ≤ k+ 1, where c1(u) = 1 and cj(u) = 4(j − 1)u− 1 + 2
√
cj−1(u) for 2 ≤ j ≤ k+ 1.

I Theorem 14. Let for any fixed k, Gk(z, u) denote the bivariate generating function of
lambda-terms where all bindings have unary lengths not larger than k. Then

[zn]Gk(z, u) =

√ √
ku+ 2ku

4π
∏k+1
l=2 cl(u)

(1 + 2
√
ku)nn− 3

2

(
1 +O

(
1
n

))
, for n −→∞,

where c1(u) = 1 and cj(u) = 4(j − 1)u− 1 + 2
√
cj−1(u), for 2 ≤ j ≤ k + 1.

From [4, Theorem 1] we know the following result.

[zn]Gk(z, 1) =

√ √
k + 2k

4π
∏k+1
l=2 cl(1)

(1 + 2
√
k)nn− 3

2

(
1 +O

(
1
n

))
, as n −→∞, (1)

with cl defined as in Proposition 13.
Now we want to apply the well-known Quasi-Power Theorem.
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I Theorem 15 (Quasi-Power Theorem, [10]). Let Xn be a sequence of random variables with
the property that

EuXn = A(u)B(u)λn

(
1 +O

(
1
φn

))
holds uniformly in a complex neighbourhood of u = 1, λn −→ ∞ and φn −→ ∞, and A(u)
and B(u) are analytic functions in a neighbourhood of u = 1 with A(1) = B(1) = 1. Set
µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2. If σ2 6= 0, then

Xn − EXn√
VXn

−→ N (0, 1),

with EXn = µλn +A′(1) +O(1/φn)) and VXn = σ2λn +A′′(1) +A′(1)−A′(1)2 +O(1/φn)).

Using Theorem 14 and (1), we get

EuXn = [zn]Gk(z, u)
[zn]Gk(z, 1) =

(
1 + 2

√
ku

1 + 2
√
k

)n√√√√√ku+ 2ku
2k +

√
k

k+1∏
j=2

cj(1)
cj(u)

(
1 +O

(
1
n

))
,

where c1(u) = 1 and cj(u) = 4ju− 4u− 1 + 2
√
cj−1(u).

Thus, all assumptions for the Quasi-Power Theorem are fulfilled, and we get that the num-
ber of leaves in lambda-DAGs with bounded unary length of their bindings is asymptotically
normally distributed with

EXn ∼
k√

k + 2k
n, and VXn ∼

k2

2
√
k(
√
k + 2k)2

n, as n −→∞,

and therefore Theorem 4 is shown.

4 Total number of leaves in lambda-terms with bounded unary height

This section is devoted to the enumeration of leaves in lambda-terms of bounded unary
height (cf. Definition 6). As in [4] let us denote by P(i,k) the class of unary-binary trees such
that the unary height hu(e) of each leaf e is at most k − i and every leaf can be colored with
one out of i+ hu(e) colors. These classes can be specified by

P(k,k) = kZ + (A×P(k,k) × P(k,k)),

and

P(i,k) = iZ + (A×P(i,k) × P(i,k)) + (U × P(i+1,k)) for i < k.

Their bivariate generating functions can be derived analogously as the univariate ones in
[4] and read as

P (i,k)(z, u) =
1−

√
Rk−i+1,k(z, u)

2z ,

where R1,k(z, u) = 1− 4kz2u, and Ri,k(z, u) = 1− 4(k − i+ 1)z2u− 2z + 2z
√
Ri−1,k(z, u),

for 2 ≤ i ≤ k + 1.
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For the bivariate generating function of lambda-terms with bounded unary height this
implies

Hk(z, u) = P (0,k)(z, u) =
1−

√
Rk+1,k(z, u)

2z . (2)

Thus, the generating function consists again of k + 1 nested radicals, but as stated in
Section 2, the counting sequence of lambda-terms with bounded unary height has a very
unusual behaviour, namely the location and the type of the dominant singularity changes
with the bound k. More precisely, the following result has been shown in [4].

I Theorem 16 ([4, Theorem 3]). Let (ui)i≥0 and (Ni)i≥0 be the integer sequences defined in
Definition 10.
(i) If there exists j ≥ 0 such that Nj < k < Nj+1, then there exists a constant hk such that

[zn]Hk(z) ∼ hkn−3/2ρk(1)−n, as n −→∞.

(ii) If there exists j such that k = Nj, then the following asymptotic relation holds:

[zn]Hk(z) ∼ hkn−5/4ρk(1)−n = hkn
−5/4(2uj)n as n −→∞.

Thus, in order to investigate structural properties of this class of lambda-terms we perform
a distinction of cases whether the bound k is an element of the sequence (Ni)i≥0 or not.

4.1 The case Nj < k < Nj+1

From [4] we know that in this case the dominant singularity of the generating function
Hk(z, 1) comes from the (j + 1)-th radicand Rj+1,k and is of type 1

2 . As in the previous
section we can again use continuity arguments to guarantee that sufficiently close to u = 1
the dominant singularity ρk(u) of Hk(z, u) comes from the (j + 1)-th radicand Rj+1,k(z, u)
and is of type 1

2 . Now we will determine the expansions of the radicands in a neighbourhood
of the dominant singularity.

I Proposition 17. Let ρk(u) be the dominant singularity of Hk(z, u). Then
(i) ∀i < j + 1 (inner radicands) : Ri,k(ρk(u)(1− ε), u) = Ri,k(ρk(u), u) +O(ε)
(ii) Rj+1,k(ρk(u)(1− ε), u) = ρk(u)γj+1(u)ε+O(ε2), with γj+1(u) = − ∂

∂zRj+1,k(ρk(u), u)
(iii) ∀i > j + 1 (outer radicands) : Ri,k(ρk(u)(1 − ε), u) = ai(u) + bi(u)

√
ε + O(ε 3

2 ), with
ai+1(u) = 1−4(k−i)ρ2

k(u)u−2ρk(u)+2ρk(u)
√
ai(u), and bi+1(u) = bi(u)ρk(u)√

ai(u)
for j+2 ≤

i ≤ k, with aj+2(u) = 1−4(k−j)ρ2
k(u)u−2ρk(u) and bj+2(u) = 2ρk(u)

√
ρk(u)γj+1(u).

We know that for sufficiently large i the sequence ui is given by ui = bχ2ic, with
χ ≈ 1.36660956 . . . (see [4, Lemma 18]). Therefore we have Nj ∼ u2

j ∼ χ2j2 and Nj < k <

Nj+1 = O(N2
j ), which gives j � log log k. This implies that j + 1 < k + 1, i.e., that the

dominant singularity ρj+1,k(u) cannot come from the outermost radical.
I Remark 18. Obviously the same is true for the case k = Nj . Thus, the dominant singularity
never comes from the outermost radical.

Using Proposition 17 and (2) we can prove

[zn]Hk(z, u) = hk(u)ρj+1,k(u)−n n−
3
2

Γ(− 1
2 )

(
1 +O

(
1
n

))
, as n −→∞,

with hk(u) = − bk+1,k(u)
4ρj+1,k(u)

√
ak+1(u)

.
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Taking a look at the recursive definitions of ai(u) and bi(u) (see Proposition 17), it can
easily be seen that these functions are not equal to zero in a neighbourhood of u = 1, which
implies that hk(u) 6= 0 and thus we can apply the Quasi-Power Theorem. What is still left to
show is, that σ2 = B′′(1) +B′(1)−B′(1)2 6= 0 with B(u) = ρk(1)

ρk(u) . Unfortunately, as stated
in Section 2 this task appears to be quite difficult, since there is only very little known about
the function ρk(u). However, it seems very likely that this condition will be fulfilled for
arbitrary k ∈ (Nj , Nj+1), so that the Quasi-Power Theorem can be applied and we get that
the number of leaves in lambda-terms of bounded unary height is asymptotically normally
distributed with asymptotic mean and variance µn and σ2n, respectively, where µ = B′(1)
and σ2 = B′′(1) +B′(1)−B′(1)2, with B(u) = ρk(1)

ρk(u) .

4.2 The case k = Nj

We know from [4] that in the case k = Nj both radicands Rj,k(z, 1) and Rj+1,k(z, 1) vanish
simultaneously and the dominant singularity is therefore of type 1

4 .
Now we will investigate how the radicands behave in a neighbourhood of the dominant

singularity ρk(u) for u 6= 1.

I Lemma 19. Let z = ρk(u) be the dominant singularity of the bivariate generating function
Hk(z, u). Then
(i) Rj,k

(
ρk(u)

(
1 + t

n

)
, 1 + s

n

)
= 1

n

(
cj,1 · t+ cj,2 · s

)
+O

(
|t|2+|s|2

n2 ,
)
with cj,1 = 4ρk(1)2−

2ρk(1) − 8(k − j + 1)ρk(1)2, and cj,2 = 4ρk(1)ρ′k(1) − 4(k − j + 1)ρk(1)2 − 8(k − j +
1)ρk(1)ρ′k(1)− 2ρ′k(1).

(ii) Rj+1,k

(
ρk(u)

(
1 + t

n

)
, 1 + s

n

)
= 1

n

(
cj+1,1 · t+ cj+1,2 · s

)
+ 2ρk(1)

√
Rj,k +O

(
n−3/2) ,

with cj+1,1 = −8(k − j)ρk(1)2 − 2ρk(1), and cj+1,2 = −2ρ′k(1) − 4(k − j)ρk(1)2 −
8ρk(1)ρ′k(1)(k − j).

(iii) Rj+p,k
(
ρk(u)

(
1 + t

n

)
, 1 + s

n

)
= Ĉj+p + D̂j+p 4

√
Rj,k + O

( 1
npj+p(t, s)

)
, for 2 ≤ p ≤

k− j + 1, where pj+p(t, s) is a polynomial that is linear in t and s, and Ĉj+p and D̂j+p
are constants.

I Proposition 20. Let Hk(z, u) be the bivariate generating function of the class of lambda-
terms with unary height at most k. Then the n-th coefficient of Hk(z, u) is given by

[zn]Hk(z, u) = h̃k(u)ρk(u)−nn− 5
4

(
1 +O

(
n−

3
4

))
, as −→∞,

with a constant h̃k(u) 6= 0.

Thus, we apply the Quasi-Power Theorem and like in the previous case (where k ∈
(Nj , Nj+1)) what is left to show is that the variance σ2 = B′′(1) + B′(1) − B′(1)2 with
B(u) = ρk(1)

ρk(u) is positive. Assuming this requirement is valid we get that the total number of
leaves in a lambda-term of bounded unary-height is asymptotically normally distributed for
arbitrary bounds k.

5 Number of leaves in the unary levels in lambda-terms with
bounded unary height

The aim of this section is the investigation of the distribution of the number of leaves in the
different unary levels in lambda-terms with bounded unary height (cf. Definition 11). In
order to do so, let us consider that each unary level in such a lambda-term corresponds to
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one or more binary trees that contain different types of leaves, where the number of types
depends on the respective level (cf. Figure 3). Let C be the class of binary trees. Using
the notation from the previous sections we can specify this class by C = Z + (A× C × C).
Translating into generating functions and solving for C(z, u), with z marking the size (i.e.,
the total number of nodes) and u marking the number of leaves, yields C(z, u) = 1−

√
1−4uz2

2z .
Let k−lHk(z, u) be the generating function of lambda-terms with unary height at most

k, where z marks the size and u marks the number of leaves on the (k − l)-th unary level
(0 ≤ l ≤ k). Then

k−lHk(z, u) = C(z, C(z, 1 + . . .+C(z, (k− l) · u+ . . .+C(z, (k− 1) +C(z, k))) . . .) . . .)),

which can be written as

k−lHk(z, u) =
1−

√
R̃k+1(z, u)
2z ,

with R̃1(z, u) = 1−4z2k, R̃i(z, u) = 1−4z2(k− i+1)−2z+2z
√
R̃i−1(z, u), for 2 ≤ i ≤ k+1,

i 6= l + 1, and R̃l+1(z, u) = 1− 4z2u(k − l)− 2z + 2z
√
R̃l−1(z, u).

I Remark 21. Note that the radicands R̃i that are introduced above are very similar to the
radicands Ri,k that were used in the previous section. The only difference is that now we
have a u only in the (l + 1)-th radicand, while in the previous case u was occurring in all
radicands. Thus, we will have further distinction of cases now depending on the relative
position (w.r.t. l) of the radicand(s) where the dominant sigularity comes from.

We obtain the following result for the asymptotic mean values of the number of leaves in
the different unary levels.

I Proposition 22. Let Xn denote the number of leaves in the (k − l)-th unary level in a
random lambda-term of unary height at most k with size n.
1. If k ∈ (Nj , Nj+1), then we get for the asymptotic mean

in the case l > j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1) = Ck,l

(
1 +O

(
1
n

))
,

and in the case l ≤ j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1) = C̃k,l · n
(

1 +O
(

1
n

))
,

with constants Ck,l and C̃k,l depending on l and k.
2. If k = Nj, then the asymptotic mean reads as

in the case l > j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1) = Dk,l

(
1 +O

(
1
n

))
,

in the case l = j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1) = D̂k,l ·
√
n

(
1 +O

(
1
n

))
,
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and in the case l < j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1) = D̃k,l · n
(

1 +O
(
n−

1
4

))
,

with constants Dk,l, D̂k,l and D̃k,l depending on l and k.

Now that we derived the mean values for the number of leaves in the different unary
levels, we are interested in their distribution. Therefore we perform the same distinction of
cases as we did for the mean values. However, so far we only know the distribution of the
leaves in the all those levels, which contain many leaves.

I Proposition 23. Let z = ρ̃k,l(u) denote the dominant singularity of k−lHk(z, u).
1. If k ∈ (Nj , Nj+1), then we get for l ≤ j

[zn] k−lHk(z, u)
[zn] k−lHk(z, 1) = h̃k(u)

hk

(
ρ̃k,l(1)
ρ̃k,l(u)

)n(
1 +O

(
1
n

))
,

with constants h̃k(u) and hk that are not equal to zero.
2. If k = Nj, then it holds for l < j

[zn] k−lHk(z, u)
[zn] k−lHk(z, 1) = ĥk(u)

hk

(
ρ̃k,l(1)
ρ̃k,l(u)

)n(
1 +O

(
1
n

))
,

with constants ĥk(u) and hk that are not equal to zero.

Finally, by using the Quasi-Power Theorem the proof of Theorem 12 is finished. Therefore
we have to assume again that the variance is not equal to zero.

As stated before the generating function k−jHk(z, u) consists of k + 1 nested radicals,
where a u is inserted in the (l + 1)-th radicand counted from the innermost. In the case
k ∈ (Nj , Nj+1) we know that the dominant singularity ρ̃k(u) comes from the (j + 1)-th
radicand. Thus, if l > j then ρ̃k(u) is independent of u and we will not get a quasi-power.
The same holds for the case k = Nj and l < j, since we showed that in this case the dominant
singularity comes from the j-th radicand. The (j + 1)-th unary level for k = Nj is a special
case, because we do not know whether the dominant singularity comes from the j-th or the
(j + 1)-th radicand. However, it seems very unlikely that the number of leaves in this level
will be asymptotically normally distributed, but further studies on this subject might be very
interesting.
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26:2 Counting Ascents in Generalized Dyck Paths

Figure 1 Simple Łukasiewicz excursion of length 16 with emphasized 2-ascents where S =
{−1, 1, 2, 3}

In this paper, our focus lies on a special class of two-dimensional lattice paths: non-
negative simple Łukasiewicz paths. A lattice path is said to be simple if the horizontal
coordinate is the same (e.g. is 1) for all possible steps. In case of a simple path family, we
define the step set S as the set of allowed height differences, i.e., the respective y-coordinates
between the points of the path. If, additionally, the step set S ⊆ Z is integer-valued and
contains −1 as the single negative value (meaning that all other values in S are non-negative),
then the corresponding paths are called simple Łukasiewicz paths.

If a lattice path starts at the origin and never passes below the horizontal axis, then the
path is said to be a meander (or non-negative path). And in case such a non-negative path
ends on the horizontal axis, it is called an excursion.

Lattice path families of this type have been studied intensely, see [1] for a detailed
survey on general simple lattice paths, and, for example, [2, 9] for investigations concerning
Łukasiewicz paths.

We are interested in analyzing the number of ascents in these paths. An ascent is an
inclusion-wise maximal sequence of up steps (i.e., steps in S \ {−1}; this might also include
the horizontal step corresponding to 0). For an integer r ≥ 1, if an ascent consists of precisely
r steps, then the ascent is said to be an r-ascent. As an example, Figure 1 depicts some
non-negative Łukasiewicz excursion with emphasized 2-ascents.

In this paper, we give a precise analysis of the number of r-ascents for non-negative
simple Łukasiewicz paths of given length, as well as of variants of this class of lattice paths.
Our investigation is motivated by [6], where the number of 1-ascents in a special lattice path
class related to the classic Dyck paths was analyzed explicitly by elementary methods.

Main Results

Within this paper, three special classes of non-negative Łukasiewicz paths are of interest:
excursions, i.e., paths that end on the horizontal axis,
dispersed excursions, i.e., excursions where horizontal steps are not allowed except on the
horizontal axis,
meanders, i.e., general non-negative Łukasiewicz paths without additional restrictions.

Formally, we conduct our analysis by investigating random variables En,r, Dn,r, Mn,r which
model the number of r-ascents in a random excursion, dispersed excursion, and meander
of length n, respectively. The underlying probability models are based on equidistribution:
within a family, all paths of length n are assumed to be equally likely.

Given r ∈ N and considering n ∈ N0 with n→∞, we prove that for excursions we have

EEn,r = µn+ c0 +O(n−1/2) and VEn,r = σ2n+O(n1/2),
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for some constants µ, c0, σ2 depending on the chosen step set S. The constants are given
explicitly in Theorem 7. Additionally, if n is not a multiple of the so-called period of the step
set, then the random variable degenerates and we have En,r = 0; see Theorem 7 for details.

For dispersed excursions, the corresponding computations get rather messy, which is
why we restrict ourselves to the investigation of dn, the number of dispersed excursions of
length n, as well as the expected value EDn,r. In particular, for all step sets S (except for
the special case of dispersed Dyck paths with S = {−1, 1}), dn satisfies

dn = c0κ
nn−3/2 +O(κnn−5/2),

with constants c0 and κ depending on the chosen step set. For the expected number of
ascents in this particular lattice path family, we find

EDn,r = µn+O(1)

for some constant µ depending on S. Explicit values for these constants and more details
are given in Theorem 10.

In the context of meanders we are able to show that for all step sets (with two special
exceptions: Dyck meanders with S = {−1, 1}, and Motzkin meanders with S = {−1, 0, 1})
we have

EMn,r = µn+ c0 +O(n5/2κn) and VMn,r = σ2n+O(1),

for constants µ, c0, κ ∈ (0, 1), σ2 depending on S. Also, the random variable Mn,r is
asymptotically normally distributed; see Theorem 12 for explicit formulas for the constants
and more details.

In theory, our approach can be used to obtain arbitrarily precise asymptotic expansions
for all the quantities above. For the sake of readability we have chosen to only give the main
term as well as one additional term, wherever possible.

On a more technical note, in order to deal with general Łukasiewicz step sets in our
setting, we make use of a generating function approach (see [3, Chapter I]). In particular,
we heavily rely on the technique of singular inversion (see [3, Chapter VI.7], [8]), which
deals with finding an asymptotic expansion for the growth of the coefficients of generating
functions y(z) satisfying a functional equation of the type

y = z φ(y)

with a suitable function φ.

Notation and Special Cases
Throughout this paper, the step set is denoted as S = {−1, b1, . . . , bm−1} with integers bj ≥ 0
for all j and m ≥ 1. The bj are referred to as up steps – even if the step is a horizontal one.

The so-called characteristic polynomial of the lattice path class, i.e., the generating
function corresponding to the set S, is denoted by S(u) :=

∑
s∈S u

s. The strongly related
generating function of the non-negative steps is denoted by S+(u) :=

∑
s∈S, s≥0 u

s.
In this context, observe that the particular step set S = {−1, 0} corresponds to a, in

some sense, pathological family of Łukasiewicz paths. In this case, there is only precisely
one non-negative Łukasiewicz path of any given length. The family of meanders and
excursions coincides, and also the random variables degenerate in the sense that we have1

1 We make use of the Iversonian notation popularized in [4, Chapter 2]: JexprK takes value 1 if expr is
true, and 0 otherwise.
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26:4 Counting Ascents in Generalized Dyck Paths

En,r = Mn,r = Jn = rK. Thus, further investigation of this case is not required – which is
why we exclude the case S = {−1, 0} from now on.

While in the case of a general step set S we are forced to deal with implicitly given
quantities, for special cases like S = {−1, 1} (Dyck paths), everything can be made completely
explicit as we will demonstrate in the course of our investigations.

Finally, we make use of the following well-established notation: For a generating function
f(z) =

∑
n≥0 fnz

n, the coefficient belonging to zn is denoted as fn = [zn]f(z).

Structure of this Abstract
In Section 2, we determine suitable generating functions required to analyze the number of
ascents. The approach is based on the inherent relation between Łukasiewicz paths and plane
trees with given vertex degrees. Formulas for the respective generating functions are given in
Proposition 4. Note that in the full version of this extended abstract, [5], we demonstrate
another approach (following the kernel method and the “Adding a new slice approach”) to
determine the suitable generating functions.

Section 3 contains the actual analysis of ascents for the different lattice path families
mentioned above. In particular, in Section 3.1 we investigate excursions; the main result is
stated in Theorem 7. Section 3.2 deals with the analysis of ascents in dispersed excursions.
In this case, the expected number of r-ascents for all but one given step sets is analyzed
within Theorem 10, and the analysis for the remaining one is conducted in Proposition 11.
Finally, Section 3.3 contains our results for ascents in meanders. Similarly to the previous
section, the analysis for most step sets is given in Theorem 12, and the remaining cases are
investigated in Propositions 13 and 14.

Proofs and additional details can be found in the full version of this extended abstract,
see [5]. Appendix A contains several important tools necessary for a detailed analysis of the
inverse function in the center of this abstract. In particular, with Propositions 15 and 16 we
prove useful extensions of [3, Theorem VI.6; Remark VI.17].

2 Generating Functions: A Combinatorial Approach

In this section we will introduce and discuss the preliminaries required in order to carry out
the asymptotic analysis of ascents in the different path classes. We begin by taking a closer
look at the structure of Łukasiewicz paths.

Of course, the number of excursions of given length n strongly depends on the structure
of the step set S. For example, in the case of Dyck paths, i.e., S = {−1, 1}, there cannot be
any excursions of odd length – Dyck paths are said to be periodic lattice paths.

IDefinition 1 (Periodicity of lattice paths). Let S be a Łukasiewicz step set with corresponding
characteristic polynomial S(u) =

∑
s∈S u

s. Then the period of S (and the associated lattice
path family) is the largest integer p for which a polynomial Q satisfying

uS(u) = Q(up)

exists. If p = 1, then S is said to be aperiodic, otherwise S is said to be p-periodic.

I Remark. Observe that if a step set S has period p, then there are only excursions of length
n where n ≡ 0 (mod p). This can be seen by considering the generating function enumerating
unrestricted paths of length n with respect to their height, i.e., S(u)n. Obviously, the number
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of excursions of length n is at most the number of unrestricted paths ending at altitude 0,
and the latter one can be written as

[u0]S(u)n = [un](uS(u))n = [un]Q(up)n.

Hence, if n 6≡ 0 (mod p), there are no unrestricted paths ending on the horizontal axis – and
thus also no excursions.

The following proposition describes an integral relation which allows us to construct a
suitable generating function later on.

I Proposition 2. The excursions of Łukasiewicz paths of length n with respect to some step
set S correspond to rooted plane trees with n+ 1 nodes and node degrees contained in the set
1 + S.

An r-ascent in a Łukasiewicz excursion with respect to the step set S corresponds to a
rooted subtree such that the leftmost leaf in this subtree has height r, and additionally the
root node of the subtree is not a leftmost child itself (in the original tree).

Proof. As pointed out in e.g. [1, Example 3], this bijection between rooted plane trees with
given node degrees and Łukasiewicz excursions is well known. See [7, Section 11.3] for an
approach using words. However, as this bijection and its consequences makes up an integral
part of the argumentation within this paper, we present a short proof ourselves. Furthermore,
proving the bijection allows us to find the substructure in the tree corresponding to an
r-ascent.

Given a rooted plane tree T consisting of n nodes whose outdegrees are contained in
1 +S, we construct a lattice path as follows: when traversing the tree in preorder2, if passing
a node with outdegree d, take a step of height d− 1. The resulting lattice path thus consists
of n steps, and always ends on altitude −1, which follows from∑

v∈T
(deg(v)− 1) =

∑
v∈T

deg(v)− n = (n− 1)− n = −1,

where deg(v) denotes the outdegree (i.e., the number of children) of a node v in the tree T .
In particular, observe that by taking the first n − 1 steps of the lattice path, we actually
end up with a Łukasiewicz excursion using the steps from S. To see this, first observe that
as the last node traversed in preorder certainly is a leaf, meaning that the nth step in the
corresponding lattice path is a down step. As the path ends on altitude −1 after n steps, we
have to arrive at the starting altitude after n− 1 steps.

Furthermore, as illustrated in Figure 2, adding one to the current height of the constructed
lattice path gives the size of the stack remembering the children that still have to be visited
while traversing the tree in preorder. Combining the two previous arguments proves that the
first n− 1 steps in the constructed lattice path form a Łukasiewicz excursion.

Similarly, by simply reversing the lattice path construction, a rooted plane tree of size
n+ 1 with node degrees in 1 +S can be constructed from any Łukasiewicz excursion of length
n with respect to S. This establishes the bijection between the two combinatorial families.

Finally, Figure 3 illustrates what r-ascents in Łukasiewicz paths are mapped to by means
of the bijection above. J

2 Traversing a tree in preorder corresponds to the order in which the nodes are visited when carrying out
a depth-first search on it.
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Figure 2 Bijection between Łukasiewicz paths and trees with given node degrees. The emphasized
nodes and edges indicate the construction of the tree after the first three steps, which illustrates
that the height of the Łukasiewicz path is one less than the number of available node positions in
the tree.

Figure 3 Plane tree with 30 nodes bijective to some Łukasiewicz excursion with respect to the
step set S = {−1, 0, 1, 2, 3} whose number of 2-ascents is 6. The edges and nodes corresponding to
the 2-ascents are emphasized.

In some sense, the bijection from Proposition 2 can be seen as a generalization of the
well-known bijection between Dyck paths and binary trees where the tree is traversed in
preorder, internal nodes correspond to up steps and leaves to down steps.

The fact that there is this bijection between Łukasiewicz excursions and these special
trees with given node degrees allows us to draw an immediate conclusion regarding the
corresponding generating functions.

I Corollary 3. Let V (z, t) be the generating function enumerating rooted plane trees with node
degrees in 1 + S where z marks the number of nodes and t marks the number of r-ascents in
the corresponding Łukasiewicz excursion. Then V (z, t)/z enumerates Łukasiewicz excursions
with respect to S based on their length (marked by z) and the number of r-ascents (marked
by t).

Additionally, V (z, t) satisfies the equations

V (0, t) = 0, V (z, t) = zL(z, t, V (z, t)), (1)
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V =
∑
s∈S

V V · · · V

1 + s

Figure 4 Symbolic equation for the family of plane trees V with outdegrees in 1 + S. The
generating function for V is V (z), and the root node is enumerated by z.

where

L(z, t, v) = 1
1− z S+(v) + (t− 1)(z S+(v))r

enumerates sequences of up steps. The power series representation of V (z, t) is given by

V (z, t) =
∑
j≥0

gj(t)zjp+1 (2)

where p denotes the period of S. In particular, V (z) := V (z, 1), the ordinary generating
function enumerating plane trees with node degrees in 1 +S with respect to their size, satisfies

V (0) = 0, V (z) = zV (z) S(V (z)). (3)

Proof. The first part of this statement is an immediate consequence of the bijection from
Proposition 2. In order to prove (1), we observe that V, the combinatorial class of plane
trees with vertex outdegrees in 1 + S, can be constructed combinatorially by means of the
symbolic equation

V = × SEQ
(
×
∑
s∈S
s≥0

Vs
)
.

In a nutshell, this constructs trees in V by explicitly building the path to the leftmost leaf
(the first factor in the equation above) in the tree as a sequence of nodes. Apart from a
leftmost child, these nodes also have an additional s ∈ S branches, s ≥ 0, where again a tree
from V is attached. Considering that we obtain an r-ascent when using this construction
with a sequence of length r, this is precisely what is enumerated by L(z, t, V (z, t)). Thus,
the symbolic equation directly translates into the functional equation in (1). The condition
V (0, t) = 0 is a consequence of the fact that there are no rooted trees without nodes.

The power series representation in (2) follows immediately from the considerations on
periodicity at the beginning of this section.

Setting t = 1 in (1) leads to (3). We also want to give a combinatorial proof of (3):
The implicit equation follows from the observation that a tree with node degrees from

1 + S can be seen as a root node (enumerated by z) where 1 + s for s ∈ S such trees are
attached. Translating this into the language of generating functions via the symbolic equation
illustrated in Figure 4, yields

V (z) = z
∑
s∈S

V (z)1+s = zV (z)S(V (z)). J
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The shape of the functional equation (3), which is an immediate consequence of the
recursive structure of the underlying trees, is rather special. While it is tempting to cancel
V (z) on both sides of this equation, it is better to leave it in the present form: on the one
hand, S(u) starts with the summand 1/u – and on the other hand, we require (3) to be in
this special form y = z φ(y) such that we can use singular inversion to obtain the asymptotic
behavior of the coefficients of the generating function V (z).

I Proposition 4. Let F (z, t, v) be the trivariate ordinary generating function counting non-
negative Łukasiewicz paths with step set S starting at 0, where z marks the length of the path,
t marks the number of r-ascents, and v marks the final altitude of the path. Then F (z, t, v)
can be expressed as

F (z, t, v) = v − V (z, t)
v − zL(z, t, v)L(z, t, v), (4)

where V (z, t) and L(z, t, v) are defined as in Corollary 3.

Proof. It is not hard to see that by considering a sequence of paths enumerated by L(z, t, v)
followed by a single down step (the corresponding generating function for this class is

1
1−L(z,t,v) z/v ), any unrestricted Łukasiewicz path with respect to S ending on a down step
can be constructed.

We want to subtract all paths that pass below the starting altitude in order to obtain
the trivariate generating function Φ(z, t, v) enumerating just the non-negative Łukasiewicz
paths. The paths passing below the axis can be decomposed into an excursion enumerated
by V (z, t)/z (see Corollary 3), followed by an (illegal) down step enumerated by z/v, and
ending with an unrestricted path again. Thus, the paths to be subtracted are enumerated by

V (z, t)
z

z

v

1
1− L(z, t, v) zv

.

Therefore, we find

Φ(z, t, v) = v − V (z, t)
v − zL(z, t, v) .

Keeping in mind that Φ(z, t, v) only enumerates those non-negative Łukasiewicz paths ending
on a down step ↘, the generating function F (z, t, v) enumerating all such paths can be
obtained by appending another sequence of upsteps, i.e.,

F (z, t, v) = Φ(z, t, v)L(z, t, v).

This proves the statement. J

Now, with an appropriate generating function at hand let us discuss our approach for the
asymptotic analysis of the number of ascents in a nutshell.

Basically, we set v = 0 to obtain a bivariate generating function enumerating Łukasiewicz
excursions, and we set v = 1 to obtain a generating function enumerating Łukasiewicz
meanders. The appropriate generating functions for the factorial moments of En,r and
Mn,r (from which expected value and variance can be computed) are then obtained by first
differentiating the corresponding generating function with respect to t (possibly more often
than once) and then setting t = 1 in this partial derivative. The growth of the coefficients of
this function can then be extracted by means of singularity analysis.

In particular, this means that in order to compute the asymptotic expansions for the
quantities we are interested in, we only need more information on V (z, 1).



B. Hackl, C. Heuberger, and H. Prodinger 26:9

I Notation. For the sake of simplicity, and because we will deal with these expressions
throughout the entire paper, we omit the second argument in V (z, t) in case t = 1, i.e., we
set V (z) := V (z, 1), Vt(z) := Vt(z, 1) = ∂

∂tV (z, t)|t=1, Vz(z) := Vz(z, 1) = ∂
∂zV (z, t)|t=1, and

so on.

I Example 5 (Explicit F (z, t, v)). In the case of S = {−1, 1} and r = 1 the generating
function F (z, t, v) can be computed explicitly and we find

F (z, t, v) =

(1 + (t− 1)vz(1− vz))((1− 2vz)(1− (t− 1)z2)−
√

(1− (t+ 3)z2)(1− (t− 1)z2)
2z(1− (t− 1)z2)(z − v + v2z + vz2(t− 1)(1− z)) . (5)

Now, as we have derived a suitable generating function, we are interested in extracting
information like, for example, asymptotic growth rates from F (z, t, v). To this end, we need
more information on the function V (z, t).

I Proposition 6. Let V (z, t) be the bivariate generating function from Corollary 3. Let
τ > 0 be the uniquely determined positive constant satisfying S′(τ) = 0. Then V (z) has
radius of convergence ρ := 1/S(τ) with a square-root singularity for z → ρ. If S has period
p, then the dominant singularities (i.e., singularities with modulus ρ) are located at ζρ with
ζ ∈ G(p). The corresponding expansions are given by

V (z) z→ζρ= ζτ − ζ

√
2S(τ)
S′′(τ)

(
1− z

ζρ

)1/2
− ζ S(τ)S′′′(τ)

3S′′(τ)2

(
1− z

ζρ

)
+O

((
1− z

ζρ

)3/2)
. (6)

3 Analysis of Ascents

3.1 Analysis of Excursions

In this section we focus on the analysis of excursions, i.e., paths that start and end on the
horizontal axis. On the generating function level, this corresponds to setting v = 0 in F (z, t, v)
from (4). Also note that from this point on it is quite useful to replace S+(v) = S(v)− 1/v
in F (z, t, v).

Recall that En,r is the random variable modeling the number of r-ascents in a random
non-negative Łukasiewicz excursion of length n with respect to some given step set S.

I Theorem 7. Let r ∈ N, n ∈ N0, and p ≥ 1 be the period of the step set S. Let τ be the
structural constant, i.e., the unique positive solution of S′(τ) = 0. Set c := τ S(τ).

Then, the expected number of r-ascents in Łukasiewicz paths of length n for n ≡ 0
(mod p) as well as the corresponding variance grow with n→∞ according to the asymptotic
expansions

EEn,r = (c− 1)r

cr+2 n+ (c− 1)r−2

2τ2cr+2 S′′(τ)2

(
S
′′(τ)2τ2(4c2 − (r + 8)c+ r + 4

)
− S′′(τ)S(τ)

(
6c2 − 6(r + 2)c+ r2 + 5r + 6

)
− S′′′(τ)c(2c2 − (r + 4)c+ r + 2)

)
+O(n−1/2) (7)
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and

VEn,r =
(

(c− 1)r

cr+2 + (2c− 2r − 3)(c− 1)2r

c2r+4 − (c− 1)2r−2(2c− r − 2)2

c2r+3τ3 S′′(τ)

)
n

+ O(n1/2). (8)

Additionally, for n 6≡ 0 mod p, we have En,r = 0. All O-constants depend implicitly on r.

By means of Theorem 7 we are immediately able to determine the asymptotic behavior of
interesting special cases. We are particularly interested in the most basic setting: S = {−1, 1},
i.e., Dyck paths.

I Example 8 (r-Ascents in Dyck paths). In the case of Dyck paths, we have uS(u) = 1 + u2.
From there, it is easy to see that τ = 1 and ρ = 1/2, and that the family of paths is 2-periodic.
By the same approach as in the proof of Theorem 7, we can determine the expected number
and variance of r-ascents in Dyck paths of length 2n with higher precision than stated in
Theorem 7, namely as

ED2n,r = n

2r+1 −
(r + 1)(r − 4)

2r+3 + (r2 − 11r + 22)(r + 1)r
2r+6 n−1 +O(n−2)

and

VD2n,r =
(

1
2r+1 −

r2 − 2r + 3
22r+3

)
n

−
(
r2 − 3r − 4

2r+3 − 3r4 − 20r3 + 29r2 − 10r − 14
22r+5

)
+ O(n−1/2).

However, as we have a closed expression for V (z), we can do even better. Because of

V (z)
z

= 1−
√

1− 4z2

2z2 ,

we can also write down the generating function Vt(z)/z for the expected number of r-ascents
explicitly.

Ultimately, after extracting the corresponding coefficients of Vt(z)/z we find

ED2n,r = 1
Cn

(
2n− r − 1
n− 1

)
.

3.2 Analysis of Dispersed Excursions
Let S be a Łukasiewicz step set where 0 6∈ S. In this setting, we define a dispersed Łukasiewicz
excursion to be an S-excursion where, additionally, horizontal steps can be taken whenever
the path is on its starting altitude. Observe that, by our definition of r-ascents, these
horizontal steps do not contribute towards ascents, as only the non-negative steps from S
are relevant.

The motivation to study this specific family of Łukasiewicz paths originates from [6],
where the authors investigate the total number of 1-ascents in dispersed Dyck paths using
elementary methods. Our goal in this section is to find asymptotic expansions for the number
of dispersed Łukasiewicz excursions of given length as well as for the expected number of
r-ascents in these paths.

We begin our analysis by constructing a suitable bivariate generating function enumerating
dispersed Łukasiewicz excursions with respect to their length and the number of r-ascents.
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I Proposition 9. Let r ∈ N and V (z, t) as in Corollary 3. Then the generating function
D(z, t) enumerating dispersed S-excursions where z marks the length of the excursion and t
marks the number of r-ascents is given by

D(z, t) = 1
z

V (z, t)
1− V (z, t) . (9)

Proof. Let E denote the combinatorial class of S-excursions. The corresponding bivariate
generating function is given by V (z, t)/z, as proved in Corollary 3.

By the symbolic method (see [3, Chapter I]), the combinatorial class D of dispersed
excursions can be constructed as D = (E →)∗E , where →∗ represents a (possibly empty)
sequence of horizontal steps. Translating this combinatorial construction in the language of
(bivariate) generating functions yields (9). J

In preparation for the analysis of the generating function D(z, t), we have to investigate
the structure of the dominant singularities. In particular, it can be shown that the radius of
convergence of D(z, 1) (as well as for the corresponding partial derivatives with respect to t)
is given by ρ = 1/S(τ) where τ > 0 is the structural constant with respect to S.

Thus, in the general case of τ 6= 1, the singularities of D(z, 1) are of the same type as
the singularities of V (z). Therefore, the precise description of the singular structure of V (z)
given in Proposition 6 allows us to carry out the asymptotic analysis.

Recall that Dn,r is the random variable modeling the number of r-ascents in a random
dispersed Łukasiewicz excursion of length n with respect to some step set S.

I Theorem 10. Let p ≥ 1 be the period of the step set S. Assume additionally that for the
structural constant τ we have τ 6= 1.

Then dn, the number of dispersed Łukasiewicz excursions of length n, satisfies

dn = 1√
2π

pτk(τp(p− k − 1) + k + 1)
(1− τp)2

√
S(τ)3

S′′(τ) S(τ)nn−3/2 +O(S(τ)nn−5/2) (10)

for n ≡ k mod p and 0 ≤ k ≤ p− 1. Furthermore, the expected number of r-ascents grows
with n→∞ according to the asymptotic expansion

EDn,r = (τ S(τ)− 1)r

(τ S(τ))r+2 n+O(1). (11)

The O-constants depend implicitly on both r as well as on the residue class of n modulo p.

In a nutshell, the proof of this theorem involves a rigorous analysis of the generating
functions D(z, 1) (for the overall number of dispersed excursions), as well as of Dt(z, 1) =
1
z

Vt(z)
(1−V (z))2 (for the expected number of ascents in these paths). Furthermore, while our

results as stated in (10) and (11) only list the asymptotic main term, expansions with higher
precision are available in the worksheet as well (they just become rather messy very quickly).

It can be shown that the only family of Łukasiewicz paths that is not covered by
Theorem 10 is S = {−1, 1}, the case of dispersed Dyck paths. However, as everything is
explicitly given, the analysis is quite straightforward.

I Proposition 11. Let dn denote the total number of dispersed Dyck paths of length n, and
let Dn,r denote the random variable modeling the number of r-ascents in a random dispersed
Dyck path of length n.

AofA 2018
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Then, dn is given by

dn =
(

n

bn/2c

)
=
√

2
π

2nn−1/2 − 2− (−1)n

2
√

2π
2nn−3/2 +O(2nn−5/2), (12)

and the expected number of r-ascents satisfies

EDn,r = n

2r+2 −
√
π

2
r − 2
2r+2 n

1/2 + (r − 1)(r − 4)
2r+3

−
√
π

2
(r − 2)(2− (−1)n)

2r+4 n−1/2 + O(n−1). (13)

This completes our analysis of r-ascents in dispersed Łukasiewicz excursions.

3.3 Analysis of Meanders
In this section we study ascents in meanders, i.e., non-negative Łukasiewicz paths without
further restriction. The corresponding generating function can be obtained from (4) by
setting v = 1, which allows arbitrary ending altitude of the path.

In accordance to the results from [1, Theorem 4], the behavior of meanders depends on
the sign of the drift (i.e., the quantity S′(1)). The following theorem handles the case of
positive drift (which, in our setting, is equivalent to τ 6= 1).

Recall that Mn,r is the random variable modeling the number of r-ascents in a random
non-negative Łukasiewicz path of length n with respect to some given step set S.

I Theorem 12. Let τ > 0 be the structural constant, i.e., the unique positive solution of
S′(τ) = 0, and assume that τ 6= 1.

Then, with ξ = 1/S(1), the expected number of r-ascents in Łukasiewicz meanders of
length n as well as the corresponding variance grow with n→∞ according to the asymptotic
expansions

EMn,r = µn+ (S(1)− 1)r(2S(1)− 1− r)
S(1)r+2 + (S(1)− 1)rVz(ξ)

S(1)r+1(1− V (ξ)) −
Vt(ξ)

1− V (ξ)

+ O

(
n5/2

(
S(τ)
S(1)

)n)
, (14)

and

VMn,r = σ2n+O(1), (15)

where µ and σ2 are given by

µ = (S(1)− 1)r

S(1)r+2 and σ2 = (S(1)− 1)r

S(1)r+2 + (S(1)− 1)2r(2S(1)− 3− 2r)
S(1)2r+4 .

Moreover, for n→∞, Mn,r is asymptotically normally distributed. All O-constants depend
implicitly on r.

It can be shown that Theorem 12 covers all step sets except for S = {−1, 1} and
S = {−1, 0, 1}. In these cases, we have a similar situation to what we had in Section 3.2:
the square root singularity coming from V (z) combines with the zero in the denominator.

The following propositions close this gap.
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I Proposition 13. The expected number of r-ascents in the Łukasiewicz meanders of length n
associated to S = {−1, 1} as well as the corresponding variance grow with n→∞ according
to the asymptotic expansions

EMn,r = n

2r+2 +
√

2π(r − 2)
2r+3 n1/2 − r2 − r − 8

2r+3 +
√

2π((2− (−1)n)(r − 2)
2r+5 n−1/2

+ O(n−1), (16)

and

VMn,r = 2r+3 − r2(π − 2) + 4r(π − 3)− 4π + 10
22r+5 n+O(n1/2). (17)

I Proposition 14. The expected number of r-ascents in the Łukasiewicz meanders of length
n associated to S = {−1, 0, 1} as well as the corresponding variance grow with n → ∞
according to the asymptotic expansions

EMn,r = 2r

3r+2n+
√

3π(r − 4)2r−2

3r+2 n1/2 − (3r2 − r − 96)2r−4

3r+2

+
√

3π(r − 4)2r−6

3r n−1/2 + O(n−1) (18)

and

VMn,r = 3r+22r+4 − 22r(3r2(π − 2)− 8r(3π − 10) + 48π − 144)
16 · 32r+4 n+O(n1/2). (19)
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A Singularity Analysis of Inverse Functions

The aim of this appendix is, on the one hand, to state and prove an extension of [3,
Remark VI.17]. In fact, we simply confirm what is announced in the footnote in [3, p. 405]
and give more details. Then, we use these results in order to derive relevant information on
the generating function V (z, t) from before.

For the following two propositions, we borrow the notation used in [3, Chapter VI.7].

I Proposition 15. Let φ(u) be analytic with radius of convergence 0 < R ≤ ∞, φ(0) 6= 0,
[un]φ(u) ≥ 0 for all n ≥ 0 and φ(u) not affine linear. Assume that there is a positive
τ ∈ (0, R) such that τ φ′(τ) = φ(τ). Finally assume that φ(u) is a p-periodic power series
for some maximal p. Denote the set of all pth roots of unity by G(p).

Then there is a unique function y(z) satisfying y(z) = z φ(y(z)) which is analytic in a
neighborhood of 0 with y(0) = 0. It has radius of convergence ρ = τ/ φ(τ) around the origin.
For |z| ≤ ρ, it has exactly singularities at z = ρζ for ζ ∈ G(p). For z → ρ, we have the
singular expansion

y(z) z→ρ∼
∑
j≥0

(−1)jdj
(

1− z

ρ

)j/2

for some computable constants dj, j ≥ 0. We have d0 = τ and d1 =
√

2φ(τ)/ φ′′(τ).
Additionally, we have [zn]y(z) = 0 for n 6≡ 1 (mod p).

Proof. Existence, uniqueness, radius of convergence as well as singular expansion around
z → ρ of y(z) are shown in [3, Theorem VI.6].

As φ is a p-periodic power series and φ(0) 6= 0, there exists an aperiodic function χ such
that φ(u) = χ(up). From the non-negativity of the coefficients of φ(u), it is clear that χ(u)
has non-negative coefficients and is analytic for |u| < Rp. We consider ψ(u) := χ(u)p. Then
ψ is again analytic for |u| < Rp, it has clearly non-negative coefficients, ψ(0) 6= 0 and ψ(u)
is not an affine linear function. If [um]χ(u) > 0 and [un]χ(u) > 0 for some m < n, then
[upm]ψ(u) > 0 as well as [upm+(n−m)]ψ(u) > 0, which implies that ψ is aperiodic.

Finally, we have

τpψ′(τp) = pτpχ(τp)p−1χ′(τp) = τ φ(τ)p−1 φ′(τ) = φ(τ)p = χ(τp)p = ψ(τp).

Considering the functional equation Y (Z) = Zψ(Y (Z)), we see that all assumptions of
[3, Theorem VI.6] are satisfied; thus it has a unique solution Y (Z) with Y (0) = 0 which is
analytic around the origin. By the same result, Y (Z) has radius of convergence

τp

ψ(τp) = τp

χ(τp)p =
(

τ

φ(τ)

)p
= ρp

and, as ψ is aperiodic, the only singularity of Y (Z) with |Z| ≤ ρp is Z = ρp.
We consider the function ỹ(z) := zχ(Y (zp)). By definition, it is analytic for |z| < ρ and

its only singularities with |z| ≤ ρ are those z with zp = ρp, i.e., z = ρζ for ζ ∈ G(p). It is
also clear by definition that [zn]ỹ(z) = 0 for n 6≡ 1 (mod p). We have ỹ(0) = 0 and

z φ(ỹ(z)) = zχ((ỹ(z))p) = zχ(zpχ(Y (zp))p) = zχ(zpψ(Y (zp))) = zχ(Y (zp)) = ỹ(z)

because zpψ(Y (zp)) = Y (zp) by definition of Y . This implies that y = ỹ. J
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While the following proposition is particularly useful in the context of the previous one,
it also holds in a slightly more general setting. It gives a detailed description of the singular
expansions for p-periodic power series like above.

I Proposition 16. Let p be a positive integer and let y be analytic with radius of convergence
0 < ρ ≤ ∞, where [zn]y(z) = 0 for n 6≡ 1 (mod p). Assume that y(z) has p dominant
singularites located at ζρ for ζ ∈ G(p), and that for some L ≥ 0 and z → ρ, we have the
singular expansion

y(z) z→ρ=
L−1∑
j=0

dj

(
1− z

ρ

)−αj

+O

((
1− z

ρ

)−αL
)
,

where α0, α1, . . . , αL are complex numbers such that Re(αj) ≥ Re(αj+1) for all 0 ≤ j < L.
Then, for ζ ∈ G(p), the singular expansion of y(z) for z → ζρ is given by

y(z) z→ζρ=
L−1∑
j=0

ζdj

(
1− z

ζρ

)−αj

+O

((
1− z

ζρ

)−αL
)
,

i.e., the expansion for z → ζρ can be obtained by multiplying the expansion for z → ρ with ζ
and substituting z 7→ ζ/ρ. Finally, for the coefficients of y(z) we find

[zn]y(z) = Jp | 1− nK[zn]
(
p

L−1∑
j=0

dj

(
1− z

ρ

)−αj

+O

((
1− z

ρ

)−αL
))

, (20)

which can be made explicit easily by means of singularity analysis (cf. [3, Chapter VI.4]). In
particular,

[zn]y(z) = Jp | 1− nK
(L−1∑
j=0

pdj
Γ(αj)

nαj−1ρ−n +O
(
nRe(α0)−2ρ−n

)
+O

(
nRe(αL)−1ρ−n

))
.

Proof. As [zn]y(z) = 0 for n 6≡ 1 (mod p) there is a function χ, analytic around the origin,
such that y(z) = zχ(zp). Thus, for every ζ ∈ G(p), we have

y(ζz) = ζzχ((ζz)p) = ζzχ(zp) = ζy(z)

or, equivalently,

y(z) = ζy

(
z

ζ

)
.

Thus the singular expansion for z → ζρ follows from that for z → ρ by replacing z with z/ζ
and multiplication by ζ.

With the singular expansions at all the dominant singularities located at ζρ for ζ ∈
G(p) at hand, we are able to extract the overall growth of the coefficients of y(z) by first
applying singularity analysis to every expansion separately, and then summing up all these
contributions. When doing so, we use the well-known property of roots of unity that∑

ζ∈G(p)

ζm = pJp | mK (21)

for m ∈ Z in order to rewrite the occurring sums as
∑
ζ∈G(p) ζ

1−n = pJp | 1−nK. Comparing
the resulting asymptotic expansion with (20) proves the statement. J
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27:2 Analysis of Summatory Functions of Regular Sequences

1 Introduction

In this paper, we study the asymptotic behaviour of the summatory function of q-regular
sequences.1 Regular sequences have been introduced by Allouche and Shallit [2] (see also
[3, Chapter 16]); these are sequences which are intimately related to the q-ary expansion
of their arguments. Many special cases have been investigated in the literature; this is also
due to their relation to divide-and-conquer algorithms. Our goal is to provide a single result
decomposing the summatory function into periodic fluctuations multiplied by some scaling
functions and to provide the Fourier coefficients of these periodic fluctuations.

Note that it is well-known that the summatory function of a q-regular sequence is itself
q-regular. (This is an immediate consequence of [2, Theorem 3.1].) Similarly, the sequence of
differences of a q-regular sequence is q-regular. Therefore, we might also start to analyse a
regular sequence by considering it to be the summatory function of its sequence of differences.
However, when modelling a quantity by a regular sequences, its asymptotic behaviour is
often not smooth, but the asymptotic behaviour of its summatory functions is. Moreover, we
will see throughout this work that from a technical perspective, considering partial sums
is appropriate. Therefore, we adopt this point of view of summatory functions of q-regular
sequences in this paper. This also enlightens us about the expectation of a random element
of the sequence (with respect to uniform distribution on the non-negative integers smaller
than a certain N).

In the remaining paper, we first recall the definition of q-regular sequences in Section 1.1,
then formulate a somewhat simplified version of our main result in Section 1.2. In Section 1.3,
we give a heuristic non-rigorous argument to explain why the result is expected. We outline
the relation to previous work in Section 1.4. We give two examples in Sections 2 and 3.
In principle, these examples are straight-forward applications of the results, but still, we
have to reformulate the relevant questions in terms of a q-regular sequence and will then
provide shortcuts for the computation of the Fourier series. The first example is generic
and deals with sequences defined as the sum of outputs of transducer automata; the second
example—which motivated us to conduct this study at this point—is a concrete problem
counting the number of odd entries in Pascal’s rhombus.

The full formulation of our results is given in the appendix; their proofs are given in the
appendix of the arXiv version [17] of this extended abstract.

1.1 q-Regular Sequences
We start by giving a definition of q-regular sequences, see Allouche and Shallit [2]. Let q ≥ 2
be a fixed integer and (x(n))n≥0 be a sequence.

Then (x(n))n≥0 is said to be (C, q)-regular (briefly: q-regular or simply regular) if the
C-vector space generated by its q-kernel{(

x(qjn+ r)
)
n≥0 : integers j ≥ 0, 0 ≤ r < qj

}
has finite dimension. In other words, (x(n))n≥0 is q-regular if there is an integer D and
sequences (x1(n))n≥0, . . . , (xD(n))n≥0 such that for every j ≥ 0 and 0 ≤ r < qj there exist
integers c1, . . . , cD such that

x(qjn+ r) = c1x1(n) + · · ·+ cDxD(n) for all n ≥ 0.

1 In the standard literature [2, 3] these sequences are called k-regular sequences (instead of q-regular
sequences).
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By Allouche and Shallit [2, Theorem 2.2], (x(n))n≥0 is q-regular if and only if there exists
a vector valued sequence (v(n))n≥0 whose first component coincides with (x(n))n≥0 and
there exist square matrices A0, . . . , Aq−1 ∈ Cd×d such that

v(qn+ r) = Arv(n) for 0 ≤ r < q, n ≥ 0. (1.1)

This is called a q-linear representation of x(n).
The best-known example for a 2-regular function is the binary sum-of-digits function.

I Example 1. For n ≥ 0, let x(n) = s(n) be the binary sum-of-digits function. We clearly
have

x(2n) = x(n),
x(2n+ 1) = x(n) + 1

(1.2)

for n ≥ 0.
Indeed, we have

x(2jn+ r) = x(n) + x(r) · 1

for integers j ≥ 0, 0 ≤ r < 2j and n ≥ 0; i.e., the complex vector space generated by the
2-kernel is generated by (x(n))n≥0 and the constant sequence (1)n≥0.

Alternatively, we set v(n) = (x(n), 1)> and have

v(2n) =
(
x(n)

1

)
=
(

1 0
0 1

)
v(n),

v(2n+ 1) =
(
x(n) + 1

1

)
=
(

1 1
0 1

)
v(n)

for n ≥ 0. Thus (1.1) holds with

A0 =
(

1 0
0 1

)
, A1 =

(
1 1
0 1

)
.

We defer the discussion of other examples, both generic such as sequences defined by
transducer automata as well as a specific example involving the number of odd entries in
Pascal’s rhombus to Sections 2 and 3.

At this point, we note that a linear representation (1.1) immediately leads to an explicit
expression for x(n) by induction.

I Remark. Let r`−1 . . . r0 be the q-ary digit expansion2 of n. Then

x(n) = e1Ar0 · · ·Ar`−1v(0)

where e1 =
(
1 0 . . . 0

)
.

2 Whenever we write that r`−1 . . . r0 is the q-ary digit expansion of n, we mean that rj ∈ {0, . . . , q − 1}
for 0 ≤ j < `, r`−1 6= 0 and n =

∑`−1
j=0 rjq

j . In particular, the q-ary expansion of zero is the empty
word.

AofA 2018
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1.2 Main Result
We are interested in the asymptotic behaviour of the summatory function X(N) =∑

0≤n<N x(n).
At this point, we give a simplified version of our results. We choose any vector norm

‖ · ‖ on Cd and its induced matrix norm. We set C :=
∑q−1
r=0 Ar. We choose R > 0 such

that ‖Ar1 · · ·Ar`‖ = O(R`) holds for all ` ≥ 0 and 0 ≤ r1, . . . , r` < q. In other words, R
is an upper bound for the joint spectral radius of A1, . . . , Aq−1. The spectrum of C, i.e.,
the set of eigenvalues of C, is denoted by σ(C). For λ ∈ C, let m(λ) denote the size of the
largest Jordan block of C associated with λ; in particular, m(λ) = 0 if λ /∈ σ(C). Finally, we
consider the Dirichlet series3

X (s) =
∑
n≥1

n−sx(n), V(s) =
∑
n≥1

n−sv(n)

where v(n) is the vector valued sequence defined in (1.1). Of course, X (s) is the first
component of V(s). The principal value of the complex logarithm is denoted by log. The
fractional part of a real number z is denoted by {z} := z − bzc.

I Theorem 2. With the notations above, we have

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk({logq N})

+ O
(
N logq R(logN)max{m(λ) : |λ|=R}) (1.3)

for suitable 1-periodic continuous functions Φλk. If there are no eigenvalues λ ∈ σ(C) with
|λ| ≤ R, the O-term can be omitted.

For |λ| > R and 0 ≤ k < m(λ), the function Φλk is Hölder continuous with any exponent
smaller than logq(|λ|/R).

The Dirichlet series V(s) converges absolutely and uniformly on compact subsets of the
half plane <s > logq R+ 1 and can be continued to a meromorphic function on the half plane
<s > logq R. It satisfies the functional equation

(I − q−sC)V(s) =
q−1∑
n=1

n−sv(n) + q−s
q−1∑
r=0

Ar
∑
k≥1

(
−s
k

)(r
q

)k
V(s+ k) (1.4)

for <s > logq R. The right side converges absolutely and uniformly on compact subsets of
<s > logq R. In particular, V(s) can only have poles where qs ∈ σ(C).

For λ ∈ σ(C) with |λ| > max{R, 1/q}, the Fourier series

Φλk(u) =
∑
`∈Z

ϕλk` exp(2`πiu)

converges pointwise for u ∈ R where

ϕλk` = (log q)k

k! Res
((

x(0) + X (s)
)(
s− logq λ− 2`πi

log q
)k

s
, s = logq λ+ 2`πi

log q

)
(1.5)

for ` ∈ Z, 0 ≤ k < m(λ).

3 Note that the summatory function X(N) contains the summand x(0) but the Dirichlet series cannot.
This is because the choice of including x(0) into X(N) will lead to more consistent results.
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This theorem is proved in the arXiv version [17, Appendix G] of this extended abstract.
Note that we write Φλk({logq N}) to optically emphasise the 1-periodicity; technically, we
have Φλk({logq N}) = Φλk(logq N). Note that the arguments in the proof could be used to
meromophically continue the Dirichlet series to the complex plane, but we do not need this
result for our purposes. See [1] for the corresponding argument for automatic sequences.

We come back to the binary sum of digits.

I Example 3 (Continuation of Example 1). We have C = A0 + A1 =
(

2 1
0 2
)
. As A0 is the

identity matrix, any product Ar1 · · ·Ar` has the shape Ak1 =
(

1 k
0 1
)
where k is the number of

factors A1 in the product. This implies that R with ‖Ar1 · · ·Ar`‖ = O(R`) may be chosen
to be any number greater than 1. As C is a Jordan block itself, we simply read off that the
only eigenvalue of C is λ = 2 with m(2) = 2.

Thus Theorem 2 yields

X(N) = N(log2 N) Φ21({log2 N}) +N Φ20({log2 N})

for suitable 1-periodic continuous functions Φ21 and Φ20.
In principle, we can now use the functional equation (1.4). Due to the fact that one

component of v is the constant sequence where everything is known, it is more efficient to
use an ad-hoc calculation for X by splitting the sum according to the parity of the index
and using the recurrence relation (1.2) for x(n). We obtain

X (s) =
∑
n≥1

x(2n)
(2n)s +

∑
n≥0

x(2n+ 1)
(2n+ 1)s

= 2−s
∑
n≥1

x(n)
ns

+
∑
n≥0

x(n)
(2n+ 1)s +

∑
n≥0

1
(2n+ 1)s

= 2−sX (s) + x(0)
1s +

∑
n≥1

x(n)
(2n)s +

∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)

+ 2−s
∑
n≥0

1(
n+ 1

2
)s

= 21−sX (s) + 2−s ζ
(
s, 1

2
)

+
∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)

where the Hurwitz zeta function ζ(s, α) :=
∑
n+α>0(n+ α)−s has been used. We get

(1− 21−s)X (s) = 2−s ζ
(
s, 1

2
)

+
∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)
. (1.6)

As the sum of digits is bounded by the length of the expansion, we have x(n) = O(logn).
By combining this estimate with

(2n+ 1)−s − (2n)−s =
∫ 2n+1

2n

( d
dt t
−s
)

dt =
∫ 2n+1

2n
(−s)t−s−1 dt = O(|s|n−<s−1),

we see that the sum in (1.6) converges absolutely for <s > 0 and is therefore analytic for
<s > 0.

Therefore, the right side of (1.6) is a meromorphic function for <s > 0 whose only pole
is simple and at s = 1 which originates from ζ

(
s, 1

2
)
. Therefore, X (s) is a meromorphic

function for <s > 0 with a double pole at s = 1 and simple poles at 1 + 2`πi
log 2 for ` ∈ Z \ {0}.
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Thus

Φ21(u) = ϕ210 = (log 2) Res
(X (s)(s− 1)

s
, s = 1

)
= (log 2) Res

(2−s(s− 1)
1− 21−s ζ

(
s, 1

2
)
, s = 1

)
= 1

2

(1.7)

by (1.5) and (1.6).
We conclude that

X(N) = 1
2N log2 N +N Φ20({log2 N}).

We refrain from computing the Fourier coefficients of Φ20(u) explicitly at this point; numeric-
ally, they could be computed from (1.6). However, an explicit expression can be obtained by
rewriting the residues of X (s) in terms of shifted residues of

∑
n≥1
(
x(n)− x(n− 1)

)
n−s and

computing the latter explicitly; see [18, Proof of Corollary 2.5]. This yields the well-known
result by Delange [6].

It will also turn out that (1.7) being a constant function is an immediate consequence of
the fact that

(
0 1

)
is a left eigenvector of both A0 and A1 associated with the eigenvalue 1.

1.3 Heuristic Approach: Mellin–Perron Summation
The purpose of this section is to explain why the formula (1.5) for the Fourier coefficients
is expected. The approach here is heuristic and non-rigorous because we do not have the
required growth estimates. See also [7].

By the Mellin–Perron summation formula of order 0 (see, for example, [12, Theorem 2.1]),
we have∑

1≤n<N
x(n) + x(N)

2 = 1
2πi

∫ max{logq R+2,1}+i∞

max{logq R+2,1}−i∞
X (s)N

s ds
s

.

By Remark 1.1 and the definition of R, we have x(N) = O(Rlogq N ) = O(N logq R). Adding
the summand x(0) to match our definition of X(N) amounts to adding O(1). Shifting the
line of integration to the left—we have no analytic justification that this is allowed—and
using the location of the poles of X (s) claimed in Theorem 2 yield

X(N) =
∑

λ∈σ(C)
|λ|>R

∑
`∈Z

Res
(X (s)Ns

s
, s = logq λ+ 2`πi

log q

)

+ 1
2πi

∫ logq R+ε+i∞

logq R+ε−i∞
X (s)N

s ds
s

+ O(N logq R + 1)

for some ε > 0. Expanding Ns as

Ns =
∑
k≥0

(logN)k

k! N logq λ+ 2`πi
log q

(
s− logq λ−

2`πi
log q

)k
and assuming that the remainder integral converges absolutely yields

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mλ`

(logq N)k
∑
`∈Z

ϕλk` exp
(
2`πi logq N

)
+ O(N logq R+ε + 1)
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where mλ` denotes the order of the pole of X (s)/s at logq λ+ 2`πi
log q and ϕλk` is as in (1.5).

Summarising, this heuristic approach explains most of the formulæ in Theorem 2. Some
details (exact error term and order of the poles) are not explained by this approach. A result
“repairing” the zeroth order Mellin–Perron formula is known as Landau’s theorem, see [4,
§ 9]. It is not applicable to our situation due to multiple poles along vertical lines which then
yield the periodic fluctuations. Instead, we prove a theorem which provides the required
justification (not by estimating the relevant quantities, but by reducing the problem to higher
order Mellin–Perron summation). The essential assumption is that the summatory function
can be decomposed into fluctuations multiplied by some growth factors such as in (1.3).

1.4 Relation to Previous Work
Sequences defined as the output sum of transducer automata in the sense of [18] are a special
case of regular sequences; these are a generalisation of many previously studied concepts. In
that case, much more is known (variance, limiting distribution, higher dimensional input).
See [18] for references and results. A more detailed comparison can be found in Section 2.
Divide and Conquer recurrences (see [19] and [8]) can also be seen as special cases of regular
sequences.

The asymptotics of the summatory function of specific examples of regular sequences has
been studied in [14], [15], [11].

Dumas [9, 10] finally proved the first part of Theorem 2. We re-prove it here in a self-
contained way because we need more explicit results than obtained by Dumas (e.g., we need
explicit expressions for the fluctuations) for proving Hölder continuity and to explicitly get the
precise structure depending on the eigenspaces. Notice that Dumas’ paper introduces linear
representations as we do in (1.1), but then the order of factors is reversed in his equivalent
of Remark 1.1, which means that some transpositions have to be silently introduced.

The first version of our pseudo-Tauberian argument was provided in [12]: there, no
logarithmic factors were allowed and the growth conditions on the Dirichlet series were
stronger.

2 Sequences Defined by Transducer Automata

Let q ≥ 2 be a positive integer. We consider a complete deterministic subsequential transducer
T with input alphabet {0, . . . , q − 1} and output alphabet C, see [5, Chapter 1] and [18].
Recall that a transducer is said to be deterministic and complete if for every state and every
digit of the input alphabet, there is exactly one transition starting in this state with this
input label. A subsequential transducer has a final output label for every state.

For a non-negative integer n, let T (n) be the sum of the output labels (including the final
output label) encountered when the transducer reads the q-ary expansion of n. This concept
has been thoroughly studied in [18]: there, T (n) is considered as a random variable defined
on the probability space {0, . . . , N − 1} equipped with uniform distribution. The expectation
in this model corresponds (up to a factor of N) to our summatory function

∑
0≤n<N T (n).

We remark that in [18], the variance and limiting distribution of the random variable T (n)
have also been investigated. Most of the results there are also valid for higher dimensional
input.

The purpose of this section is to show that T (n) is a q-regular sequence and to see that
our results here coincide with the corresponding results in [18]. We note that the binary sum
of digits considered in Example 1 is the special case of q = 2 and the transducer consisting
of a single state which implements the identity map. For additional special cases of this
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27:8 Analysis of Summatory Functions of Regular Sequences

concept, see [18]. Note that our result here for the summatory function contains (fluctuating)
terms for all eigenvalues λ of the adjacency matrix of the underlying digraph with 1 < |λ|
whereas in [18] only contributions of those eigenvalues λ with |λ| = q are available, all other
contributions are absorbed by the error term there.

By a component of a digraph we always mean a strongly connected component. We call
a component final if there are no arcs leaving the component. The period of a component is
the greatest common divisor of its cycle lengths. The final period of a digraph is the least
common multiple of the periods of its final components.

We consider the states of T to be numbered by {1, . . . , d} for some positive integer
d ≥ 1 such that the initial state is state 1. We set Tj(n) to be the sum of the output labels
(including the final output label) encountered when the transducer reads the q-ary expansion
of n when starting in state j. By construction, we have T (n) = T1(n) and Tj(0) is the final
output label of state j. We set y(n) = (T1(n), . . . , Td(n)). For 0 ≤ r < q, we define the
(d× d)-{0, 1}-matrix Pr in such a way that there is a one in row j, column k if and only if
there is a transition from state j to state k with input label r. The vector or is defined by
setting its jth coordinate to be the output label of the transition from state j with input
label r.

For n0 ≥ 1, we set

X (s) =
∑
n≥1

n−sT (n), Yn0(s) =
∑
n≥n0

n−sy(n), ζn0(s, α) =
∑
n≥n0

(n+ α)−s.

The last Dirichlet series is a truncated version of the Hurwitz zeta function.

I Corollary 4. Let T be a transducer as described at the beginning of this section. Let M
and p be the adjacency matrix and the final period of the underlying digraph, respectively. For
λ ∈ C let m(λ) be the size of the largest Jordan block associated with the eigenvalue λ of M .

Then (T (n))n≥0 is a q-regular sequence and∑
0≤n<N

T (n) = eTN logq N +NΦ(logq N)

+
∑

λ∈σ(M)
1<|λ|<q

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk(logq N)

+O
(
(logN)max{m(λ) : |λ|=1})

(2.1)

for some continuous p-periodic function Φ, some continuous 1-periodic functions Φλk for
λ ∈ σ(M) with 1 < |λ| < q and 0 ≤ k < m(λ) and some constant eT .

Furthermore,

Φ(u) =
∑
`∈Z

ϕ` exp
(2`πi

p
u
)

with

ϕ` = Res
(X (s)

s
, s = 1 + 2`πi

p log q

)
for ` ∈ Z. The Fourier series expansion of Φλk for λ ∈ σ(M) with 1 < |λ| < q is given in
Theorem 2.
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The Dirichlet series Yn0(s) satisfies the functional equation

(I − q−sM)Yn0(s) =
∑

n0≤n<qn0

n−sy(n) + q−s
∑

0≤r<q
ζn0

(
s, rq
)
or

+ q−s
∑

0≤r<q
Pr
∑
k≥1

(
−s
k

)(r
q

)k
Yn0(s+ k).

Sketch of the Proof. The proof is split into several steps.

Recursive Description. We set v(n) =
(
T1(n), . . . , Td(n), 1

)>. For 1 ≤ j ≤ d and 0 ≤ r < q,
we define t(j, r) and o(j, r) to be the target state and output label of the unique transition
from state j with input label r, respectively. Therefore,

Tj(qn+ r) = Tt(j,r)(n) + o(j, r) (2.2)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q with qn+ r > 0.
For 0 ≤ r < q, define Ar = (arjk)1≤j, k≤d+1 by

arjk =


[t(j, r) = k] if j, k ≤ d,
o(j, r) if j ≤ d, k = d+ 1,
[k = d+ 1] if j = d+ 1

where we use Iverson’s convention [expr ] = 1 if expr is true and 0 otherwise; see Graham,
Knuth, and Patashnik [16]. Then (2.2) is equivalent to

v(qn+ r) = Arv(n)

for n ≥ 0, 0 ≤ r < q with qn+ r > 0.

q-Regular Sequence. If we insist on a proper formulation as a regular sequence, we rewrite
(2.2) to

Tj(qn+ r) = Tt(j,r)(n) + o(j, r) + [r = 0][n = 0](Tj(0)− Tt(j,0)(0)− o(j, 0)) (2.3)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q. Setting ṽ(n) = (T1(n), . . . , Td(n), 1, [n = 0]) and
Ãr = (ãrjk)1≤j, k≤d+2 with

ãrjk =



[t(j, r) = k] if j, k ≤ d,
o(j, r) if j ≤ d, k = d+ 1,
[r = 0](Tj(0)− Tt(j,0)(0)− o(j, 0)) if j ≤ d, k = d+ 2,
[k = d+ 1] if j = d+ 1,
[k = d+ 2][r = 0] if j = d+ 2,

the system (2.3) is equivalent to

ṽ(qn+ r) = Ãrṽ(n)

for n ≥ 0, 0 ≤ r < q.
The rest of the proof (relating the eigenvalues of M with those of C) can be found in the

arXiv version [17, Appendix H] of this extended abstract. J
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Figure 3.1 Pascal’s rhombus modulo 2.

3 Pascal’s Rhombus

We consider Pascal’s rhombus R which is, for integers i ≥ 0 and j, the array with entries
ri,j , where

r0,j = 0 all j,
r1,0 = 1 and r1,j = 0 for all j 6= 0,
and

ri,j = ri−1,j−1 + ri−1,j + ri−1,j+1 + ri−2,j

for i ≥ 1.

Let X be equal to R but with entries takes modulo 2; see also Figure 3.1. We partition X

into the four sub-arrays
E consisting only of the rows and columns of X with even indices, i.e., the entries r2i,2j ,
Y consisting only of the rows with odd indices and columns with even indices, i.e., the
entries r2i−1,2j ,
Z consisting only of the rows with even indices and columns with odd indices, i.e., the
entries r2i,2j−1, and
N consisting only of the rows and columns with odd indices, i.e., the entries r2i−1,2j−1.

Note that E = X and N = 0; see [13].

3.1 Recurrence Relations and 2-Regular Sequences
Let X(N), Y (N) and Z(N) be the number of ones in the first N rows (starting with row
index 1) of X, Y and Z respectively.

Using results by Goldwasser, Klostermeyer, Mays and Trapp [13] leads to recurrence
relations for the backward differences x(n) = X(n)−X(n− 1), y(n) = Y (n)− Y (n− 1) and
z(n) = Z(n)− Z(n− 1), namely

x(2n) = x(n) + z(n), x(2n+ 1) = y(n+ 1), (3.1a)
y(2n) = x(n− 1) + z(n), y(2n+ 1) = x(n+ 1) + z(n), (3.1b)
z(2n) = 2x(n), z(2n+ 1) = 2y(n+ 1) (3.1c)

for n ≥ 1, and x(0) = y(0) = z(0) = 0, x(1) = 1, y(1) = 1 and z(1) = 2. (See the arXiv
version [17, Appendix I.1] of this extended abstract for details.) These x(n), y(n) and z(n)
are the number of ones in the nth row of X, Y and Z respectively.
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Figure 3.2 Fluctuation in the main term of the asymptotic expansion of X(N). The figure shows
Φ(log2 N) (blue) approximated by its trigonometric polynomial of degree 99 as well as X(N)/Nκ

(green).

Let use write our coefficients as the vector

v(n) =
(
x(n), x(n+ 1), y(n+ 1), z(n), z(n+ 1)

)>
. (3.2)

It turns out that the components included into v(n) are sufficient for a self-contained linear
representation of v(n). In particular, it is not necessary to include y(n). By using the
recurrences (3.1), we find that

v(2n) = A0v(n) and v(2n+ 1) = A1v(n)

for all4 n ≥ 0 with the matrices

A0 =


1 0 0 1 0
0 0 1 0 0
0 1 0 1 0
2 0 0 0 0
0 0 2 0 0

 and A1 =


0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 2 0 0
0 2 0 0 0

 ,

and with v(0) = (0, 1, 1, 0, 2)>. Therefore, the sequences x(n), y(n) and z(n) are 2-regular.

3.2 Asymptotics
I Corollary 5. We have

X(N) =
∑

1≤n≤N
x(n) = Nκ Φ({log2 N}) +O(N log2 N) (3.3)

with κ = log2
(
3 +
√

17
)
− 1 = 1.83250638358045 . . . and a 1-periodic function Φ which is

Hölder continuous with any exponent smaller than κ− 1.
Moreover, we can effectively compute the Fourier coefficients of Φ.

We get analogous results for the sequences Y (N) and Z(N) (each with its own periodic
function Φ, but the same exponent κ). The fluctuation Φ of X(N) is visualized in Figure 3.2
and its first few Fourier coefficients are shown in Table 3.1.

At this point, we only prove (3.3) of Corollary 5. We deal with the Fourier coefficients
in the arXiv version [17, Appendix I.2] of this extended abstract. As in the introductory
example of the binary sum-of-digits functions (Example 1), we could get Fourier coefficients by

4 Note that v(0) = A0v(0) and v(1) = A1v(0) are indeed true.
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Table 3.1 Fourier coefficients of Φ (Corollary 5). All stated digits are correct.

` α`
0 0.6911615112341912755021246
1 −0.01079216311240407872950510− 0.0023421761940286789685827i
2 0.00279378637350495172116712− 0.00066736128659728911347756i
3 −0.00020078258323645842522640− 0.0031973663977645462669373i
4 0.00024944678921746747281338− 0.0005912995467076061497650i
5 −0.0003886698612765803447578 + 0.00006723866319930148568431i
6 −0.0006223575988893574655258 + 0.00043217220614939859781542i
7 0.00023034317364181383130476− 0.00058663168772856091427688i
8 0.0005339060804798716172593− 0.0002119380802590974909465i
9 0.0000678898389770175928529− 0.00038307823285486235280185i

10 −0.00019981745997355255061991− 0.00031394569060142799808175i

Theorem 2 and the 2-linear representation of Section 3.1 directly. However, the information
in the vector v(n) (see (3.2)) is redundant with respect to the asymptotic main term as it
contains x(n) and z(n) as well as x(n+ 1) and z(n+ 1); both pairs are asymptotically equal
in the sense of (3.3). Therefore, we head for an only 3-dimensional functional system of
equations for our Dirichlet series of x(n), y(n) and z(n) (instead of a 5-dimensional system).

Proof of (3.3). We use Theorem 2.

Joint Spectral Radius. First we compute the joint spectral radius ρ of A0 and A1. Both
matrices have a maximum absolute row sum equal to 2, thus ρ ≤ 2, and both matrices have 2
as an eigenvalue. Therefore we obtain ρ = 2. Moreover, the finiteness property of the linear
representation is satisfied by considering only products with exactly one matrix factor A0 or
A1.

Thus, we have R = ρ = 2.

Eigenvalues. Next, we compute the spectrum σ(C) of C = A0 + A1. The matrix C has
the eigenvalues λ1 =

(
3 +
√

17
)
/2 = 3.5615528128088 . . ., λ2 = 2, λ3 = −2, λ4 = −1 and

λ5 =
(
3−
√

17
)
/2 = −0.5615528128088 . . . (each with multiplicity one). (Note that λ1 and

λ5 are the zeros of the polynomial U2 − 3U − U .)

Asymptotic Formula. By using Theorem 2, we obtain an asymptotic formula for X(N − 1).
Shifting from N − 1 to N does not change this asymptotic formula, as this shift is absorbed
by the error term O(N log2 N). J

3.3 Dirichlet Series and Meromorphic Continuation
Let n0 ≥ 2 be an integer and define

Xn0(s) =
∑
n≥n0

x(n)
ns

, Yn0(s) =
∑
n≥n0

y(n)
ns

, Zn0(s) =
∑
n≥n0

z(n)
ns

.
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I Lemma 6. Set

C = I −

 2−s 2−s 2−s
21−s 0 21−s

21−s 21−s 0

 .

Then

C

Xn0(s)
Yn0(s)
Zn0(s)

 =

Jn0(s)
Kn0(s)
Ln0(s)

, (3.4)

where

Jn0(s) = 2−s Σ(s,− 1
2 ,Yn0) + IJn0

(s),

IJn0
(s) = − y(n0)

(2n0 − 1)s +
∑

n0≤n<2n0

x(n)
ns

,

Kn0(s) = 2−s Σ(s, 1,Xn0) + 2−s Σ(s,− 1
2 ,Xn0) + 2−s Σ(s, 1

2 ,Zn0) + IKn0
(s),

IKn0
(s) = x(n0 − 1)

(2n0)s − x(n0)
(2n0 − 1)s +

∑
n0≤n<2n0

y(n)
ns

,

Ln0(s) = 21−s Σ(s,− 1
2 ,Yn0) + ILn0

(s),

ILn0
(s) = − 2y(n0)

(2n0 − 1)s +
∑

n0≤n<2n0

z(n)
ns

,

with

Σ(s, β,D) =
∑
k≥1

(
−s
k

)
βkD(s+ k)

provides meromorphic continuations of the Dirichlet series Xn0(s), Yn0(s), and Zn0(s) for
<s > κ0 = 1 with the only possible poles at κ+ χ` for ` ∈ Z, all of which are simple poles.

The proof of Lemma 6 can be found in the arXiv version [17, Appendix I] of this extended
abstract. The idea is to rewrite the Dirichlet series corresponding to (3.1a), (3.1b) and (3.1c)
to obtain the functional equation. The poles in the meromorphic continuation come from

∆(s) = detC = 2−3s(22s − 3 · 2s − 2)(2s + 2).

The Fourier coefficients (rest of Corollary 5) can then be computed by applying Theorem 2.
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A.1 Problem Statement
Let q ≥ 2, d ≥ 1 be fixed integers and A0, . . . , Aq−1 ∈ Cd×d. We investigate the sequence
(f(n))n≥0 of d× d matrices such that

f(qn+ r) = Arf(n) for 0 ≤ r < q, 0 ≤ n with qn+ r 6= 0 (A.1)

and f(0) = I.
Let n be an integer with q-ary expansion r`−1 . . . r0. Then it is easily seen that (A.1)

implies that

f(n) = Ar0 . . . Ar`−1 . (A.2)

We are interested in the asymptotic behaviour of F (N) :=
∑

0≤n<N f(n).

A.2 Definitions and Notations
In this section, we give all definitions and notations which are required in order to state the
results.

The following notations are essential:
Let ‖ · ‖ denote a fixed norm on Cd and its induced matrix norm on Cd×d.
We set Br :=

∑
0≤r′<r Ar′ for 0 ≤ r < q and C :=

∑
0≤r<q Ar.

The joint spectral radius of A0, . . . , Aq−1 is denoted by

ρ := inf
`

sup
{
‖Ar1 . . . Ar`‖1/` : r1, . . . , r` ∈ {0, . . . , q − 1}

}
.

If the set of matrices A0, . . . , Aq−1 has the finiteness property, i.e., there is an ` > 0 such
that

ρ = sup
{
‖Ar1 . . . Ar`‖1/` : r1, . . . , r` ∈ {0, . . . , q − 1}

}
,

then we set R = ρ. Otherwise, we choose R > ρ in such a way that there is no eigenvalue
λ of C with ρ < |λ| ≤ R.
The spectrum of C, i.e., the set of eigenvalues of C, is denoted by σ(C).
For a positive integer n0, set

Fn0(s) :=
∑
n≥n0

n−sf(n)

for a complex variable s.
Set χk := 2πik

log q for k ∈ Z.

In the formulation of Theorem 7 and Corollary 8, the following constants are needed
additionally:

Choose a regular matrix T such that TCT−1 =: J is in Jordan form.
Let D be the diagonal matrix whose jth diagonal element is 1 if the jth diagonal element
of J is not equal to 1; otherwise the jth diagonal element of D is 0.
Set C ′ := T−1DJT .
Set K := T−1DT (I − C ′)−1(I −A0).
For a λ ∈ C, let m(λ) be the size of the largest Jordan block associated with λ. In
particular, m(λ) = 0 if λ 6∈ σ(C).
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For m ≥ 0, set

ϑm := 1
m!T

−1(I −D)T (C − I)m−1(I −A0);

here, ϑ0 remains undefined if 1 ∈ σ(C).5
Define ϑ := ϑm(1).

All implicit O-constants depend on q, d, the matrices A0, . . . , Aq−1 (and therefore on ρ)
as well as on R.

A.3 Decomposition into Periodic Fluctuations
Instead of considering F (N), it is certainly enough to consider wF (N) for all generalised
left eigenvectors w of C, e.g., the rows of T . The result for F (N) then follows by taking
appropriate linear combinations.

I Theorem 7. Let w be a generalised left eigenvector of rank m of C corresponding to the
eigenvalue λ.
1. If |λ| < R, then

wF (N) = wK + (logq N)mwϑm +O(N logq R).

2. If |λ| = R, then

wF (N) = wK + (logq N)mwϑm +O(N logq R(logN)m).

3. If |λ| > R, then there are 1-periodic continuous functions Φk : R→ Cd, 0 ≤ k < m, such
that

wF (N) = wK + (logq N)mwϑm +N logq λ
∑

0≤k<m
(logq N)kΦk({logq N})

for N ≥ qm−1. The function Φk is Hölder-continuous with any exponent smaller than
logq|λ|/R.
If, additionally, the left eigenvector w(C − λI)m−1 of C happens to be a left eigenvector
to each matrix A0, . . . , Aq−1 associated with the eigenvalue 1, then

Φm−1(u) = 1
qm−1(m− 1)!w(C − qI)m−1

is constant.
Here, wK = 0 for λ = 1 and wϑm = 0 for λ 6= 1.

Note that in general, the three summands in the theorem have different growths: a constant,
a logarithmic term and a term whose growth depends essentially on the joint spectral radius
and the eigenvalues larger than the joint spectral radius, respectively. The vector w is not
directly visible in front of the third summand; instead, the vectors of its Jordan chain are
part of the function Φk.

Expressing the identity matrix as linear combinations of generalised left eigenvalues and
summing up the contributions of Theorem 7 essentially yields the following corollary.

5 If 1 ∈ σ(C), then the matrix C − I is singular. In that case, ϑ0 will never be used.
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I Corollary 8. With the notations above, we have

F (N) =
∑

λ∈σ(C)
|λ|>ρ

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk({logq N}) + (logq N)m(1)ϑ+K

+ O
(
N logq R(logN)max{m(λ) : |λ|=R})

for suitable 1-periodic continuous functions Φλk. If 1 is not an eigenvalue of C, then ϑ = 0.
If there are no eigenvalues λ ∈ σ(C) with |λ| ≤ ρ, then the O-term can be omitted.

For |λ| > R, the function Φλk is Hölder continuous with any exponent smaller than
logq(|λ|/R).

A.4 Dirichlet Series
This section gives the required result on the Dirichlet series Fn0 . For theoretical purposes,
it is enough to study F := F1; for numerical purposes, however, convergence improves for
larger values of n0.

I Theorem 9. Let n0 be a positive integer. Then the Dirichlet series Fn0(s) converges
absolutely and uniformly on compact subsets of the half plane <s > logq ρ+ 1, thus is analytic
there.

We have

(I − q−sC)Fn0(s) = Gn0(s) (A.3)

for <s > logq ρ+ 1 with

Gn0(s) =
qn0−1∑
n=n0

n−sf(n) + q−s
q−1∑
r=0

Ar
∑
k≥1

(
−s
k

)(r
q

)k
Fn0(s+ k). (A.4)

The series in (A.4) converge absolutely and uniformly on compact sets for <s > logq ρ. Thus
(A.3) gives a meromorphic continuation of Fn0 to the half plane <s > logq ρ with possible
poles at s = logq λ + χ` for each λ ∈ σ(C) with |λ| > ρ and ` ∈ Z whose pole order is at
most m(λ).

Let δ > 0. For real z, we set

µδ(z) = max{1− (z − logq ρ− δ), 0},

i.e., the linear function on the interval [logq ρ + δ, logq ρ + δ + 1] with µδ(logq ρ + δ) = 1
and µδ(logq ρ+ δ + 1) = 0. Then

Fn0(s) = O
(
|=s|µδ(<s)) (A.5)

holds uniformly for logq ρ+ δ ≤ <s and |qs − λ| ≥ δ for all eigenvalues λ ∈ σ(C). Here, the
implicit O-constant also depends on δ.

I Remark. By the identity theorem for analytic functions, the meromorphic continuation
of Fn0 is unique on the domain given in the theorem. Therefore, the bound (A.5) does
not depend on the particular expression for the meromorphic continuation given in (A.3)
and (A.4).
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A.5 Fourier Coefficients
As discussed in Section 1.3, we would like to apply the zeroth order Mellin–Perron summation
formula but need analytic justification. In the following theorem we prove that whenever
it is known that the result is a periodic fluctuation, the use of zeroth order Mellin–Perron
summation can be justified. In contrast to the remaining paper, this theorem does not
assume that f(n) is a matrix product.

I Theorem 10. Let f(n) be a sequence, let κ0 ∈ R \ {0} and κ ∈ C with <κ > κ0 > −1,
δ > 0, q > 1 be real numbers with δ ≤ π/(log q) and δ < <κ − κ0, and let m be a positive
integer. Moreover, let Φk be Hölder-continuous (with exponent α with <κ − κ0 < α ≤ 1)
1-periodic functions for 0 ≤ k < m such that

F (N) :=
∑

1≤n<N
f(n) =

∑
0≤k<m

Nκ(logq N)kΦk({logq N}) +O(Nκ0) (A.6)

for integers N →∞.
For the Dirichlet series F(s) :=

∑
n≥1 n

−sf(n) assume that
there is some real number σa ≥ <κ such that F(s) converges absolutely for <s > σa;
the Dirichlet series F(s) can be continued to a meromorphic function for <s > κ0 − δ
such that poles can only occur at κ+ χ` for ` ∈ Z and such that these poles have order at
most m;
there is some real number η > 0 such that for κ0 ≤ <s ≤ σa and |s− κ− χ`| ≥ δ for all
` ∈ Z, we have

F(s) = O
(
|=s|η

)
(A.7)

for |=s| → ∞.
All implicit O-constants may depend on f , q, m, κ, κ0, α, δ, σa and η.

Then

Φk(u) =
∑
`∈Z

ϕk` exp(2`πiu)

for u ∈ R where

ϕk` = (log q)k

k! Res
(F(s)(s− κ− χ`)k

s
, s = κ+ χ`

)
(A.8)

for ` ∈ Z and 0 ≤ k < m.
If −1 < κ0 < 0 and κ /∈ 2πi

log qZ, then F(0) = 0.

The theorem is more general than necessary for q-regular sequences because Theorem 9
shows that we could use some 0 < η < 1. However, it might be applicable in other cases, so
we prefer to state it in this more general form.
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is unoccupied) and a particle on the nth node may leave the lattice with probability β. A
state of the PASEP is a configuration of occupied and unoccupied nodes and it naturally
corresponds to border edges of tree-like tableaux. In this association, corners in tree-like
tableaux, correspond to sites at which a particle can move (we will give more details below,
see also [13] for an explanation). In physics literature this is known as (total) current activity
[7, 8] and was studied for the TASEP (a special case of the PASEP with q = 0) in [15].

It was conjectured (see [13, Conjecture 4.1]) that the expected number of corners in a
randomly chosen tree-like tableaux of size n is (n+ 4)/6. This conjecture (and its companion
for symmetric tree-like tableaux) was proved in [12, Theorem 4] and subsequently also in
[10, Theorem 4.1]). However, not much beyond that has been known (even the asymptotic
value of the variance). In the present paper we take the next step in the analysis of tree-like
tableaux. First, since permutation tableaux are in bijection with tree-like tableaux and the
number of corners in both are related, we shift our discussion to be solely concerned with
permutation tableaux and derive our results in that context. In particular, we obtain the
variance of the number of corners. Furthermore, we also show that the number of corners in
random permutation, and therefore tree-like tableau of size n is asymptotically normal as n
goes to infinity.

The rest of the paper is organized as follows. In the next section we introduce the necessary
definitions and notation. We also explain the relation between the tree-like tableaux and the
PASEP. In Section 3 we present a recursive relation for the generating function involving the
corners in a similar combinatorial object, namely permutation tableaux. This recursion will
be used in Section 4 to obtain a recursion for the moment generation function of the number
of corners in permutation tableaux and in Section 5 to establish its asymptotic normality.
As mentioned earlier, this will imply the same result for the number of corners in tree-like
tableaux.

2 Preliminaries

2.1 Tree-like Tableaux and Permutation Tableaux
We endeavor to introduce the background for studying tree-like tableaux. We start by
recalling the necessary notions and properties.

I Definition 1. A Ferrers diagram is an up and left justified arrangement of cells with weakly
decreasing number of cells in rows. Depending on the situation, some rows may or may not
be empty. The length of a Ferrers diagram is the number of columns plus the number of
rows.

Let us recall the following definition introduced in [1].

I Definition 2. A tree-like tableau of size n is a Ferrers diagram of length n+ 1 with no
empty rows and with some cells (called pointed cells) filled with a point according to the
following rules:
1. The cell in the first column and first row is always pointed (this point is known as the

root point).
2. Every row and every column contains at least one pointed cell.
3. For every non-root pointed cell, either all the cells above are empty or all the cells to the

left are empty (but not both).
We denote the set of all tree-like tableaux of size n by Tn.

We will also need a notion of permutation tableaux originally introduced in [14].
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Figure 1 A tree-like tableau of size 13.

1 1 1101
10

1

0

1
0

0

1
0
0
0 1

0
1

0
1
1

0
1
1

1 1 1
0 0

10 1
0 1

0 1
0

Figure 2 Examples of permutation tableaux. The tableau in the middle has two empty rows.

I Definition 3. A permutation tableau of size n is a Ferrers diagram of length n whose
non-empty rows are filled with 0’s and 1’s according to the following rules:
1. Each column has at least one 1.
2. Any 0 cannot have a 1 both above it and to the left of it simultaneously.
We denote the set of all permutation tableaux of size n by Pn.

In a tree-like or a permutation tableau, the edges outlining the southeast border are often
called border edges. We also refer to those edges as steps. Each step is either a south step or
a west step if we move along border edges from northeast to southwest or a north step or an
east step if we move in the opposite direction.

I Definition 4. A corner in a tableau is a south step followed immediately by a west step as
we traverse the border edges starting from the northeast and going to the southwest end.
We denote by c(T ) the number of corners of the tableau T . If T is a set of tableaux we let

c(T ) =
∑
T∈T

c(T )

denote the total number of corners of tableaux in T .

Tree-like tableaux correspond to the states of the PASEP as follows: traverse the border
edges of a tree-like tableau beginning at the southwest end. Ignoring the first and the last
step, a north step corresponds to an unoccupied node and an east step corresponds to an
occupied node. Thus, for example, the tree-like tableau depicted in Figure 1 corresponds
to the following state of the PASEP on 12 nodes: (In this state of the PASEP a particle
could enter from the left, the particle in the second node could jump in either direction, the
particle in the fifth or the tenth node could jump to the left and a particle in the seventh or
the eleventh node could jump to the right.)
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◦ • ◦ ◦ • • • ◦ ◦ • • ◦

Figure 3 The state of the PASEP corresponding to the tree-like tableau in Figure 1.

With this association, the corners in tree-like tableau correspond to occupied sites, in
which the particle could jump to the right (or enter from the left, or leave to the right) and
any inner corner (north step followed by the east step) corresponds to an occupied node
with a particle that can jump to the left. Since the number of inner corners is one less
than the number of corners, the total number of possible moves for the PASEP in a state
corresponding to T ∈ Tn is 2c(T )− 1. For example the tableau in Figure 1 has four corners
and thus the PASEP in the state depicted in Figure 3 has seven possible moves as described
above. As we mentioned earlier, in physics literature the number of nodes at which a particle
can move is called the current activity of the system, see e. g. [7, 8, 15].

It is known (see [1, Proposition 3.1]) that tree-like tableaux of length n+1 are in bijection
with permutation tableaux of length n (and both are in bijection with permutations of [n],
see e. g. [3, 5, 14, 1]). The corners need not be preserved, but a difference between their
number in a tableau and its image under that bijection is at most one (see [12, Section 3]).
Therefore, in order to study corners in tree-like tableaux it will be enough to study corners
in permutation tableaux, and this is what we are going to do. We need a few more notions
associated with permutation tableaux.

I Definition 5. We say a zero in a permutation tableau is restricted if it has a one above it.
Otherwise, the zero is unrestricted. We say a row is restricted if it contains a restricted zero,
otherwise it is unrestricted. We denote by u(T ) the number of unrestricted rows of T .

In the first example in Figure 2, the top and the third row are unrestricted, but the other
two rows are restricted. Note that the top row of a permutation tableau is necessarily
unrestricted.

An important feature of permutation tableaux is that they can be constructed recursively.
Given a permutation tableau, we can increase its length incrementally and fill in the new
columns as they come.

I Definition 6. We say a tableau T ′ ∈ Pn+1 is an extension of a tableau T ∈ Pn if T ′ is
obtained either by adding a south step to the southwest corner of T or by adding a west
step and filling the new column according to the rules.

Notice that there is only one way to extend a tableau by adding a south step, but multiple
ways by adding a west step. When a west step is added, a new column is formed which must
be filled. In a cell that is part of a restricted row, it must have a zero. The cells that are part
of the unrestricted rows leave us options. It is not difficult to count the number of extensions
(see e. g. [4, 11]) and we have:

I Proposition 7. The number of extensions of T ∈ Pn into T ′ ∈ Pn+1 is 2u(T ).

This, however, tells us nothing of the number of unrestricted rows of the extended tableau,
which is often of relevance. But the evolution of the number of unrestricted rows can be
traced down (see [4] or [11]) and is given by:
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I Proposition 8. Let T ∈ Pn be a permutation tableau of length n, and let u(T ) be the
number of unrestricted rows of T . The number of ways to extend T so that the extension has
exactly k unrestricted rows, 1 ≤ k ≤ u(T ), is:

k∑
j=1

(
u(T )− j
k − j

)
=
(
u(T )
k − 1

)
.

In the following sections we prefer to use probabilistic language and thus, instead of
talking about the number of corners in tableaux, we let Pn be the uniform probability
measure on Xn (where Xn is either Tn or Pn) and consider a random variable Cn on the
probability space (Xn,Pn) defined by Cn(T ) = c(T ), the number of corners of T ∈ Xn. A
tableau chosen from Xn according to the probability measure Pn is usually referred to as a
random tableau of size n and Cn is referred to as the number of corners in a random tableau
of size n. We let En denote the expected value with respect to the measure Pn. Then, of
course, we have:

EnCn = c(Xn)
|Xn|

.

As we will see below, the variance of the number of corners, Var(Cn), grows to infinity
as n → ∞ (in fact, Var(Cn) ∼ 11n/180). Furthermore if φn : Tn → Pn is the bijection
described in [1, 12] then for T ∈ Tn, c(T ) = c(φn(T )) + I, where I is 0 or 1 depending on
the shape of T . Therefore, for every x ∈ R

Pn

(
T ∈ Tn : Cn(T )− ECn√

Var(Cn)
≤ x

)
= Pn

(
T ∈ Pn : Cn(T )− ECn +O(1)√

Var(Cn)
≤ x

)
.

Thus, the limiting distribution of the number of corners in a random tree-like tableau is the
same as that of the number of corners in a random permutation tableau, so we will focus on
the latter.

3 Generating Function and the First Two Moments

We wish to construct a generating function for the number of corners in permutation tableaux
of length n. We can do it recursively by using the extension procedure for permutation
tableaux mentioned earlier. In order to do this we need to keep track of the number of
unrestricted rows, and we use it as a ’catalytic’ variable. Proposition 8 allows us to follow
the evolution of the number of unrestricted rows under the extension and with its help we
can derive a recurrence for the bivariate generating function. Because of the space limitation,
the presentation of our proof is deferred to the full version of the paper.

I Proposition 9. Let for n ≥ 0

Cn(x, z) =
∑
T∈Pn

xc(T )zu(T )

be the bivariate generation function of permutation tableaux of length n, where x marks the
number of corners and z marks the number of unrestricted rows. Then we have the following
recurrence for Cn(x, z):

Cn(x, z) = zCn−1(x, z + 1) + (x− 1)
(
z(z + 1)Cn−2(x, z + 1)− z2Cn−2(x, z)

)
(1)

with

C0(x, z) = 1, C1(x, z) = z.
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3.1 Expectation

The above proposition allows us to recover the expected value of the number of corners, a
result conjectured in [13], first proved in [12], and then also in [10]. To do this, note that it
is clear from (1) that

Cn(1, z) = zCn−1(1, z + 1) = · · · = zn,

where

zn = z(z + 1) · · · · · (z + n− 1),

is the rising factorial. We can treat

Cn(x, z)
Cn(1, z) = Cn(x, z)

zn

as the probability generating function of a random variable that depends on a parameter
z and, in fact, is defined on a probability space that depends on z. Ultimately, we will be
interested in z = 1 but it is convenient to proceed with more generality.

When we write Cn(x, z) in the form

Cn(x, z) =
bn/2c∑
m=0

cn,m(z)(x− 1)m,

then the expected value of such random variable is cn,1(z)/zn. Note that (1) yields

cn,m(z) = zcn−1,m(z + 1) + z(z + 1)cn−2,m−1(z + 1)− z2cn−2,m−1(z),

with the initial conditions cn,0 = zn, n ≥ 0. Iteration gives

cn,m(z) = z(z + 1)cn−2,m(z + 2)

+z(z + 1)
(

(z + 2)cn−3,m−1(z + 2)− (z + 1)cn−3,m−1(z + 1)
)

+z
(

(z + 1)cn−2,m−1(z + 1)− zcn−2,m−1(z)
)

= zkcn−k,m(z + k)

+
k∑
j=1

zj
(

(z + j)cn−j−1,m−1(z + j)− (z + j − 1)cn−j−1,m−1(z + j − 1)
)

= zn−2mc2m,m(z + n− 2m) (2)

+
n−2m∑
j=1

zj
(

(z + j)cn−j−1,m−1(z + j)− (z + j − 1)cn−j−1,m−1(z + j − 1)
)
.
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When m = 1 this becomes

cn,1(z) = zn−2c2,1(z + n− 2) +
n−2∑
j=1

zj
(

(z + j)cn−j−1,0(z + j)− (z + j − 1)cn−j−1,0(z + j − 1)
)

= zn−2(z + n− 2) +
n−2∑
j=1

zj
(

(z + j)(z + j)n−j−1 − (z + j − 1)(z + j − 1)n−j−1
)

= zn−1 + zn−2
n−2∑
j=1

(
(z + j)(z + n− 2)− (z + j − 1)2

)
= zn−1 + zn−2(n− 2)(z + n− 2) +

zn−2
n−2∑
j=1

(
(z + j − 1)(z + n− 2)− (z + j − 1)2

)

= zn−2
(

(n− 1)(z + n− 2) +
n−2∑
j=1

(z + j − 1)(n− j − 1)
)

= zn−2(n− 1)
(

(z + n− 2) + (n− 2)(n+ 3z − 3)
6

)
= zn−2(n− 1)n

2 + 3zn+ n− 6
6 .

Therefore,

cn,1(z)
zn

= (n− 1)(n2 + 3zn+ n− 6)
6(z + n− 1)2

where (w)k = w(w−1) . . . (w− (k−1)) is the falling factorial. When z = 1 the above formula
gives

ECn = n2 + 4n− 6
6n = n+ 4

6 − 1
n

which agrees with [12, Theorem 2].

3.2 Variance

Calculation of the expected value can be pushed further and we can obtain the variance of
the number of corners, which has not been known before.

I Proposition 10. For n ≥ 4 we have

Var(Cn) = 11n4 − 191n2 + 360n+ 180
180n2(n− 1) ∼ 11

180n

as n→∞. In addition

Var(C1) = 0, Var(C2) = 1
4 , Var(C3) = 5

36 .
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Proof. Consider n ≥ 4 (the other three cases can be calculated directly). Our first goal is to
extract cn,2(z). From (2) used with m = 2 we have

cn,2(z) = zn−4c4,2(z + n− 4)

+
n−4∑
j=1

zj
(

(z + j)cn−j−1,1(z + j)− (z + j − 1)cn−j−1,1(z + j − 1)
)
.

Since

c4,2(z) = z(z + 1)c2,1(z + 1)− z2c2,1(z) = z(z + 1)2 − z3 = z(2z + 1),

we see that

zn−4c4,2(z + n− 4) = zn−3(2(z + n)− 7). (3)

Furthermore,

zj(z + j)cn−j−1,1(z + j)

= zn−3(z + j)(n− j − 2)(n− j − 1)2 + 3(z + j)(n− j − 1) + n− j − 7
6

and similarly,

zj(z + j − 1)cn−j−1,1(z + j − 1)

= zn−4(z + j − 1)2(n− j − 2)(n− j − 1)2 + 3(z + j − 1)(n− j − 1) + n− j − 7
6 .

Therefore,

n−4∑
j=1

zj
(

(z + j)cn−j−1,1(z + j) − (z + j − 1)cn−j−1,1(z + j − 1)
)

= zn−4

6

n−4∑
j=1

(n− j − 2)
{

(z + j)(z + n− 4)
(

(n− j − 1)2 + 3(z + j)(n− j − 1) + n− j − 7
)

−(z + j − 1)2
(

(n− j − 1)2 + 3(z + j − 1)(n− j − 1) + n− j − 7
)}

.

When z = 1 this equals

(n− 4)!
360 (n− 3)(n− 4)(5n4 + 26n3 − 38n2 − 83n− 150).

Combining with (3) we get

cn,2(1) = (n− 3)!(2n− 5) + (n− 4)!
360 (n− 3)(n− 4)(5n4 + 26n3 − 38n2 − 83n− 150)

= (n− 2)!
360 (5n4 + 16n3 − 110n2 − 151n+ 600).

The second factorial moment for the number of corners is thus given by:

E(Cn)2 = ECn(Cn − 1) = 2!
n!cn,2(1) = 5n4 + 16n3 − 110n2 − 151n+ 600

180n(n− 1)
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and therefore,

Var(Cn) = E(Cn)2 − (ECn)2 + ECn

= 5n4 + 16n3 − 110n2 − 151n+ 600
180n(n− 1) −

(
n+ 4

6 − 1
n

)2
+
(
n+ 4

6 − 1
n

)
= 11n4 − 191n2 + 360n+ 180

180n2(n− 1)

as claimed. J

It is, however, increasingly difficult to find cn,m for higher m. Instead, we will use (1) to
derive a recurrence for the moment generating function and rely on method of moments (see
e. g. [2, Theorem 30.2]) to establish the asymptotic normality of suitably normalized (Cn).

4 Moment Generating Function

Consider

Pn(t, z) := e−µn(z)tCn(et, z)
zn

, P0(t, z) = P1(t, z) = 1

where

µ0(z) = µ1(z) = 0; µn(z) = (n− 1)(n2 + 3zn+ n− 6)
6(z + n− 1)2

, n ≥ 2.

(Notice that µn(1) is the expected value of Cn, the number of corners in permutation tableaux
of size n.) Then, recurrence (1) translates into

Pn(t, z) = eαn(z)tPn−1(t, z + 1)

+ et − 1
(z + n− 1)2

(
(z + 1)(z + n− 2)eβn(z)tPn−2(t, z + 1)− z2eδn(z)tPn−2(t, z)

)
,

where

αn(z) = µn−1(z + 1)− µn(z) = −n+ zn− z − 2
(z + n− 1)2

,

βn(z) = µn−2(z + 1)− µn(z),
δn(z) = µn−2(z)− µn(z).

This gives a linear recurrence of the first order for P (m)
n (0, z); first

P (m)
n (t, z) = eαn(z)tP

(m)
n−1(t, z + 1) +

m−1∑
k=0

(
m

k

)
αm−kn (z)eαn(z)tP

(k)
n−1(t, z + 1)

+ et

(z + n− 1)2

m−1∑
k=0

(
m

k

)[
(z + 1)(z + n− 2)

k∑
i=0

(
k

i

)
βk−in (z)eβn(z)tP

(i)
n−2(t, z + 1)

−z2
k∑
i=0

(
k

i

)
δk−in (z)eδn(z)tP

(i)
n−2(t, z)

]
+ et − 1

(z + n− 1)2

(
(z + 1)(z + n− 2)eβn(z)tP

(i)
n−2(t, z + 1)− z2eδn(z)tP

(i)
n−2(t, z)

)(m)
.
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At t = 0 the last term vanishes and letting P (m)
n (z) := P

(m)
n (0, z) we get

P (m)
n (z) = P

(m)
n−1(z + 1) +

m−1∑
k=0

(
m

k

)
αm−kn (z)P (k)

n−1(z + 1) +

+ 1
(z + n− 1)2

m−1∑
k=0

{
(z + 1)(z + n− 2)P (k)

n−2(z + 1)
m−1∑
i=k

(
m

i

)(
i

k

)
βi−kn (z) (4)

−z2P
(k)
n−2(z)

m−1∑
i=k

(
m

i

)(
i

k

)
δi−kn (z)

}
.

This recurrence is the starting point for establishing asymptotic normality for the number of
corners in permutation tableaux. We outline the argument in the forthcoming section.

5 Main Result

We can now state our main result.

I Theorem 11. Let {Cn} be a sequence of random variables where Cn is the number of
corners in a random permutation tableau of length n. Let:

µn = n+ 4
6 − 1

n
∼ n

6
and

σ2
n = Var(Cn) ∼ 11

180n.

Then
Cn − µn
σn

d−→ N (0, 1) or
Cn − n

6√
11

180n

d−→ N (0, 1),

where d−→ is convergence in distribution and N (0, 1) is the standard normal random variable.

Proof. (Sketch) The proof relies on the method of moments (see e. g. [2, Theorem 30.2] and
on the analysis of recurrence (4) for the moments which will allow us to establish that:

P
(m)
n (1)

( 11
180n)

m
2
→

0, m odd
m!

2
m
2 ·(m/2)!

, m even.
(5)

The complete proof will be presented in the full version of the paper; here we indicate the
main steps in the argument. First, we retain only the two highest degree terms in recurrence
(4) (the remaining terms are of lower order and thus do not contribute significantly). Then
(4) simplifies to

P (m)
n (z) = P

(m)
n−1(z + 1) +

(
m

m− 1

)
αn(z)P (m−1)

n−1 (z + 1) +
(

m

m− 2

)
α2

n(z)P (m−2)
n−1 (z + 1)

+ 1
(z + n− 1)2

{
(z + 1)(z + n− 2)P (m−1)

n−2 (z + 1)
(

m

m− 1

)
− z2P

(m−1)
n−2 (z)

(
m

m− 1

)
+(z + 1)(z + n− 2)P (m−2)

n−2 (z + 1)
[(

m

m− 2

)
+
(

m

m− 1

)(
m− 1
m− 2

)
βn(z)

]
−z2P

(m−2)
n−2 (0, z)

[(
m

m− 2

)
+
(

m

m− 1

)(
m− 1
m− 2

)
δn(z)

]}
.
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The next simplification is based on the observation (which, again, will be justified in the full
version of the paper) that P (k)

n−2(z + 1) ∼ P (k)
n−1(z + 1) ∼ P (k)

n−2(z). Thus, replacing all the kth

derivatives in the curly brackets by P (k)
n−1(z + 1), k = m− 1,m− 2 the above is

P (m)
n (z) = P

(m)
n−1(z + 1) +mP

(m−1)
n−1 (z + 1)

[
αn(z) + (z + 1)(z + n− 2)− z2

(z + n− 1)2

]
+
(
m

2

)
P

(m−2)
n−1 (z + 1)

{
α2
n(z) + (z + 1)(z + n− 2)(1 + 2βn(z))− z2(1 + 2δn(z))

(z + n− 1)2

}
.

By the definition of αn(z), the term in the square brackets is zero. Denote the term in the
curly brackets by Tn−1(z + 1). Then, our recurrence becomes

P (m)
n (z) = P

(m)
n−1(z + 1) +

(
m

2

)
Tn−1(z + 1)P (m−2)

n−1 (z + 1).

Iterating and using P (m)
1 (z) = 0 for all z and m ≥ 1, we get

P (m)
n (z) =

(
m

2

) n−1∑
j=1

Tn−j(z + j)P (m−2)
n−j (z + j). (6)

Let now m = 2r be even. Iterating (6) yields

P (2r)
n (z) =

(
2r
2

) n−1∑
j=1

Tn−j(z + j)P (2r−2)
n−j (z + j)

=
(

2r
2

)(
2r − 2

2

) n−1∑
j1=1

n−j1−1∑
j2=1

Tn−j1 (z + j1)Tn−j1−j2 (z + j1 + j2)P (2r−4)
n−j1−j2

(z + j1 + j2)

=
(

2r
2

)(
2r − 2

2

)
. . .

(
4
2

) n−1∑
j1=1

n−j1−1∑
j2=1

· · ·
n−1−

∑r−1
i=1

ji∑
jr=1

r∏
i=1

T
n−
∑i

l=1
jl

(z +
i∑

l=1

jl)

= (2r)!
2r

∑
1≤k1<k2<···<kr<n

r∏
i=1

Tn−ki (z + ki)

= (2r)!
2r

1
r!

∑
1≤k1,...,kr<n

distinct

r∏
i=1

Tn−ki (z + ki)

= (2r)!
2r

1
r!

( ∑
1≤k1,...,kr<n

all

r∏
i=1

Tn−ki (z + ki) −
∑

1≤k1,...,kr<n
not all distinct

r∏
i=1

Tn−ki (z + ki)
)
.

Set z = 1. The first sum is(
n−1∑
k=1

Tn−k(k + 1)
)r

=
(
P (2)
n (1)

)r
∼
(

11
180n

)r

where the first equality follows from (6) used with m = 2 and P (0)
n (z) = 1. (This can also be

verified by evaluating the sum of the Tn−k(1 + k) directly; for the purpose of asymptotic
evaluation it suffices to use the highest order term approximating Tn(z), i.e.,

Tn(z) ∼ nz(2n4 + 6n3z + n2z2 + 3z4)
3(n+ z)6
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which is obtained by using the highest order term approximations, for example, µn(z) ∼
n2(n + 3z)/(6(z + n − 1)2) and similarly for αn(z), βn(z), and δn(z), but all of these
approximations require justifications.)

For the second summation, observe that |Tn−j(1 + j)| ≤ C for all 1 ≤ j < n and a
universal constant C. Thus:∣∣∣∣∣∣∣

∑
1≤k1,...,kr<n
not all distinct

r∏
i=1

Tn−ki
(1 + ki)

∣∣∣∣∣∣∣ ≤
∑

1≤k1,...,kr<n
not all distinct

r∏
i=1
|Tn−ki

(1 + ki)| ≤ Cr ·O(nr−1),

which is of lower order than the first sum. This proves (5) for m even.
Let now m = 2r+1 be odd. We wish to show that P (2r+1)

n (1) = O(nr) as n→∞. In fact,
we proceed to prove by induction that for every r ≥ 0, P (2r+1)

n−k (k + 1) = O(nr) uniformly in
1 ≤ k < n as n→∞. Since P (1)

n (z) = 0 (and approximation errors are bounded) this is true
for r = 0. Now assume P (2r−1)

n−k (k + 1) = O(nr−1) uniformly in 1 ≤ k < n. Then from (6) we
have that:

|P (2r+1)
n−k (k + 1)| ≤

(
2r + 1

2

)
max

1≤k≤n−1
|P (2r−1)
n−k (k + 1)|

n−1∑
j=1
|Tn−j(z + j)|

≤
(

2r + 1
2

)
O(nr−1) · Cn = O(nr)

as desired. J
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simple and useful, and we discuss their use in some enumerating sequences in trees, lattice paths
and planar maps.
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1 Introduction

Singularity analysis and saddle-point method represent the two major standard approaches
used in analytic combinatorics to compute the asymptotics of, say the Taylor coefficients
[zn]φ(z) for large n; see [9, Chap. VI & VII]. The choice of which method to use depends
crucially on the growth order of the functions in question near the dominant singularity or
the saddle-point. The general principle is to apply the saddle-point method when the growth
order of f near the saddle-point is large (e.g., log φ(z)� (log |1− z|)1+ε) and to apply the
singularity analysis otherwise. In most cases, only one of the two works if one is interested
in more precise asymptotic approximations. The Lagrangean form (frequently encountered
in diverse areas; see [9, §A.6])

φ(z) = zf(φ(z)) (1)
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with both φ and f analytic functions, is one of the few situations in which both methods
apply, and the key tool bridging the two different approaches is the Lagrange Inversion
Formula [9, §A.6]

[zn]φ(z) = n−1[tn−1]f(t)n (n > 1). (2)

This form of large powers shows generally that saddle-point method is a good candidate
for deriving the corresponding asymptotics, while the functional form (1) favors the use of
singularity analysis (coupling with the implicit function theorem).

For the purpose of more precise asymptotics, we assume the following conditions.

C1 (nonnegativity and aperiodicity) aj := [tj ]f(t) > 0 for every j > 0 and gcd{j : aj >
0} = 1;

C2 (analyticity) f is analytic in |z| < R for 0 < R 6∞;
C3 (sub-criticality) there exists an r ∈ (0, R) such that rf ′(r) = f(r).

Note that the conditions C1 and C3 imply that

a0 = f(0) =
∑
j>2

(j − 1)ajrj > 0.

Note further that the condition C3 fails when f is linear, namely, f(z) = a0 + a1z, which
gives rise to

φ(z) = a0z

1− a1z
=⇒ [zn]φ(z) = a0a

n−1
1 .

Under the conditions C1–C3, it is known, by singularity analysis or saddle-point method,
that (see [9, §IV.7] or [13, 14])

[zn]φ(z) ∼ C n− 3
2 ρ−n, where ρ := r

f(r) and C :=

√
f(r)

2πf ′′(r) .

The aim of this extended abstract is to examine the asymptotic expansions of the
Lagrangean form (1). In particular, we will prove the following theorem, which can be
regarded as an alternative version of Theorem VI.6 in [9, §VI.7] with the coefficients not just
“computable” but by a more precise formula. Also we prefer the use of binomial coefficients
to negative powers of n.

I Theorem 1. Assume that φ and f satisfy (1). Then, under the conditions C1–C3, we
have

[zn]φ(z) ∼ ρ−n
∑
k>0

c2k+1

(
n− k − 3

2
n

)
, (3)

where the coefficients cj’s are expressible in yet another Lagrangean form

ck = k−1[vk−1]F (v)k, with F (v) := −
(1− (r+v)f(r)

rf(r+v)

v2

)− 1
2

(k > 1). (4)

This succinct expression for ck shows that the Lagrangean form (1) is not only useful for
computing the Taylor expansion of φ at z = 0 (as is most commonly used), but also at
the dominant singularity in subcritical situations (the latter is little known). The singular
Lagrangean form (4) can further be used to derive the asymptotic behavior of ck (although in
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most cases the sub-criticality condition C3 fails), which in turn will be helpful in determining
the number of terms used in order to reduce the numerical errors; see Section 4–6 for the
discussion of some examples.

Let τ :=
√

2f(r)
f ′′(r) . Then we have (with fj := f (j)(r))

c1
τ

= −1 and c3
τ3 = − 1

8r2 −
f2

4f0
+ f3

4rf2
− 5f2

3
72f2

2
+ f4

24f2
.

While the expressions of ck are becoming messy as k increases, the neat expression (4) is not
commonly available in most asymptotic expansions and reflects certain intrinsic properties of
the Lagrangean form (1).

The asymptotic expansion (3) is to be compared with the usual one (see [9, Theorem VI.6]):

[zn]φ(z) ∼ ρ−n
∑
k>0

dkn
−k− 3

2 , (5)

where the coefficients dk can be computed recursively but no simple expression such as (4) is
available; see for example the next section for the usual constructive procedures to compute
dk. Alternatively, we can convert (3) to (5) by the following argument. Recall first Euler’s
reflection formula(

n− k − 3
2

n

)
=

Γ
(
n− k − 1

2
)

n!Γ
(
−k − 1

2
) =

(−1)k+1Γ
(
k + 3

2
)

π
·

Γ
(
n− k − 1

2
)

Γ(n+ 1) . (6)

Then we need the following asymptotic expansion.

I Lemma 2 ([17]). For α ∈ C

Γ(z + α)
Γ(z) ∼

∑
j>0

λj(α)zα−j (|z| → ∞),

uniformly for | arg(z)| 6 π − ε, ε > 0. Here λ0(α) = 1 and

λj(α) = 1
j

∑
06l<j

(
α− l

j + 1− l

)
λl(α) (j > 1).

This expression of λj(α) is simpler than that given in [8, Proposition 1]. Applying Lemma 2
to (6), we obtain(

n− k − 3
2

n

)
∼

(−1)k+1Γ
(
k + 3

2
)

π

∑
j>0

λj
(
−k − 1

2
)
n−k−

3
2−j ,

from which we deduce the relation between dk and ck, which in turn results in the effective
version (5) of [9, Theorem VI.6].

I Theorem 3. Assume that φ and f satisfy (1). Then, under the conditions C1–C3, the
expansion (5) holds with

dk = 1
π

∑
06j6k

(−1)jc2j+1Γ
(
j + 3

2
)
λk−j

(
−j − 1

2
)

(k > 0). (7)

In view of the computational complexity of the coefficients, the expansion (3) is preferable
and recommended for most numerical purposes because the binomial coefficients can be
easily computed in most softwares.

AofA 2018



29:4 Asymptotic Expansions for Sub-Critical Lagrangean Forms

On the other hand, the expansion (3) can be extended to a more general context of the
form (or Lagrange-Bürmann formula)

[zn]G(φ(z)) = n−1[tn−1]G′(t)f(t)n (n > 1).

I Theorem 4. Let G be an analytic function in |z| 6 r. Under the conditions C1–C3, we
have

[zn]G(φ(z)) ∼ ρ−n
∑
k>0

e2k+1

(
n− k − 3

2
n

)
, (8)

where ek = k−1[vk−1]G′(r + v)F (v)k for k > 1.

Since e1 = −G′(r)τ , we see that e1 = 0 when G′(r) = 0 (very common in the context of
planar maps [1]), and we then get the n− 5

2 -asymptotics

[zn]G(φ(z)) ∼ ρ−n
∑
k>0

e2k+3

(
n− k − 5

2
n

)
,

where in particular (with Gj = G(j)(r)) e3
τ3 = −G3

6 −
G2
2r + f3G2

6f2
. The usefulness of the two

expansions (3) and (8) will be demonstrated through a few examples of trees and planar
maps.

In the next section, we give a procedure to compute the coefficients dk in (5). Then we
prove (3) and (8) in Section 3. Some applications are discussed in the remaining sections.

2 An asymptotic expansion by saddle-point method

For comparison and for more methodological interest, we derive (5) in this section by a
direct saddle-point method. Since the analysis is standard (see [9, 14]), we focus on the
computation of the asymptotic coefficients dk as follows.
1. Compute first the expansion f(rev) =

∑
k>0 d

[1]
k v

k, where (S(k, j) being Stirling numbers
of the second kind)

d
[1]
k = 1

k!
∑

06j6k
S(k, j)f (j)(r)rj (k > 0).

2. Expand log f(rev) =
∑
k>0 d

[2]
k v

k, where d[2]
0 = log f(r) and

d
[2]
k =

d
[1]
k

f(r) −
1

kf(r)
∑

16j<k
jd

[2]
j d

[1]
k−j (k > 2).

By rf ′(r) = r, we see that d[2]
1 = 1 and d[2]

2 = r2f ′′(r)
2f(r) .

3. Now expand

exp
(
vx+ 1

2d[2]
2

∑
j>1

d
[2]
j+2v

j+3xj
)

=
∑
k>0

d
[3]
k (v)xk,

where d[3]
0 = 1 and

d
[3]
k (v) = v

k
d

[3]
k−1(v) + 1

2d[2]
2 k

∑
16j6k

jvj+2d
[2]
j+2d

[3]
k−j(v) (k > 1).

Note that d[3]
k (v) contains only powers of v with the same parity as k of degree 3k.
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4. Then, with σ := r
√

f ′′(r)
f(r) ,

[zn−1]f(z)n ∼ r1−nf(r)n√
2πnσ

1 +
∑
k>1

d
[4]
k

σ2knk

 ,

where

d
[4]
k := 1√

2π

∫ ∞
−∞

e−
1
2 t

2
d

[3]
2k(it) dt =

∑
06j63k

(−1)j (2j)!
j!2j [v2j ]d[3]

2k(v).

Thus, by comparing with (5), we have (with τ :=
√

2f(r)
f ′′(r) )

dk = r√
2π σ2k+1

d
[4]
k = τ2k+1

2k+ 1
2 r2k

d
[4]
k . (9)

A non-recursive procedure is possible via Bell polynomials but not simpler; see [7] and
the references therein. In particular (with fj := f (j)(r)), d1 = 1

8 −
3r2f2
8f0

+ rf3
4f2
− r2f2

3
24f2

2
+ r2f4

8f2
.

For larger k the expressions of dn become very messy.

3 An asymptotic expansion by singularity analysis

We prove (3) and (8) in this section by singularity analysis. As in the previous section, we
focus on the computations of ck, the analytic justification being done as in [9, Theorem VI.6].
Following the exposition there, the idea starts from the equation (writing w = φ(z))

ρ− z = r

f(r) −
w

f(w) . (10)

Then invert (10) by expanding w in terms of ρ− z. For convenience, we find that it is simpler
to use the expansion

1− wf(r)
rf(w) =

∑
j>2

bj(w − r)j . (11)

In particular, we have (with fj = f (j)(r))

b2 = f2

2f0
, b3 = −b2

r
+ f3

6f0
, b4 = −b3

r
− f2

2
4f2

0
+ f4

24f0
.

Now write w = r + t, and rearrange the expansion (11) as

f(r + t)− f(r)
r

(r + t) = f(r + t)
∑
j>2

bjt
j ,

which then leads to the recurrence

bm = fm
m!f0

−
∑

26j6m−2
bm−j

fj
f0j!

− bm−1

r
(m > 3).

These coefficients can be computed in linear time (in m) once the derivatives of f at r are
available.

AofA 2018



29:6 Asymptotic Expansions for Sub-Critical Lagrangean Forms

Let ∆ :=
√

1− z. We now examine the local behavior of ∆ for z ∼ 1 by first inverting
the relation

∆2 = 1− (r + t)f(r)
rf(r + t) =

∑
j>2

bjt
j ,

or

∆2 = t2
∑
j>0

bj+2t
j =⇒ t = ∆F (t), (12)

where

F (t) := −
(∑
j>0

bj+2t
j
)− 1

2 = −
(1− (r+t)f(r)

rf(r+t)

t2

)− 1
2

.

Interestingly, this is again of a Lagrangean form, and we see that

t =
∑
k>1

ck∆k,

where ck is given in (4). Then we are led to the singular expansion

t = φ(ρz)− r =
∑
k>1

ck(1− z) k
2 ,

which is convergent in a neighborhood of unity excluding the branch-cut [1,∞) (the exact
range depending on the zeros or singularities of F ). Then, by singularity analysis, we obtain
(3).

The proof for (8) is similar, because

G(φ(ρz)) = G(r + t) = G(r) +
∑
k>1

ek∆k.

4 Applications I: [zn]φ(z) and the n−3
2 -asymptotics

We discuss in this section the use of our asymptotic expansions in some popular counting
sequences in combinatorics.

The following simple observation is useful for justifying sub-criticality of the Lagrangean
form (1); see also [9, Proposition IV.5] for a slightly more general version.

I Lemma 5 (Sub-criticality). Let the radius of convergence of the series f(z) =
∑
j>0 ajz

j

be R > 0 with a0 > 0 and aj > 0 for j > 1. If f is not linear and limz→R f(z)→∞, then
the condition C3 is satisfied, namely, there exists an r ∈ (0, R) such that rf ′(r) = f(r).

Proof. Consider the function g(z) := z
f(z) , which is well-defined at least in [0, R). Since

g(0) = 0 (because a0 > 0) and limz→R g(z) → 0, by Rolle’s Theorem, there exists an
r ∈ (0, R) such that g′(r) = 0. But g′(r) = 0 is equivalent to rf ′(r)− f(r) = 0. J

In particular, if f is a rational function of z with nonnegative Taylor coefficients, then the
Lagrangean form (1) is always sub-critical. For example, f(z) = 1

1−z gives the Catalan
numbers φ(z) = 1−

√
1−4z
2 (A000108 in Sloane’s OEIS). We see that no further treatment is

needed because the singular expansion contains only one term.

https://oeis.org/A000108
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Motzkin numbers (A001006).

Consider now the Motzkin numbers with f(z) = 1 + z + z2 and

φ(z) = 1− z −
√

1− 2z − 3z2

2z . (13)

Note that zf ′(z)− f(z) = z2 − 1, implying that r = 1 and ρ = 1
3 . Thus

[zn]φ(z) =
∑

06j6bn−1
2 c

(n− 1)!
j!(j + 1)!(n− 1− 2j)! ∼ 3n

∑
k>0

c2k+1

(
n− k − 3

2
n

)
. (14)

For finite k, the coefficients ck can be readily computed by (4) with F (v) = −
√

3 + 3v + v2.
We observe that while the asymptotics of the left-hand side of (14) remains less visible even
for the exponential order, that of the right-hand side is transparent if we regard the binomial
factor as decreasing powers in n. Furthermore, the right-hand side is a direct consequence of
Theorem 1, and thus even without any explicit formula for [zn]φ(z), which is often the case,
we can still apply the expansion (3) and obtain very effective approximations.

We now look at the large k-asymptotics of ck. Note that vF ′(v) − F (v) = 3(2+v)
3
√

3+3v+v2 ,
which equals zero when v = −2, and has a pair of conjugate singularities at − 3

2 ±
√

3
2 i with

modulus
√

3 < 2, so the Lagrangean form (12) is not sub-critical (and thus the saddle-point
at −2 is not dominant). Indeed, by the closed-form expression (13) of φ, we have

t = ∆F (t) =⇒ t =
3∆2 −∆

√
3(4−∆2)

2(1−∆2) .

This implies that

c2k+1 = −
√

3

1− 2
∑

16j6k

(
2j − 2
j − 1

)
16−j

j

 = −3
2 +O

(
k−

3
2 16−k

)
.

Thus they can be replaced by − 3
2 for moderate values of k (depending on the desired degree

of precision).

Schröder numbers (A001003).

In this case, we have f(z) = 1−z
1−2z and

φ(z) = 1 + z −
√

1− 6z + z2

4 , (15)

implying that r = 1− 1√
2 <

1
2 , ρ = r

f(r) = 3− 2
√

2, and φ has the dominant singularity at

3− 2
√

2. Furthermore, F (v) = −r
√

1√
2 − v, and therefore the equation vF ′(v) = F (v) has a

solution at v =
√

2 > 1√
2 lying outside the circle where F is analytic. So the Lagrangean

form t = ∆F (t) is not sub-critical. On the other hand, t can be solved in terms of ∆ as

t = ∆F (t) =⇒ t = −
(
√

2− 1)2∆2 + (
√

2− 1)∆
√

(
√

2− 1)2∆2 + 4
√

2
4 .

Thus

c2k+1 = [∆2k+1]t = (−1)k+1

2 3
4

(
k − 3

2
k

)
2− 5

2k(
√

2− 1)2k+1.

AofA 2018
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We get the same k− 3
2 -asymptotics for the coefficients ck even though t = ∆F (t) is not

sub-critical. Note that c2k+1 are asymptotic to c′k− 3
2 ρ−kc for large k, where ρc ≈ 32.97,

meaning that they converge exponentially to zero. By the closed-form expression for Schröder
numbers, we have the asymptotic expansion

[zn]φ(z) = 1
n

∑
06j6n−2

(
n− 2
j

)(
n

j + 1

)
2n−2−j ∼ (3 + 2

√
2)n

∑
k>0

c2k+1

(
n− k − 3

2
n

)
.

Again, the right-hand side is preferable for large-n numerics and the numerical fits are very
good even for small values of n. For example, for n = 10,

∣∣ [zn]φ(z)
(3+2

√
2)n
− c1

(
n− 3

2
n

)∣∣ 6 6.2× 10−6.
The same approach applies to many other sequences with f a polynomial or a rational

form. Indeed, several hundred of sequences were found in OEIS whose generating functions
satisfy the Lagrangean form (1) with polynomial or rational f . Some of these will be compiled
and discussed in the journal version.

5 Applications II: [zn]G(φ(z)) and the n−5
2 -asymptotics

A map is an embedding of a connected planar multigraph on the sphere, up to orientation
preserving homeomorphism. Asymptotic enumeration of planar maps often features a
universal n− 5

2 -behavior, in contrast to n− 3
2 for that of trees; see [1, 2] for more information

and references. Given a class M of maps, let mn denote the number of maps in M with n
edges. Let M(z) :=

∑
n>0mnz

n be the generating function of mn, which is specified by the
Lagrangean form

M(z) = G(φ(z)), φ(z) = zf(φ(z)). (16)

As the number of different types of maps is huge (see, e.g., [2, 4, 10, 11, 12, 18]), we content
ourselves in this extended abstract only with the discussion of Table 2 in [1] (a total of
14 examples reformatted below with a correction for M2) for representative asymptotic
patterns, focusing on the calculations of the asymptotic coefficients ek, a missing facet in
most previous publications. See [1] for precise definitions of the diverse terms used here (such
as non-separable, bridgeless, singular, irreducible, etc.).

Incremental maps

We first categorize the 14 examples into two groups according to the availability for the
counting function mn = rnmn−1 for some rational function rn—such a counting formula
entails a Markovian property and in turn an incremental construction procedure. This group
includes (see the following tables) the six examples M1,M2,M3,B1,T1 and T2. Note that
M2 = T2; see [3]. Since the application of our expansions is straightforward, we omit the
details of the expansions.

type of
maps

M1

general

M2

bridgeless
= T2

triangulations

M3

non-separable
B1

bipartite

T1

singular
triangulations

f(z) 3(1 + z)2 (1 + z)4 (1 + z)3 2(1 + z)2 2(1 + z3)

[zn]φ(z)
or φ(z)

3n

n+1

(2n
n

)
1

3n+1

(4n
n

)
1

2n+1

(3n
n

)
2n

n+1

(2n
n

)
2n

2n+1

(3n
n

)
OEIS(φ) A005159 A002293 A001764 A151374 A153231

https://oeis.org/A005159
https://oeis.org/A002293
https://oeis.org/A001764
https://oeis.org/A151374
https://oeis.org/A153231
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type of
maps

M1

general

M2

bridgeless
= T2

triangulations

M3

non-separable
B1

bipartite

T1

singular
triangulations

G(z) z(2−z)
3 (1 − z)(1 + z)2 z(2+z−z2)

(1+z)3
z(2−z)

4
z(1−z)

2

[zn]G(φ(z)) 2·3n(2n)!
n!(n+2)!

2·(4n+1)!
(n+1)!(3n+2)!

2(3n)!
(n+1)!(2n+1)!

3·2n−1(2n)!
n!(n+2)!

2n(3n)!
(n+1)!(2n+1)!

OEIS(G(φ)) A000168 A000260 A000139 A000257 A000309

r 1 1
3

1
2 1 1

2

ρ 1
12

27
256

4
27 8 2

27

F (t) −(2 + t) −
√

3(4+3t)2

9
√

32+16t+3t2
− (3+2t)

3
2

2
√

9+2t −(2 + t) − (3+2t)
3
2

2
√

9+2t

G
′
(r + v) − 2

3v −v(4 + 3v) −32v
(3+2v)3 − 1

2v −v

Non-incremental maps

The remaining eight maps are further divided into two sub-groups:
(1) [zn]f(z) > 0: M4, M6, and T3;
(2) [zn]f(z) contains negative coefficients: M5,B2,B3,B4, and B5.
Our theorems in the introduction are directly applicable to the first sub-group, and can be
readily modified for the second for which the condition C1 (nonnegativity of coefficients)
fails.

Non-incremental maps with [zn]f(z) > 0
Similar to the incremental maps given above, we summarize the major properties of the three
non-incremental maps in the following table.

type of
maps

M4

simple
M6

3-connected
T3

irreducible triangulations

f(z) (3+z)2

3−z
1

1−z
1

(1−z)2

[zn]φ(z)
or φ(z)

3−
√

1−8z
2(1+z)

1
n

(2n−2
n−1

) (3n+1)!
(n+1)!(2n+1)!

OEIS(φ) A062062 A000108 A006013

G(z) z(9−3z−z2)
27

z5(1−z−z2)
(1+z)3(1+z−z2)

z(1−z−z2)
(1−z)(1+z)2

OEIS(G(φ)) A022558 A000287 A000256

r 1 1
2

1
3

ρ 1
8

1
4

4
27

F (t) − 4+t
3 − 1

2
−2

3
√

3(1−t)

G
′
(r + v) −v(4+v)

9 −
2v(1+2v)4

(
167 + 176v − 24v2

−64v3 − 16v4

)
(3+2v)4(5−4v2)2

−729v
(2−3v)2(4+3v)3
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We consider only the simple maps M4 with f(z) = (3+z)2

3−z and G(z) = z(9−3z−z2)
27 . In

this case, φ is given by

φ(z) = 3
2 ·

1− 2z −
√

1− 8z
1 + z

,

implying that

G(φ(z)) = −1 + 4
1 + z

+ 18
(1 + z)2 −

27
2(1 + z)3 + (1− 8z) 3

2

2(1 + z)3 , (17)

which then gives

[zn]G(φ(z)) = (−1)n
(

1
2 −

9
4 n−

27
4 n2

)
+ 1

2
∑

06j6n

(
j + 2

2

)
(−1)j

(
n− j − 5

2
n− j

)
8n−j ,

for n > 1. On the other hand, we also have, by Lagrange inversion formula,

[zn]G(φ(z)) = 2
∑

06j<n

(2n+ 1)!(2n− j − 2)!(n− 2j + 1)
n!j!(n− 1− j)!(2n− j + 2)! (n > 1).

The main difference is that the former expands at z = 1
8 , while the latter at the origin.

On the other hand, without relying on the explicit forms, we also have (with ∆ =
√

1− z)

F (t) = −4 + t

3 =⇒ t = − 4∆
3 + ∆ =⇒ G(φ( z8 )) = −1 + 32

3 + ∆2 −
64

(3 + ∆)3 .

We then obtain the same singular expansion as above, which is convergent in the region with
|1− 8z| < 9. It follows that

[zn]G(φ(z)) ∼ 8n
∑
k>0

e2k+3

(
n− k − 5

2
n

)
, where e2k+3 = 1

2

(
8
9

)3(
k + 2

2

)
9−k.

Non-incremental maps with [zn]f(z) ≶ 0
The remaining five cases are listed below.

type of
maps

M5

non-separable
simple

B2

bipartite
simple

B3

bipartite
bridgeless

B4

bipartite
non-separable

B5

bipartite
non-separable

simple
f(z) (1+z)6

(1+2z)2
8(1+z)2

4+2z−z2
(2+z)6

32(1+z)2
32(1+z)2

(4+2z−z2)2
128(1+z)2

(4+2z−z2)3

G(z) z(1+z−z2)
(1+z)3

z(2−z)
4

z2(8+4z−4z2−z3)
32(1+z)2

z(2−z)
4

z(2−z)
4

OEIS(G(φ)) − − − A069728 A298358
r 1

2 1 1 1 1
ρ 128

729
5

32
128
729

25
128

25
512

F (t) (?)1 −
√

5(2+t)√
9+4t (?)2 −t (?)3

G′(r + v) −64v(1+v)
9 − 1

2v − v(1+v)(v+3)2(7+3v)
32(2+v)3 − 1

2v − 1
2v

https://oeis.org/A069728
https://oeis.org/A298358
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Here (?)1 := −(3+2t)3
√

1215+2862t+2160t2+576t3+64t4 , (?)2 := −2(3+t)3
√

1215+1431t+540t2+72t3+4t4 , and (?)3 :=
−5
√

5(2+t)√
425+300t−60t2−60t3+4t4+4t5 .
We now show how to extend the same analysis to the cases when [zn]f(z) contains

negative coefficients. From the viewpoint of the saddle-point method, a sufficient condition
replacing the condition C1 is as follows (see also [6]):

C1’ (Concentration of |f(z)|)

f(r) > 0 for 0 < r < R and |f(reiθ)| < f(r) for 0 < |θ| < π. (18)

Briefly, this condition implies, by the saddle-point method, that the major contribution
to the integral representation of [tn−1]G′(r + t)f(t)n comes from a small neighborhood of
t = r, and in turn that the asymptotic expansion (8) holds.

B2: simple bipartite maps

In this case, f and G are given by f(z) = 8(1+z)2

4+2z−z2 and G(z) := 1
4z(2− z); thus r = 1, ρ = 5

32 ,
and

F (t) = −
√

5(2 + t)√
9 + 4t

.

We can check the condition C1’ by elementary calculus and then derive the expansion (8); in
particular, we have

1√
5

(
5
32

)n
[zn]G(φ(z)) ∼ 50

243

(
n− 5

2
n

)
+ 1100

59049

(
n− 7

2
n

)
+ · · · .

Whether the left-hand side is easy to compute or not is irrelevant here. Also we can compute
e2k+3 by the following closed-form expression

e2k+3 = 2 · 5k+ 3
2

(2k + 3)32k+3

∑
06j62k+1

(
k + j + 1

2
j

)(
2k + 3
j + 2

)(
−8

9

)j
(k > 0).

The same technique applies to B4 and B5, but not to M5 and B3 because the condition
C1’ fails when z is near − 1

2 (for M5) and near −1 (for B3) because of polar singularities there.
However, we can modify suitably the integration contour so as to avoid the polar singularities
and prove that the contribution comes principally from z ∼ r in the corresponding Cauchy
integral. So we still get the expansions (8) for both cases; we omit the details here.

6 Applications III: Other examples

Due to a space constraint, we mention in this section only two interesting examples for which
our expansions apply.

The number of rooted 3-connected bicubic maps of 2n vertices (see [15, 16] and A298358)
is given by

mn = 3
n− 1 [zn−1]g(z)f(z)n,

AofA 2018
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where f(z) = (1+2z)2

(1+z−z2)3 and g(z) = z3(1−2z)
(1+2z)(1+z−z2) . By modifying our expansions (the

condition C1’ holds), we have

mn ∼
3n
n− 1

(
512
125

)n∑
k>0

e2k+3

(
n− k − 5

2
n

)
,

where

ek := 1
k

[tk−1]g
( 1

2 + t
)( −5

√
5(1 + t)√

425− 240t2 + 64t4 + 600t− 480t3 + 128t5

)k
.

The number of labeled rooted trees of subsets of an n-set (see [5] or A005172) is given
by [zn]G(φ(z)), where φ = zf(φ) with f(z) = z

1−ez+log(2ez−1) and G(z) = ez − 1.
Interestingly, all coefficients [zn]f(z) are positive for 1 6 n 6 47, but negative coefficients
appear from n = 48 on. By checking the conditions C1’, C2 and C3, we then obtain (8)
with

F (t) = −
√

2 log 2− 1 t√
2 log 2 + 3(et − 1)− 2 log(3et − 1)

.

Then we deduce that (with r = log 3
2 )

G(r + t) = 2
3

(
T
(
e−1−(log 2− 1

2 )∆2
)
− 1
)
,

where T (z) =
∑
n>1

nn−1

n! zn denotes the generating function for Cayley trees.
All examples treated in [16] can be dealt with by our expansions. Consider, as in [16],
the asymptotics of the Stirling numbers of the second kind:{

2n
n

}
= (2n)!

n! [z2n](ez − 1)n = (2n)!
(n− 1)! ·

1
n

[zn−1]z−1f(z)n,

where f(z) := ez−1
z . Although G = log z is not analytic at z = 0, we can still apply the

same expansion (8) and obtain

(n− 1)!
(2n)!

{
2n
n

}
∼ ρ−n

∑
j>0

e2j+1

(
n− j − 3

2
n

)
,

where r = 2 − T (2e−2), ρ = r
f(r) , and ek = k−1[tk−1](r + t)−1F (t)k for k > 1. The

Stirling numbers of the first kind with f = −z−1 log(1− z) is similar.
Other examples in [16] include the relations

1
n · (n− 1)!2

∑
06k<n

{
n− 1
k

}
(n− 1 + k)! = 1

n
[zn−1](2− ez)−n

1
n

∑
06k<n

(
n

k

)(
2n− 2− k
n− 1

)
(−1)k2n−k = 1

n
[zn−1] (1 + z)n(1− 2z)n

(1 + z)2 ,

and the following table for the form [zn]g(z)f(z)n:
g f g f

1 (1− 3
8z + 1

24z
2)−1 1 (1−

√
3z + z2)−1

1 (1− z − z2)−1 1 1
2 (1 + ez)

z(1− z)−1 eαz z(1− z)−α−1 ez

(1− αz)−1 ez (1− z)−1 (1 + z)α

− log(1− 3z) (1 + z)4 −z(1− z)−1 log(1− z) ez

https://oeis.org/A005172
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Abstract
Let f be a uniformly random element of the set of all mappings from [n] = {1, . . . , n} to itself. Let
T(f) and B(f) denote, respectively, the least common multiple and the product of the lengths of
the cycles of f . Harris proved in 1973 that log T converges in distribution to a standard normal
distribution and, in 2011, Schmutz obtained an asymptotic estimate on the logarithm of the
expectation of T and B over all mappings on n nodes. We obtain analogous results for uniform
random mappings on n = kr nodes with preimage sizes restricted to a set of the form {0, k},
where k = k(r) ≥ 2. This is motivated by the use of these classes of mappings as heuristic models
for the statistics of polynomials of the form xk + a over the integers modulo p, where k divides
p− 1. We exhibit and discuss our numerical results on this heuristic.
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1 Introduction

Let f : [n] → [n] be a mapping from a finite set to itself. The iterations of mappings has
attracted interest in recent years due to applications in areas such as physics, biology, coding
theory and cryptography. Every polynomial f over a finite field Fp is a particular case
of a mapping, and there are a number of applications where one considers the iterations
of polynomials over finite fields. We highlight Pollard’s classical factorization method for
integers, which is based on iterations of quadratic polynomials; it allowed Brent and Pollard
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of Pollard’s method to the discrete logarithm problem also relies on iterations of mappings; it
is considered by some authors the best attack on the elliptic curve version of this problem [20].

Let f = f (0) be a mapping on n elements and consider the sequence of functional
compositions f (m) = f ◦f (m−1), m ≥ 1. The least integer T = T(f) such that f (m+T ) = f (m)

for all m ≥ n equals the order of the permutation obtained by restricting the mapping f to
its cyclic vertices. Erdös and Turán proved in [8] that the logarithm of the corresponding
random variable defined over the symmetric group Sn converges in distribution to a standard
normal distribution, when properly centered and normalized. By adapting Erdős and Turán’s
“statistical group theory approach”[8], Harris was able to prove an analogous result for the
space of mappings with uniform distribution [12]. The logarithm of the expected value of T
was estimated in [18].

The parameter T can be proven to be the least common multiple of the cycle lengths
of the components of the functional graph of f . If B(f) is the product of all cycle lengths
of f including multiplicities, then it is clear that B(f) represents an upper bound for T(f);
moreover, one might consider B as an approximation for T. For instance, Proposition
1.2 of [18] implies that, for any δ > 0, the sequence of nonnegative random variables
Xn = (log B− log T)/ log1+δ n, n ≥ 1, converges in probability to zero. However, it is proved
in [18] that the expectation of B deviates significantly from the expectation of T.

In this paper we derive similar results for the classes of {0, k}-mappings, k ≥ 2, defined
as mappings f : [n]→ [n] such that |f−1(y)| ∈ {0, k} for all y ∈ [n]. In [1, 14] the authors
consider the case where k is a fixed integer. Although this case is arguably of the most
interest due to connections with polynomials over finite fields, we derive our results in a more
general context, as explained at the end of this section. This might be desirable, for example,
when modeling polynomials whose degree depends on the size of the prime p; see [6].

By now there is a rather large literature on the asymptotic distribution of random
variables defined on mappings, both with and without indegree restrictions. One motivation
is methodological. Random mappings are important examples that serve as benchmarks for
both probabilistic and analytic methods. On the analytic side, combinatorial methods can
be used to identify generating functions whose coefficients are the quantities of interest. In
many cases it is possible to estimate the coefficients asymptotically using complex analysis.
A standard reference is [10], which includes several applications to random mappings; see
also [7, 9, 13]. In another direction, random mappings correspond to a large class of random
graphs Gf for which the joint distribution of components sizes can be realized as independent
random variables, conditioned on the number of vertices that the graph has. Stein’s method
and couplings have been used to prove strong and general results [2, 3]. One application of this
theory is a generalization of the theorem of Harris [12] that was mentioned above. However
the proofs in our paper are elementary, and do not directly use any of these probabilistic
techniques (except indirectly by citing a theorem from [4]).

The research on random mappings with such restrictions is also motivated by the Brent-
Pollard heuristic, where one uses these objects as a model for the statistics of polynomials.
It was introduced by Pollard in the analysis of his factorization method: he conjectured
that quadratic polynomials modulo large primes behave like random mappings with respect
to their average rho length [15]. However, the indegree distribution of a class of mappings
impacts the asymptotic distribution of a number of parameters [1, 11]. Since it is known
that the functional graph of a quadratic polynomial over Fp, p odd, has just one node with
indegree 1 and the remaining nodes are split in half between indegrees 0 or 2, {0, 2}-mappings
could provide a better heuristic model for quadratic polynomials; see [14] for a discussion of
alternative models for the Brent-Pollard heuristic. Furthermore, the class of {0, k}-mappings
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provides a good heuristic model for polynomials of the form xk + a ∈ Fp[x] with p ≡ 1
(mod k). This heuristic model was used in [5] to predict that Pollard’s method is sped up in
some cases if these polynomials are used, eventually leading to the factorization of the eighth
Fermat number.

It is discussed in [14] that unrestricted mappings and {0, 2}-mappings represent equally
accurate models for the expected rho length of quadratic polynomials. This is the case
because both classes of mappings present the same asymptotic average coalescence, defined
as the variance of its distribution of indegrees under uniform distribution; see [1, 14]. For
example, the coalescence λ of a {0, k}-mapping f on n = kr nodes satisfies

λ =
∑
y∈[n]

|f (−1)(y)|2

n
− 1 = r

k2

n
− 1 = k − 1.

It is curious that the knowledge of the indegree distribution of these polynomials does
not represent an improvement on the heuristic. Thus asymptotic estimates for a different
parameter, such as B or T, represents an interesting problem: it could provide a significant
deviation between polynomials over finite fields and their heuristic models, or reinforce the
similarities between these classes. We exhibit our numerical results on the behavior of T and
B over different classes of polynomials over finite fields and investigate different classes of
mappings as heuristic models for the behavior of T and B over these classes of polynomials.

Preliminaries and notation. For f a mapping, let Z = Z(f) be the set of cyclic nodes of
f and let Z = |Z|. To avoid confusion, we index probabilities and expected values by the set
of allowed indegrees of the class of mappings in question: N in the unrestricted case [18] or
{0, k} in our case. For example, the expected value of T over all mappings on n nodes is
denoted by EN

n(T), whereas E{0,k}n (T) denotes the expectation of T over {0, k}-mappings
on n nodes. In this work we consider {0, k}-mappings on n = kr elements, where r denotes
the size of their range and k = k(r) is a sequence of integers satisfying k ≥ 2 for all r ≥ 1.
Although n(r) and k(r) are functions of r, we omit this dependence on our notation. We
emphasize that all asymptotic calculations and results in this work are taken as r approaches
infinity, unless said otherwise. We assume throughout the paper that, for some 0 < α < 1,
k = o(n1−α) as r approaches infinity, or equivalently, logn = O(log(nλ )) where λ = k − 1.

I Remark. Due to the lack of space all proofs are given in https://arxiv.org/abs/1701.
09148

2 Expected Value of T and B

In this section we obtain asymptotic estimates for E{0,k}n (T) and E{0,k}n (B) following a similar
strategy as in [18] with some differences that we describe next. It is known that the restriction
of a random uniform mapping to its cyclic nodes represents a random uniform permutation.
Therefore, if we let Mm be the expected order of a uniform random permutation of Sm, then
the expected value of T over all {0, k}-mappings can be written as

E{0,k}n (T) =
n∑

m=1
P{0,k}n (Z = m)Mm. (1)

The author in [18] combines an exact result for PN
n(Z = m) with Lemma 2 below to estimate

the expected value of T asymptotically in the case of unrestricted mappings. In our case we
use Lemma 1 for the distribution of Z over {0, k}-mappings.

AofA 2018
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I Lemma 1 (Equation (3.17) of [17]). Let n = kr, λ = k − 1 ≥ 1 and 1 ≤ m ≤ r. A random
uniform {0, k}-mapping on n nodes has exactly m cyclic nodes with probability

P{0,k}n (Z = m) = λkm−1
(
r − 1
m− 1

)(
n− 1
m

)−1
= λmkm−1Γ(r)Γ(n−m)

Γ(r −m+ 1)Γ(n) .

I Lemma 2 ([19]). Let Mm be the expected order of a random permutation of Sm. Let
β0 =

√
8I, where

I =
∫ ∞

0
log log

(
e

1− e−t

)
dt. (2)

Then, as m approaches infinity,

logMm = β0

√
m

logm +O

(√
m log logm

logm

)
.

It is clear from Equation (1) that, if m∗ is the integer that maximizes P{0,k}n (Z = m)Mm

for 1 ≤ m ≤ n and m0 is an integer in (1, n), then

P{0,k}n (Z = m0)Mm0 ≤ E{0,k}n (T) ≤ nP{0,k}n (Z = m∗)Mm∗ . (3)

Let n ≥ 1 and ε ∈ (−1, 1). Let βε = β0 + ε. We define the following real function that
provides a tight upper or lower bound for the summand in Equation (1), according to the
value of ε:

φn,ε(x) = λxkx−1 Γ(r)
Γ(r − x+ 1)

Γ(n− x)
Γ(n) exp

(
βε

√
x

log x

)
. (4)

I Proposition 3. Let n = kr, λ = k − 1 ≥ 1 and ε ∈ (−1, 1). If, for some 0 < α < 1,
k = o(n1−α) as r approaches infinity, then there exists a constant c > 0 such that, for
sufficiently large n, the function x 7−→ φn,ε(x) assumes a unique maximum x∗ for x ∈ (c, r).
Moreover, if kε = 3

√
35β4

ε/8, then

log φn,ε(x∗) = kε
(nλ )1/3

log2/3(nλ )
(1 + o(1)).

The calculation of the maximum value that φn,ε(x) assumes for x ∈ (1, n) is a main
ingredient in the proof of the asymptotic estimate on E{0,k}n (T). It allows us to obtain an
upper bound for the rightmost term in Equation (3). The maximum x∗ also allows us to
select an integer m0 that provides a lower bound in Equation (3) that is good enough for
our purposes.

I Theorem 4. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0 < α < 1, k = o(n1−α) as r approaches infinity. Let E{0,k}n (T) be the expected value of T
over the class of mappings on n nodes with indegrees restricted to the set {0, k}. Then,

logE{0,k}n (T) = k0
(nλ )1/3

log2/3(nλ )
(1 + o(1)),

as r approaches infinity, where λ = k − 1, k0 = 3
2 (3I)2/3 and I is given in Equation (2). In

particular, the estimate above holds if k ≥ 2 is a fixed integer.
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We obtain asymptotic estimates for the expectation of B over {0, k}-mappings using the
same arguments.

I Theorem 5. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0 < α < 1, k = o(n1−α) as r approaches infinity. For r ≥ 1, let E{0,k}n (B) be the expected
value of B over the class of mappings on n nodes with indegrees restricted to the set {0, k}.
Then, as r approaches infinity,

logE{0,k}n (B) = 3
2

(n
λ

)1/3
(1 + o(1)),

where λ = k − 1. In particular, the estimate above holds if k ≥ 2 is a fixed integer.

3 Lognormality

Let

µ∗n = 1
2 log2(

√
n), σ∗n = 1√

3
log3/2(

√
n)

and

µn = 1
2 log2

(√
n/λ

)
, σn = 1√

3
log3/2

(√
n/λ

)
.

Harris proved that the sequence of random variables defined over the space of random
mappings on n nodes as Xn = (log T − µ∗n)/σ∗n, n ≥ 1, converges weakly to a standard
normal distribution [12]. In this section we prove an analogue of this result for {0, k}-
mappings:

lim
n→∞

P{0,k}n

(
log T− µn

σn
≤ x

)
= 1√

2π

∫ x

−∞
e−t

2/2dt. (5)

The analogous result for the parameter B is proved from Equation (5) by showing that the
random variable χn = log B− log T, when properly normalized, converges in probability to
zero.

We write the probability in Equation (5) using the law of total probability, where we
partition the space of {0, k}-mappings as follows. It is possible to prove that, for k ≥ 2,
r ≥ 1 fixed integers and n = kr, there exists a positive real number m# such that the
sequence zm = P{0,k}n (Z = m), m ≥ 1, is increasing for m < m# and decreasing for m > m#.
Furthermore, m# =

√
n/λ+O(1). Let εn = log−3/4(

√
n/λ), ξ1 = m1−εn

# and ξ2 = m1+εn

# .
We partition the interval [1, r] into three subintervals:

I1 = {m : 1 ≤ m < ξ1},
I2 = {m : ξ1 ≤ m ≤ ξ2},
I3 = {m : ξ2 < m ≤ r}.

For k ≥ 2 fixed, it is proved in [1] that E{0,k}n (Z) ∼
√
πn/2λ, hence the mode m# has

the same order of growth as the expectation of Z.

I Lemma 6. Let εn = log−3/4(
√
n/λ). If ξ1 = m1−εn

# and ξ2 = m1+εn

# , then P{0,k}n (Z <

ξ1) = o(1), P{0,k}n (Z > ξ2) = o(1) and P{0,k}n (ξ1 ≤ Z ≤ ξ2) ∼ 1.

It follows from the law of total probability that

P{0,k}n (log T ≤ µn + xσn) = ζ1 + ζ2 + ζ3, (6)

AofA 2018
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where

ζj =
∑
m∈Ij

P{0,k}n (Z = m)P{0,k}n (log T ≤ µn + xσn|Z = m). (7)

Lemma 6 clearly implies that ζ1 = o(1) and ζ3 = o(1). We prove next that ζ2 provides the
asymptotic main term in (6). We use the special case θ = 1 of Theorem 1.2 of [4], that
represents a stronger version of Erdös and Turán’s famous result [8]. We denote by Qm the
uniform probability measure on the symmetric group Sm and by φ(x) = 1

2π
∫ x
−∞ e−t

2/2dt the
standard normal distribution.
I Theorem 7 ([4]). Let αm = 1

2 log2 m+ logm log logm and βm = 1√
3 log3/2 m. Then there

exists a constant K > 0 such that, for all real numbers x and all integers m > 1,∣∣∣∣Qm (log T ≤ αm + xβm)− φ(x)
∣∣∣∣ ≤ K√

logm
.

I Lemma 8. For n = kr and m ∈ I2, let

δx(m,n) = P{0,k}n (log T ≤ µn + xσn|Z = m)− φ(x),

and let ∆x(n) = max{|δx(m,n)|,m ∈ I2}. Then, for any fixed x ∈ R, ∆x(n) = o(1)
as r approaches infinity. Moreover, if |x| ≤ c

√
logn, for some positive constant c, then

∆x(n) ≤ K4 log−1/4(
√
n/λ), for some K4 > 0.

Sketch. Let αm and βm be as in Theorem 7 and define y = y(n,m, x) to be the real number
for which µn + xσn = αm + yβm. Then, for any m ∈ I2,

|δx(m,n)| ≤
∣∣∣∣Qm

(
log T− αm

βm
≤ y
)
− φ(y)

∣∣∣∣+ |φ(y)− φ(x)| . (8)

We note that Theorem 7 implies that, for some constant K1 > 0,∣∣∣∣Qm

(
log T− αm

βm
≤ y
)
− φ(y)

∣∣∣∣ ≤ K1√
logm

. (9)

Using Equations (8) and (9) and |φ(y)− φ(x)| ≤ |y − x| we obtain

|δx(m,n)| ≤ K1√
logm

+ |y − x|. (10)

We note that the definition of y implies

y − x = (µn − αm) + x(σn − βm)
βm

,

where σn − βm = O(βmεn) and αm − µn = O
(
βm log−1/4

(√
n/λ

))
. Hence,

y − x = O
(

log−1/4
(√

n/λ
))

+O(|x|εn). (11)

The result follows from Equations (10) and (11) and m > ξ1 = O
(
log
√

n
λ

)
. J

With Lemma 8 in hand, it is straight-forward to deduce the following result.
I Theorem 9. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0 < α < 1, k = o(n1−α) as r approaches infinity. Let µn = 1

2 log2(
√

n
λ ), σ2

n = 1
3 log3(

√
n
λ ).

Let T(f) denote the least common multiple of the length of the cycles of a mapping f . Then,
for any real number x, as r approaches infinity,

P{0,k}n (log T ≤ µn + xσn) = φ(x) + ox(1),

where ox(·) indicates that the error term depends on x. Moreover, if c is a positive constant,
then the convergence is uniform for |x| ≤ c

√
logn.
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Comment. We observe that Z and log T are concentrated in the interval [ξ1, ξ2]. However
this interval does not contain the terms that contribute most to the expected value of T.
Most of the contribution for the sum in (1) is from mappings with Θ

(
(n/λ)2/3

log1/3(n/λ)

)
cyclic

vertices.

In order to prove asymptotic lognormality for the parameter B, we use Theorem 10
below, where it is proved that the normalized difference between log B and log T converges
in probability to zero. We consider this result of independent interest. Lognormality for the
parameter B follows at once from Slutsky’s Theorem; see Theorem 15 in Section 6.2 of [16].

I Theorem 10. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some 0 <
α < 1, k = o(n1−α) as r approaches infinity. For r ≥ 1, let χn be the random variable defined
over {0, k}-mappings on n nodes as χn = (log B − log T)/σn, where σn = 1√

3 log3/2(
√

n
λ ).

Then the sequence defined by χn converges in probability to zero. In other words, for all ε > 0
we have

P{0,k}n (χn > ε) = o(1),

as r approaches infinity.

I Theorem 11. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0 < α < 1, k = o(n1−α) as r approaches infinity. Let µn = 1

2 log2(
√

n
λ ), σ2

n = 1
3 log3(

√
n
λ ).

Let B(f) denote the product of the length of the cycles of a mapping f . Then, for any real
number x,

P{0,k}n (log B ≤ µn + xσn) = φ(x) + ox(1),

as r approaches infinity. Moreover, if c is a positive constant, then the convergence is uniform
for |x| ≤ c

√
logn.

4 Heuristics

In the analysis of his factorization method [15], Pollard conjectured that quadratic polynomials
modulo large primes behave like random mappings with respect to their average rho length.
However, it should be noted that the indegree distribution of a class of mappings impacts
the asymptotic distribution of a number of parameters [1]; the indegree distribution of a
mapping f on n nodes is defined as the sequence nj = #{y ∈ [n] : |f−1(y)| = j}, j ≥ 0. Since
a quadratic polynomial modulo an odd prime p has a very particular indegree distribution,
namely (n0, n1, n2) = (p−1

2 , 1, p−1
2 ), one might wonder if {0, 2}-mappings do not represent

a better heuristic model. Furthermore, there are classes of polynomials from which one
might not expect the typical random mapping behavior, and it is possible to use different
classes of mappings as heuristic models. This is the case for the polynomials of the form
f(x) = xd + a ∈ Fp[x], where, as usual, Fp denotes the finite field on p elements. Their
indegree distribution satisfies

n0 =
(

1− 1
k

)
(p− 1), n1 = 1, nk = 1

k
(p− 1). (12)

where k = gcd(p − 1, d). We refer to the polynomials with indegree distribution (12) as
{0, k}-polynomials. As a particular case, we note that a polynomial of the form xk+a ∈ Fp[x],
p ≡ 1 (mod k), is a {0, k}-polynomial.
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Algorithm 1: Generating a random uniform {0, k}-mapping.
Input: Integers r ≥ 1 and k ≥ 2.
Output: {0, k}-mapping f on n = kr nodes.

1 Pick a permutation σ = σ1 · · ·σn ∈ Sn uniformly at random.
2 Pick a permutation τ = τ1 · · · τn ∈ Sn uniformly at random.
3 for i = 0, . . . , r − 1 do
4 for j = 1, . . . , k do
5 f(τ [ik + j]) = σ[i+ 1] // τ [`] denotes τ`, same for σ[`].
6 end
7 end
8 return f .

In this section we consider classes of {0, k}-mappings, treated in the previous sections, as
heuristic models for {0, k}-polynomials. Our focus lies on polynomials of a certain degree
modulo large prime numbers, hence from this point on we restrict our attention to {0, k}-
mappings with k ≥ 2 fixed, even though the results of the previous sections hold in a more
general setting. The asymptotic results in this section are taken as n approaches infinity.

The interest in the heuristic approximation mentioned above can be attributed at least in
part to the wealth of asymptotic results on the statistics of mappings with indegree restrictions,
when compared to the literature on the number theoretical setting; see for example [1, 7].
The main term of several asymptotic results on the statistics of a class F of mappings with
restrictions on the indegrees depends on its asymptotic average coalescence λ = λ(F), defined
as in Section 1. This is the case for the rho length of a random node, a parameter involved
in the analysis of Pollard factorization algorithm. Since λ = 1 for unrestricted mappings
and {0, 2}-mappings, these two classes represent equally accurate models for the average
rho length of quadratic polynomials [14]. It is curious that the knowledge of the indegree
distribution of these polynomials does not represent an improvement on the heuristic in this
case. It is worth noting that our asymptotic results on different classes of {0, k}-mappings are
determined by their coalescence λ as well; compare Theorems 4 and 5 with Theorems 1.3 and
1.4 of [18]. Compare µn and µ∗m with σn and σ∗m as well, under the light of the fact that the
expected number of cyclic nodes over all unrestricted or {0, k}-mappings are asymptotically
equivalent to

√
πn/2 and

√
πn/2λ, respectively. We note that if log k = o(logn), then

µn ∼ µ∗n and σn ∼ σ∗n as r approaches infinity.

4.1 Sampling {0, k}-Mappings

In our experiments, for each prime number p ≡ 1 (mod k) considered, we select p {0, k}-
mappings on n = p − 1 nodes uniformly at random according to the following algorithm.
We determine the range of each random mapping f by selecting the first r = n/k elements
of a random uniform permutation σ = σ1 · · ·σn ∈ Sn. The image f(x) of every element
x ∈ [n] is defined by dividing a random uniform permutation τ = τ1 · · · τn ∈ Sn in blocks of
k elements. We make this process precise in Algorithm 1. Assuming that σ, τ are random
uniform permutations, it is possible to prove that Algorithm 1 returns a random uniform
{0, k}-mapping on n nodes.

It should be stressed that our experimental results are based on sampling, so a number
of problems can occur in the numerical estimate of the expectation of a random variable.
Typically one must sample a very large number of {0, k}-mappings until a mapping with
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a substantial value of T or B is revealed (Theorems 12 and 13). To simplify notation, let
~S = f1, f2, f3, . . . denote a sequence of independent random samples chosen uniformly at
random from the class of {0, k}-mappings on n nodes.

I Theorem 12. Let ξ = ξ(n) =
(
E{0,k}n (T)

)a
, where a = a(n), and define N = min{t :

T(ft) ≥ ξ}. If a−1 log−1/3 n = o(1), then for sufficiently large n, we have

E{0,k}n (N) > exp
(
λn1/3

3 log6 n

)
,

and

P{0,k}n

(
N ≤ exp

(
λn1/3

4 log6 n

))
≤ exp

(
− λn1/3

12 log6 n

)
.

I Theorem 13. Let ξ̃ =
(
E{0,k}n (B)

)b
, where b = b(n), and let Ñ = Ñ(n, ~S, b) = min{t :

B(ft) ≥ ξ̃}. If b−1 log−2 n = o(1), then there exist positive constants c1, c2 such that, for
sufficiently large n,

E{0,k}n (Ñ) > exp
(
c1(nλ )1/3

log3(nλ )

)
,

and

P{0,k}n

(
Ñ ≤ exp

(
c2(nλ )1/3

log3(nλ )

))
≤ exp

(
−c2(nλ )1/3

log3(nλ )

)
.

The proof of Theorem 12 relies on tail estimates for the number Z of cyclic vertices, and
bounds on the maximum order that a permutation can have. The proof of Theorem 13 is
based on tail estimates for the number C of cycles, together with the inequality B ≤ ( Z

C )C.

4.2 Numerical Results
We exhibit in Table 1 our numerical results on the behavior of T and B over different classes
of polynomials over finite fields and different classes of mappings. For each value of k, we
consider the first 100 primes greater than 103 of the form indicated in Table 1. For each such
prime, we select, according to Algorithm 1, p mappings on n = p− 1 nodes; we also consider
all p polynomials of the form indicated in Table 1. We compute the exact value of T for each
function and compute the corresponding average values T(p). We compute the ratio RT(p)
between log T(p) and the quantity in Theorem 4. In Table 1 we exhibit the average value
RT of RT(p) over all primes considered; we stress the dependence of this calculation on the
coalescence λ of the corresponding class by adopting the notation RT(λ). The same is done
for the parameter B.

It is not surprising to have the ratio RT distant from 1 even in the case of {0, k}-mappings,
where we have an asymptotic result proved on the logarithm of the expectation of T. It is
proved in Theorem 12 that most of the contribution to E{0,k}n (T) comes from a relatively
small set of exceptional maps. Unless the number of samples is enormous, as stated in the
first part of the theorem, none of these exceptional maps is likely to be sampled, so our
empirical estimate for E{0,k}n (T) is likely to be poor. The ratios RT appear to decrease as λ
grows large, but this agrees, in a way, with the fact that the upper bound in Theorem 12
decreases as k grows large.
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Table 1 Experimental results on mappings and polynomials according to their coalescence.

Class of functions Asymp. Coalescence RT(λ) RB(λ)
Unrestricted mappings 1 0.8090 0.7247
{0, 2}-mappings 1 0.7929 0.7097
x2 + a ∈ Fp[x] 1 0.8031 2.4183

x4 + a ∈ Fp[x], p ≡ 3 (mod 4) 1 0.8033 3.9237
{0, 3}-mappings 2 0.7700 0.7043

x3 + a ∈ Fp[x], p ≡ 1 (mod 3) 2 0.7631 2.5067
{0, 4}-mappings 3 0.7436 0.7007

x4 + a ∈ Fp[x], p ≡ 1 (mod 4) 3 0.7391 2.6055
{0, 5}-mappings 4 0.7465 0.7041

x5 + a ∈ Fp[x], p ≡ 1 (mod 5) 4 0.7435 3.3597
{0, 6}-mappings 5 0.6986 0.6789

x6 + a ∈ Fp[x], p ≡ 1 (mod 6) 5 0.6989 1.3522

Regardless of the sampling problem explained in Section 4.1, it is remarkable that the
ratio between any two entries in the table above for RT with the same value of λ lies in the
interval (0.97, 1.03). This suggests that the behavior of a typical {0, k}-polynomial can be
approximated by the behavior of a typical {0, k}-mapping. However, one must be careful
when using the asymptotic estimate in Theorem 4 as a reference, due to the results in
Theorem 12. The numerical results for the parameter B, on the other hand, represent a
different scenario, where the ratio between numerical results for classes with the same value
of asymptotic coalescence were found to be as high as 4.8835. It is interesting but not clear
why the heuristic performs so poorly in the approximation of the statistics of polynomials by
mappings in the case of the parameter B.
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Abstract
For a given graph G, modularity gives a score to each vertex partition, with higher values taken
to indicate that the partition better captures community structure in G. The modularity q∗(G)
(where 0 ≤ q∗(G) ≤ 1) of the graph G is defined to be the maximum over all vertex partitions
of the modularity value. Given the prominence of modularity in community detection, it is an
important graph parameter to understand mathematically.

For the Erdős-Rényi random graph Gn,p with n vertices and edge-probability p, the likely
modularity has three distinct phases. For np ≤ 1 + o(1) the modularity is 1 + o(1) with high
probability (whp), and for np → ∞ the modularity is o(1) whp. Between these regions the
modularity is non-trivial: for constants 1 < c0 ≤ c1 there exists δ > 0 such that when c0 ≤ np ≤ c1
we have δ < q∗(G) < 1 − δ whp. For this critical region, we show that whp q∗(Gn,p) has order
(np)−1/2, in accord with a conjecture by Reichardt and Bornholdt in 2006 (and disproving another
conjecture from the physics literature).
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1 Introduction

We start this section with some background and definitions, and then present our results on
the modularity of the random graph Gn,p.After that, we sketch previous work on modularity,
and then give a plan of the rest of the paper, which essentially consists of the proofs of the
three phases. The remaining proofs will be given in the extended version of this paper.

1.1 Definitions
The large and increasing quantities of network data available in many fields has led to great
interest in techniques to discover network structure. We want to be able to identify if a
network can be decomposed into communities or highly clustered components.

Modularity was introduced by Newman and Girvan in 2004 [27]. It gives a measure of
how well a graph can be divided into communities, and now forms the backbone of the most
popular algorithms used to cluster real data [18]. Here a ‘community’ is a collection of nodes
which are more densely interconnected than one would expect – see the discussion following
the definition of modularity below. There are many applications, including protein discovery,
identifying connections between websites, and mapping the onset of schizophrenia on neuron
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31:2 Modularity of Erdős-Rényi Random Graphs

clusters in the brain [2]. Its widespread use and empirical success in finding communities in
networks makes modularity an important function to understand mathematically. See [11]
and [28] for surveys on the use of modularity for community detection in networks.

Given a graph G, modularity gives a score to each vertex partition: the modularity q∗(G)
(sometimes called the ‘maximum modularity’) of G is defined to be the maximum of these
scores over all vertex partitions. For a set A of vertices, let e(A) be the number of edges
within A, and let the volume vol(A) be the sum over the vertices v in A of the degree dv.

I Definition 1.1 (Newman & Girvan [27], see also Newman [26]). Let G be a graph with
m ≥ 1 edges. For a vertex partition A of G, the modularity of A on G is

qA(G) = 1
2m

∑
A∈A

∑
u,v∈A

(
1uv∈E −

dudv

2m

)
= 1
m

∑
A∈A

e(A)− 1
4m2

∑
A∈A

vol(A)2;

and the modularity of G is q∗(G) = maxA(G), where the maximum is over all partitions A
of the vertices of G.

Isolated vertices are irrelevant. We need to give empty graphs (graphs with no edges)
some modularity value. Conventionally we set q∗(G) = 1 for each empty graph G [5] (though
the value will not be important). The second equation for qA(G) expresses modularity as
the difference of two terms, the edge contribution or coverage qE

A(G) = 1
m

∑
A e(A), and the

degree tax qD
A (G) = 1

4m2

∑
A vol(A)2. Since qE

A(G) ≤ 1 and qD
A (G) > 0, we have qA(G) < 1

for any non-empty graph G. Also, the trivial partition A0 with all vertices in one part has
qE
A0

(G) = qD
A0

(G) = 1, so qA0(G) = 0. Thus we have

0 ≤ q∗(G) ≤ 1.

Suppose that we pick uniformly at random a multigraph with degree sequence (d1, . . . , dn)
where

∑
v dv = 2m. Then the expected number of edges between vertices u and v is

dudv/(2m−1). This is the original rationale for the definition: whilst rewarding the partition
for capturing edges within the parts, we should penalise by (approximately) the expected
number of edges.

A differentiation between graphs which are truly modular and those which are not can ...
only be made if we gain an understanding of the intrinsic modularity of random graphs. –
Reichardt and Bornholdt [30]. In this paper we investigate the likely value of the modularity
of an Erdős-Rényi random graph. Let n be a positive integer. Given 0 ≤ p ≤ 1, the random
graph Gn,p has vertex set [n] := {1, . . . , n} and the

(
n
2
)
possible edges appear independently

with probability p. Given an integer m with 0 ≤ m ≤
(

n
2
)
, the random graph Gn,m is sampled

uniformly from the m-edge graphs on vertex set [n]. These two random graphs are closely
related when m ≈

(
n
2
)
p : we shall investigate only q∗(Gn,p) here, but in the extended version

of the paper we shall also deduce corresponding results for q∗(Gn,m).
For a sequence of events An we say that An holds with high probability (whp) if P(An)→ 1

as n→∞. For a sequence of random variables Xn and a real number a, we write Xn
p→ a if

Xn converges in probability to a as n→∞ (that is, if for each ε > 0 we have |Xn − a| < ε

whp).

1.2 Results on the modularity of the random graph Gn,p

Our first theorem, the Three Phases Theorem, gives the big picture. The three phases
correspond to when (a) the expected vertex degree (essentially np) is at most about 1, (b)
bigger than 1 but bounded, or (c) tending to infinity.
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I Theorem 1.2. Let p = p(n) satisfy 0 ≤ p ≤ 1.
(a) If n2p→∞ and np ≤ 1 + o(1) then q∗(Gn,p) p→ 1.
(b) Given constants 1 < c0 ≤ c1, there exists δ = δ(c0, c1) > 0 such that if c0 ≤ np ≤ c1 for

n sufficiently large, then whp δ < q∗(Gn,p) < 1− δ.
(c) If np→∞ then q∗(Gn,p) p→ 0.

We are able to confirm the (np)−1/2 growth rate conjectured to hold for the critical region
in [30]. The edge probabilities p correspond to parts (b) or (c) of Theorem 1.2.

I Theorem 1.3. There exists b such that for all 0 < p = p(n) ≤ 1 we have q∗(Gn,p) < b√
np

whp. Also, given 0 < ε < 1, there exists a = a(ε) > 0 such that, if p = p(n) satisfies np ≥ 1
and p ≤ 1− ε for n sufficiently large, then q∗(Gn,p) > a√

np whp.

Observe that the upper bound here on q∗(Gn,p) implies part (c) of Theorem 1.2. As an
immediate corollary of Theorem 1.3 we have:

I Corollary 1.4. There exists 0 < a < b such that, if 1/n ≤ p = p(n) ≤ 0.99 then

a
√
np

< q∗(Gn,p) < b
√
np

whp.

This result confirms the Θ((np)−1/2) growth rate predicted to hold in this range by Reichardt
and Bornholdt [30]: further details of their prediction are given in Section 1.3.

In this extended abstract we give a full proof of the Three Phases Theorem, Theorem 1.2.
For Theorem 1.3 we give a proof of the upper bound. We also give a sketch proof of the
lower bound, based on an algorithm we call Swap, which whp outputs a bipartition achieving
the required modularity.

A higher modularity score is taken to indicate a better community division. Thus to
determine whether a clustering A in a graph G shows significant community structure we
should compare qA(G) to the likely (maximum) modularity for an appropriate null model,
that is, to the likely value of q∗(G̃) for null model G̃. It is an interesting question which null
model may be most appropriate in a given situation. For example, real networks have been
shown to exhibit power law degree behaviour and so null models which can mimic this have
been suggested; for example the Chung-Lu model [1] and random hyperbolic graphs [17].
However, a natural minimum requirement is not to consider a community division of a real
network as statistically significant unless it has higher modularity than the Erdős-Rényi
random graph of the same edge density.

1.3 Previous work on Modularity
The vast majority of papers referencing modularity are papers in which real data, clustered
using modularity based algorithms, are analysed. Alongside its use in community detection,
many interesting properties of modularity have been documented. A basic observation is
that, given a graph G without isolated vertices, in each optimal partition, for each part the
corresponding induced subgraph of G must be connected.

Properties and modularity of graph classes

The idea of a resolution limit was introduced by Fortunato and Barthélemy [12] in 2007: in
particular, if a connected component C in an m-edge graph has strictly fewer than

√
2m

edges, then every optimal partition will cluster the vertices of C together. This is so even
if the connected component C consists of two large cliques joined by a single edge. This
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31:4 Modularity of Erdős-Rényi Random Graphs

property highlights the sensitivity of modularity to noise in the network: if that edge between
the cliques, perhaps a mistake in the data, had not been there, then the cliques would be in
separate parts in every optimal partition.

The complexity is known. Brandes et al. showed in 2007 that finding the (maximum)
modularity of a graph is NP-hard [4]. The reduction required some properties of optimal
partitions; for example it was shown that a vertex of degree 1 will be placed in the same part
as its neighbour in every optimal partition. Indeed, every part in every optimal partition has
size at least 2 or is an isolated vertex, see Lemma 1.6.5 in [31]. The paper [4] also began the
rigorous study of the modularity of classes of graphs, in particular of cycles and complete
graphs. Later Bagrow [3] and Montgolfier et al. [9] proved that some classes of trees have
high modularity, and this was extended in [21] to all trees with maximum degree o(n), and
indeed to all graphs where the product of treewidth and maximum degree grows more slowly
than the number of edges. There is a growing literature concerning the modularity behaviour
of different classes of graphs, see for example [3, 9, 20,21,29,32].

Franke and Wolfe in [13] look at a very different topic, namely the distribution of the
modularity of a random partition of a graph or random graph, rather than the modularity
of the graph, which is the maximum modularity of a partition. The paper covers some
random weighted models where the probability of an edge is proportional to the product of
the weights of the end-vertices, including the case of the Erdős-Rényi random graph Gn,p for
np→∞. They show that the modularity of a random partition is asymptotically normally
distributed. Their results do not imply anything about the (maximum) modularity q∗(Gn,p);
see also the discussion in the conclusion of [21].

Statistical Physics predictions

In 2004 Guimera et al. [15] observed through simulations that the modularity of random
graphs can be surprisingly high. In [15] they conjectured that, for each (large) constant
c > 1, if p = c/n then whp q∗(Gn,p) ≈ c−2/3. In 2006 Reichardt and Bornholdt [30] made a
different conjecture for the modularity in this range. They assumed that an optimal partition
will have parts of equal size, then approximated the number of edges between parts using
results from [16], where the authors give spin glass predictions for the minimum number
of crossing edges in an equipartition of a random graph. For p = c/n their prediction was
q∗(Gn,c/n) ≈ 0.97 c−1/2(1+o(1)) whp and we confirm this growth rate. Indeed they predicted
q∗(Gn,p) ≈ 0.97

√
(1− p)/np which is Θ((np)−1/2) for 1/n ≤ p ≤ 0.99. Hence Corollary 1.4

proves that for a large range of p the prediction of Reichardt and Bornholdt [30] is correct
up to constant factors (and refutes that of of Guimera et al.).

1.4 Plan of the paper
The three phases theorem Theorem 1.2 gave an overview of the behaviour of the modularity
q∗(Gn,p), with the three parts (a), (b) and (c) corresponding to increasing edge-probability p,
starting with the sparse case. Theorem 1.3, gave more detailed results for the critical region
and confirmed the (np)−1/2 growth rate conjectured in the physics community.

Our proofs are organised by starting with the sparse case. In Section 2 we prove
Theorem 1.2 part (a), by showing that the partition C into connected components satisfies
qC(Gn,p) p→ 1 in the sparse case. We prove Theorem 1.2 part (b) in Section 3: the lower
bound follows quickly from counting isolated edges in Gn,p, and to prove the upper bound
we use expansion properties of the giant component. Section 4 concerns the a(np)−1/2 lower
bound on q∗(Gn,p) in Theorem 1.3, and we a give a sketch of the proof. In Section 5, we use
a robustness result and spectral methods to prove the upper bound b(np)−1/2 on q∗(Gn,p) in
Theorem 1.3.
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2 The sparse phase: proof of Theorem 1.2 (a)

We can prove that sufficiently sparse random graphs whp have modularity near 1 without
developing any extra theory, and we do so here. Lemma 2.2 gives part (a) of the three phases
result Theorem 1.2. It is convenient to record first one standard preliminary result on degree
tax.

I Lemma 2.1. Let the graph G have m ≥ 1 edges, and let A be a k-part vertex partition.
If A has k parts then qD

A(G) ≥ 1/k; and if x, y are respectively the largest, second largest
volume of a part, then qD

A (G) ≤ x/2m and qD
A (G) ≤ (x/2m)2 + y/2m.

Proof. All the bounds follow from the convexity of f(t) = t2. Let xi be the volume of the
ith part in A. For the lower bound, observe that x1, . . . , xk ≥ 0 and

∑k
i=1 xi = 2m together

imply that
∑k

i=1 x
2
i ≥ k (2m/k)2 = 4m2/k ; and thus qD

A (G) =
∑

i x
2
i /(2m)2 ≥ 1/k.

For the upper bounds, observe that 0 ≤ x1, . . . , xk ≤ x and
∑k

i=1 xi = 2m together
imply that

∑k
i=1 x

2
i ≤ (2m/x)x2 = 2mx; and so qD

A (G) ≤ x/2m. Similarly, supposing that
xk = x and xi ≤ y for i = 1, . . . , k − 1, we have

∑k−1
i=1 x

2
i ≤ (2m − x)y ≤ 2my; and so

qD
A (G) ≤ (x2 + 2my)/(2m)2 = (x/2m)2 + y/2m. J

I Lemma 2.2. Let 0 < ε ≤ 1/4, and let p = p(n) satisfy n2p → ∞ and np ≤ 1 + ε for n
sufficiently large. Then q∗(Gn,p) ≥ qC(Gn,p) > 1− (4ε)2 whp.

Proof. Let m = e(Gn,p), and let X be the maximum number of edges in a connected
component of Gn,p. Note that for the connected components partition C, the edge contribution
is 1, and so by the first upper bound on the degree tax in Lemma 2.1, we have qC(Gn,p) ≥ 1−X

m .
We shall see that when np ≤ 1 we have X/m = o(1) whp, and so qC(Gn,p) = 1− o(1) whp.
To prove this we break into three ranges of p. The final range, when 1 < np ≤ 1 + ε will
require a little more care. Observe that since n2p→∞ we have m ∼ n2p/2 whp.

Range 1: n2p→∞ and np ≤ n−3/4. Whp Gn,p consists of disjoint edges. This follows
by the first moment method, since the expected number of paths on three vertices is Θ(n3p2).
Hence whp X/m = 1/m = o(1).

Range 2: n−3/4 ≤ np ≤ 1/2. Whp all components are trees or unicyclic and have
O(logn) vertices. Hence whp X = O(logn) and whp X/m = O

(
logn/n2p

)
= o(1).

Range 3: 1/2 ≤ np ≤ 1. Since np ≤ 1, whp the maximum number of edges in any
component is o(n) (see the next range). But whp m = Θ(n), and so whp X/m = o(1).

Range 4: 1 < np ≤ 1 + ε/4. Let c = 1 + ε. Let x = x(c) be the unique root in (0, 1) of
xe−x = ce−c. Then, for Gn,c/n, whp X = (1 + o(1)) (1− x2/c2)c n/2 and each component
other than the giant has O(logn) edges (see for example Theorem 2.14 of [14]). We claim
that

(1− x2/c2) c < 4ε/(1+ε). (1)

To see this, let f(t) = (1 + t)e−(1+t) − (1− t)e−(1−t) for t ≥ 0. Then f(0) = 0; and for t > 0,

f ′(t) = e−(1+t)(−(1 + t) + 1)− e−(1−t)((1− t)− 1) = te−1(et − e−t) > 0;
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31:6 Modularity of Erdős-Rényi Random Graphs

and so f(t) > 0 for all t > 0. Then f(ε) > 0, that is (1− ε)e−(1−ε) < (1 + ε)e−(1+ε), and it
follows that 1− x < ε. Hence, 1− x2/c2 < 1− (1− ε)2/(1 + ε)2. But now

(1− x2/c2) c < (1− (1−ε)2/(1+ε)2)(1+ε) =
(
(1+ε)2 − (1−ε)2)/(1+ε) = 4ε/(1+ε),

and we have proved (1). Hence, for Gn,c/n, whp X ≤ 4ε
1+ε

n
2 ; and so by monotonocity

this holds also for Gn,p (with p ≤ cn as here). Also, e(Gn,1/n) ≥ 1+ε/2
1+ε

n
2 whp, and so by

monotonocity this holds also for Gn,p. Now by the last part of Lemma 2.1, whp

qC(Gn,p) ≥ 1− (X/m)2 −O((logn)/n) ≥ 1− ( 4ε
1+ε/2 )2 −O((logn)/n) > 1− (4ε)2.

This completes the proof of the lemma. J

3 The middle phase: proof of Theorem 1.2 (b)

It is straightforward to use known results to prove Theorem 1.2 part (b). First we show that
the connected components partition C yields the lower bound. The lower bound will follow
also from the lower bound in Theorem 1.3 part (b), but that has quite a long and involved
proof, whereas the proof below is only a few lines. As we noted earlier, the upper bound in
Theorem 1.3 part (b) will give the upper bound in Theorem 1.2 part (b) for large np, but
not when np is small.

3.1 Proof of lower bound
There is a simple reason why the modularity q∗(Gn,p) is bounded away from 0 whp when
the average degree is bounded, namely that whp there is a linear number of isolated edges.
First, here is a deterministic lemma.

I Lemma 3.1. Let the graph G have m ≥ 2 edges, and i ≥ ηm isolated edges, where
0 < η ≤ 1

2 . Then qC(G) ≥ η.

Proof. Note first that if i = m then qC(G) = 1− 1/m ≥ η. Thus we may assume that i < m,
and so i ≤ m − 2. Since there are in total m − i edges in the components which are not
isolated edges,

qC(G) ≥ 1− (m− i)2

m2 − i

m2 .

Treating i as a continuous variable and differentiating, we see that the bound is an increasing
function of i for i ≤ m− 1; and so, setting i = ηm,

qC(G) ≥ 1− (1− η)2 − η/m = η + η(1− η − 1/m) ≥ η,

as required. J

Assume that 1 ≤ np ≤ c1. Let X be the number of isolated edges in Gn,p. Then

E[X] =
(
n

2

)
p(1− p)2n−4 = n · ( 1

2 + o(1))np e−2np ≥ n · ( 1
2 + o(1))c1e

−2c1 ,

since f(x) = xe−2x is decreasing for x > 1
2 . A simple calculation shows that the variance

of X is o((E[X])2): thus by Chebyshev’s inequality, whp X ≥ n · 1
3c1e

−2c1 . Similarly, whp
m = e(Gn,p) ≤ 2

3c1n; and so whp X/m ≥ 1
2e
−2c1 . Finally, Lemma 3.1 shows that whp

qC(Gn,p) ≥ η = 1
2e
−2c1 . This completes the proof of the lower bound.
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3.2 Proof of upper bound
It is convenient to spell out the upper bound in Theorem 1.2(b) as the following lemma.

I Lemma 3.2. Given constants 1 < c0 < c1, there exists ε = ε(c0, c1) > 0 such that, if
c0 ≤ np ≤ c1 for n sufficiently large, then whp q∗(Gn,p) < 1− ε.

For the proof of this lemma we use a result from [19] concerning edge expansion in the
giant component. Define a (δ, η)-cut of G = (V,E) to be a bipartition of V into V1, V2
such that both sets have at least δ|V | vertices and e(V1, V2) < η|V |. We need only the case
δ = 1/3.

Proof of Lemma 3.2. We employ double exposure. Let G′ ∼ Gn,c0/n. For each non-edge of
G′ resample with probability p′ = (p− c0/n)/(1− c0/n) to obtain G, so G ∼ Gn,p. Let A be
an optimal partition of G. Observe that whp m = e(G) < c1n, and then

1− q∗(G) = 1
2m

∑
A∈A

(
eG(A, Ā) + volG(A)2

2m

)
>

1
2c1n

∑
A∈A

(
eG′(A, Ā) + volG′(A)2

2c1n

)
.

Thus it suffices to show that whp, for each vertex partition A,

∑
A∈A

(
eG′(A, Ā) + volG′(A)2

2c1n

)
≥ 2εc1n. (2)

We will now work solely with G′, so we shall drop the subscripts. Whp G′ has a unique giant
component H, such that H does not admit a (1/3, η)-cut for a constant η = η(c0) > 0 by [19]
[Lemma 2], and such that |V (H)| ∼ (1− t0/c0)n where t0 < 1 satisfies t0e−t0 = c0e

−c0 [10].
Let F be the event that G′ has a unique giant component H, such that H does not admit a
(1/3, η)-cut, and |V (H)| ≥ 1

2 (1− t0/c0)n+ 3. Then the event F holds whp. Let W be a set
of vertices such that |W | ≥ 1

2 (1 − t0/c0)n + 3, and let FW be the event that F holds and
V (H) = W . To prove the lemma, it suffices to show that, conditioning on FW holding, the
inequality (2) holds with

ε = min{(1− t0/c0)2/36c2
1, η(1− t0/c0)/2c1}.

Let A be any vertex partition which minimises the left side of (2), and let H be the
partition of the giant component H induced by A, that is, H consists of the parts A ∈ A
with A ∩ W non-empty (since the induced subgraph on A is connected). Relabel H as
{W1, . . . ,Wh} where h ≥ 1 and |W1| ≥ . . . ≥ |Wh|. We will restrict our attention to H.
There are two cases to consider.

Case 1. Suppose |W1| ≥ |W |/3. As the subgraph induced by W1 is connected,

vol(W1) ≥ 2(|W1| − 1) ≥ (1− t0/c0)n/3;

and so∑
A∈A

vol(A)2

2c1n
≥ vol(W1)2

2c1n
≥ (1− t0/c0)2n2

18c1n
≥ 2εc1n,

which yields (2).
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Case 2. Now suppose that |Wi| < |W |/3 for all Wi ∈ H. We group the parts to make a
bipartition W = B1 ∪B2 with B1 and B2 of similar size. We may for example start with B1
and B2 empty, consider the Wi in turn, and each time add Wi to a smaller of B1 and B2.
This clearly gives ||B1| − |B2|| < |W |/3. Since there is no (1/3, η)-cut of H in G′, we have
e(B1, B2) ≥ η|W |. But each edge between B1 and B2 lies between the parts of A, and so∑

A∈A
e(A, Ā) ≥ 2e(B1, B2) ≥ 2η|W | > η(1− t0/c0)n ≥ 2εc1n,

which again yields (2), and completes the proof. J

4 The a(np)−1/2 lower bound on the modularity q∗(Gn,p)

We consider a simple algorithm Swap which, given a graph G, runs in linear time (in time
O(n + m) if G has n vertices and m edges), and yields a balanced bipartition A of the
vertices. The theorem below shows that qA(Gn,p) yields a good lower bound for q∗(Gn,p).

I Theorem 4.1. There are constants c0 and a > 0 such that (a) if p = p(n) satisfies
c0 ≤ np ≤ n− c0 for n sufficiently large, then whp qA(Gn,p) ≥ 1

5

√
1−p
np ; and (b) if p = p(n)

satisfies 1 ≤ np ≤ n− c0 for n sufficiently large, then whp qA(Gn,p) ≥ a
√

1−p
np .

The idea of the proof of Theorem 4.1 is as follows. The algorithm Swap starts with a
balanced bipartition of the vertex set into A∪B, which has modularity very near 0 whp. By
swapping some pairs (ai, bi) between A and B, whp we can increase the edge contribution
significantly, without changing the distribution of the degree tax (and without introducing
dependencies which would be hard to analyse). We give a sketch proof below but defer the
full proof to the extended paper.

Proof of Theorem 4.1 (sketch of the main ideas). Let n ≥ 6, and let V = [n]. We start
with the initial bipartition A of V into A = {j ∈ V : j is odd} and B = {j ∈ V : j is even}.
Let k = k(n) = bn/6c. Let V0 = [4k], let V1 = {4k + 1, . . . , 6k} and let V2 = {6k + 1, . . . , n}.
Note that 0 ≤ |V2| ≤ 5: we shall essentially ignore any vertices in V2. Let Ai = A ∩ Vi and
Bi = B ∩ Vi for i = 0, 1, 2. The six sets Ai, Bi are pairwise disjoint with union V . Currently
V0 is partitioned into A0 ∪ B0: the algorithm Swap ‘improves’ this partition, keeping the
other 4 sets fixed. For i = 1, . . . , 2k let ai = 2i− 1 and bi = 2i, so A0 = {a1, . . . , a2k} and
B0 = {b1, . . . , b2k}. The way that we improve the partition V0 = A0 ∪B0 is by swapping ai

and bi for certain values i.
Consider the initial bipartition A. Write G for Gn,p. It is not hard to show that whp

qA(G) is very near 0. For each i ∈ [2k] let

Ti = e(ai, B1)− e(ai, A1) + e(bi, A1)− e(bi, B1),

and note that the random variables T1, . . . , T2k are iid. Observe that if Ti > 0 and we swap
ai and bi between A0 and B0 (that is, replace A0 by (A0 \ {ai}) ∪ {bi} and similarly for
B0) then e(A,B) decreases by Ti, so the edge contribution of the partition increases. The
algorithm Swap makes all such swaps (looking only at possible edges between V0 and V1). For
each i ∈ [2k], let (a′i, b′i) = (bi, ai) if we perform a swap, and let (a′i, b′i) = (ai, bi) if not; and
let A′0 = {a′1, . . . , a′2k} and B′0 = {b′1, . . . , b′2k}. Let us call the resulting balanced bipartition
A′ = (A′, B′), where A′ = A′0 ∪A1 ∪A2 and B′ = B′0 ∪B1 ∪B2. We shall see that qA′(G) is
as required.
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A1 B1

ai biA0 B0 swap if Ti > 0

A1 B1

bi ai
A′0 B′0

Figure 1 An illustration of the constructed partition in the proof of Theorem 4.1.

Let T ∗ =
∑

i∈[2k] |Ti|. Observe that

e(A′0, A1) + e(B′0, B1)− (e(A′0, B1) + e(A1, B
′
0)) = T ∗,

so

e(A′0, B1) + e(A1, B
′
0) = 1

2e(V0, V1)− 1
2T
∗. (3)

This is where A′ will gain over A. The main technical part of the proof is to show that whp
T ∗ is large and we leave this to the full version of the paper. We will also show that the
degree tax for A′ has exactly the same distribution as for the initial bipartition A, and it
will follow that it is very close to 1/2 whp. J

5 Upper bounds on modularity

In this section we prove the upper bound on q∗(Gn,p) in Theorem 1.3, which establishes both
part (c) of Theorem 1.2, and the upper bound in part (b) of Theorem 1.2. In Section 5.1 we
give bounds on the modularity of a graph G in terms of the eigenvalues of its normalised
Laplacian L(G). In Section 5.2, these results are used, together with spectral bounds from [7]
and [8], and a ‘robustness’ result on modularity, to complete the proof.

5.1 Spectral upper bound on modularity
The main task of this subsection is prove that the modularity of a graph is bounded above
by the spectral gap of the normalised Laplacian. We begin with a definition. For an
n-vertex graph G with adjacency matrix AG and no isolated vertices define the degrees
matrix D to be the diagonal matrix diag(d1, . . . , dn) and the normalised Laplacian to be
L = I −D−1/2AGD

−1/2. Here D−1/2 is diag(d−1/2
1 , . . . , d

−1/2
n ). Denote the eigenvalues of L

by 0 = λ0 ≤ . . . ≤ λn−1(≤ 2), see [6]. We call

max
i 6=0
|1− λi| = max{|1− λ1|, |λn−1 − 1|}

the spectral gap of G, and denote it be λ̄(G). (In terms of the eigenvalues λ̃0 ≥ · · · ≥ λ̃n−1
of D−1/2AGD

−1/2, we have λ̃i = 1− λi and so λ̄(G) = maxi 6=0 |λ̃i| = max{|λ̃1|, |λ̃n−1|}.)

AofA 2018
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I Lemma 5.1. Let G be a graph with at least one edge and no isolated vertices. Then

qA(G) ≤ λ̄(G) (1− 1/k) ≤ λ̄(G)

for each k-part vertex partition A, and so q∗(G) ≤ λ̄(G).

The proof of Lemma 5.1 relies on a corollary of the Discrepancy Inequality, Theorem 5.4
of [6], which is an extension of the Expander-Mixing Lemma to non-regular graphs. Write
S̄ = V \S where V = V (G).

I Lemma 5.2 (Corollary 5.5 of [6]). Let G be a graph with at least one edge and no isolated
vertices. Then for each S ⊆ V

e(S, S̄) ≥ (1− λ̄(G)) vol(S)vol(S̄)/vol(G).

Proof of Lemma 5.1. Let G have m ≥ 1 edges. Let A = {A1, . . . , Ak} be a vertex partition
of G. Lemma 5.2 guarantees many edges between the parts of A. The edge contribution
satisfies

1− qE
A(G) = 1

2m
∑

i

e(Ai, Āi) ≥ (1− λ̄) 1
4m2

∑
i

vol(Ai)vol(Āi);

and
1

4m2

∑
i

vol(Ai)vol(Āi) = 1
4m2

∑
i

vol(Ai)(2m− vol(Ai)) = 1− qD
A (G).

Hence

1− qE
A(G) ≥ (1− λ̄)(1− qD

A (G)),

and so

qA(G) = qE
A(G)− qD

A (G) ≤ λ̄(1− qD
A (G)) ≤ λ̄(1− 1

k )

(since qD
A (G) ≥ 1/k by Lemma 2.1). This completes the proof. J

5.2 The b(np)−1/2 upper bound on the modularity q∗(Gn,p).
We are now ready to prove the spectral upper bound for q∗(Gn,p). Let us restate the upper
bound in Theorem 1.3 as a lemma.

I Lemma 5.3. There is a constant b such that for 0 < p = p(n) ≤ 1

q∗(Gn,p) ≤ b
√
np

whp.

Proof. Notice first that it suffices to show that there exist c0 and b such that for np ≥ c0
whp q∗(Gn,p) ≤ b/√np, and then replace b by max{√c0, b}.

For p� log2 n/n, the result follows directly from Lemma 5.1, and Theorem 3.6 of Chung,
Vu and Lu [7] (see also (1.2) in [8]), which shows that

λ̄(Gn,p) ≤ 4(np)−1/2(1 + o(1)) whp.

For the remainder of the proof we assume that c0/n ≤ p ≤ 0.99 for some large constant
c0 ≥ 1. We will use the spectral bound in Lemma 5.1 on a subgraph H which is obtained
from the random graph G = Gn,p by deleting a small subset of the vertices (and the incident
edges).

Following the construction in [8], let H be the induced subgraph of G obtained as follows.
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Initially set H = G \ {v ∈ V (G) : dv < (n− 1)p/2}.
While there is a vertex v ∈ V (H) with at least 100 neighbours in V (G) \ V (H), remove v
from H.

Let V ′ be the set of deleted vertices, and let E′ be the set of deleted edges (the edges
incident with vertices in V ′). Then by Theorem 1.2 of Coja-Oghlan [8], assuming that c0 is
sufficiently large, there are positive constants c1 and c2 such that whp |V ′| ≤ ne−np/c2 and
λ̄(H) ≤ c1(np)−1/2.

We want a bound on |E′|, not |V ′|. By the proof of Corollary 2.3 in [8], whp in Gn,p

we have vol(S) ≤ 2np|S|+ ne−np/1500 simultaneously for each set S of vertices. (The result
is stated with vol(S) replaced by |NG(S)|, the number of neighbours of S outside S, but
the proof actually shows the result for vol(S).) Hence, noting also that np ≥ 1 and setting
c3 = max{c2, 1500}, whp

|E′| ≤ vol(V ′) ≤ 2n2p e−np/c2 + ne−np/1500 ≤ 3n2p e−np/c3 ≤ e(G) · 9e−np/c3 ,

where the last inequality follows since whp e(G) ≥ n2p/3. By making c0 larger if necessary,
we can ensure that 9e−np/c3 ≤ (1/3)(np)−1/2, and so whp |E′|/e(G) ≤ (1/3)(np)−1/2. Now,
by Lemma 5.1, whp

q∗(G \ E′) = q∗(H) ≤ λ̄(H) ≤ c1(np)−1/2.

One of the ‘robustness’ results in the full paper says that, if H is a graph and E′ is a proper
subset of the edges, then |q∗(H)− q∗(H\E′)| ≤ 3|E′|/e(H). Using this result, whp

q∗(G) ≤ q∗(G \ E′) + 3|E′|/e(G) ≤ (c1 + 1)(np)−1/2,

and the proof is complete. J

6 Concluding remarks

We have presented results on q∗(Gn,p), focussing on the three phases as the average degree
moves past 1 and then grows to ∞, and on the Θ((np)−1/2) result. The full paper [24] (as
mentioned earlier) also contains corresponding results for q∗(Gn,m); and it contains some
other results, including concentration for both q∗(Gn,p) and q∗(Gn,m).

There is further related work in progress: concerning the modularity of very dense graphs
and random graphs, see [25]; concerning modularity and edge-sampling (it may be expensive
to test if an edge is present), see [23]; and concerning extreme values of modularity (to set
random results in context), see [22].
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Abstract
Tanglegrams are structures consisting of two binary rooted trees with the same number of leaves
and a perfect matching between the leaves of the two trees. We say that a tanglegram is planar
if it can be drawn in the plane without crossings. Using a blend of combinatorial and analytic
techniques, we determine an asymptotic formula for the number of planar tanglegrams with n

leaves on each side.
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1 Introduction and statement of results

A tanglegram is a structure consisting of two (unordered, non-plane) binary trees with the
same number of leaves and a perfect matching between the leaf sets. Tanglegrams occur
naturally in the study of cospeciation and coevolution (see [10, 12]), where the two trees
are phylogenetic trees, and also in computer science in the analysis of software projects and
clustering problems [2]. Formally, we can define a tanglegram as a triplet (T, φ, S), where T
and S are two rooted binary trees with the same number of leaves n, and φ is a bijection
between the leaf sets. The size of a tanglegram is the number of leaves in each tree. We draw
a tanglegram (T, φ, S) with one tree on top and the other on the bottom; the corresponding
bijection φ is represented by inter-tree edges (see Figure 1 for an example of a tanglegram:
edges between leaves are dashed). In such a representation, tree edges are not allowed to
cross, while inter-tree edges may have crossings.

Note that a tanglegram can usually be drawn in many different ways. Figure 2 shows two
representations of a tanglegram (the same as in Figure 1), where corresponding leaves are
indicated by identical colours and labels. Formally, we consider two tanglegrams (T, φ, S)
and (T ′, φ′, S′) isomorphic if there are (rooted tree) isomorphisms g from T to T ′ and h from
S to S′ such that φ′ = g ◦ φ ◦ h−1.
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Figure 1 A tanglegram of size 4.

1 2 3 4

A B C D

2 4 3 1

A D C B

Figure 2 Two different representations of a tanglegram.

An equivalence class of tanglegrams under this definition of isomorphism formally cor-
responds to a double coset of the symmetric group, see [1] for details. We point out that a
tanglegram isomorphism cannot interchange the top and the bottom tree.

It is desirable, both for aesthetic and practical purposes, to represent a tanglegram with a
minimum number of crossings between inter-tree edges. For instance, the left representation
in Figure 2 has one crossing, the right representation is crossing-free. The problem of
determining the minimum number of crossings for a given tanglegram is known as the
Tanglegram Layout (TL) problem [2]. This problem is, just like the crossing number problem
for graphs, NP-hard in general [5].

In this paper, we consider a related enumerative question. In [1], Billey, Konvalinka and
Matsen established a formula for the number tn of tanglegrams of size n (up to isomorphism).
The first few terms of the sequence tn are given by 1, 1, 2, 13, 114, 1509, 25595, 535753,
13305590, 382728552, . . ., see also [11, A258620]. They also obtained an asymptotic formula
for tn: for n→∞, we have

tn ∼
22n− 3

2 · nn− 5
2

√
π · en− 1

8
.

Based on the results of Billey, Konvalinka and Matsen, properties of random tanglegrams
were investigated in [9].

Here, we ask a similar question: how many tanglegrams of size n (up to isomorphism)
are there that can be drawn without crossing? In analogy to planar graphs, we will call
them planar tanglegrams. For example, the tanglegram in Figure 1 has a crossing-free
representation (as Figure 2 shows) and is thus planar. All tanglegrams of size 1, 2, or 3 are
easily seen to be planar. Among the thirteen tanglegrams of size 4, only two are not planar,
see Figure 3. Indeed, it can be shown that a tanglegram is planar if and only if all of the
subtanglegrams induced by four leaf pairs are planar, in analogy to Kuratowski’s celebrated
characterisation of planar graphs (see [3]). Here, an induced subtanglegram is a tanglegram
obtained in the following way: pick some leaf pairs, then take the smallest subtree on each
side that contains the respective leaves, and suppress internal vertices that are no longer
needed.

Our approach to the enumeration of planar tanglegrams is based on generating functions.
Our first main result characterises the generating function T (x) of planar tanglegrams by
means of a functional equation.
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Figure 3 All tanglegrams of size 4. Only the second and tenth tanglegram cannot be drawn
without crossing.

I Theorem 1. Let T (x) be the (ordinary) generating function for the number of planar
tanglegrams, counted up to isomorphism. The function T (x) is uniquely determined by the
following system of functional equations involving two auxiliary functions A(x) and H(x):

A(x) =
∞∑
r=1

1
(r + 1)2

(
2r
r

)2
xr(1−A(x))r+1, (1)

H(x) = xA(x)
2 , (2)

T (x) = H(T (x)) + x+ T (x2)
2 . (3)

It turns out that A(x) in the theorem above is the generating function for the number
of ordered pairs of triangulations of polygons without common diagonals. Moreover, the
auxiliary function H(x) that occurs in Theorem 1 has a natural combinatorial interpretation
as well: it is the generating function for irreducible planar tanglegrams (to be defined in the
following). We will see that unordered pairs of triangulations of polygons without common
diagonals and irreducible tanglegrams are in one-to-one correspondence. In order to define
irreducible planar tanglegrams, we first need the concept of proper subtanglegrams.

A binary subtree T ′ of a binary tree T is an induced binary tree consisting of a vertex
and all its successors. We call the binary subtree T ′ a proper binary subtree if it is not a leaf
and the root of T ′ is different from the root of T . A subtanglegram of a planar tanglegram
consists of a binary subtree of the top tree and a binary subtree of the bottom tree with
the same number of leaves, where each leaf of the top subtree is matched to a leaf of the
bottom subtree. Moreover, a subtanglegram is called a proper subtanglegram if the two
corresponding binary subtrees are proper. Figure 4 shows a proper subtanglegram of a planar
tanglegram. An irreducible planar tanglegram is a planar tanglegram which does not contain
any proper subtanglegrams and which has more than one leaf in each tree. For example, in
Figure 3, the first, third, fifth, seventh, and ninth tanglegram contain proper subtanglegrams

AofA 2018
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Figure 4 A proper subtanglegram of a planar tanglegram.

Table 1 The first 10 values of Tn and Hn.

n 1 2 3 4 5 6 7 8 9 10
Tn 1 1 2 11 76 649 6 173 63 429 688 898 7 808 246
Hn 0 1 1 5 34 273 2 436 23 391 237 090 2 505 228

of size 2; the seventh and eighth contain proper subtanglegrams of size 3. Only five of the
eleven planar tanglegrams shown in the figure are irreducible.

Let Tn be the number of planar tanglegrams of size n, and let Hn be the number of
irreducible planar tanglegrams of size n. It is easy (with the help of a computer algebra
system) to determine the first few values of Tn and Hn from the functional equations in
Theorem 1 – see Table 1. Figure 3 illustrates the values T4 = 11 and H4 = 5. The sequence
Hn also occurs in a different context as the number of proper diagonals of the n-dimensional
associahedron, see [8] and [11, A257887].

Several ingredients are needed in order to prove Theorem 1. In the next section, we
show a bijection between pairs of triangulations of polygons without common diagonals
and irreducible planar tanglegrams. Thereafter, we use this bijection to obtain functional
equations for the generating function of irreducible planar tanglegrams and related generating
functions. Finally, we derive a functional equation relating the generating function of planar
tanglegrams with the generating function of irreducible planar tanglegrams. An important
feature of irreducible planar tanglegrams is the fact that their embeddings in the plane are
almost unique, see Proposition 5. Moreover, every planar tanglegram can be reduced to an
irreducible planar tanglegram by contracting maximal proper subtanglegrams.

In order to determine the asymptotic behaviour of Tn, we study the analytic properties
of its generating function and eventually apply singularity analysis. This is also done in
several steps, starting from the function A(x) that is closely related to an elliptic integral,
from which the behaviour of H(x) is derived. As a side result, we also obtain the asymptotic
behaviour of the coefficients Hn (see Theorem 11). Our main analytic result regarding the
generating function T (x) reads as follows:

I Theorem 2. The generating function T enumerating planar tanglegrams satisfies the
following properties:
(i) Let ρ be the radius of convergence of T . There exist positive real numbers θ and ε such

that T is analytic in

∆ = {x : |x| < ρ+ ε and |Arg(x− ρ)| > θ},

and for x ∈ ∆, we have:

T (x) = α+C1(ρ−x)+C2(ρ−x)2 +B(ρ−x)2 log(ρ−x)+O(|(ρ−x)3 log(ρ−x)|). (4)

Here, C1, C2 and B are constants that can be computed numerically, and α = 4−π
4π .
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(ii) As n→∞, the nth coefficient Tn of T satisfies the asymptotic formula

Tn ∼ C · n−3 · ρ−n,

where ρ ≈ 0.0633892927, ρ−1 ≈ 15.7755349051 and C ≈ 0.0078873668.

I Remark. From the analytic behaviour of T given in the previous theorem, it follows that
T cannot be algebraic (see [6, Theorem VII.7] and [6, Theorem VII.8]).

The first property allows us to use singularity analysis on the generating function T (x)
and obtain the asymptotic formula in the second statement. This analysis is outlined in
Section 3. We remark that, once the enumeration problem has been solved, it will also be
possible to study statistics of planar tanglegrams. This is left as a future project.

2 Deriving the functional equations

2.1 Irreducible tanglegrams and triangulations

First, we work with rooted plane binary trees, which are rooted binary trees with a plane
embedding, so that left and right child of every vertex are distinguishable. It is well known
that rooted plane binary trees are counted by the Catalan numbers. We denote by Cb the set
of ordered pairs of rooted plane binary trees with the same number of leaves. If we label
the leaves canonically (from left to right) and match leaves with the same label, we obtain
a planar tanglegram. Every planar tanglegram can be obtained in this way, but of course
several pairs of rooted plane binary trees may represent the same planar tanglegram. The
next proposition relates pairs of triangulations of a polygon and elements of Cb, based on the
well-known bijection between rooted plane binary trees and triangulations.

I Proposition 3. To every element (T1, T2) of Cb with n leaves corresponds a unique pair of
triangulations of an (n+ 1)-gon. The tanglegram associated with (T1, T2) contains a proper
subtanglegram if and only if the corresponding pair of triangulations has a common diagonal.

Proof. The bijection between binary trees and triangulations is a classical application of
the plane dual (see [6, Section I.5.3]): given a rooted plane binary tree with n leaves, draw
non-intersecting lines from the root and all leaves to infinity. These lines and the edges of
the tree divide the plane into regions. We place a vertex in each of these regions and connect
two such vertices by an edge if the corresponding regions share part of their boundaries. The
result is a triangulation of an (n+ 1)-gon, and the correspondence is bijective. A canonical
way to label the vertices of the triangulation is to number them clockwise, starting from the
root of the tree – see Figure 5.

This also yields a bijection between the elements of Cb and pairs of triangulations. It is
not difficult to see that diagonals of triangulations correspond to proper subtrees, so that a
common diagonal in a pair of triangulations corresponds to a pair of proper subtrees whose
leaves are matched to each other, i.e. a proper subtanglegram. This is illustrated in Figure 6
for the tanglegram in Figure 4. J

We call an element of Cb that corresponds to an irreducible planar tanglegram a represent-
ation of that irreducible tanglegram. The next theorem relates irreducible planar tanglegrams
and their representations to pairs of triangulations.
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Figure 5 The correspondence between binary trees and triangulations
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Figure 6 The triangulations corresponding to the two halves of the tanglegram in Figure 4 (the
bottom tree is reflected by a horizontal axis before applying the bijection). The common diagonal is
indicated in red and dashed.

I Theorem 4. The following statements hold:
(1) To every representation of an irreducible planar tanglegram of size n corresponds a

unique ordered pair of triangulations of an (n+ 1)-gon without common diagonals.
(2) There is a bijection between irreducible planar tanglegrams of size n and unordered pairs

of triangulations of an (n+ 1)-gon that do not have a common diagonal.

The first part of Theorem 4 is a consequence of Proposition 3. In order to prove the second
part, we first have to show that an irreducible planar tanglegram has a unique representation
up to homeomorphism.

I Proposition 5. Every irreducible planar tanglegram with more than two leaves in each tree
has precisely two possible representations, which are mirror images of each other.

Proposition 5 is obtained by means of a famous theorem of Whitney:

I Theorem 6 (Whitney [13]). Every 3-connected planar graph has a unique plane embedding
up to homeomorphism.

The main idea is to apply Whitney’s theorem to the graph obtained from a tanglegram
by removing the leaves on each side (but leaving the connecting edges) and connecting the
roots by an additional edge. Let us call this process smoothing – see Figure 7. We have the
following proposition, whose proof is given in the appendix.

I Proposition 7. The graph obtained by smoothing a tanglegram is 3-regular and 3-connected
if the tanglegram is irreducible and has more than 2 leaves in each tree.

We can now proceed to the proof of Proposition 5.

Proof of Proposition 5. Let I be an irreducible tanglegram with more than two leaves in
each tree, and let T1 and T2 be the corresponding binary trees. Every representation yields a
plane embedding of the graph that is obtained by smoothing. By Whitney’s theorem and
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Figure 7 Smoothing the last tanglegram in Figure 3.

Proposition 7, there are only two possible representations, which are mirror images of each
other. Suppose that the mirror images are identical. Then the mirror images of T1 and T2
are respectively the same as T1 and T2, which implies that the left and right branches of
T1 and T2 are the same. So the branches of T1 and T2 induce proper subtanglegrams since
they contain more than one leaf each. This contradicts the assumption that I is irreducible.
Thus, we find that an irreducible tanglegram with more than two leaves on each side has
precisely two distinct irreducible representations that are mirror images of each other. J

We conclude this section with the proof of part (2) of Theorem 4.

Proof of Theorem 4, part (2). For n = 2, the statement is clearly true since both sets
contain exactly one element. Now suppose that n > 2. Let Pn be the set of pairs of triangu-
lations of an (n+ 1)-gon without common diagonal, and let In be the set of representations
of irreducible tanglegrams of size n. Moreover, denote by P ′n the set of unordered pairs of
triangulations of an (n + 1)-gon without common diagonal and I ′n the set of irreducible
tanglegrams.

By Propositon 5, we know that to every element of I ′n, there are two distinct corresponding
elements of In. Moreover, to every pair of triangulations in P ′n, there are two distinct
corresponding ordered pairs in Pn. This is because the two triangulations of an element
of P ′n have to be distinct, as they would otherwise have a common diagonal. By the first
part of the theorem, there is a bijection between Pn and In. Since I ′n and In are in a 2–1
correspondence, as are P ′n and Pn, it follows that there is a bijection between P ′n and I ′n. J

I Remark. The only symmetric irreducible tanglegram (equal to its own mirror image) is
the tanglegram with two leaves in each tree.

2.2 From bijections to generating functions
Since there is a bijection between irreducible tanglegrams and unordered pairs of triangulations
of a polygon without common diagonals, the generating functions of the two combinatorial
objects are the same. We derive a functional equation for the generating function of pairs of
triangulations without common diagonals using the inclusion-exclusion method described
in [6, Section III.7]. We consider ordered pairs of triangulations (of the same polygon) in
which some of the common diagonals (not necessarily all and possibly none) are marked. Let
T be the family of ordered pairs of triangulations (of the same polygon) without marked
diagonals. For a pair (T1, T2) in T , M(T1, T2) is the set of all possible configurations of the
pair (T1, T2) with marked diagonals. For every m ∈ M(T1, T2), we denote by N(m) the
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number of marked diagonals in m. Lastly, n(T1, T2) is the number of triangles in each of the
two triangulations T1 and T2. Now define a bivariate generating function A(x, v) by

A(x, v) =
∑

(T1,T2)∈T

( ∑
m∈M(T1,T2)

vN(m)
)
xn(T1,T2). (5)

We have the following key observation: if T1 and T2 are two triangulations of a polygon with
k(T1, T2) common diagonals, then∑

m∈M(T1,T2)

vN(m) = (1 + v)k(T1,T2).

Indeed, we can choose to mark a common diagonal, which yields a factor v, or not to mark
it, which yields a factor 1. Thus,

A(x, v) =
∑

(T1,T2)∈T

( ∑
m∈M(T1,T2)

vN(m)
)
xn(T1,T2) =

∑
(T1,T2)∈T

(1 + v)k(T1,T2)xn(T1,T2). (6)

If we plug in v = −1, all pairs with k(T1, T2) 6= 0 vanish, and we are left precisely with those
ordered pairs of triangulations that have no common diagonals. Hence A(x,−1) represents
the generating function for ordered pairs of triangulations without common diagonals. Next
we prove that A(x) = A(x,−1) satisfies the functional equation (1).

Proof of (1). Let A be the set of all configurations consisting of two triangulations of a
polygon with vertices labelled 1, 2, . . . , n with some of the common diagonals potentially
marked. Then A(x, v), as defined in (6), is the bivariate generating function corresponding
to A, where the exponents of x and v indicate the number of triangles in each triangulation
and the number of common diagonals respectively.

We can decompose an element of A in the following way: the marked common diagonals
divide the polygon into one or more subpolygons. One of them (let us call it P ) contains
the side from vertex 1 to vertex 2. This polygon P is bounded by edges of the larger
polygon and marked diagonals that separate it from smaller elements of A. Thus we have a
decomposition into a pair of triangulations without marked diagonals (inside of polygon P )
that is surrounded by sides of the larger polygon and elements of A. Let r be the number of
triangles in each of the triangulations of P ; then P has r+2 sides. The number of possibilities
for each of the triangulations is the Catalan number Cr = 1

r+1
(2r
r

)
, and each of the r + 1

sides of P other than the side between vertices 1 and 2 is either a side of the whole polygon
or a marked diagonal that separates off a smaller element of A.

This decomposition can be translated to the functional equation

A(x, v) =
∞∑
r=1

C2
rx

r(1 + vA(x, v))r+1. (7)

From (6) we have

A(x, v) =
∑

(T1,T2)∈T

(1 + v)k(T1,T2)xn(T1,T2),

where n(T1, T2) is the number of triangles and k(T1, T2) is the number of common diagonals
in (T1, T2). Setting v = −1, all pairs of triangulations (T1, T2) ∈ T such that k(T1, T2) 6= 0
vanish, as mentioned before. This means that all pairs of triangulations (T1, T2) which have
a common diagonal will not contribute to the sum for A(x,−1). In other words, only the
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pairs of triangulations without common diagonal contribute to A(x,−1) = A(x), i.e. A(x) is
the generating function for pairs of triangulations without common diagonals. The equation

A(x) =
∞∑
r=1

1
(r + 1)2

(
2r
r

)2
xr(1−A(x))r+1 (8)

follows immediately from (7). J

Recall that there is a 2–1 correspondence between ordered and unordered pairs of
triangulations without common diagonals, except for the trivial case of triangulations of a
triangle. This and Theorem 4 yield the following proposition.

I Proposition 8. The generating function H(x) of irreducible tanglegrams is given by

H(x) = xA(x)
2 .

Proof. The coefficient of xr in A(x) corresponds to pairs of triangulations without common
diagonal and r triangles in each triangulation. When we transform a triangulation of an
(r + 2)-gon into a planted binary tree, we obtain a planted binary tree with r + 1 leaves. So,
by the first part of Theorem 4, the coefficient of xr in A(x) is the number of representations
of irreducible tanglegrams which have r + 1 leaves on each side. Multiplying A(x) by x gives
us the generating function of representations of irreducible tanglegrams. From Theorem 4,
we know that to every irreducible tanglegram with more than two leaves on each side, there
are two irreducible representations. The statement of the proposition follows. J

I Remark. The coefficient of x2 in H(x) is 1
2 . We maintain it as it will help us later to take

symmetries into account when the irreducible tanglegram has two leaves.
Proposition 8 gives us equation (2). It only remains to prove (3) to complete the proof of

Theorem 1.

Proof of (3). We would like to prove the identity

T (x) = H(T (x)) + x+ T (x2)
2 .

The term x accounts for the tanglegram with only one leaf in each tree. Now consider an
arbitrary planar tanglegram T with more than one leaf in each tree. It has maximal proper
subtanglegrams (with respect to inclusion) T1, T2, . . . , Tk for some nonnegative integer k (if
all Tj ’s have size 1, then T is irreducible). For each of these subtanglegrams Tj we have
two proper binary subtrees T ′j and T ′′j in the two trees that constitute T . Replace both
of them by leaves, and include an inter-tree edge between these two leaves. Contracting
each maximal proper subtanglegram to a single pair of leaves in this way, we obtain an
irreducible tanglegram (see Figure 8). Conversely, if I is an irreducible planar tanglegram,
we can replace each pair of matched leaves in I by some planar tanglegram (possibly of size
1, i.e. the leaves remain as they are) to obtain a new planar tanglegram.

Thus every planar tanglegram T can be decomposed uniquely into an irreducible planar
tanglegram I and a collection of planar tanglegrams corresponding to the edges of I. We
have two cases to consider:

The irreducible tanglegram I has size greater than 2. Then I is not symmetric, as we
have seen in the proof of Proposition 5. In the monomial xr in H(x), r represents the
number of leaves, and replacing a pair of leaves by a planar tanglegram in the irreducible
tanglegram translates to replacing x by T (x) in H(x)− x2

2 .
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Figure 8 Contracting a proper subtanglegram to obtain an irreducible tanglegram.

The irreducible tanglegram has size 2. We have to replace the two pairs of leaves by two
planar tanglegrams; however, in view of the symmetry, the order is irrelevant, so this
amounts to taking an unordered pair of tanglegrams. By Pólya’s enumeration theorem
(see [7, Section 2.4] or [6, Section I.6.1]) the generating function for these unordered pairs
is given by 1

2 (T (x)2 + T (x2)).
Combining all cases, we get

T (x) = x+
(
H(T (x))− T (x)2

2

)
+ 1

2
(
T (x)2 + T (x2)

)
= H(T (x)) + x+ T (x2)

2 .

This completes the proof of (3) and thus of Theorem 1. J

3 Asymptotic analysis

In this section, we consider analytic properties of the generating functions in Theorem 1.
Since the proofs of the results in this section are all rather technical, they are deferred to the
appendix. We will first work with H and deduce the properties of T in Theorem 2 from H.
Setting u(x) = x(1−A(x)), Equation (1) can be rewritten in the form

x =
∞∑
r=0

C2
r · u(x)r+1

.

This motivates the definition of a function φ by

φ(u) =
∞∑
r=0

C2
r · ur+1 =

∞∑
r=0

1
(r + 1)2

(
2r
r

)2
ur+1.

The function u becomes the inverse of φ. We will obtain the analytic behaviour of the
generating functions A and H by studying φ. Next, we note that the function φ is connected
to the complete elliptic integral

k(x) =
∫ π/2

0

1√
1− x sin2 t

dt

by means of the identity (cf. [4, 19.5.1])

∞∑
r=0

(
2r
r

)2
ur = 2

π
k(16u),

which is valid for |u| < 1
16 . We can exploit this connection to obtain the following proposition:
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I Proposition 9. The function φ has an analytic continuation to the slit plane C \ [ 1
16 ,∞).

Moreover, when u tends to 1
16 , we have

φ(u) = 4− π
4π − 1

4π (1− 16u)− 1
64π

(
5− 8 log 2 + 2 log(1− 16u)

)
(1− 16u)2 (9)

+O
(∣∣∣(1− 16u)3 log(1− 16u)

∣∣∣).
Since we are interested in the inverse of φ, we also need the information given in the

following lemma:

I Lemma 10. The function φ is injective in C \ [ 1
16 ,∞), and for all u ∈ C \ [ 1

16 ,∞) we have
φ′(u) 6= 0.

The branch cut singularity of φ at 1
16 corresponds to a singularity of H at φ( 1

16 ) = 4−π
4π .

Inverting the asymptotic expansion of φ around the singularity by means of bootstrapping, we
derive an asymptotic expansion for the generating function H(x) at its dominant singularity,
which also yields an asymptotic formula for the number of irreducible tanglegrams by a
typical application of singularity analysis [6, Chapter VI].

I Theorem 11. There exist constants θ′ ∈ (0, π2 ) and ε′ > 0 such that H is analytic in

∆′ = {x | |x| < α+ ε′ and |Arg(x− α)| > θ′},

and for x ∈ ∆′, we have

H(x) = C ′0 +C ′1(α−x)+C ′2(α−x)2 +B′(α−x)2 log(α−x)+O(|(α−x)3 log(α−x)|) (10)

where α = φ( 1
16 ) = 4−π

4π , C ′0 = 1
2π −

5
32 , C

′
1 = π

8 −
1
2 , C

′
2 = −π

2

32 (5 − 4 log 2 + 2 log π) and
B′ = −π

2

16 . Thus, the number of irreducible planar tanglegrams is asymptotically given by

Hn = [xn]H(x) ∼ (πα)2

8 · n−3 · α−n.

Finally, we move on to the analysis of the generating function T (x) for planar tanglegrams,
culminating in the proof of Theorem 2. Details of this proof can be found in the appendix,
we focus on the main points. Recall that T (x) satisfies the functional equation

T (x) = H(T (x)) + x+ T (x2)
2 . (11)

The radius of convergence ρ of T (x) can be bounded above by the radius of convergence
of H(x) (since Tn = [xn]T (x) ≥ [xn]H(x) = Hn for all n in view of the combinatorial
interpretation) and is thus less than 1. Pringsheim’s Theorem guarantees that ρ is also
a singularity. We note that T (x2) has radius of convergence √ρ > ρ, so it is an analytic
function in a larger region than T (x) itself.

One also finds that, importantly, H ′(x) 6= 1 for all x inside the closed disk of convergence
of H. This means that the implicit function theorem never fails and the dominant singularity
of T is carried over from H: we reach a singularity when T (x) equals the value of H’s
singularity, which is 4−π

4π . This gives us the following characterisation of ρ:

T (ρ) = 4− π
4π .
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For practical computation of ρ, however, it is useful to plug this into (11). Since H( 4−π
4π ) =

1
2π −

5
32 , we obtain

ρ+ T (ρ2)
2 = 1

2π −
3
32 ,

which can be solved numerically with high accuracy. The singular expansion of T (x) around
the singularity ρ can be obtained by means of the same bootstrapping process that is also
used to prove Theorem 11. Finally, the asymptotic formula for Tn is another standard
application of singularity analysis.
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Figure 9 Components of G \ {u, v} with only 2 edges ending in v

A Appendix: additional proofs

A.1 Proof of Proposition 7

First, notice that the process of smoothing an irreducible tanglegram does not create any
parallel edges since the tanglegram would not be irreducible if that was the case (there would
be a proper subtanglegram of size 2). After the process of smoothing, the remaining vertices
(except the two roots) are all internal vertices, so they all have degree 3. The two roots
are also of degree 3 because of the additional edge joining them. Thus, we have a 3-regular
graph, which we will denote by G.

Next, let T1, T2 be the two halves of an irreducible tanglegram with more than two leaves
on each side. We will prove that removing any pair of vertices u, v of the graph obtained
from the smoothing process does not disconnect the graph.

Suppose u, v are in the same tree, say T1. Every vertex in T2 is clearly still connected to
T2’s root. Every vertex in T1 has three connections to the root of T2 that are disjoint
within T1: via the root of T1 and via the two children. Removing u, v can only destroy at
most two of them, so all vertices of T1 are also still connected to the root of T2. This
means that G− {u, v} is connected.

Now, suppose that u, v are in different trees. Assume that u is a vertex of T1, v is a
vertex of T2 and that removing disconnects the graph obtained from the tanglegram
by smoothing. T1 \ u has up to three components: two corresponding to the children
of u, and one containing the root. Some of these components might be empty. Every
non-empty component has at least two edges going to the other half of the tanglegram.
Suppose there are only two, and both of them have v as an end. Then we are in one of
the following situations:

Either way, there is a proper subtanglegram. So we can assume that every component of
T1 \ u has an edge to T2 \ v. The same applies to the components of T2 \ v. Now consider
the bipartite graph whose vertices are the components of T1 \ u and T2 \ v, where we
connect two components if there is an edge between them. If this graph is connected,
then so is the graph G \ {u, v}. So call this graph G′ and suppose it is disconnected.
Note that the root components of T1 \ u and T2 \ v (if they exist) are connected in G′ by
definition (since there is an edge between the roots in G). So there must be a component
of G′ containing only child components of T1 \ u and T2 \ v respectively. This component
must have one of the shapes in Figure 10, each corresponding to a proper subtanglegram,
which is impossible. It follows that G′ must actually be connected. Therefore, we can
conclude that G is 3-connected.
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Figure 10 Component of G′ containing only child components of T1 \ u and T2 \ v.

A.2 Proofs for Section 3
Proof of Proposition 9. First of all, it is well known that

∞∑
r=0

(
2r
r

)2
ur = 2

π
k(16u) (12)

for |u| < 1
16 , with the complete elliptic integral

k(x) =
∫ π/2

0

1√
1− x sin2 t

dt. (13)

The integral k(x) defines an analytic function on the slit plane C \ [1,∞). Now, [4, 19.12.1]
gives the series

k(1− x) =
∞∑
m=0

(
m− 1/2

m

)2
xm
(
− 1

2 log x+ d(m)
)

after some rewriting (note that [4] uses a different notation, where K(u) = k(u2) according
to our notation), where d(0) = 2 log 2, d(m) = d(m − 1) − 1

m(2m−1) , or equivalently
d(m) = ψ(1 +m)− ψ( 1

2 +m) (here ψ is the Digamma function). Now since

∞∑
m=0

(
m− 1/2

m

)2
xm = 2

π
k(x),

which is in fact equivalent to (12), we can also write this as

k(1− x) = − 1
π
k(x) log x+

∞∑
m=0

(
m− 1/2

m

)2
d(m)xm,

which provides us with an analytic continuation around the branch cut for |x| < 1, x /∈ (−1, 0].
In particular, we have the following asymptotic expansion around u = 1

16 (by taking the first
term in the series):

k(16u) = 2 log 2− 1
2 log(1− 16u) +O

(∣∣∣(1− 16u) log(1− 16u)
∣∣∣).

Now

φ(u) = 2
π

∫ u

0

1
v

∫ v

0
k(16z) dz dv,
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which provides an analytic continuation of φ to the slit plane C \ [ 1
16 ,∞). The asymptotic

expansion can be integrated termwise by writing∫ v

0
k(16z) dz =

∫ 1/16

0
k(16z) dz −

∫ 1/16

v

k(16z) dz,

cf. [6, Theorem VI.9]. We only need the values∫ 1/16

0
k(16z) dz = 1

8 and φ
( 1

16

)
= 2
π

∫ 1/16

0

1
v

∫ v

0
k(16z) dz dv = 4− π

4π ,

which can be obtained by plugging in (13) and interchanging the order of integration. This
gives us first∫ v

0
k(16z) dz = 1

8 −
1
32

(
1+4 log 2− log(1−16v)

)
(1−16v)+O

(∣∣∣(1−16v)2 log(1−16v)
∣∣∣).

Then, by multiplication with 1
v = 16 + 16(1− 16v) +O

(
|1− 16v|2

)
, we obtain

1
v

∫ v

0
k(16z) dz = 2+ 1

2

(
3−4 log 2+log(1−16v)

)
(1−16v)+O

(∣∣∣(1−16v)2 log(1−16v)
∣∣∣).

One more integration step yields (9). J

Proof of Lemma 10. We notice that

φ′(u) = 1
4πu

∫ π
2

0

1−
√

1− 16u sin2(t)
sin2(t)

dt = 4
π

∫ π
2

0

1
1 +

√
1− 16u sin2(t)

dt,

which follows from differentiating (13). Now we can make use of the fact that

Re
(

1 +
√

1− 16u sin2(t)
)
> 0,

since Re(
√
z) > 0 holds for every z ∈ C \ (−∞, 0]. Thus,

Re
( 1

1 +
√

1− 16u sin2(t)

)
> 0,

which in turn means that Re(φ′(u)) > 0 for all u ∈ C \ [∞, 1
16 ). In particular, φ′(u) 6= 0

for all possible values of u. In the same way, we can show that Im(φ′(u)) has the same
sign as Im(u) for all u, and the two combined imply that φ is injective on its domain of
analyticity. Indeed, let u, v ∈ C such that u 6= v. Since φ is analytic in C \ [ 1

16 ,∞), we have
φ(u) = φ(v) +

∫ v
u
φ′(z)dz, where we can integrate along any path joining u and v in the slit

plane. We have several cases to consider, depending on the location of u and v. In each case,
after integration one finds that either Im(φ(u)) 6= Im(φ(v)) or Re(φ(u)) 6= Re(φ(v)), which
means φ(u) 6= φ(v). J

Proof of Theorem 11. In order to simplify computations, we write y = 1− 16u. We let u
tend to 1

16 so y tends to 0. Then, by Proposition 9, we have

φ(u) = x = α− 1
4πy −

1
32πy

2 log(y) +O(|y2|). (14)

By Lemma 10 and the implicit function theorem, φ is invertible and the inverse φ−1 is
analytic in φ(C \ [ 1

16 ,∞)). The function φ comes from the integration of k, which has a

AofA 2018



32:16 Counting Planar Tanglegrams

0 α

Figure 11 Two branches of φ.

branch cut of square root type. The cut [ 1
16 ,∞) is mapped to two branches (see Figure 11),

corresponding to the two branches of the square root, and it is easily verified that Reφ(u)
and Imφ(u) are monotone functions of u for both branches. In view of the expansion (14),
it is possible to choose θ′ in such a way that ∆′ lies in the image φ(C \ [ 1

16 ,∞)). Hence,
u = φ−1 is well defined and analytic in ∆′.

By means of bootstrapping, we get

y = 4π(α− x)− 2π2(α− x)2 log(α− x)− π2(5− 4 log 2 + 2 log π)(α− x)2

+O
(∣∣∣(α− x)3 log(α− x)

∣∣∣).
Now, since y = 1− 16u, we have

H(x) = x− u
2 = x

2 −
1
32 + π

8 (α− x)− π2

16 (α− x)2 log(α− x)

− π2

32 (K + 2 log(4π))(α− x)2 +O
(∣∣∣(α− x)3 log(α− x)

∣∣∣)
= C ′0 + C ′1(α− x) + C ′2(α− x)2 +B′(α− x)2 log(α− x)

+O
(∣∣∣(α− x)3 log(α− x)

∣∣∣).
When n > 2, the coefficient of xn in (α− x)2 vanishes, so asymptotically only the term

(α− x)2 log(α− x) contributes to [xn]H(x). The function H and the region ∆′ satisfy the
conditions of [6, Theorem VI.4], so we can apply singularity analysis to get

[xn]H(x) ∼ −2 · α2 ·B′ · α−n · n−3 = (πα)2

8 · n−3 · α−n. J

Proof of Theorem 2. For the first property, we investigate each term in the functional
equation for T (x), which reads

T (x) = H(T (x)) + x+ T (x2)
2 .

First, the term x on the right side represents an entire function. Next, ρ ≤ α < 1 since
the coefficients of T are greater than or equal to the coefficients of H in view of their
combinatorial interpretation. Since the radius of convergence of T (x2) is √ρ it follows that
T (x2) has a radius of convergence greater than T (x). Thus, the dominant singularity of T (x)
is inherited from the dominant singularity of H(x). T (x) has non-negative coefficients, so by
Pringsheim’s theorem, the radius of convergence ρ of T (x) is also a singularity. We know
that H(x) has its dominant singularity at x = α = 4−π

4π , so H(T (x)) has a singularity at any
point x for which T (x) = α = 4−π

4π . Suppose that there exists a positive real number τ such
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that τ < α and H(T (x)) is singular at T (x0) = τ for some x0 > 0. We define the bivariate
function

F (t, x) = H(t) + x+ T (x2)
2 − t,

and we have
∂F (t, x)
∂t

= H ′(t)− 1.

Since τ is a singularity of T (x), the implicit function theorem has to fail at (t, x) = (τ, x0)
for F (t, x). In other words, we must have

∂F (t, x)
∂t

(τ, x0) = H ′(τ)− 1 = 0, i.e. H ′(τ) = 1.

Next, we have

H ′(x) = 1− u′(x)
2 .

H ′(x) has non-negative coefficients, hence H ′(x) is an increasing function in (0, α]. Moreover,
we have u′(α) = π

4 . Hence, H
′(α) = 1

2 −
π
8 < 1. Thus, H ′(τ) ≤ H ′(α) < 1 contradicting the

assumption that H ′(τ) = 1. We conclude that the dominant singularity of T appears at ρ
and T (ρ) = α.

Now, we continue with the proof of the second property. Let x ∈ B(0, ρ). Since T has
positive coefficients, we have

|T (x)| =
∣∣∣ ∞∑
n=0

Tnx
n
∣∣∣ ≤ ∞∑

n=0
Tn|xn| <

∞∑
n=0

Tnρ
n = α.

Hence T (x) ∈ B(0, α). Moreover, by the implicit function theorem, T can be continued
analytically around each point x of the circle C(0, ρ) of center 0 and radius ρ, except perhaps
around ρ. However around ρ, T can be continued by Theorem 11. Thus, it is indeed possible
to find ε and θ such that T is analytic in ∆ as required. Let G(x) = x+ T (x2)

2 . Using the
same arguments as in the proof of the first property, G(x) is still analytic around ρ. Hence,
the Taylor expansion of G(x) around ρ gives

G(x) = G(ρ) +G′(ρ)(x− ρ) + G′′(ρ)
2 (x− ρ)2 +O(|x− ρ|3).

For simplicity, we let D0 = G(ρ) = ρ + T (ρ2)
2 , D1 = −G′(ρ) = −(1 + ρT ′(ρ2)) and D2 =

G′′(ρ)
2 = T ′(ρ)

2 + ρ2T ′′(ρ2). Since ρ2 < ρ, T ′(ρ2) and T ′′(ρ2) exist, and the power series for T
converges exponentially at ρ2, which allows for D0, D1 and D2 to be determined with high
numerical accuracy. By Theorem 11 and the functional equation for T given in Theorem 1,
we have

T (x) = C ′0 + C ′1(α− T (x)) + C ′2(α− T (x))2 (15)
+B′(α− T (x))2 log(α− T (x)) +O(|(α− T (x))3 log(α− T (x))|)
+D0 +D1(ρ− x) +D2(ρ− x)2 +O(|(ρ− x)3|).

We note that when x → ρ, we have T (x) → T (ρ) = α, hence C ′0 + D0 = α. Again, by
means of bootstrapping, we obtain

T (x) = α+ D1

1 + C ′1
(ρ−x)+ B′ ·D2

1
(1 + C ′1)3 (ρ−x)2 log(ρ−x)+C2(ρ−x)2+O(|(ρ−x)3 log(ρ−x)|),
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which gives us the asymptotic expansion (4) for T by setting C1 = D1
1+C1

and B = B′·D2
1

(1+C′
1)3 .

We remain with the proof of the asymptotic formula for Tn. As in the proof of Theorem 11,
only (ρ − x)2 log(ρ − x) contributes to the main term of [xn]H(x) when n is large. So by
singularity analysis, we have

Tn = [xn]T (x) ∼ C · ρ−n · n−3,

where C = −2·B′·D2
1 ·ρ

2

(1+C′
1)3 . Here, C > 0 because B′ = −π

2

16 < 0, and C ′1 = π
8 −

1
2 > −1. J
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Abstract
An additive functional of a rooted tree is a functional that can be calculated recursively as the
sum of the values of the functional over the branches, plus a certain toll function. Janson recently
proved a central limit theorem for additive functionals of conditioned Galton-Watson trees under
the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of
the root. We extend his result to functionals that are almost local, thus covering a wider range
of functionals. Our main result is illustrated by two explicit examples: the (logarithm of) the
number of matchings, and a functional stemming from a tree reduction process that was studied
by Hackl, Heuberger, Kropf, and Prodinger.
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1 Introduction

A functional F that associates a value F (T ) with every rooted tree is said to be additive if it
satisfies a recursion of the form

F (T ) =
k∑
i=1

F (Ti) + f(T ), (1)

where T1, T2, . . . , Tk are the branches of T and f is a so-called “toll function”, another
function that assigns a value to every rooted tree. If T only consists of the root (so that
k = 0), we interpret the empty sum as 0 and set F (T ) = f(T ). Of course, every functional F
is additive in this sense (for a suitable choice of f), so the usefulness of the concept depends
on what is known about the toll function f .
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An important special case is the number of occurrences of a prescribed “fringe subtree”.
A fringe subtree is an induced subtree of a rooted tree that consists of one of the nodes and
all its descendants. Now fix a rooted tree S. We say that S occurs on the fringe of T if there
is a fringe subtree of T that is isomorphic to S. The number of occurrences of S as a fringe
subtree in T (i.e., the number of nodes v of T for which the fringe subtree rooted at v is
isomorphic to S) is an additive functional, which we shall denote by FS(T ). Indeed, one has

FS(T ) =
k∑
i=1

F (Ti) + fS(T ),

where

fS(T ) =
{

1 S is isomorphic to T,
0 otherwise.

This is because an occurrence of S in T is either an occurrence in one of the branches,
or comprises the entire tree T . Every additive functional can be expressed as a linear
combination of these elementary functionals: it is easy to see (e.g. by induction) that a
functional satisfying (1) can be expressed as

F (T ) =
∑
S

f(S)FS(T ).

Functionals of the form FS are known to be asymptotically normally distributed in different
classes of trees, notably simply generated trees/Galton-Watson trees [6, 14], which will
also be the topic of this paper, and classes of increasing trees [4, 10]. In view of this and
several other important examples of additive functionals that satisfy a central limit theorem,
general schemes have been devised that yield a central limit theorem under different technical
assumptions. This includes work on simply generated trees/Galton-Watson trees [6, 14]
(labelled trees, plane trees and d-ary trees are well-known special cases) as well as Pólya
trees [14] and increasing trees [10, 14] (specifically recursive trees, d-ary increasing trees and
generalised plane-oriented recursive trees). It is worth mentioning, however, that there are
also many instances of additive functionals that are not normally distributed in the limit,
since the toll functions can be quite arbitrary. A well-known example is the case of the path
length, i.e. the sum of the distances of all nodes to the root. It satisfies (1) with toll function

f(T ) = |T | − 1,

and, when suitably normalised, its limiting distribution for simply generated trees is the Airy
distribution (see [11]).

Previous results [4, 6, 10,14], while giving rather general conditions on the toll function
that imply normality, are unfortunately still insufficient to cover all possible examples one
might be interested in. This paper is essentially an extension of Janson’s work [6] on local
functionals. By weakening the conditions he makes on the toll functions, we arrive at a new
general central limit theorem that can be applied to a variety of examples that were not
previously covered. Two such examples are presented in detail in this extended abstract: one
is concerned with the number of matchings of a tree, the other settles an open problem from
a paper of Hackl, Heuberger, Kropf and Prodinger [3] on tree reductions.

A local functional (as considered in Janson’s paper [6]) is a functional for which the value
of the toll function can be determined from the knowledge of a fixed neighbourhood of the
root. A typical example is the number of nodes with a given outdegree: the corresponding
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toll function (whose value is either 0 or 1) is completely determined by the root degree.
We relax this condition somewhat (to what we call “almost local functionals”) in our main
theorem. Intuitively speaking, functionals that satisfy our conditions have toll functions
that can be approximated well from knowledge of a neighbourhood of the root, with the
approximation getting better the wider the neighbourhood is chosen.

The model of random trees that we consider here are conditioned Galton-Watson trees:
these are determined by an offspring distribution ξ, which we will assume to be normalised
to satisfy Eξ = 1. We also assume that Varξ is finite and nonzero (to avoid a degenerate
case). The Galton-Watson process starts from a single node, the root. At time t, all nodes
at level t (distance t from the root) generate a number of children according to the offspring
distribution ξ. The numbers of children of different nodes on the same level are mutually
independent. The outcome of this process, which ends when all nodes at level t generate 0
children, is a random tree T (almost surely finite). By conditioning the process to “die out”
when the total number of nodes is n, we obtain a conditioned Galton-Watson tree, which
will be denoted by Tn.

Conditioned Galton-Watson trees are known to be essentially equivalent to so-called
simply generated trees [2, Section 3.1.4]. Classical examples include rooted labelled trees
(corresponding to a Poisson distribution for ξ), plane trees (corresponding to a geometric
distribution for ξ) and binary trees (with a distribution whose support is {0, 2}).

We conclude the introduction with some more notation: for a tree T , we let T (M) be its
restriction to the firstM levels, i.e. all nodes whose distance to the root is at mostM . A local
functional as defined above is thus a functional for which the value of f(T ) is determined by
T (M) for some fixed M (the “cut-off”). The conditioned Galton-Watson tree Tn is known
to converge in the local topology induced by these restrictions to the (infinite) size-biased
Galton-Watson tree T̂ as defined by Kesten [8]: one has

P(T̂ (M) = T ) = wM (T )P(T (M) = T )

for all trees T , where wM (T ) is the number of nodes of depth M in T .
For a rooted tree T (possibly infinite), we let deg(T ) denote the degree of the root of T .

Finally, it will be convenient for us to use the Vinogradov notation � interchangeably with
the O-notation, i.e. f(n)� g(n) and f(n) = O(g(n)) both mean that |f(n)| ≤ Kg(n) for a
fixed positive constant K and all sufficiently large n.

2 The general theorem

Let us now formulate our main result, which is a central limit theorem for additive functionals
under suitable technical conditions on the toll function f .

I Theorem 1. Let Tn be a conditioned Galton-Watson tree of order n with offspring distribu-
tion ξ, where ξ satisfies Eξ = 1 and 0 < σ2 := Varξ <∞. Assume further that Eξ2α+1 <∞
for some integer α ≥ 0. Consider a functional f of finite rooted ordered trees with the
property that there is an absolute constant C0 > 0 such that

|f(T )| ≤ C0 deg(T )α. (2)

Furthermore, let (pM )M≥1 be a sequence of positive real numbers with pM → 0, and assume
that f satisfies the following:

for every M ∈ {1, 2, . . . },

E
∣∣∣f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

)∣∣∣ ≤ pM (3)

uniformly in N, with N ≥M ,
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there is a sequence of positive integers (Mn)n≥1 such that for large enough n,

E
∣∣∣f(Tn)− f

(
T (Mn)
n

)∣∣∣ ≤ pMn
. (4)

If an := n−1/2(nmax{α,1}pMn
+M2

n) satisfies

an → 0, and
∞∑
n=1

an
n
<∞, (5)

then
F (Tn)− nµ√

n

d→ N (0, γ2) (6)

where µ = Ef(T ), and 0 ≤ γ <∞.

I Remark. The proof of the above theorem is a generalisation of Janson’s proof of his theorem
for bounded and local functionals in [6]. By slightly weakening the condition on the offspring
distribution ξ, we are able to reduce the boundedness condition to (2). However, the main
difficulty to overcome is the fact that our toll function is no longer local. To give a simple
example, an essential part of the proof is the existence of the expectation Ef(T̂ ). When f is
local with a cut-off M , then f(T̂ ) := f(T̂ (M)). So, Ef(T̂ ) is simply defined to be Ef(T̂ (M)).
In our case, where f is not necessarily local, we can define

Ef(T̂ ) := lim
M→∞

Ef(T̂ (M)), (7)

which may not exist in general. However, if f satisfies (3), then we can show that Ef(T̂ )
exists. Indeed,

|Ef(T̂ (M))− Ef(T̂ (N))| =
∣∣∣E(f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

))∣∣∣
≤ E

∣∣∣f(T̂ (M))− E
(
f(T̂ (N)) | T̂ (M)

)∣∣∣ ≤ pM ,
which tends to zero as M →∞, uniformly for N ≥M . In other words, (Ef(T̂ (M)))M≥1 is a
Cauchy sequence, so the limit (7) exists.

Throughout the rest of the paper, the offspring distribution ξ is assumed to satisfy Eξ = 1,
P (ξ = 0) > 0, 0 < σ2 := Varξ < ∞, and Eξ2α+1 < ∞ for some fixed integer α ≥ 0. The
distribution of the number of nodes at level k, wk, for the three random trees T , T̂ , and
Tn will play an important role in our proof. This parameter has been studied in [5], and in
particular, the following results were proved there: for every positive integer r ≤ max{2α, 1},
we have

E (wk(T )r) = O(kr−1), E(wk(T̂ )r) = O(kr), and E (wk(Tn)r) = O(kr), (8)

where the constants in the O-terms depend on the offspring distribution ξ only. Moreover,
for a rooted tree T , we know that |T (M)| =

∑M
k=0 wk(T ). Hence, we can deduce from the

estimates in (8), for r = 1, that

E|T (M)| = O(M), E|T̂ (M)| = O(M2), and E|Tn(M)| = O(M2). (9)

In fact, it can be shown that E|T (M)| = M + 1. We are also going to make extensive use of
the higher moments of the root degree. By definition, the distribution of deg(T ) is ξ, so we
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know the higher moments of deg(T ). On the other hand, note that deg(T ) = w1(T ). So, as
particular cases of the estimates in (8), we have

E(deg(T̂ )r) <∞ and E (deg(Tn)r) = O(1), (10)

for every positive integer r ≤ max{2α, 1}, where the implied constant in the second estimate
is independent of n.

3 Mean and variance

We first look at the expectation Ef(Tn). As it is also the case in [6], one of the key observations
in the proof of Theorem 1 is the fact that Ef(Tn) is asymptotically equal to Ef(T̂ ) (which is
finite, cf. Remark 2) with an explicit bound on the error term. This is made precise in the
following lemma:

I Lemma 2. If f satisfies the conditions of Theorem 1, then

Ef(Tn) = Ef(T̂ ) +O(pMn
+ n−1/2 M2

n). (11)

Proof (sketch). We let Mn be defined as in Theorem 1, but write M = Mn for easy reading.
Notice first that

|Ef(Tn)− Ef(T̂ )|

≤ |Ef(Tn)− Ef(Tn(M))|+ |Ef(T̂ (M))− Ef(T̂ )|+ |Ef(Tn(M))− Ef(T̂ (M))|. (12)

The first term on the right side is at most pM by assumption (4). The second term is also
bounded above by pM in view of (3), using the same argument as in Remark 2: we have

|Ef(T̂ (N))− Ef(T̂ (M))| =
∣∣∣E(f(T̂ (M))− E

(
f(T̂ (N))|T̂ (M)

))∣∣∣
≤ E

∣∣∣f(T̂ (M))− E
(
f(T̂ (N))|T̂ (M)

)∣∣∣ ≤ pM ,
uniformly for N ≥M . Therefore,

|Ef(T̂ )− Ef(T̂ (M))| = lim
N→∞

|Ef(T̂ (N))− Ef(T̂ (M))| ≤ pM .

The estimate of the term |Ef(Tn(M))− Ef(T̂ (M))| is rather technical and therefore given in
the appendix. It can be shown, using the bound (2), that

|Ef(Tn(M))− Ef(T̂ (M))| = O
(
n−1/2M2E(deg(T̂ )α+1) + n−1M2E(deg(Tn)α+1)

)
. (13)

In view of (10), the moment E(deg(T̂ )α+1) is finite and E(deg(Tn)α+1) is O(1). Therefore,
we conclude that

|Ef(Tn)− Ef(T̂ )| � pM + n−1/2M2 = pMn
+ n−1/2Mn

2,

which is equivalent to the statement in the lemma. J

Lemma 2 is already enough to show that EF (Tn) = µn+ o(
√
n), where µ = Ef(T ), by

simply applying Part (i) of [6, Theorem 1.5] to the shifted toll function f(T )− Ef(T̂ ). Next,
we estimate the variance of F (Tn).
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33:6 Asymptotic Normality of Almost Local Func. in Conditioned Galton-Watson Trees

I Lemma 3. Assume that f satisfies the conditions of Theorem 1. Moreover, set ak =
k−1/2(kmax{α,1} pMk

+ M2
k ) (as in Theorem 1) and µk = Ef(Tk). Moreover, set N =

min{|T | : f(T ) 6= 0}. Then we have

n−1/2Var (F (Tn))1/2 �

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N
|µk|+

∞∑
k=N

|µk|
k
. (14)

Proof (sketch). We follow the proof of [6, Theorem 6.12]. We start with a decomposition
f(T ) = f ′(T ) + f ′′(T ), where f ′(T ) = f(T )− µ|T | and f ′′(T ) = µ|T |. In view of Minkowski’s
inequality Var(X + Y )1/2 ≤ Var(X)1/2 + Var(Y )1/2, it suffices to check that (14) holds for
the following cases:
(i) if f(T ) = µ|T |, that is, f depends on |T | only,
(ii) when Ef(Tk) = 0 for every k.
Case (i) works precisely as in [6, Theorem 6.7] and gives a bound

Var (F (Tn))1/2 � n1/2

(
sup
k≥N
|µk|+

∞∑
k=N

|µk|
k

)
. (15)

The contribution from k < N is zero, since µk = 0 for k < N . So we only consider Case (ii),
where Ef(Tk) = 0 for every k. By [6, (6.28)], we have

1
n

Var (F (Tn)) ≤ 2
n∑

k=N

P (Sn−k = n− k)
P (Sn = n− 1) πkE(f(Tk)F (Tk)), (16)

where πk = P (|T | = k), and Sk is the sum of k independent copies of ξ. From [6, Lemma
5.2], we know that

P (Sn−k = n− k)
P (Sn = n− 1) � n1/2

(n− k + 1)1/2 ,

uniformly for 1 ≤ k ≤ n. Recalling that πk = O(k−3/2), which can also be found in [6], we
obtain

1
n

Var (F (Tn))�
n∑

k=N

n1/2

(n− k + 1)1/2 k3/2E(f(Tk)F (Tk)). (17)

So it remains to estimate E(f(Tk)F (Tk)). It can be shown (see appendix) that

E(f(Tk)F (Tk))� kmax{α, 1} pMk
+ E(deg(Tk)2α) +M2

k E(deg(Tk)α+1). (18)

Once again, by means of the second estimate in (10), E(deg(Tk)2α) and E(deg(Tk)α+1) are
both bounded above by constants. Thus, we have

E(f(Tk)F (Tk))� kmax{α, 1} pMk
+M2

k = k1/2ak, (19)

where ak is defined as in Theorem 1. Applying (19) to (17), we get

1
n

VarF (Tn)�
n∑

k=N

n1/2 ak
(n− k + 1)1/2 k

�
n/2∑
k=N

ak
k

+ sup
k≥n/2

ak
∑

n/2≤k≤n

1
(n− k + 1)1/2 n1/2 (20)

Noting that the last sum on the right side is O(1), the result follows by applying Minkowski’s
inequality to combine the results from the two cases. J
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4 Central limit theorem

We use a truncation argument as in the proof of [6, Theorem 1.5]. This is formulated in the
following lemma:

I Lemma 4. Let (Xn)n≥1 and (WN,n)N,n≥1 be sequences of centred random variables. If
we have

WN,n
d→n WN , and WN

d→N W, for some random variables W, W1, W2, . . .
Var(Xn −WN,n) = O(σ2

N ) uniformly in n, and σ2
N →N 0,

then Xn
d→n W.

This lemma is a simple consequence of [7, Theorem 4.28] or [1, Theorem 4.2].

Proof of Theorem 1. We may assume, without loss of generality, that Ef(T̂ ) = 0, by
subtracting Ef(T̂ ) from f if it is not zero, because shifting f by a constant will only add a
deterministic term in F (Tn). For each k, let µk denote the expectation Ef(Tk). By Lemma 2,
we have

|µk| = |Ef(Tk)| � pMk
+ k−1/2M2

k ≤ ak. (21)

For a positive integer N , let f (N) be the truncated functional defined by f (N)(T ) =
f(T ) I{|T |<N} and F (N) be the additive functional associated to the toll function f (N).
It is important to notice that f (N) is local, for any fixed N . So, if f satisfies the conditions
of Theorem 1, then f (N) also satisfies the conditions of Theorem 1. Note further that
Ef (N)(Tk) = µk if k < N , and zero otherwise. Hence, we have |Ef (N)(Tk)| ≤ |µk| for every
positive integer N . Let

WN,n := F (N)(Tn)− EF (N)(Tn)√
n

, and Xn := F (Tn)− EF (Tn)√
n

.

Since f (N) has finite support, by [6, Theorem 1.5], we have

WN,n
d→n N (0, γ2

N ),

where

γ2
N = lim

n→∞
n−1Var(F (N)(Tn))

= 2E
(
f (N)(T ) (F (N)(T )− |T |µ(N))

)
−Varf (N)(T )− (µ(N))2

σ2 ,

and µ(N) = Ef (N)(T ).

Next we need to show that limN→∞ γN exists. To that end, we take an arbitrary integer
M ≥ N . We have

γM − γN = lim
n→∞

n−1/2
(

Var(F (M)(Tn))1/2 −Var(F (N)(Tn))1/2
)

If we apply Minkowski’s inequality to the random variables F (M)(Tn) − F (N)(Tn) and
F (N)(Tn), we obtain

Var(F (M)(Tn))1/2 ≤ Var
(
F (M)(Tn)− F (N)(Tn)

)1/2
+ Var(F (N)(Tn))1/2.

AofA 2018
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Consequently,

|γM − γN | = lim
n→∞

n−1/2|Var(F (M)(Tn))1/2 −Var(F (N)(Tn))1/2|

≤ lim sup
n→∞

n−1/2Var
(
F (M)(Tn)− F (N)(Tn)

)1/2
.

The toll function associated to the functional F (M) − F (N) is f (M) − f (N), which is zero for
all trees of order smaller than N . Hence, the idea of Lemma 3 can be used to estimate the
variance Var(F (M)(Tn)− F (N)(Tn))1/2, and we obtain

|γM − γN | �

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N
|µk|+

∞∑
k=N

|µk|
k

�

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N

ak +
∞∑
k=N

ak
k
.

The last line follows from (21). By the condition (5) of Theorem 1, we also deduce that
|γM − γN | →N 0 uniformly for M ≥ N . Hence, the sequence (γN )N is a Cauchy sequence,
which implies that γ := limN→∞ γN exists.

Similarly, we have

Var(Xn −WN,n)1/2 = n−1/2Var(F (Tn)− F (N)(Tn))1/2

�

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N

ak +
∞∑
k=N

ak
k
,

which tends to zero as N →∞ uniformly in n, so Lemma 4 applies and the proof of Theorem 1
is complete. J

5 Examples

In this section, we give two representative applications of our main theorem (further examples
will be provided in the full version). The absolute values of the toll functions in both examples
are not bounded by positive constants, but they are both bounded above by the root degree.
Hence, we need α to be at least 1, i.e. Eξ3 <∞.

5.1 The number of matchings
The number of matchings in random trees has been studied previously, and means and
variances have been determined for different classes of trees [9, 12, 13]. However, in order
to obtain a limiting distribution, one has to consider the logarithm of this quantity. For a
rooted tree T , let m(T ) be the total number of matchings of T and m0(T ) be the number of
matchings of T that do not cover the root (by this, we mean matchings that do not contain
an edge incident to the root). It is easy to see that these parameters can be determined
recursively in the following way:

m0(T ) =
∏
i

m(Ti), (22)

m(T ) = m0(T ) +
∑
i

m0(Ti)
∏
j 6=i

m(Tj). (23)
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Defining an additive functional F (T ) := logm(T ), we observe from (22) that the associated
toll function is

f(T ) = F (T )−
∑
i

F (Ti) = logm(T )−
∑
i

logm(Ti) = − log
(
m0(T )
m(T )

)
.

It is convenient to define ρ(T ) = m0(T )
m(T ) , which is the probability that a random matching

does not cover the root, when all matchings are equally likely. By (22) and (23), ρ(T ) also
satisfies a recursion

ρ(T ) = 1
1 +

∑
i ρ(Ti)

. (24)

It follows immediately that 0 ≤ f(T ) ≤ log(1 + deg(T )). Hence, the condition (2) of
Theorem 1 is satisfied by f with α = 1. Next, we measure the difference between f(T ) and
f(T (M)). Define the exact bounds on ρ given the first M levels:

ρMmin(T ) := inf{ρ(S) : S(M) = T (M)}, ρMmax(T ) := sup{ρ(S) : S(M) = T (M)}.

The functions ρMmin(T ) and ρMmax(T ), M = 0, 1, 2, . . . can also be determined recursively from
the root branches T1, T2, . . . by observing ρ0

min(T ) = 0 and ρ0
max(T ) = 1 for any T , and for

any M ≥ 1, we have

ρMmax(T ) = 1
1 +

∑
i ρ
M−1
min (Ti)

and ρMmin(T ) = 1
1 +

∑
i ρ
M−1
max (Ti)

. (25)

Since ρ(T ), ρ(T (M)) ∈ [ρMmin(T ), ρMmax(T )], we obtain

ρMmin(T )
ρMmax(T ) ≤

ρ(T )
ρ(T (M))

≤ ρMmax(T )
ρMmin(T )

. (26)

Writing τM (T ) := log(ρMmax(T )/ρMmin(T )) ≥ 0, (26) gives us

|f(T )− f(T (M))| ≤ τM (T ). (27)

Using (25), we get

τM (T ) = − log
(

1 +
∑
i ρ
M−1
min (Ti)

1 +
∑
i ρ
M−1
max (Ti)

)
= − log

(
1 +

∑
i ρ
M−1
max (Ti) exp(−τM−1(Ti))
1 +

∑
i ρ
M−1
max (Ti)

)
.

Since the term inside the logarithm on the right side can be regarded as an expectation (of
the expression exp(−τM−1(Ti))), applying Jensen’s inequality to the convex function − log x
yields

τM (T ) ≤ 1
1 +

∑
i ρ
M−1
max (Ti)

∑
i

ρM−1
max (Ti)τM−1(Ti)

≤ maxi ρM−1
max (Ti)

1 + maxi ρM−1
max (Ti)

∑
i

τM−1(Ti) ≤
1
2
∑
i

τM−1(Ti). (28)

From (25) it is clear that ρ1
max(T ) = 1 and ρ1

min(T ) = (1 + deg(T ))−1 for any T . Therefore

τ1(T ) = log(1 + deg(T )) ≤ deg(T ). (29)
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Let v1, v2, . . . , vwM−1(T ) be the nodes at level M − 1 of T . By iterating (28) M − 1 times
and applying (29), we arrive at the bound

τM (T ) ≤ 2−(M−1)
wM−1(T )∑
i=1

τ1(Tvi) ≤ 2−(M−1)
wM−1(T )∑
i=1

deg(Tvi) ≤ 2−(M−1)wM (T ). (30)

Combining (27) and (30), we obtain

|f(T )− f(T (M))| ≤ 2−M+1wM (T ). (31)

This is essentially enough to show that the remaining conditions of Theorem 1 are satisfied
by our toll function. Let us first check (3). Note that for any N ≥M , we have

E
∣∣∣f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

)∣∣∣ ≤ E
(
E
(
|f(T̂ (M))− f(T̂ (N))|

∣∣∣ T̂ (M)
))

.

Using (31), we deduce that for any N ≥M ,

E
(
|f(T̂ (M))− f(T̂ (N))|

∣∣∣ T̂ (M)
)
≤ 2−M+1E

(
wM (T̂ (N))

∣∣∣ T̂ (M)
)
.

By taking the expectations, and using wM (T̂ (N)) = wM (T̂ ) as well as the estimate EwM (T̂ ) =
O(M) (see (8)), we get

E
∣∣∣f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

)∣∣∣�M 2−M . (32)

To check (4) we use (31) and EwM (Tn) = O(M) (see (8)) and get

E|f(Tn)−f(Tn(M))| = E
(
E
(
|f(Tn)− f(Tn(M))|

∣∣∣ Tn(M)
))
≤ E

(
2−M+1wM (Tn)

)
�M2−M ,

(33)

where the implied constant is independent of n. To sum up, (32) and (33) show that the
conditions of Theorem 1 are satisfied for the choice pM := C1M2−M and Mn := bC2 lognc
with sufficiently large positive constants C1 and C2.

5.2 Tree reductions
An old leaf is a leaf that is the leftmost child of its parent node, and an old path is a maximal
path with the property that its lower endpoint is an old leaf, and its internal nodes are
all nodes of outdegree 1 that are leftmost children of their parents. As in [3], consider the
process of reducing a tree by cutting off all old paths from the tree at each step. This process
is called old path-reduction. For a given positive integer r, and for a tree T , let Xr(T ) be the
number of nodes in the reduced tree after the first r steps of the old path-reduction process.
The authors of [3] proved estimates for the mean and variance of Xr(Tn) for the special case
where Tn is the random plane (=ordered) tree on n nodes, but they did not derive a limiting
distribution. Theorem 1 can be applied to show asymptotic normality for this case. However,
we do not need to restrict ourselves to plane trees.

We let

Fr(T ) = |T | −Xr(T ),

which corresponds to the number of deleted nodes after r steps in T . The functional Fr is
additive with toll function fr, where

fr(T ) =
∑
j

ηT (Tj)
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and the sum is over all branches Tj , with

ηT (Tj) =
{

1 if the root of Tj is deleted within the first r steps,
0 otherwise.

We can immediately see that

0 ≤ fr(T ) ≤ deg(T ).

Next, we show that fr is almost local. For a tree T , let T ∗ be the planted tree where
the root of T is connected to a new node, which becomes the root of T ∗. Let κ = min{k ≥
2 : P (ξ = k) > 0} (this must exist under our current assumptions on ξ), and let T0 be the
complete κ-ary tree of depth r. It is clear that Fr(T ∗0 ) 6= 1, i.e. T ∗0 is not reduced to the root
in r steps, and

P (T = T0) > 0. (34)

For each positive integer M , let BM be the set of all trees T (not necessarily finite) of height
at least M − 1 such that Fr((T (M−1))∗) = 1 (i.e. the tree T (M−1) vanishes after the first r
steps of the reduction). It is important to notice here that a rooted tree T is not reduced to
a single node after the first r steps of the reduction if the fixed tree T0 appears as a subtree
of T (by subtree, we mean a subtree of the form T

(k)
v for some integer k ≥ 0 and some node

v of T ). This observation is key in the proof of the next lemma, which can be found in the
appendix.

I Lemma 5. There is a positive constant c < 1, that depends only on ξ and r, such that

P (T ∈ BM )� cM and P
(
T̂ ∈ BM

)
� cM .

For a finite tree T , the only possibility for which fr(T (M)) 6= fr(T ) is when there is a root
branch Tj of T such that T (M−1)

j vanishes after the first r steps of the reduction of T (M),
but Tj does not vanish after the first r steps of the reduction of T . This means that if
fr(T (M)) 6= fr(T ), then T must have a branch in BM . Therefore, we have

P
(
fr(T (M)) 6= fr(T )

)
≤
∞∑
k=1

kP (ξ = k)P (T ∈ BM )� cM .

The estimate on the right follows from Lemma 5. As an immediate consequence of this, we
have

P
(
fr(Tn(M)) 6= fr(Tn)

)
≤

P
(
fr(T (M)) 6= fr(T )

)
P (|T | = n) � n3/2 cM .

Hence,

E|fr(Tn(M))− fr(Tn)| � n3/2cM max
|T |=n

|fr(T (M))− fr(T )| � n5/2cM . (35)

Let EM be the event
⋃
N>M{fr(T̂ (M)) 6= E(fr(T̂ (N)) | T̂ (M))}. Then, for any N ≥ M ,

we have∣∣∣fr(T̂ (M))− E(fr(T̂ (N)) | T̂ (M))
∣∣∣� deg(T̂ (M))IEM

.
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For T̂ to be in EM , T̂ must have a root branch in BM . Therefore,

E
∣∣∣fr(T̂ (M))− E(fr(T̂ (N)) | T̂ (M))

∣∣∣
�

∞∑
k=1

kP
(

deg(T̂ ) = k
)(

(k − 1)P (T ∈ BM ) + P
(
T̂ ∈ BM

))
. (36)

In view of Lemma 5, we have

E
∣∣∣fr(T̂ (M))− E(fr(T̂ (N)) | T̂ (M))

∣∣∣� cM
∞∑
k=1

k2P
(

deg(T̂ ) = k
)
� cM , (37)

since E(deg(T̂ )2) <∞ if Eξ3 <∞. The estimates (35) and (37) confirm that fr is indeed
almost local where, for example, pM = cM2 , for some c2 with c < c2 < 1, and Mn = b(logn)2c.

I Remark. We only made very little use of the actual definition of the old path-reduction.
To be precise, we only used it when we argued that our constructed T0 does not vanish after
the first r steps of the reduction and that all trees that contain T0 as a subtree will not
be reduced after the first r steps. This means that the same proof will work for any tree
reduction with a similar property. This includes all tree reductions considered in [3].
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A Appendix

Proof of Estimate (13). From the proof of [6, Lemma 5.9] (see (5.42) there), we have, for T
with |T | ≤ n/2, that

P
(
Tn(M) = T

)
= P

(
T̂ (M) = T

)(
1 +O

(
|T |
n1/2

))
. (38)

Using (38), we infer

|Ef(Tn(M))−Ef(T̂ (M))|

=

∣∣∣∣∣∑
T

f(T )P
(
Tn(M) = T

)
−
∑
T

f(T )P
(
T̂ (M) = T

)∣∣∣∣∣
≤

∑
|T |≤n/2

|f(T )|
∣∣∣P(Tn(M) = T

)
− P

(
T̂ (M) = T

)∣∣∣+
∑
|T |>n/2

|f(T )|
(
P
(
Tn(M) = T

)
+ P

(
T̂ (M) = T

))
�
∑
T

P
(
T̂ (M) = T

) deg(T )α|T |
n1/2

+
∑
|T |>n/2

P
(
T̂ (M) = T

)
deg(T )α +

∑
|T |>n/2

P
(
Tn(M) = T

)
deg(T )α.

We can now estimate each of the three terms in the last two lines separately. First, we have∑
T

P
(
T̂ (M) = T

) deg(T )α|T |
n1/2 = n−1/2E(deg(T̂ (M))α|T̂ (M)|)

= n−1/2E
(

deg(T̂ (M))α E
(
|T̂ (M)|

∣∣∣ deg(T̂ (M))
))

.

Conditioning on deg(T̂ (M)) (which is the same as deg(T̂ ) for M ≥ 1), T̂ consists of a root, a
copy of T̂ and deg(T̂ )− 1 independent copies of T . Thus, by the estimates in (9), we have

E
(
|T̂ (M)|

∣∣∣ deg(T̂ (M))
)

= O(M2 deg(T̂ (M))).

Therefore,

E
(

deg(T̂ (M))α E
(
|T̂ (M)|

∣∣∣ deg(T̂ (M))
))
�M2E(deg(T̂ (M))α+1),

which yields∑
T

P
(
T̂ (M) = T

) deg(T )α |T |
n1/2 � n−1/2M2E(deg(T̂ (M))α+1). (39)

For the second term, we have∑
|T |>n/2

P
(
T̂ (M) = T

)
deg(T )α

=
∑
k≥1

kα P
(
|T̂ (M)| > n/2 and deg(T̂ ) = k

)
=
∑
k≥1

kα P
(

deg(T̂ ) = k
)
P
(
|T̂ (M)| > n/2

∣∣∣ deg(T̂ ) = k
)
.
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By Markov’s inequality and a similar argument as before, we obtain

P
(
|T̂ (M)| > n/2

∣∣∣ deg(T̂ ) = k
)
≤ 2E(|T̂ (M)| | deg(T̂ ) = k)

n
� kM2

n
.

Thus,∑
|T |>n/2

P
(
T̂ (M) = T

)
deg(T )α � n−1M2E(deg(T̂ )α+1). (40)

Finally, for the last term, we proceed in a similar fashion:∑
|T |>n/2

P
(
Tn(M) = T

)
deg(T )α

≤
∑
k≥1

kα P
(
|Tn(M)| > n/2 and deg(Tn) = k

)
≤
∑
k≥1

kα P (deg(Tn) = k)P
(
|Tn(M)| > n/2

∣∣∣ deg(Tn) = k
)
.

If Tn,1, Tn,2, . . . , Tn,k are the branches of Tn, given that deg(Tn) = k, then, condition-
ing on their sizes n1, n2, . . . , nk, they are k independent conditioned Galton-Watson trees
Tn1 , Tn2 , . . . , Tnk

. On the other hand, we have

|Tn(M)| = 1 +
k∑
i=1
|T (M−1)
n,i |.

Thus,

E
(
|T (M)
n | | deg(Tn) = k

)
= E

(
E
(
|T (M)
n |

∣∣∣n1, n2, · · · , nk
))

= 1 +
k∑
i=1

E
(
E
(
|T (M−1)
ni

|
∣∣∣n1, n2, · · · , nk

))
� kM2,

which again follows from the last estimate in (9). Now, Markov’s inequality yields

P
(
|Tn(M)| > n/2

∣∣∣ deg(Tn) = k
)
� n−1kM2.

Therefore, making use of (10) once again, we have∑
|T |>n/2

P
(
Tn(M) = T

)
deg(T )α

� n−1M2
∑
k≥1

kα+1 P (deg(Tn) = k) = n−1M2E(deg(Tn)α+1). (41)

Combining the estimates (39), (40), and (41), we finally arrive at the estimate

|Ef(Tn(M))− Ef(T̂ (M))| � n−1/2M2E(deg(T̂ )α+1) + n−1M2E(deg(Tn)α+1), (42)

which is exactly as we claimed in (13). J

Proof of Estimate (18). We decompose F (Tk) according to the depth d(v) of the nodes:

F (Tk) =
∑
v∈Tk

f(Tk,v) =
∑

d(v)<M

f(Tk,v) +
∑

d(v)≥M

f(Tk,v) =: S1 + S2. (43)
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We first observe that

E|f(Tk)S1| � E
(

deg(Tk)α
∑

d(v)<M

deg(Tk,v)α
)

= E
(

deg(Tk)α E
( ∑
d(v)<M

deg(Tk,v)α
∣∣∣ deg(Tk)

))
.

Next, for any positive integer m ≤M , we have

E
( ∑
d(v)<m

deg(Tk,v)α
∣∣∣ T (m−1)
k

)
=

∑
d(v)<m−1

deg(Tk,v)α +O (wm−1(Tk)) .

This is because the wm−1(Tk) fringe subtrees with roots at level m − 1, conditioned on
their sizes, are conditioned Galton-Watson trees and thus by (10) the root degrees are O(1).
Taking the expectation conditioned on deg(Tk), again by the same argument, and by the
estimate Ewm−1(Tk) = O(m) as in (8), we have

E
( ∑
d(v)<m

deg(Tk,v)α
∣∣∣ deg(Tk)

)
= E

( ∑
d(v)<m−1

deg(Tk,v)α
∣∣∣ deg(Tk)

)
+O(m deg(Tk)).

Thus, iterating from M , we obtain

E
( ∑
d(v)<M

deg(Tk,v)α
∣∣∣ deg(Tk)

)
� deg(Tk)α +M2 deg(Tk).

Therefore,

E|f(Tk)S1| � E(deg(Tk)2α) +M2E(deg(Tk)α+1). (44)

For S2, we condition on Tk(M) and the sizes of the fringe subtrees Tk,vi
, i = 1, . . . , wM (Tk),

induced by nodes at level M . Conditionally, each Tk,vi is distributed as Tni . From the
assumption that for every n we have Ef(Tn) = 0 it follows (see [6, (6.25)]) that EF (Tk,vi

) = 0
and therefore

E
(
S2 | Tk(M)

)
= 0. (45)

Let us define f̃M (Tk) := E(f(Tk) | Tk(M)). Note that

E(f̃M (Tk)S2) = E
(
E
(
f̃M (Tk)S2 | Tk(M)

))
= E

(
f̃M (Tk)E

(
S2 | Tk(M)

))
= 0.

Hence,

|E(f(Tk)S2)| = |E(S2(f(Tk)− f̃M (Tk)))| ≤ max |S2|E|f(Tk)− f̃M (Tk)|.

It is important to notice here that the expectation in the last term remains unchanged if f(T )
is shifted by µ|T | (this is the reason why we can assume that Ef(Tk) = 0 and f still satisfies
the conditions of Theorem 1). By the triangle inequality and the definition of f̃M (Tk), we
have

|f(Tk)− f̃M (Tk)| ≤ |f(Tk)− f(Tk(M))|+ |f(Tk(M))− f̃M (Tk)|

≤ |f(Tk)− f(Tk(M))|+ E(|f(Tk(M))− f(Tk)| | Tk(M)).

AofA 2018



33:16 Asymptotic Normality of Almost Local Func. in Conditioned Galton-Watson Trees

Taking the expectation again, and using our condition (4), we obtain

E|f(Tk)− f̃M (Tk)| ≤ 2pM .

Here, we are assuming that M = Mk. On the other hand, we have

|S2| ≤
∑

d(v)≥M

|f(Tk,v)| ≤
∑
v∈Tk

deg(Tk,v)α.

Since α is a nonnegative integer, the last term is bounded above by (
∑
v∈Tk

deg(Tk,v))α
(which is equal to (k − 1)α) except for α = 0. Hence, we get

max |S2| ≤ kmax{α,1}.

Therefore,

E(f(Tk)F (Tk))� kmax{α,1}pM + E(deg(Tk)2α) +M2E(deg(Tk)α+1),

as claimed. J

Proof of Lemma 5. We start with the first estimate. We notice that for T to be in BM ,
T (r) must not be equal to T0. So

P (T ∈ BM ) =
∑
T 6=T0

P
(
T (r) = T

)
P
(
T ∈ BM | T (r) = T

)
.

Conditioning on the event {T (r) = T}, the rest of T is a forest consisting of wr(T ) independent
copies of T . Hence, by the union bound, we obtain

P (T ∈ BM ) ≤
∑
T 6=T0

P
(
T (r) = T

)
wr(T )P (T ∈ BM−r)

= P (T ∈ BM−r)
∑
T 6=T0

P
(
T (r) = T

)
wr(T )

≤ P (T ∈ BM−r)
∑
T 6=T0

P (T = T )wr(T ).

If we let q =
∑
T 6=T0

P (T = T )wr(T ), then

P (T ∈ BM ) ≤ q P (T ∈ BM−r) . (46)

On the other hand, we know that

q + wr(T0)P (T = T0) =
∑
T

P (T = T )wr(T ) = Ewr(T ) = 1.

In view of (34), we deduce that q < 1. Therefore, iterating (46) yields

P (T ∈ BM ) ≤ qbM/rc ≤ cM1 , (47)

where c1 := q1/r < 1, proving the first estimate.
For the second estimate, we also begin in a similar fashion, i.e. we have

P
(
T̂ ∈ BM

)
=
∑
T 6=T0

P
(
T̂ (r) = T

)
P
(
T̂ ∈ BM | T̂ (r) = T

)
.
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Here, when conditioning on the event {T̂ (r) = T}, the rest of T̂ is a forest consisting of
wr(T )− 1 independent copies of T and a copy of T̂ . Thus,

P
(
T̂ ∈ BM

)
≤
∑
T 6=T0

P
(
T̂ (r) = T

)(
(wr(T )− 1)P (T ∈ BM−r) + P

(
T̂ ∈ BM−r

))
.

Using (47), letting q2 =
∑
T 6=T0

P
(
T̂ (r) = T

)
(wr(T )− 1) (which is finite since it is bounded

above by Ewr(T̂ ) < ∞), and noting that q ≥
∑
T 6=T0

P
(
T̂ (r) = T

)
by the definition of T̂ ,

we obtain

P
(
T̂ ∈ BM

)
� q2 c

M−r
1 + q P

(
T̂ ∈ BM−r

)
.

Iterating this, we have

P
(
T̂ ∈ BM

)
� qbM/rc + q2

bM/rc∑
j=1

qj−1 cM−jr1 .

Since we set q = cr1, the latter estimate becomes

P
(
T̂ ∈ BM

)
�M cM1 .

The proof is completed by choosing any constant c > 0 such that c1 < c < 1. J
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Local Limits of Large Galton–Watson Trees
Rerooted at a Random Vertex
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Abstract
We prove limit theorems describing the asymptotic behaviour of a typical vertex in random
simply generated trees as their sizes tends to infinity. In the standard case of a critical Galton–
Watson tree conditioned to be large, the limit is the invariant random sin-tree constructed by
Aldous (1991). Our main contribution lies in the condensation regime where vertices of macro-
scopic degree appear. Here we describe in complete generality the asymptotic local behaviour
from a random vertex up to its first ancestor with “large” degree. Beyond this distinguished
ancestor, different behaviours may occur, depending on the branching weights. In a subregime
of complete condensation, we obtain convergence toward a novel limit tree, that describes the
asymptotic shape of the vicinity of the full path from a random vertex to the root vertex. This
includes the important case where the offspring distribution follows a power law up to a factor
that varies slowly at infinity.
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1 Introduction

A Galton–Watson branching process is a classical stochastic model for population evolution.
The process starts with a single individual. All individuals reproduce asexually and inde-
pendently from each other according to the same offspring distribution. The genealogical
tree corresponding to such a process is called a Galton–Watson tree. We call such a tree
critical if the average number of children of a node equals 1, and subcritical if it is strictly
less than one. In this context we call the number of offspring of node its outdegree. The tree
obtained by conditioning the total population size to be equal to an integer n is a special
case of a simply generated tree Tn. That is, there is a fixed sequence (ωk)k≥0 of so-called
branching weights and the tree Tn assumes a plane tree T with n vertices with probability
proportional to the product

∏
v∈T ωd+

T
(v) of weights corresponding to the vertex outdegrees

d+
T (v). The present work aims to describe the vicinity of a typical vertex in Tn as n tends to

infinity. We refer the reader to Section 3 for a brief introduction of this model of random
trees and to Drmota’s book [7, Sec. 1.2.7] for a more detailed discussion.

The asymptotic shape of the vicinity of the fixed root vertex in random trees has
received considerable attention in recent literature. Jonsson and Stefánsson [11] described
a phase transition between an infinite spine case and a condensation setting for large
Galton–Watson trees with a power-law offspring distribution. A third regime for random

1 The author gratefully acknowledges support by the Swiss National Science Foundation grant number
200020_172515.
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simply generated trees with superexponential branching weights was studied by Janson,
Jonsson and Stefánsson [10]. The asymptotic shape of simply generated trees as their size
tends to infinity was later described in complete generality by Janson [9]. Abraham and
Delmas [3, 4] classified the limits of conditioned Galton–Watson trees as the total number
of vertices with outdegree in a given fixed set tends to infinity. Limits of Galton–Watson
trees having a large number of protected nodes were established by Abraham, Bouaziz,
and Delmas [1]. The asymptotic shape of conditioned multi-type Galton–Watson trees was
studied by Stephenson [14], Abraham, Delmas, and Guo [2], and Pénisson [13].

Clearly considerable effort and progress is being made in understanding local limits
of random trees that describe the asymptotic behaviour near the fixed root vertex, and
for random simply generated trees even a complete classification is available. As for the
question of the asymptotic shape of the vicinity of a random vertex, Aldous [5] studied
in his pioneering work asymptotic fringe distributions for general families of random trees.
For the case of critical Galton–Watson trees, he established, at least when the offspring
distribution has finite variance, convergence of the tree obtained by rerooting at a random
vertex. Janson [9, Thm. 7.12] described the asymptotic behaviour of the fringe subtree
rooted at a random vertex of a simply generated tree. Here a fringe subtree at a vertex v
refers to the subtree formed by v and all its descendants. A fringe subtree of some ancestor
of v is also called an extended fringe subtree. A recent work by Holmgren and Janson [8]
studied fringe subtrees and extended fringe subtrees of models of random trees that may
be described by the family tree of a Crump–Mode–Jagers branching process stopped at a
suitable time, including random recursive trees, preferential attachment trees, fragmentation
trees and m-ary search trees.

Janson [9] distinguishes three types of simply generated trees, numbered I, II and III,
and for each the local limit exhibits a distinguishing characteristic. See Subsection 3.1 for
a brief review of this notation. We use this terminology in our study of the vicinity of a
random vertex. In the type I setting, the simply generated tree Tn is distributed like a critical
Galton–Watson tree conditioned on having n vertices. Thus the height of a random vertex
in Tn is typically large and extended fringe trees are typically small. In this regime, the limit
is given by the random sin-tree constructed by Aldous [5]. Here the word sin refers to the
fact that, like the Kesten tree, this tree has almost surely up to finite initial segments only a
single infinite path. When the offspring distribution has finite variance, we may even verify
total variational convergence of the extended fringe subtree up to o(

√
n)-distant ancestors.

While trees in the type I regime usually have small maximum degree, the types II and III
are characterized by the appearance of vertices with large degree, which may be viewed as a
form of condensation. Specifically, type II simply generated trees correspond to subcritical
Galton–Watson trees with a heavy-tailed offspring distribution, and type III simply generated
trees have superexponential branching weights such that no equivalent conditioned Galton–
Watson tree exists. Our main contribution is in this condensation setting, where contrary to
the type I regime a random vertex may be near to the root, and extended fringe trees may
have size comparable to the total number of vertices of Tn, as we are likely to encounter an
ancestor with large degree. This is also a major difference to the settings addressed in the
mentioned works by Aldous [5] and Holmgren and Janson [8].

We set up a compact space that encodes rooted plane trees that are centered around
a second distinguished vertex, and establish several limit theorems. For arbitrary weight-
sequences having type II or III, we establish a limit that describes the vicinity of a random
vertex up to and including its first ancestor with large degree. Here large means having
outdegree bigger than a deterministic sequence that tends to infinity sufficiently slowly. The
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asymptotic shape of what lies beyond this ancestor appears to depend on the branching
weights. In a way, the vertex with large degree obstructs the view to older generations.

We describe a novel limit object T ∗ given by a random pointed plane tree, in which the
pointed vertex has random distance from its first ancestor with infinite degree, and this
ancestor again has a random number of ancestors with finite degree before the construction
stops. For arbitrary weight-sequences, the asymptotic probability for the vicinity of a
random vertex of Tn to have a specific shape that admits at most one single ancestor of large
degree, but allows ancestors with small degrees afterwards, coincides with the corresponding
probability for the tree T ∗. Our approach is based on a heavily modified depth-first-search
to explore the tree Tn. This yields information on how parts of a limit tree for the complete
vicinity, that is not truncated at the first large ancestor, must look, if the simply generated
tree Tn pointed at a random vertex converges weakly (along a subsequence). Note also that
the compactness of the space, in which we formulate our limits, guarantees the existence of
such subsequences. Thus the obstruction by the ancestor with large degree, that prevents us
from seeing older generations, is not a complete blockage. However, this is not yet sufficient
to deduce convergence in the space of pointed plane trees. In general, the tip of the backwards
growing spine, where the construction of T ∗ breaks off, may correspond to the root vertex of
Tn, but just as well to a second ancestor with large degree.

If the branching weights belong to a general regime of complete condensation, we manage
to surpass the blockage and deduce weak convergence toward T ∗. There are two main
steps involved. First, we show that convergence toward T ∗ is in fact equivalent to weak
convergence of the height of a random vertex in Tn to the height of the pointed vertex in the
tree T ∗, which in the type II regime is distributed like 1 plus the sum of two independent
identically distributed geometric random variables, and in the type III regime equals 1. In
this case, the root of T ∗ really corresponds to the root of Tn. The second step verifies this
property in the case of complete condensation, where the maximum degree of Tn has the
correct order.

In particular, Kortchemski’s central limit theorem for the maximum degree [12, Theorem
1] allows us to deduce convergence toward T ∗ in the general case of a subcritical Galton–
Watson tree conditioned on having n vertices, if the offspring distribution ξ satisfies P(ξ =
k) = f(k)k−α for a constant α > 2 and a function f that varies slowly at infinity. In the type
III regime where branching weights grow superexponentially fast, we consider the specific
case where ωk = k!α for α > 0. It is known that for these weights the maximum degree of Tn
has order n+ op(n), which may also be seen as complete condensation, see Janson, Jonsson,
and Stefánsson [10] and Janson [9, Example 19.36]. Thus here the tree T ∗ is also the weak
limit of the simply generated tree Tn pointed at a random vertex. There are, however, also
examples of superexponential branching weights that exhibit a more irregular behaviour [9,
Example 19.38], in which weak convergence towards T ∗ does not hold.

The present work is an extended abstract of [15], where detailed justifications of all results
are provided.

2 The space of pointed plane trees

2.1 Centering at a specified vertex
A plane tree is a rooted tree in which the offspring set of each vertex is endowed with a
linear order. (Such trees are also sometimes referred to as planted plane trees or corner
rooted plane trees, in order to distinguish them from related planar structures [7].) In the
present work we will also encounter plane trees that have no root, but whose vertex sets are
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endowed with a partial order that specifies the ancestry relations, and whose offspring sets
are endowed with a linear order that is not required to have a smallest element.

Given a plane tree T and a vertex v ∈ T we let d+
T (v) denote its outdegree, that is, the

number of offspring. Its height hT (v) is its distance from the root-vertex. Traditionally,
plane trees are encoded as subtrees of the Ulam–Harris tree. The Ulam–Harris tree U∞
is an infinite plane tree with vertex set V∞ = N(N) given by the space of finite sequences
of non-negative integers. Its root vertex is the unique sequence with length zero, and the
ordered offspring of a vertex v are the concatenations (v, i) for i ≥ 1. Thus a plane tree
is a subtree of the Ulam–Harris tree that contains its root, such that the offspring set of
each vertex is an initial segment of the offspring of the corresponding vertex in U∞. Here
we explicitly allow trees with infinitely many vertices, and vertices with countably infinite
outdegree. If all outdegrees of a plane tree are finite, we say that it is locally finite. The tree
is finite, if its total number of vertices is. We will usually let o denote the root-vertex of a
plane tree.

Subtrees of the Ulam–Harris tree are however not an adequate form to represent the
vicinity of a specified vertex in a plane tree. If this vertex does not coincide with the root of
the tree, then it has an ordered sequence of ancestors and possibly also siblings that lie to
the left and right of it. If we look at a random vertex of the simply generated Tn, then it
may happen that the number of siblings to the left and/or right of it is asymptotically large,
or that its distance from the root vertex is large. A sensible space in which we may describe
the limit of the vicinity of the random vertex in Tn must hence contain trees with a center
that may have infinitely many ancestors, such that each may have infinitely many siblings to
the left and/or right of it, including the center vertex itself.

For this reason, we describe the construction of an infinite tree U•∞ that is embedded in
the plane and has a spine (ui)i≥0 that grows "backwards". That is, we construct the tree
U•∞ by starting with an infinite path u0, u1, . . . ui of abstract vertices and define ui to be
a parent of ui−1 for all i ≥ 1. Additionally, any vertex ui with i ≥ 1 receives an infinite
number of vertices to the left and to the right of its distinguished offspring ui−1, and each of
these "non-centered" offspring vertices is the root of a copy of the Ulam–Harris tree U∞. To
conclude the construction, the start-vertex u0 of the spine also gets identified with the root
of a copy of U∞. We let V•∞ denote the vertex-set of the tree U•∞. The tree U•∞ is illustrated
in Figure 1.

Note that the vertex set V•∞ carries a natural partial order (given by the transitive hull
of the parent-child relations specified in the construction of U•∞), and the offspring set of
any given vertex carries a natural linear order. This allows us to continue using the terms
ancestor and offspring in this context.

A plane tree T together with a distinguished vertex v0 is called a pointed plane tree, and
may be interpreted in a canonical way as a subtree of U•∞. To do so, let v0, v1, . . . , vk denote
the path from v0 to the root of T . This way, any vertex vi for i ≥ 1 may have offspring
to the left and to the right of vi−1. Thus there is a unique order-preserving and outdegree
preserving embedding of T into U•∞ such that vi corresponds to ui for all 0 ≤ i ≤ k. Compare
with Figure 1.

2.2 Topological properties

Any plane tree T may be identified with its family of outdegrees (d+
T (v))v∈V∞ ∈ NV∞0 , where

we set N0 = N0 ∪ {∞}. Here we use the convention d+
T (v) = 0 if v ∈ V∞ is not a vertex of

the tree T . We endow N0 with the one-point compactification topology of the discrete space
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Figure 1 Embedding of a pointed plane tree into the tree U•∞. Each black blob represents a copy
of the Ulam–Harris tree.

N0. Thus plane trees are elements of the compact product space NV∞0 . It is not hard to see
that the subspace T ⊂ NV∞0 of all plane trees is closed.

Similarly, we may identify a pointed plane tree T • = (T, v0) with the corresponding
family of outdegrees (d+

T•(v))v∈V•∞ , such that d+
T•(v) ∈ N0 for v /∈ {u1, u2, . . .}, and d+

T•(ui) ∈
{∗} t (N0 × N0) for i ≥ 1. Here the two numbers represent the number of offspring vertices
to the left and right of the distinguished son ui−1, and the ∗-placeholder represents the fact
that the vertex does not belong to the tree.

Since N0 is a compact Polish space, so are the product N0 × N0 and the disjoint union
topology on {∗} t (N0 × N0). Hence the space of all families (d+(v))v∈V•∞ satisfying

d+(v) ∈
{
N0 for v /∈ {u1, u2, . . .}
{∗} t (N0 × N0) for v ∈ {u1, u2, . . .}

is the product of countably many compact Polish spaces, and hence also compact and Polish.
It is easy to verify that the subset T• of all elements that correspond to trees (that is,
connected acyclic graphs) is closed, and hence also a compact Polish space with respect to
the subspace topology.

3 Simply generated trees

We let w = (ωi)i≥0 denote a sequence of non-negative weights satisfying ω0 > 0 and ωk > 0
for at least one k ≥ 2. The weight of a plane tree T is defined by ω(T ) =

∏
v∈T ωd+

T
(v). The

simply generated tree Tn with n vertices gets drawn from the set of all n-vertex plane trees
with probability proportional to its weight. Galton–Watson trees conditioned on having a
fixed number of vertices are encompassed by this model of random plane trees. Of course,
the tree Tn is only well-defined if there is at least one plane tree with n vertices that has
positive weight. We set span(w) = gcd{i ≥ 0 | ωi > 0}. As argued in [9, Corollary 15.6],
n-sized trees with positive weight may only exist for n ≡ 1 mod span(w), and conversely,
they always exist if n is large enough and belongs to this congruence class. We tacitly only
consider such n throughout this paper.

3.1 Three types of weight-sequences
Janson [9, Chapter 8] distinguishes three types of weight-sequences. The classification is as
follows. Let ρφ denote the radius of convergence of the generating series φ(z) =

∑
k≥0 ωkz

k.

As argued in [9, Lemma 3.1], if ρφ > 0 then the function ψ(t) = φ′(t)t/φ(t) admits a limit
ν = limt↗ρφ ψ(t) ∈]0,∞] with the following properties. If ν ≥ 1, then there is a unique
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number τ with ψ(τ) = 1 and we say the weight sequence w has type I. If 0 < ν < 1, then
we set τ := ρφ <∞ and say w has type II. If ρφ = 0, we say w has type III and set ν = 0
and τ = 0. The constant ν has a natural interpretation as the supremum of the means of all
probability weight sequences equivalent to w. The inclined reader may see [9, Remark 4.3]
for details.

3.2 An associated Galton–Watson tree
We define the probability distribution (πk)k on N0 by πk = τkωk/φ(τ). The mean and
variance of the distribution (πk)k are given by µ = min(ν, 1) and σ2 = τψ′(τ) ≤ ∞. We let ξ
denote a random non-negative integer with density (πk)k, and T a Galton–Watson tree with
offspring distribution ξ. Note that if w has type III, then ξ = 0 almost surely and the tree T
consists of a single deterministic vertex. As detailed in [9, Section 4], if w has type I or II
then the simply generated tree Tn is distributed like the Galton–Watson tree T conditioned
on having n vertices.

4 The limit theorems

As discussed in Section 3 there is a probability distribution (πk)k associated with the weight
sequence w. Let ξ be distributed according to (πk)k and let T be a ξ-Galton–Watson tree.
Thus µ := E[ξ] ≤ 1. We may consider the size-biased random variable ξ̂ with values in N0
and distribution given by

P(ξ̂ = k) = kπk and P(ξ̂ =∞) = 1− µ.

For any tree T and any vertex v ∈ T we let f(T, v) denote the fringe-subtree of T at v. That
is, the maximal subtree of T that is rooted at the vertex v.

Throughout the following, we let v0 denote a uniformly at random selected vertex of
the simply generated plane tree Tn, that in the type I and II regime is distributed like the
Galton–Watson tree T conditioned on having n vertices.

4.1 The type I regime
If the weight-sequence w has type I, then ξ̂ <∞ almost surely, and we define the random
pointed tree T ∗ as follows. Let u0 be the root of an independent copy of the Galton–Watson
tree T . For each i ≥ 1, we let ui receive offspring according to an independent copy of ξ̂.
The vertex ui−1 gets identified with an uniformly at random chosen offspring of ui. All other
offspring vertices of ui become the root of an independent copy of the Galton–Watson tree
T . Compare with Figure 2.

I Theorem 1. If the weight-sequence w has type I, then

(Tn, v0) d−→T ∗

in the space T•.

Let T be a plane tree, v ∈ T a vertex, and k ≥ 0 an integer. If the vertex v has a kth
ancestor vk, then we may define the pointed plane tree Hk(T, v) as the fringe tree f(T, vk)
that is rooted at the vertex vk and pointed at the vertex v. Here we use the term vertex in
the graph-theoretic sense, since the coordinates of the vertex v as node of the Ulam–Harris
tree depend on whether we talk about v ∈ T or v ∈ f(T, vk). If the vertex v has height
hT (v) < k, we set Hk(T, v) = � for some placeholder symbol �.
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Figure 2 The limit tree T ∗ in the type I regime. Each triangle represents an independent copy
of the Galton–Watson tree T . For each i ≥ 1 the vertex ui receives offspring according to an
independent copy of ξ̂, and the location of ui−1 within that offspring set is chosen uniformly at
random.

Figure 3 The limit tree T ∗ in the complete condensation regime. The vertex ui1 is the only one
having infinite degree, and each triangle represents an independent copy of the Galton–Watson tree
T .

I Theorem 2. Suppose that weight-sequence has type I and the offspring distribution ξ

has finite variance. Let kn be an arbitrary sequence of non-negative integers that satisfies
kn/
√
n→ 0. Then

dTV(Hkn(Tn, v0), Hkn(T ∗, u0))→ 0

as n becomes large.

Here we use the redundant notation (T ∗, u0) to emphasize that the tree T ∗ is marked at
the vertex u0.

4.2 Complete condensation in the type II regime
If the weight-sequence w has type II or III, then we construct T ∗ similarly as in the type I
case, letting u0 become the root of an independent copy of the Galton–Watson tree T , and
letting for i = 1, 2, . . . the vertex ui receives offspring according to an independent copy ξ̂i of
ξ̂, where a uniformly at random chosen son gets identified with ui−1 (specifying the number
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of siblings to the left and right of ui−1) and the rest become roots of independent copies of
T . We proceed in this way for i = 1, 2, . . . until it occurs for the first time i1 that ξ̂i1 =∞.
When ξ̂1, . . . , ξ̂i1−1 <∞ and ξ̂i1 =∞, then ui1 receives infinitely many offspring to the left
and right of its son ui1−1. Each of these vertices (except ui1−1 of course) gets identified
with an independent copy of the Galton–Watson tree T . We then proceed as before for
i = i1, i1 + 1, . . ., such that ui receives offspring according to an independent copy ξ̂i of ξ̂,
with a random son being identified with ui−1 and the rest becoming roots of independent
copies of T , until it happens for the second time i2 that ξ̂i2 =∞. When ξ̂i1 =∞ = ξ̂i2 for
i1 < i2 and ξ̂i < ∞ for all i < i2 with i 6= i1, then we stop the construction. The spine of
the resulting tree is then given by the ordered path u0, . . . , ui2−1. Compare with Figure 3.

Note that this construction also works in the type I regime and yields the tree T ∗ as
defined in Section 4.1, since w having type I implies that almost surely ξ̂i <∞ for all i ≥ 1.

I Theorem 3. Suppose that the weight-sequence w has type II. If the maximum degree ∆(Tn)
satisfies ∆(Tn) = (1− µ)n+ op(n), then it holds that

(Tn, v0) d−→T ∗

in the space T•. In particular, this is the case when there is a constant α > 2 and a slowly
varying function f such that for all k P(ξ = k) = f(k)k−α.

Here we make use of a result by Kortchemski [12, Theorem 1] who established a central
limit theorem for the maximum degree, that ensures that ∆(Tn) has the correct order if
the offspring distribution ξ has a power law up to a slowly varying factor. There are also
examples of offspring distributions with a more irregular behaviour. Janson [9, Example
19.37] constructed a weight sequence such that along a subsequence n = nk it holds that
∆(Tn) = op(n), and along another subsequence several vertices with degree comparable to n
exist. This may be seen as incomplete condensation.

The proof idea of Theorem 3 is to deduce the asymptotic distribution of the height hTn(v0)
by localizing the vertex of Tn having maximum degree at a position, that was also given in
[12, Theorem 2] using results by Armendáriz and Loulakis [6] concerning conditioned random
walks having a subexponential jump distribution. To do so, we employ results of Janson [9,
Chapter 20] that (partially) use

∆(Tn) = (1− µ)n+ op(n),

but do not assume the offspring distribution to be subexponential. The following main
lemma, which characterizes convergence toward the tree T ∗ in terms of weak convergence of
the height hTn(v0), then finalizes the proof of Theorem 3.

I Lemma 4. If the weight-sequence w has type II or III, then the following three conditions
are equivalent.
1. (Tn, v0) d−→T ∗ in T•.
2. hTn(v0) d−→ hT ∗(u0).
3. lim supn→∞ P(hTn(v0) ≥ k) ≤ µk + k(1− µ)µk−1 for all k ≥ 1.
Note that hT ∗(u0) is distributed like 1 plus the sum of two independent identically distributed
geometric random variables that assume an integer i with probability µi(1− µ).

4.3 Complete condensation in the type III regime
If the weight-sequence w has type III, then it holds that µ = 0 and almost surely ξ = 0 and
ξ̂ =∞. Here the Galton–Watson tree T is always equal to a single point. Hence the tree
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T ∗ is obtained by letting u1 have infinitely many offspring to the left and right of u0, all of
which (including u0) are leaves.

I Proposition 5. If the weight-sequence w has type III, then the following claims are
equivalent.
1. (Tn, v0) d−→T ∗ in T•.
2. hTn(v0) p−→ 1.
3. The maximum degree ∆(Tn) satisfies ∆(Tn) = n+ op(n).
A general class of weight-sequences that demonstrate this behaviour is given by ωk = k!α with
α > 0 a constant.

Here we use that if ωk = k!α with α > 0 a constant, then it is known [9, page 226, Example
19.36], that the largest degree in Tn has size n+ op(n). But there are also other examples
that exhibit a more irregular behaviour. In [9, page 227, Example 19.38] a weight-sequence
is constructed such that along a subsequence n = nk, for each j ≥ 1 the jth largest degree
Y(j) in Tnk satisfies Y(j) = 2−jn with high probability. This may be seen as incomplete
condensation. It is clear that in this case the limit of (Tn, v0), if it exists at all, must have a
different shape than T ∗.

4.4 Large nodes and truncated limits
Suppose that the weight sequences w has type II or type III. The limit theorems in Subsec-
tions 4.2 and 4.3 work in settings of complete condensation, where the maximum degree of
the tree Tn satisfies

∆(Tn) = (1− µ)n+ op(n).

If we content ourselves with the vicinity of the vertex v0 up to and including the first vertex
having large degree, we may obtain a limit theorem in complete generality. We are also
going to construct a coupling to demonstrate how the vertex with infinite degree in the limit
corresponds to a vertex with large degree in the simply generated tree Tn.

Janson [9, Lemma 19.32] showed that there is a deterministic sequence Ωn that tends to
infinity sufficiently slowly, such that for any sequence Kn →∞ with Kn ≤ Ωn it holds that
the numbers Nk of vertices with outdegree k in the tree Tn satisfy∑

k≤Kn

kNk = µn+ op(n) and
∑
k>Kn

kNk = (1− µ)n+ op(n) (1)

The sequence Ωn may be replaced by any sequence that tends to infinity more slowly. Hence
we may assume without loss of generality that Ωn additionally satisfies Ωn = o(n). Let D̃n

denote a random positive integer, that is independent from all previously considered random
variables, with distribution given by D̃n

d= (d+
Tn(o) | d+

Tn(o) > Ωn). Here we let o denote the
root-vertex of Tn. That is, D̃n is distributed like the root-degree conditioned to be "large".
We form the random tree T̄ ∗n in a similar manner as the random tree T ∗. The vertex u0
becomes the root of an independent copy of the Galton–Watson tree T . For i = 1, 2, . . .
the vertex ui receives offspring according to independent copy ξ̂i of ξ̂, where a randomly
chosen son gets identified with ui−1 and the rest become roots of independent copies of T .
We proceed in this way for i = 1, 2, . . . until it occurs that ξ̂i =∞. When ξ̂1, . . . , ξ̂i−1 <∞
and ξ̂i =∞, then ui receives D̃n offspring vertices, such that a uniformly at random chosen
one gets identified with ui−1, and the rest get identified with the roots of independent copies
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of T . Rather than continuing with the spine as in the construction of the tree T ∗, we stop
at this point, so that ui becomes the root of this tree.

Given a pointed tree T • = (T, v) and an ancestor a of v we may consider the fringe
subtree of T at a as pointed at the vertex v. Let v0 denote a uniformly at random selected
vertex of the simply generated tree Tn. Let H(Tn, v0,Ωn) denote the pointed fringe subtree
of (Tn, v0) at the youngest ancestor of v0 that has outdegree bigger than Ωn. If no such
vertex exists (which is unlikely to happen, as we are going to verify), set H(Tn, v0,Ωn) = �
for some fixed placeholder value �.

I Theorem 6. Suppose that the weight sequence w has type II or III. Let T̄ ∗ denote the
pointed fringe subtree of the tree T ∗ at its unique vertex with infinite degree. Then it holds
that

H(Tn, v0,Ωn) d−→T̄ ∗.

in the space T•.

The strength of this theorem is its generality, as we make no additional assumptions on
the weight-sequence at all. It is suitable for applications where it is not necessary to look
behind the large vertex.

We may still improve upon this. For each n, let T̄ ∗n be constructed from T̄ ∗ by pruning
at its root vertex such that its outdegree becomes D̃n. Of course we have to select one of the
D̃n ways of how much we prune from the left and right so that the total outdegree becomes
D̃n, and we choose an option uniformly at random.

For each integer m ≥ 0 we let V̄ [m] ⊂ V•∞ denote the vertex set of the tree obtained
from U•∞ by deleting all vertices with distance larger than m from the center vertex u0 and
pruning so that the vertices ui, 1 ≤ i ≤ m have outdegree (m,m) and the remaining vertices
all have outdegree equal to m. The topology on the subspace T•lf ⊂ T• of locally finite trees
is induced by the metric

dT•lf (T
•
1 , T

•
2 ) = 1/ sup{m ≥ 0 | d+

T•1
(v) = d+

T•2
(v) for all v ∈ V̄ [m]}.

This can be verified using the fact that a sequence (Tn)n in T• converges towards an element
T ∈ T• if and only if d+

Tn
(v) converges towards d+

T (v) for each v ∈ V•∞.

I Theorem 7. Suppose that the weight sequence w has type II or III. For any finite set of
vertices x1, . . . , xr ∈ V•∞ it holds that

dTV((d+
H(Tn,v0,Ωn)(xi))1≤i≤r, (d+

T̄ ∗n
(xi))1≤i≤r)→ 0.

Equivalently, there is a coupling of (Tn, v0) and T̄ ∗n such that dT•lf (H(Tn, v0,Ωn), T̄ ∗n ) p−→ 0.

In Equation (20.4) and the subsequent paragraph of [9], Janson also argues that if

∆(Tn) = (1− µ)n+ op(n), (2)

then dTV(∆(Tn), D̃n)→ 0. Hence in the complete condensation regime where (2) is assumed
to hold, we may choose D̃n in the coupling of Theorem 7 such that D̃n = ∆(Tn) with
probability tending to 1 as n becomes large. This yields the asymptotic location of the vertex
with maximum degree with respect to the random vertex v0.
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The Depoissonisation Quintet:
Rice–Poisson–Mellin–Newton–Laplace
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Abstract
This paper is devoted to the Depoissonisation process which is central in various analyses of
the AofA domain. We first recall in Section 1 the two possible paths that may be used in this
process, namely the Depoissonisation path and the Rice path. The two paths are rarely described
for themselves in the literature, and general methodological results are often difficult to isolate
amongst particular results that are more directed towards various applications. The main results
for the Depoissonisation path are scattered in at least five papers, with a chronological order
which does not correspond to the logical order of the method. The Rice path is also almost
always presented with a strong focus towards possible applications. It is often very easy to apply,
but it needs a tameness condition, which appears a priori to be quite restrictive, and is not deeply
studied in the literature. This explains why the Rice path is very often undervalued.

Second, the two paths are not precisely compared, and the situation creates various “feelings”:
some people see the tools that are used in the two paths as quite different, and strongly prefer
one of the two paths; some others think the two paths are almost the same, with just a change
of vocabulary. It is thus useful to compare the two paths and the tools they use. This will be
done in Sections 2 and 3. We also “follow” this comparison on a precise problem, related to the
analysis of tries, introduced in Section 1.7.

The paper also exhibits in Section 4 a new framework, of practical use, where the tameness
condition of Rice path is proven to hold. This approach, perhaps of independent interest, deals
with the shifting of sequences and then the inverse Laplace transform, which does not seem of
classical use in this context. It performs very simple computations. This adds a new method to
the Depoissonisation context and explains the title of the paper. We then conclude that the Rice
path is both of easy and practical use: even though (much?) less general than the Depoissonisation
path, it is easier to apply.
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35:2 The Depoissonisation Quintet

1 General framework

This section first recalls the two probabilistic models, the Bernoulli model and the Poisson
model, together with the two main objects attached to a sequence f : the classical Poisson
transform Pf , and another sequence, denoted as Π[f ] and called here the Poisson sequence.
We insist on the involutive characteristic of the mapping Π and introduce two new notions,
shift and canonical sequences. After the description of the two paths of interest, we present
analyses on tries which strongly motivate the work, and will be performed within each path.

1.1 Probabilistic settings
Many algorithms deal with inputs that are finite sequences of data. We give some examples:
(a) for text algorithms, data are words, and inputs are finite sequences of words; (b) for
geometric algorithms, data are points, and inputs are finite sequences of points; (c) for a
source, data are symbols, and inputs are finite sequences of symbols, namely finite words.
The cardinality of the input sequence is often chosen as the input size, and, as usual, one is
interested in the asymptotic behaviour of the algorithm for large input size.

The probabilistic framework is as follows: Each data (word or point) is produced along a
distribution, and the set of data is thus a probabilistic space (X ,P). Very often, the data
are independently chosen with the same distribution and the set (Xn,P[n]) is the product of
order n of the space (X ,P). The space of all the inputs is thus the set X ? :=

∑
n≥0 Xn of

finite sequences x of elements of X , and there are two main probabilistic models:
(i) The Bernoulli model Bn (more natural in algorithmics), where the cardinality N(x) of

x is fixed and equal to n (then tends to ∞);
(ii) The Poisson model Pz of parameter z, where the cardinality N(x) is a random variable

that follows a Poisson law of parameter z, where the fixed parameter z tends also to ∞,

P[N(x) = n] = e−z
zn

n! .

This model has very nice probabilistic properties, notably properties of independence.

1.2 The Poisson transform and the Poisson sequence
There is a variable (or a cost) R : X ? → N which describes the behaviour of the algorithm on
the input; for instance, for x ∈ X ?, R(x) is the path length of a tree (trie or dst) built on the
sequence x := (x1, . . . , xn) of words xi. Our final aim is the analysis of R in the Bernoulli
model Bn, i.e., the asymptotic study of the sequence f : n 7→ f(n), where f(n) := E[n][R]
is the expectation of R in the model Bn. We begin with the easier Poisson model Pz, and
study the expectation Ez[R] in the model Pz that satisfies

Ez[R] =
∑
n≥0

Ez[R |N = n]Pz[N = n] =
∑
n≥0

E[n][R]Pz[N = n] = e−z
∑
n≥0

f(n)z
n

n! .

This leads us to the Poisson transform Pf of the sequence f : n 7→ f(n), that is written as
an exponential generating function (with “signs”)1 and thus defines another sequence p,

Pf (z) := e−z
∑
n≥0

f(n)z
n

n! =
∑
k≥0

(−1)k z
k

k! p(k) , with p(k) := (−1)kk![zk]Pf (z) . (1)

1 The Poisson transform is often called the Poisson generating function. The signs are added in order to
get an involutive formula in (2).
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I Definition 1. Consider a sequence f : n 7→ f(n). Then,
(a) the series Pf defined in (1) is the Poisson transform of the sequence f ;
(b) the sequence p : k 7→ p(k) defined in (1) is the Poisson sequence of the sequence f .

The following holds:

I Lemma 2. Consider a cost R defined on X ?, its expectation f(n) in the model Bn. Then,
(a) its expectation in the model Pz is the Poisson transform Pf (z);
(b) there are binomial relations between the sequences f and p, namely

p(n) =
n∑
k=0

(−1)k
(
n

k

)
f(k), and f(n) =

n∑
k=0

(−1)k
(
n

k

)
p(k) ; (2)

(c) the map Π which associates with the sequence f the sequence p is involutive.

1.3 Description of the two paths.
We only deal here with a sequence f of polynomial growth, for which the Poisson transform
z 7→ Pf (z) is entire. The sequence f is often given in an implicit way, and we assume that
we have some knowledge on Pf (z), which may be of two different types
(a) about the Poisson transform Pf (z) itself,
(b) about its coefficients, namely the sequence Π[f ].
The main question is now: Is it possible to return to the initial sequence f and obtain some
knowledge about its asymptotics? There are two main return paths, one for each framework:
the Depoissonisation path for (a), and the Rice path for (b). We first describe in Section 1.4
the classical toolbox, then, in Section 1.5, a new useful tool. As we aim to provide a precise
comparison between the two paths, we perform a kind of “test” on a particular instance
which arises when analysing the trie structure and is introduced in Sections 1.6 and 1.7.

1.4 Toolbox and main definitions
This section gathers various definitions about domains of the plane, behaviours of functions.
Itthen presents the Mellin transform.

Cones and vertical strips. There are two important types of domains of the complex plane
we deal with.
(i) The cones built on the real line R+, with two possible definitions,

C(a, θ) := {z | | arg(z − a)| < θ} for θ < π

Ĉ(a, γ) = {z | <(z − a) > γ|z − a|} for |γ| ≤ 1 ,

related by the relation Ĉ(a, cos θ) = C(a, θ). When a = 0, it is omitted.
(ii) The vertical strips, or halfplanes: S(a, b) := {z | a < <z < b}, S(a) := {z | <z > a} .

Polynomial growth. This notion plays a fundamental role: A function s 7→ $(s) defined
in an unbounded domain Ω ⊂ C is said to be of polynomial growth if there exists r for
which the estimate |$(s)| = O(|s|r) holds as s→∞ on Ω. When Ω ⊂ S(a, b), this means:
|$(s)| = O(|=s|r); when Ω ⊂ C(θ) with θ < π/2, this means: |$(s)| = O(|<s|r);
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Tameness. A function s 7→ $(s) is tame on <s > c when it is analytic and of polynomial
growth there. This notion is extended when $(s) stops being analytic on <s = c. We will
say that $ is tame at s = c if it is meromorphic and of polynomial growth in a larger region
R on the left of the line <s = c delimited by a frontier curve F . (see [4] and the Annex).

Mellin transform. The Mellin transform of a function Q defined in [0,+∞] is defined as

Q?(s) :=
∫ +∞

0
Q(u)us−1du .

The Mellin transform plays a central role in each of the two paths (see its main properties in
the survey paper [7]). In particular, the transform has a nice behaviour on harmonic sums:

Q(z) =
∑
k

g(µkz) =⇒ Q?(s) =
(∑

k

µ−sk

)
g?(s) . (3)

Moreover, the following lemma2 proves that the function Γ(s) and its derivatives Γ(m)(s) are
exponentially small along vertical lines (when |=(s)| → ∞).

I Lemma 3 (Exponential Smallness Lemma, [7]). If, inside the closure of the cone C(θ) with
θ > 0, one has Q(z) = O(|z|−α) as z → 0 and Q(z) = O(|z|−β as |z| → ∞, then the estimate
Q∗(s) = O(exp[−θ|=(s)|]) uniformly holds in the vertical strip S(α, β).

1.5 A first new tool: Shift and canonical sequences
The notions that are presented here are not introduced in this way in the literature, and,
in particular, the notion of canonical sequence appears to be new (and useful), notably in
Section 4.

I Definition 4. Consider a non zero real sequence n 7→ f(n).
(a) Its degree deg(f) and its valuation val(f) are defined as

deg(f) := inf{c | f(k) = O(kc)} val(f) := min{k | f(k) 6= 0} .

A sequence f with finite degree is said to be of polynomial growth.
(b) A sequence n 7→ f(n) satisfies the Valuation-Degree Condition (VD), iff val(f) >

deg(f) + 1.
(c) It is reduced if it satisfies val(f) = 0 and deg(f) < −1.

The VD Condition is essential in the Rice path. As we are (only) interested in the
asymptotics of the sequence f , the VD condition is easy to ensure, as we now show: With a
sequence F of polynomial growth, we associate the integer

σ(F ) := 1 (if deg(F ) < 0), σ(F ) := 2 + bdeg(F )c (if deg(F ) ≥ 0) , (4)

that satisfies the inequality σ(F ) > deg(F )+1; we only modify the first terms of the sequence
F : we put zeroes for indices k < σ(F ) together with one 1 for k = σ(F ), and obtain a new
sequence τ(F ) of valuation σ(F ) that keeps the same asymptotics as the initial sequence F
and now satisfies the VD condition.

We will need here to deal with the stronger notion of reduced sequences, and we now
explain how to associate with a sequence F , and in a canonical way, a reduced sequence.

2 It is called the Exponential Smallness Lemma in the paper [13], and we keep the same terminology.
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I Lemma 5. Consider the shifting map T which associates with a sequence f the sequence
T (f) defined, for any n ≥ 0 as

T [f ](n) = f(n+ 1)
n+ 1 and thus, for m ≥ 1, as Tm[f ](n) = f(n+m)

(n+ 1) . . . (n+m) .

For m ≥ 1, the inverse mapping T−m associates with a sequence g the sequence f defined as
f(n) = n(n− 1) . . . (n−m+ 1) g(n−m), for n ≥ m.

(a) The shifting Tm anti-commutes with the involution Π, namely Tm ◦Π = (−1)mΠ ◦ Tm.
(b) The sequence ρ(F ) := Tσ(F )(τ(F )) associated with F is reduced, with a degree equal to

deg(F )− σ(F ). It is called the canonical sequence associated to F .

Proof. Start with the sequence f with valuation `. Then the Poisson transform Pf (z) has
itself valuation ` and is written as

Pf (z) = z`Q(z) with Q(z) = e−z
∑
k≥0

g(k) z
k

k! =
∑
k≥0

(−1)k z
k

k! q(k) . (5)

Then, the two sequences g and q := Π[g] associated with f via Eqn (5) are expressed with
the iterate of T of order `, namely g = T `[f ], q := Π[g] = (−1)`T `[Π[f ]]. J

In the sequel, it will be then sufficient to deal with the canonical sequence ρ(F ), and its
Poisson sequence Π(ρ(F )) = (−1)σ(F )ρ(Π(F )). Then, the results on the asymptotics on ρ(F )
will be easily transfered on the initial Poisson pair of F with Properties (a) and (b).

Example. In Section 1.6, we will deal with the following sequences F0, F1, F2, all of valuation
2, which satisfy moreover F0(k) = 1, F1(k) = k, F2(k) = k log k, for k ≥ 2 . Their
canonical sequences are defined for k ≥ 0, as

f0(k) = f1(k) = 1
(k + 1)(k + 2) , f2(k) = log(k + 3)

(k + 1)(k + 2) .

1.6 An instance of the context. Probabilistic analysis of tries
A source S is a probabilistic process which produces infinite words on the (finite) alphabet
Σ := [0..r − 1]. A trie is a tree structure, used as a dictionary, which compares words via
their prefixes. Given a finite sequence x of (infinite) words emitted by the source S, the
trie T (x) built on the sequence3 x is defined recursively by the following three rules which
involve the cardinality N(x) of the sequence x:
(a) If N(x) = 0, then T (x) = ∅
(b) If N(x) = 1, with x = (x), then T (x) is a leaf labeled by x.
(c) If N(x) ≥ 2, then T (x) is formed with an internal node and r subtries equal to

T (x〈0〉), . . . , T (x〈r−1〉) ,

where x〈σ〉 denotes the sequence consisting of words of x which begin with symbol σ, stripped
of their initial symbol σ. If the set x〈σ〉 is non empty, the edge which links the subtrie
T (x〈σ〉) to the internal node is labelled with the symbol σ.

3 The trie depends only on the underlying set {x1, x2, . . . , xn}.
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Iterating the process, we consider, for a finite prefix w, the sequence x〈w〉 consisting
of words of x which begin with prefix w, stripped of their initial prefix w, and denote by
Nw(x) := N(x〈w〉) the cardinality of such a sequence. Then, the internal nodes are used for
directing the search: they are labelled by prefixes w with Nw(x) ≥ 2. The leaves contain
suffixes of x, and there are as many leaves as words in x.

Trie analysis aims at describing the average shape of a trie. We focus here on additive
parameters, whose (recursive) definition exactly copies the (recursive) definition of the trie.
With a sequence f : N→ R – called a toll – which satisfies f(0) = f(1) = 0 and f(k) ≥ 0 for
k ≥ 2, we associate a random variable R defined on the set X ? as follows:
(ab) If N(x) ≤ 1, then R(x) = 0;
(c) if N(x) ≥ 2, then R(x) = f(N(x)) +

∑
σ∈Σ

R(x〈σ〉).

Iterating the recursion leads to the expression R(x) :=
∑

w∈Σ?

f(Nw(x)) . (6)

The probabilistic properties of R will depend both on the toll f and the source S:
– The probabilistic properties of the source S are encapsulated in the Dirichlet series

Λ(s) of the source, introduced in [19], and defined with the fundamental probabilities πw,

Λ(s) :=
∑

w∈Σ?

πsw , with πw := P[a word emitted by S begins with the prefix w] . (7)

The series Λ(s) mainly intervenes via its behaviour near s = 1. We consider here a tame
source, for which s 7→ Λ(s) is tame at s = 1, with a simple pole at s = 1 whose residue equals
1/h(S) where h(S) is the entropy of the source. (See [4] about tameness of sources.)

– Here are some instances of natural tolls : the size is associated to the toll f(k) = 1 (for
k ≥ 2) and the path length to the toll f(k) = k (for k ≥ 2). A version of the QuickSort
algorithm on words [4] leads to the sorting toll f(k) = k log k (for k ≥ 2).

We focus here on this last toll, and are interested in the analysis of the associated cost R.
The analysis was already performed in [4] with Depoissonisation path (a). We would have
wished there to use the Rice path (b) (as we got used in our previous analyses) but we did
not succeed. This failure was a strong motivation for the present study, and we now present
here two proofs for the following result, each of them using one path.

I Theorem 6. Consider a trie built on n words emitted by a tame source S. Then the mean
value of parameter R associated with the sorting toll f satisfies in the Bernoulli model Bn

r(n) ∼ 1
2h(S) n log2 n (n→∞) .

1.7 Main principles of trie analysis
We begin to deal with the Poisson model, that presents the following advantage: In the
model Pz, the cardinality Nw which appears in Eqn (6) follows a Poisson law of rate z πw

that involves the fundamental probability πw defined in (7). We then adapt the general
framework defined in Subsection 1.3, both for the initial sequence f and for the sequence r,
and consider the two paths:

– Path (a) deals with the Poisson transforms Pr(z) and Pf (z); averaging Relation (6) in
the model Pz entails a relation between the two Poisson transforms

Pr(z) =
∑

w∈Σ?

Ez[f(Nw)] =
∑

w∈Σ?

Pf (z πw). (8)
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Then, the function Pr(z) writes as a harmonic sum, and, with (3), its Mellin transform P ∗r (s)
factorises and involves the Λ function defined in (7), namely P ∗r (s) = Λ(−s) · P ∗f (s) .

– Path (b) deals with the Poisson sequences q = Π[r] and p = Π[f ]. Then, Relation (8)
entails the equality which also involves the Λ function, namely: q(n) = Λ(n) p(n) for n ≥ 2.

2 The Depoissonization path

We first provide a general description of the path; then, we apply it to the analysis of tries
and obtain a first proof of Theorem 6.

2.1 General description
We first describe the main steps of the path in an informal way.

Main steps. The Depoissonization path deals with the Poisson transform Pf (z):
(a) It compares f(n) and Pf (n) via the Poisson–Charlier expansion.
(b) It uses the tameness of the Mellin transform P ?f (s) for the asymptotics of Pf (n).
(c) Under Conditions (J S) on the Poisson transform Pf (z), the Poisson-Charlier expansion

may be truncated and provides the asymptotic of f(n) with a good remainder.
(d) Moreover, there exists a Condition (DP) on the input sequence f under which the

Conditions (JS) hold.
We then describe more precisely the main objects that are involved.

The Poisson-Charlier expansion. Using the Taylor expansion of Pf (z) at z = n, the term
f(n) admits an (infinite) expansion,

f(n) := n![zn] (ezP (z)) =
∑
j≥0

P (j)(n)
j! τj(n),

where the coefficient τj(n) := n![zn]
(
(z − n)jez

)
is a polynomial in n of degree bj/2c, closely

related to the (classical) Charlier polynomial.

Conditions (JS). An entire function P (z) satisfies the Conditions JS(α, β) if there exist
θ ∈]0, π/2[, and δ < 1 for which one has, for z →∞:

(I) Inside cone C(θ), one has |P (z)| = O
(
|z|α logβ(1 + |z|)

)
.

(O) Outside cone C(θ), one has |P (z)ez| = O
(
eδ|z|)

)
.

Condition (DP). There exists an analytic lifting ϕ for the sequence f which is of polynomial
growth inside horizontal cones.

We now state the two main results of the Depoissonisation path.

I Theorem 7 ([15, 13]). If the Poisson transform Pf (z) satisfies the JS(α, β) conditions,
then the first terms of the Poisson-Charlier expansion provide the beginning of the asymptotic
expansion of f(n). More precisely, for any k > 0, one has:

f(n) =
∑

0≤j<2k
P (j)(n) τj(n)

j! +O(nα−k logβ n) .
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I Theorem 8 ([16, 14]). The two conditions are equivalent :
(i) the sequence f satisfies the Condition (DP);
(ii) the Poisson transform Pf satisfies the Conditions (JS).

Bibliographic references. The Depoissonisation path is based on five main contributions,
that are scattered in the literature. The path, together with its name, was systemized
in 1998 by Jacquet and Szpankowski in [15]. They compare the asymptotics of the two
sequences, the sequence f(n) and the sequence Pf (n). There were previous results of the
same vein, notably a paper due to Hayman [11] in 1956, but they were not known by the
AofA community. Jacquet and Szpankowski did not use the Poisson-Charlier expansion
which was later introduced in 2010 into the AofA domain by Hwang, Fuchs and Zacharovas
in [13]. Jacquet and Szpankowski also introduced conditions on the Poisson transform that
we call (following the proposal of [13]) the Conditions (JS). In [15], the authors prove that,
under Conditions (JS), it is possible to compare the two sequences Pf (n) and f(n). Later
on, in 2010, using the Poisson Charlier expansion, the authors of [13] obtain a direct and
natural proof of this comparison, with a more explicit remainder term. Finally, in two other
papers, Jacquet and Szpankowski show that the two conditions – Condition (DP) on the
sequence f and Conditions (JS) on Pf – are equivalent. The paper [16] deals with the
necessary condition whereas the very recent paper [14] deals with the sufficient condition.

2.2 Application to the sorting toll in tries. First proof of Theorem 6.
This section ends with an example of the Depoissonisation path in the study of trie parameters.
The Mellin transform of Pf (z) satisfies,

P ∗f (s) =
∑
k≥2

f(k)
k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥2

f(k)
k! Γ(k + s) =

∑
k≥2

f(k)
k

Γ(k + s)
Γ(k) .

The ratio of Gamma Functions can be estimated with the Stirling Formula,

Γ(k + s)
Γ(k) = (k + s)k+s

kk
e−k−s

e−k

√
k + s

k

[
1 +O

(
1
k

)]
= ks

[
1 +O

(
|s|
k

)]
, (9)

with a O-term uniform in k. Then, the Mellin transform of Pf satisfies, for f(k) = k log k,

P ∗f (s) =
∑
k≥2

ks log k
[
1 +O

(
|s|
k

)]
= −ζ ′(−s) +H1(s), H1(s) analytic on <s < 0. (10)

Then P ∗f (s) has a pole at s = −1 of order 2, and, together with the tameness of Λ(s) at
s = 1, this entails the following singular expressions for P ∗f (s) and P ∗r (s) at s = −1,

P ∗f (s) � 1
(s+ 1)2 , P ∗r (s) � 1

h(S)
1

(s+ 1)3 .

The tamenesses of P ∗f (s) and Λ(−s) at s = −1 are enough to deduce, using standard Mellin
inverse transform [7], the estimates, for z →∞,

Pf (z) = z log z (1 + o(1)), Pr(z) = 1
2h(S)z log2 z (1 + o(1)) . (11)
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We now return to the Bernoulli model; we prove that Pr(z) satisfies the Conditions (JS).
This will entail the estimate r(n) ∼ Pr(n) and end the proof. Assertion (I) is deduced from
(11) in some cone C(θ1). For Assertion (O), we write Pf (z) as

Pf (z) = z2e−zG(z) with G(z) =
∑
k=0

zk

k! g(k) and g(k) := 1
k + 1log(k + 2). (12)

As the sequence g := T 2[f ] satisfies Condition (DP), Theorem 8 entails good behaviour for
G(z) outside horizontal cones. Namely, for some θ2, and for all linear cones C(θ) with θ < θ2,
there exist δ < 1 and A > 0 such that the exponential generating function G(z) of g satisfies

z 6∈ C(θ) =⇒ (∀w ∈ Σ?) , |G(pwz)| ≤ A exp(δ|pwz|) (13)

We now consider, for γ < 1, a cone Ĉ(γ) defined in Section 1.4, with γ large enough to ensure
the inclusions Ĉ(γ) ⊂ C(θ1) (with θ1 relative to Assertion (I) for Pr(z)) and Ĉ(γ) ⊂ C(θ2)
(with θ2 relative to Eqn (13) for G(z)). With (8) and (12), and α := max(δ, γ), one has

for z 6∈ Ĉ(γ), |G(pwz) exp(z − pwz)| ≤ A exp [δpw|z|+ <(z)(1− pw)]
≤ A exp[|z|(δpw + γ(1− pw))] ≤ A exp(α|z|).

We then transfer the bounds on

Pr(z)ez = ez
∑
w∈Σ?

Pf (zpw) = z2
∑
w∈Σ?

p2
wG(pwz) exp(z − pwz).

and obtain, with B := AΛ(2), and for |z| large enough

z 6∈ Ĉ(γ) =⇒ |Pr(z)ez| ≤ B|z|2 exp(α|z|) ≤ C exp(α′|z|)

with α′ ∈]α, 1[ and a given constant C. Finally, Assertion (O) of Condition (JS) holds for
Pr(z) and this ends the proof.

3 The Rice path

In the Rice path, we deal with the Poisson sequence Π[f ]. We assume the following condition,
denoted as Condition RM [Rice-Mellin], to hold on the sequence Π[f ]

Condition (RM): There is an analytic lifting ψ(s) for the sequence Π[f ] which is tame.
Then the binomial recurrence (2) is transfered into a relation which expresses the term f(n)
as an integral along a vertical line which involves the analytic lifting ψ(s). With tameness of
ψ, we obtain the asymptotics of the sequence f .

3.1 The three steps of the Rice path
The Rice path performs three steps. It deals with a sequence f which satisfies the (VD)
conditions, but we describe it in the stronger case when f is reduced. The complete proofs
are in the Annex.

Step 1. It proves the existence of an analytical lifting ψ of the sequence Π[f ], on a halfplane
<s > c (for some c). It uses the (direct) Mellin transform and the Newton interpolation,
without any other condition on the sequence f .

I Proposition 9 (Nördlund-Rice). The sequence Π[f ] associated with a reduced sequence f of
degree c < −1 admits as an analytic lifting on <s > c a function ψ, which is also an analytic
extension of P ∗f (−s)/Γ(−s) there.
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Step 2. If moreover ψ is of polynomial growth “on the right”, the binomial relation (2) is
transfered into a Rice integral expression

I Proposition 10. Assume that the analytic lifting ψ of Π[f ] is of polynomial growth on the
halfplane <s > c, with c < −1. Then, for any a ∈]c, 0[ and n ≥ n0, the sequence f(n) admits
an integral representation of the form

f(n) =
n∑
k=0

(−1)k
(
n

k

)
p(k) = 1

2iπ

∫ a+i∞

a−i∞
Ln(s) · ψ(s) ds ,

where the Rice kernel Ln(s) := (−1)n+1 n!
s(s− 1)(s− 2) . . . (s− n) = Γ(n+ 1)Γ(−s)

Γ(n+ 1− s)
involves the Beta Function B with the equality Ln(s) = B(n+ 1,−s).

This integral representation is valid for any abscissa a which belongs to the interval ]c, 0[.
We now shift the vertical line <s = a to the left, and thus use tameness conditions on ψ at
s = c, as defined in Section 1.4.

Step 3. If moreover ψ is tame “on the left”, the integral is shifted to the left; this provides
the asymptotics of of the sequence f .

I Proposition 11. Consider a reduced sequence f : n 7→ f(n) with deg(f) = c < −1. If the
lifting ψ of Π[f ] is tame at s = c with a region R of tameness and a left frontier F , then

f(n) = −

 ∑
k|sk∈R

Res [Ln(s) · ψ(s); s = sk] + 1
2iπ

∫
F
Ln(s) · ψ(s) ds

 ,
where the sum is over the poles sk of ψ inside R.

3.2 The main question about the Rice method: Tameness of ψ
The main results are due to Nörlund [18, 17], then to Rice who popularized them. Later
on, with the paper [10], Flajolet and Sedgewick brought this methodology into the AofA
domain. The Rice-Mellin method is also well described in [6]. There exist many analyses
of various data structures or algorithms that are based on the application of the method:
tries ([9, 8, 3, 1]), digital trees ([9, 12]), or fine complexity analyses of sorting or searching
algorithms on sources ([4, 2]).

The situation for applying the Rice method is not the same as in Section 2: previously,
with Condition (DP), we know exactly when the Depoissonisation method may be applied.
This is not the case for the Rice method. Even though the literature well explains how to
use this method in various cases of interest, the following question is never asked: What are
sufficient conditions on the sequence f that would entail tameness of ψ?

As ψ(s) is closely related to the Mellin transform P ∗f (−s), meromorphy is often easy to
prove, and the poles often easy to find. In many natural contexts, the polynomial growth
and the tameness of the Mellin transform P ∗f (s) generally hold, and are often used in the
Depoissonisation approach [see Section 2.2]. But the main difference between the Rice
method and the Depoissonisation method is the division by Γ(s).

Sometimes, and this is often the case in classical tries problems, the factor Γ(s) already
appears in P ∗f (s), and ψ(s) has an explicit form, from which its polynomial growth may
be easily proven. For instance, for the toll f = f1 associated to the path length, then
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P ∗f (s) = Γ(s+ 1) and ψ(−s) is explicit, and equal to s. This is also the case for polynomial
tolls f of the form f = T−m[f1] with m ≥ 1.

But what about other sequences, for instance the sorting toll f(k) = k log k, and more
generally, the basic sequence f(k) = kd logb k (with d ∈ R and an integer b ≥ 1)? In this case,
the following expansion holds for P ∗f (−s), that involves the b-th derivative of the Riemann ζ
function and generalizes (10),

P ∗f (−s) = (−1)bζ(b)(s− (d− 1)) +H1(s) , (14)

where H1(s) is analytic on <s > d − 1. Then principles of Depoissonisation apply in this
case, due to good properties of the Riemann function. Now, in the Rice method, the function
ψ satisfies ψ(s) = P ∗f (−s)/Γ(−s), and the function 1/Γ(−s), even though it is analytic on
the half-plane <(s) ≥ 0, is of exponential growth along vertical lines. The Stirling formula
indeed entails the estimate

1
Γ(x+ iy) ∼

1√
2π

eπ|y|/2 |y|1/2−x, as |y| → ∞ .

It is thus not clear whether ψ(s) attached to the sorting toll is tame at s = 1. Then, the
Rice method seems to have a more restrictive use than the Depoissonisation method. As we
wish to compare the power of the two paths [Depoissonisation path and Rice path], we ask
the two (complementary) questions: Is the Rice path only useful for very specific tolls, where
the Mellin transform P ∗f (s) of the Poisson transform Pf (s) factorizes with the factor Γ(s),
or is it useful for more general tolls?

This leads us to study sufficient conditions under which the analytic lifting ψ may be
proven to be tame. We now propose to use the (inverse) Laplace transform. With this tool,
we prove the tameness of ψ for basic sequences (see Theorem 13).

4 The Rice–Laplace approach.

As in the previous Section, we deal with the Poisson sequence Π[F ]. Our main result proves
the tameness of the analytic continuation Ψ(s) of Π[F ], when F is a basic sequence.

I Definition 12. Consider a pair (d, b) with a real d and an integer b ≥ 0.
(i) A sequence F is basic with pair (d, b) if it writes as Fb,d(k) = kd logb k for any k ≥ 2 .
(ii) A sequence F is extended basic with pair (d, b) if it has an analytic extension Φ on

some halplane <s > a, of the form Φ(z) = Fd,b(z)W (1/z), with W analytic at 0, and
W (0) = 1.

I Remark. In the proof, an integral exponent b ≥ 0 is needed to relate Fd,b to a b-th
derivative.

Our main result is as follows:

I Theorem 13. Consider a basic extended sequence F with pair (d, b). Then, for some
σ0 > 0, the analytic continuation Ψ(s) of the Π[F ] sequence is of polynomial growth on any
halfplane <s ≥ a > d. Moreover, it writes in terms of the integer ` := σ(F ) defined in (4),

Ψ(s) =
[
s(s− 1) . . . (s− `+ 1)

b∑
m=0

am Γ(m)
` (s− d)

]
+B(s) (15)
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on the halfplane <s > d− σ0, for σ0 ∈]0, 1[. Here, B(s) is of polynomial growth, and Γ(m)
` is

the m-th derivative of the twisted Γ function that is defined for <s > 0, integers m ≥ 0 as

Γ(m)
` (s) :=

∫ ∞
0

e−`uus−1 logm u du . (16)

The coefficients am involve the derivatives of order k ≤ b of s 7→ 1/Γ(s) at s = `− d.

Remarks.
(a) With Lemma 3, the twisted function Γ` and its derivatives are of exponential decrease

along the vertical lines. This entails the tameness of Ψ at s = d.
(b) We already know the singular part of Ψ at s = d which is given by the expansion (14),

and the singular expansion given in (15) is just an alternative and complicate expression.
What is new is the tameness, not the singular expansion.

4.1 Plan of the proof
We first recall the principles of Section 1.5 : with a initial sequence F , we associate its
canonical sequence f := ρ(F ), and now deal with this new sequence f ; it is easy to return
(later) to the initial sequence F with Lemma 5. If the initial F admits an analytic lifting of
polynomial growth on <s > 0, then the sequence f = ρ(F ) is reduced and admits an analytic
lifting ϕ on <s > −1 that satisfies ϕ(s) = O(|s+ 1|c) there, with c < −1.

The first step performed in Section 4.2 deals with any reduced sequence f which admits
an analytic lifting ϕ on <s > −1 that satisfies ϕ(s) = O(|s+ 1|c) there, with c < −1. With a
strong use of the involutive character of Π, we first exhibit a new expression of the analytical
extension ψ of Π[f ] which deals with the inverse Laplace transform ϕ̂ of the extension ϕ
of the sequence f . The proof is then applied to the canonical sequence ρ[F ] of the initial
sequence F .

Then, the sequel of the present section focuses on (extended) basic sequences Fd,b. Here,
in this Section, we only deal with exact basic sequences. The extension to extended basic
sequences will be done in the Annex. We first obtain in Section 4.3 a precise expression of
the inverse Laplace transform ϕ̂ of extension ϕ of the canonical sequence fd,b := ρ(Fd,b), that
is transfered into a precise estimate of Π[fd,b]. This leads to the proof of Theorem 13.

4.2 A new general expression for ψ with the inverse Laplace transform
This section is of independent interest and provides a new expression of the extension of the
sequence Π[f ] in the case when f is reduced.

I Proposition 14. Consider a sequence f which admits an analytic lifting ϕ on <s > −1,
with the estimate ϕ(s) = O(|s+ 1|c) with c < −1. Then:
(i) The function ϕ admits an inverse Laplace transform ϕ̂ whose restriction to the real line

[0,+∞[ is written as the Bromwich integral for a ∈]− 1, 0[,

ϕ̂(u) = 1
2iπ

∫
<s=a

ϕ(s) esuds , and satisfies |ϕ̂(u)| ≤ Keau .

(ii) There is an analytical lifting ψ of the sequence Π[f ] that admits an integral form

ψ(s) = Is[ϕ̂] with Is[h] :=
∫ ∞

0
h(u)(1− e−u)sdu for <s > −1 . (17)



B. Vallée 35:13

Sketch of the proof. The complete proof is in the Annex.
(i) In a general context, where the analytic lifting ϕ(s) is only defined on <s > 0, the

Bromwich integral is written as an integral on a vertical line <s = a with a > 0. Here,
the hypotheses on ϕ are stronger and the Bromwich integral may be shifted to the left
with a ∈]− 1, 0[. Moreover, the Bromwich integral is absolutely convergent, and the
exponential bound on ϕ̂(u) holds.

(ii) As ϕ is polynomial growth, we use the involutive character of Π and apply Proposition
10 to the pair (p := Π[f ], f = Π2[f ]). It transfers the binomial expression of Π[f ] in
terms of Π2[f ] = f into a Rice integral, with a ∈]− 1, 0[,

p(n) = 1
2iπ

∫
<s=a

ϕ(s)Ln(s)ds, Ln(s) = Γ(n+ 1)Γ(−s)
Γ(n+ 1− s) = B(n+ 1,−s) .

We now use the integral expression of the Beta function, and “exchange” the two
integrals. J

The integral representation (17) leads us to introduce the two functions, defined on [0,+∞],

Ns(u) :=
(

1− e−u

u

)s
, Ms(u) :=

[(
1− e−u

u

)s
− 1
]
, (18)

that satisfy the two estimates, with σ := <s,

Ns(u) = Θ(1), (u→ 0), Ns(u) = O(u−σ) (u→∞) ,

Ms(u) = Θ(u) (u→ 0), Ms(u) = O(u−σ) (u→∞, σ > 0) .

Then, for “good” functions h, the integral Is[h] may be compared to the Mellin transform
h?(s+ 1). We now apply this idea to the particular cases where the behaviour of h = ϕ̂ is
well-known. Then, there are two steps which deal with a reduced sequence f , and aim at
studying the tameness of the analytical extension ψ of Π[f ]:
(a) transfer properties of ϕ into properties of its inverse Laplace transform ϕ̂;
(b) with properties of ϕ̂, study the tameness of ψ, via the representation (17).
We now perform these two steps. The (inverse) Laplace transform is not well studied, and
we do not know a general transfer result of type (a). This is why we only perform the two
steps for canonical sequences related to basic sequences. The proofs of the following section
are in the Annex.

4.3 Dealing with basic sequences
Step (a). We obtain first an expression for ϕ, then an expression for ϕ̂.

I Proposition 15.
(i) The sequence fb,d is extended in a function ϕ defined on <s > −1

ϕ(s) = (s+ `)d−` logb(s+ `)U
(

1
s+ `

)
; ` := σ(d)

Here U satisfies U(u) = 1 for d < 0. For d ≥ 0, it is defined as

U(u) = (1− u)−1(1− 2u)−1 . . . (1− (`− 1)u)−1 (with ` = 2 + bdc)

For d ≥ 0, the coefficient aj := [uj ]U(u) satisfies aj = Θd(`− 1)j.
(ii) The inverse Laplace transform ϕ̂(u) is a linear combination of functions, for m ∈ [0..b],

e−`u u−c−1 logm u
[
1 + V 〈m〉(u)

]
, with |V 〈m〉(u)| ≤ A(d,b) u e

(`−1)u .
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Step (b). The previous expression of ϕ̂ together with the representation (17) entail a
decomposition for ψ. Using the estimates of functions defined in (18), each term is compared
to the twisted version of the Γ function and its m-th derivative, defined in (16). This provides
the estimate for the initial function Ψ := Π[f ].

I Proposition 16.
(i) The extension ψ of the sequence Π[fb,d] is a linear combination of functions, for

m ∈ [0..b], each term being the sum of a main term A〈m〉(s) and a remainder term
O(B〈m〉(s)), with c := d− σ(d) < −1 and

A〈m〉(s) := Is
[
e−`u u−c−1 logm u

]
, B〈m〉(s) := Is

[
e−u u−c logm u

]
.

(ii) For <s ≥ 0, the two functions A〈m〉(s) and B〈m〉(s) are bounded on the halfplane
<s ≥ 0. For any integer m ≥ 0 and any integer ` ≥ 1, the two functions

A〈m〉(s)− Γ(m)
` (s− c), B〈m〉(s)

are analytic and of bounded growth on the vertical strip <s > c− σ0, with σ0 ∈]0, 1[.

4.4 A second proof for Theorem 6.
Within the framework of Section 1.7, we deal with the sorting toll F1,1. The singular part
of the extension Ψ := Π[F1,1] at s = 1 is obtained in (14). The tameness of Ψ at s = 1 is
proven in Theorem 13. Together with the tameness of the Dirichet series Λ at s = 1, this
entails the tameness of Π[r] and gives a three-lines proof of Theorem 6. We prefer this proof!

5 Final comparison between the two paths.

The Annex describes a formal comparison between the two paths. From analytical properties,
the Rice-Laplace path remains of more restrictive use than the Depoissonisation path:
(a) We need the analytic extension ϕ of f to hold on a halfplane, whereas the Depoissonisation

path needs it only on a horizontal cone.
(b) The analytic extension ϕ of f involves a precise expansion in terms of an analytic series

W , whereas the Depoissonisation path only needs a rough asymptotic estimate of ϕ.
(c) The exponent of the log term must be an integer b, whereas the Depoissonisation path

deals with any real exponent. The need of an integer exponent b is related to the
interpretation in terms of b-derivatives, and this is a restriction which is also inherent in
the method used by Flajolet in [5] in a similar context.

These are strong restrictions... However, most of the Depoissonisation analyses (at least for
mean values) deal with extended basic sequences, where the Rice-Laplace path may be used.
We let the final conclusion to the reader !
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A Annex

A.1 More on tameness
I Definition 17 (Tameness). A function $ analytic and of polynomial growth on <s > c is
tame at s = c if one of the three following properties holds:
(a) [S-shape] (shorthand for Strip shape) there exists a vertical strip <(s) > c− δ for some

δ > 0 where $(s) is meromorphic, has a sole pole (of order b+ 1 ≥ 1) at s = c and is of
polynomial growth as |=s| → +∞.

(b) [H-shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R, defined
as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > c− A

|t|ρ
}
⋃
{s = σ + it; σ > c− A

Bρ
, |t| ≤ B},
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where $(s) is meromorphic, with a sole pole (of order b+1) at s = c and is of polynomial
growth in R as |=s| → +∞.

(c) [P -shape] (shorthand for Periodic shape) there exists a vertical strip <(s) > c− δ for
some δ > 0 where $(s) is meromorphic, has only a pole (of order b + 1 ≥ 1) at s = c

and a family (sk) (for k ∈ Z \ {0}) of simple poles at points sk = c+ 2kiπt with t 6= 0,
and is of polynomial growth as |=s| → +∞4.

A.2 Proofs of the Rice path
Proof of Proposition 9. In the strip S(0,−c), the Mellin transform P ∗f (s) of Pf (z) exists
and satisfies

P ∗f (s)
Γ(s) = 1

Γ(s)
∑
k≥0

f(k)
k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥0

f(k)
k!

Γ(k + s)
Γ(s)

where the exchange of integration and summation is justified by the estimates given in (9).
On the strip S(c, 0), the series is a Newton interpolation series,

ψ(s) :=
P ∗f (−s)
Γ(−s) =

∑
k≥0

(−1)k f(k)
k! s(s− 1) . . . (s− k + 1) . (19)

Such series converge in right halfplanes and thus the previous series converges on <s > c.
Moreover, Relation (19), together the binomial relation (2), entails the equality

ψ(n) =
n∑
k=0

(−1)k f(k)
k! n(n− 1) . . . (n− k + 1) =

n∑
k=0

(−1)k
(
n

k

)
f(k) = Π[f ](n) .

This proves that ψ provides an analytic lifting of the sequence Π[f ] on <s > c which is also
an analytic extension of P ∗f (−s)/Γ(−s). J

Proof of Proposition 10. (Sketch) Use the Residue Theorem and the polynomial growth of
ψ(s) “on the right”. First, we consider the rectangle AM delimited by the contour τM defined
by the two vertical lines <s = a and <s = n+M and the two horizontal lines =s = ±M . If
the contour τM is taken counterclockwise, then the Residue Theorem applies,

1
2iπ

∫
τM

Ln(s) ·ψ(s) ds =
n∑
k=0

Res[Ln(s) ·ψ(s); s = k] = −
n∑
k=0

(−1)k
(
n

k

)
Π[f ](k) = −f(n).

Next, the integral on the curve τM is the sum of four integrals. Let now M tend to ∞. The
integrals on the right, top and bottom lines tend to 0, due to the polynomial growth of the
function ψ(s). The integral on the left becomes

−
∫ a+i∞

a−i∞
Ln(s) · ψ(s) ds,

and we have proven the result. For details on the proof, we may refer to papers [18, 17, 10]. J

4 More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines t = tk with
tk →∞, and on vertical lines <(s) = σ0 − δ′ with some δ′ < δ.
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Proof of Proposition 11. (Sketch) The proof is similar to the previous proof. With the
tameness of ψ(s) at s = c with a tameness domain R, we now deal with the residues of ψ;
we consider the domains

R̂ := R∩ {<s < a} and RM := R̂ ∩ {|=s| ≤M},

and denote LM the curve (taken counterclockwise) which borders the region RM . As ψ(s) is
meromorphic in RM and Ln(s) analytic there, we apply the Residue Theorem to the function
Ln(s) · ψ(s) inside RM , and obtain

1
2iπ

∫
LM

Ln(s) · ψ(s) ds =
∑

sk∈RM

Res [Ln(s) · ψ(s); s = sk]

where the sum is taken over the poles sk of ψ(s) inside R. Now, when M →∞, the integrals
on the two horizontal segments tend to 0, since ψ(s) is of polynomial growth, and

lim
M→∞

∫
RM

Ln(s) · ψ(s) ds =
∫ a+i∞

a−i∞
Ln(s) · ψ(s) ds−

∫
F
Ln(s) · ψ(s)ds

= 2iπ
∑
sk∈R

Res [Ln(s) · ψ(s); s = sk] ,

where the sum is taken over the poles sk of ψ(s) inside the domain R. J

A.3 Proofs of the Rice-Laplace path
Proof of Proposition 14.
(i) In a general context, where the analytic lifting ϕ(s) is only defined on <s > 0, the

Bromwich integral is written as

ϕ̂(u) = 1
2iπ

∫
<s=a

ϕ(s) esuds, (with a > 0) .

Here, the hypotheses on ϕ are stronger: we can shift the integral on the left and
choose a ∈]− 1, 0[. Moreover, the Bromwich integral is ansolutely convergent, and the
exponential bound on ϕ̂(u) holds.

(ii) We use the involutive character of Π and apply Proposition 10 to the pair (p :=
Π[f ], f = Π2[f ]). In the classical Rice path, it is applied to the pair (f,Π[f ]), when
Π[f ] is of polynomial growth, and it transfers the binomial expression of f in terms of
Π[f ] into an integral expression. Here, due to the polynomial growth of f = Π2[f ] on
<s > −1, it transfers the binomial expression of Π[f ] in terms of Π2[f ] = f into a Rice
integral, with a ∈]− 1, 0[,

p(n) = 1
2iπ

∫
<s=a

ϕ(s)Ln(s)ds, Ln(s) = Γ(n+ 1)Γ(−s)
Γ(n+ 1− s) .

We now deal with the Beta function

B(t+ 1,−s) = Γ(t+ 1)Γ(−s)
Γ(t+ 1− s) ,

that is well defined for <t > −1 and <s < 0, and admits an integral expression

B(t+ 1,−s) =
∫ ∞

0
esu(1− e−u)tdu, (for <t > −1, <s < 0) .
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Together with the equality Ln(s) = B(n+ 1,−s), this entails an analytic extension ψ
of the sequence Π[f ] on the halfplane <t > −1,

ψ(t) = 1
2iπ

∫
<s=a

ϕ(s)B(t+ 1,−s)ds, (b < 0)

with an integral expression,

ψ(t) = 1
2iπ

∫
<s=a

ϕ(s)
[∫ ∞

0
esu(1− e−u)tdu

]
ds .

With properties of ϕ, it is possible to exchange the integrals: then, the equality holds

ψ(t) =
∫ ∞

0
(1− e−u)t

[
1

2iπ

∫
<s=a

ϕ(s) esuds
]
du,

and the second integral is the inverse Laplace transform ϕ̂ of ϕ. This ends the proof. J

Proof of Proposition 15. For (i), letting ` := σ(d) with σ defined in (4), the canonical
sequence f associated with F can be extended to a function ϕ defined on ]− 1,+∞[ as

ϕ(x) = logb(x+ `) (x+ `)d

(x+ 1)(x+ 2) . . . (x+ `) = logb(x+ `) (x+ `)d−` U
(

1
x+ `

)
,

and involves a function U defined as U(u) = 1 for d < 0 and, for d ≥ 0 as

U(u) = (1− u)−1(1− 2u)−1 . . . (1− (`− 1)u)−1 (with ` = 2 + bdc) . (20)

Then, for d ≥ 0, the coefficient aj := [ui]U(u) satisfies aj = Θ(`− 1)j .

For (ii), there are three main steps, according to the type of the basic sequence.

Step 1. We begin with the particular case when ϕ(s) is of the form ϕ(s) = (s+ `)c (with
c < −1). Its inverse Laplace transform ϕ̂ is then

ϕ̂(u) = 1
Γ(−c)e

−`u u−c−1 .

Step 2. We now consider a function (without logarithmic factor) of the form

ϕ(s) = ϕc(s) = (s+ `)cU
(

1
s+ `

)
=
∑
j≥0

aj (s+ `)c−j . (21)

Then ϕ is a linear combination of functions of Step 1 and the inverse Laplace transform ϕ̂ of
ϕ is written as

ϕ̂c(u) = e−`u
u−c−1

Γ(−c) [1 + Vc(u)], with Vc(u) :=
∑
j≥1

aju
jGj(c) , (22)

where the function Gj is the rational fraction which associates with c the ratio

Gj(c) := Γ(−c)
Γ(j − c) = 1

−c(1− c) . . . (j − 1− c) . (23)

As c < −1, the inequality Gj(c) ≤ (1/j!) holds and this entails the inequality |Vc(u)| ≤
Aue(`−1)u, where the constant A only depends on d.
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Step 3. We add finally a logarithmic factor and consider a function of the form

ϕ(s) = (s+ `)c logb(s+ `)U
(

1
s+ `

)
(24)

which is written as a b-th derivative. Indeed, the equality holds

U

(
1

s+ `

)
(s+ `)c logb(s+ `) = ∂b

∂tb

[
(s+ `)c+tU

(
1

s+ `

)] ∣∣∣∣
t=0

,

and we can take the derivative “under the Laplace integral”: we then deduce that the inverse
Laplace transform ϕ̂ of the function ϕ defined in (24) is equal to

∂b

∂tb
ϕ̂c+t(u)

∣∣∣∣
t=0

= e−`u
∂b

∂cb

[
u−c−1

Γ(−c) (1 + Vc(u))
]
.

The coefficient of uj in the k-th derivative of c 7→ Vc(u) involves the k-th derivative of the
function c 7→ Gj(c), defined in (23) which satisfies the inequality

|G(k)
j (c)| ≤ Ak logk(j + c)Gj(c) for some constant Ak.

Then, the inequality holds,∣∣∣∣ ∂k∂ck Vc(u)
∣∣∣∣ ≤ A(d,b) u e

(`−1)u ,

and involves a constant A(d,b) which depends on the pair (d, b). On the other hand, the
following m-th derivative is a linear combination of the form

∂m

∂cm

[
u−c−1

Γ(−c)

]
= u−c−1

[
(−1)m

m∑
a=0

(
m

a

)
(loga u)H(m−a)(c)

]
,

where H is the function defined as H(c) = 1/Γ(−c). This ends the proof. J

Proof of Proposition 16.
(a) is clear : For <s ≥ 0, the result follows from the inequalities (1 − e−u)σ ≤ 1, c < −1,

together with the integrability of the function u 7→ e−`uu−c−1 logm u on the interval
[0,+∞].

(b) The difference A〈m〉(s)−Γ(m)
` (s− c) is expressed with Ms, whereas B〈m〉(s) is expressed

with Ns, both defined in (18). Together with their estimates, this leads to the following
bounds, for any ρ > 0,

A〈m〉(s)− Γ(m)
` (s− c) = Oρ

(
Γ`(σ − c+ 1− ρ)

)
, B〈m〉(s) = Oρ

(
Γ(σ − c+ 1− ρ)

)
and also to the analyticity of the functions of interest on the vertical strip <s > c− σ0,
with σ0 ∈]0, 1[. J

Extension to extended basic sequences. It is easy to extend the proof of Theorem 13 to
this more general case: We denote by r the convergence radius of W , and we thus choose a
shift T ` with an integer which now satisfies

` ≥ max
[
2 + bdc, a+ 1, (1/r) + 1

]
,

and deal with the sequence f := T `[F ]. We replace the previous series U defined in
Proposition 15 by the series U ·W which has now a convergence radius r̃ := min(r, 1/(`− 1))
for which the bound 1/r̃ < ` holds. We choose r̂ ∈]1/r̃, `[, and the new series Vc defined in
(22) satisfies |Vc(u)| ≤ Au er̂u and indeed gives rise to a remainder term. J
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A.4 Description of a formal comparison between the two paths
As it is observed in the paper [13], there are formal manipulations which allow us to compare
the two paths.

In the Depoissonisation path, the asymptotics of f(n) is manipulated in two steps: first
use the Cauchy integral formula

f(n) = n!
2iπ

∫
|z]=r

Pf (z) ez 1
zn+1 dz . (25)

then derive asymptotics of Pf (z) for large |z| by the inverse Mellin integral

Pf (z) = 1
2iπ

∫
↑
P ∗f (s)z−sds = 1

2iπ

∫
↑
P ∗f (−s)zsds , (26)

where the integration path is some vertical line. This two-stage Mellin-Cauchy formula is
the beginning point of the Depoissonization path.

We now compare the formula obtained by this two stage approach with the N’́ordlund-Rice
formula. First remark that, as the function Pf (z)ez is entire, we can replace the contour
{|z| = r} in (25) by a Hankel contour H starting at −∞ in the upper halfplane, winding
clockwise around the origin and proceeding towards −∞ in the lower halfplane. Then (25)
becomes

f(n) = n!
2iπ

∫
H
Pf (z) ez 1

zn+1 dz (27)

Now, if we formally substitute (26) into (27), interchange the order of integration and use
the equality

1
Γ(n+ 1− s) = 1

2iπ

∫
H
ez

zs

zn+1 dz ,

we obtain the representation

f(n) = n!
2iπ

∫
↑
P ∗f (−s) 1

Γ(n+ 1− s)ds , (28)

and we recognize in (28) the Rice integral

f(n) = n!
2iπ

∫
↑

P ∗f (−s)
Γ(−s)

Γ(−s)
Γ(n+ 1− s)ds = 1

2iπ

∫
↑
ψ(s) (−1)n+1 n!

s(s− 1) . . . (s− n)ds .

This exhibits a formal comparison between the two paths. However, this comparison is
only formal because the previous manipulations may be meaningless due to the divergence of
the integrals.
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1 Introduction

In QuickXsort [5], we use the recursive scheme of ordinary Quicksort, but instead of doing
two recursive calls after partitioning, we first sort one of the segments by some other sorting
method X. Only the second segment is recursively sorted by QuickXsort. The key insight is
that X can use the second segment as a temporary buffer for elements. By that, QuickXsort
is sorting in-place (using O(1) words of extra space) even when X itself is not.

Not every method makes a suitable ‘X’; it must use the buffer in a swap-like fashion: After
X has sorted its segment, the elements originally stored in our buffer must still be intact,
i.e., they must still be stored in the buffer, albeit in a different order. Two possible examples
are Mergesort (see Section 6 for details) and a comparison-efficient Heapsort variant [1] with
an output buffer. With QuickXsort we can make those methods sort in-place while retaining
their comparison efficiency. (We lose stability, though.)

While other comparison-efficient in-place sorting methods are known (e.g. [18, 12, 9]), the
ones based on QuickXsort and elementary methods X are particularly easy to implement1

1 See for example the code for QuickMergesort that was presented for discussion on code review stack
exchange, https://codereview.stackexchange.com/q/149443, and the succinct C++ code in [6].

© Sebastian Wild;
licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 36; pp. 36:1–36:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wild@uwaterloo.ca
https://orcid.org/0000-0002-6061-9177
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.36
https://arxiv.org/abs/1803.05948
https://codereview.stackexchange.com/q/149443
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


36:2 Average Cost of QuickXsort with Pivot Sampling

since one can adapt existing implementations for X. In such an implementation, the tried
and tested optimization to choose the pivot as the median of a small sample suggests itself
to improve QuickXsort. In previous works [1, 5, 3, 6], the influence of QuickXsort on the
performance of X was either studied by ad-hoc techniques that do not easily apply with
general pivot sampling or it was studied for the case of very good pivots: exact medians
or medians of a sample of

√
n elements. Both are typically detrimental to the average

performance since they add significant overhead, whereas most of the benefit of sampling is
realized already for samples of very small constant sizes like 3, 5 or 9. Indeed, in a very recent
manuscript [6], Edelkamp and Weiß describe an optimized median-of-3 QuickMergesort
implementation in C++ that outperformed the library Quicksort in std::sort.

The contribution of this paper is a general transfer theorem (Theorem 1) that ex-
presses the costs of QuickXsort with median-of-k sampling (for any odd constant
k) directly in terms of the costs of X, (i.e., the costs that X needs to sort n elements
in isolation). We thereby obtain the first analyses of QuickMergesort and QuickHeapsort
with best possible constant-coefficient bounds on the linear term under realistic sampling
schemes.

Since Mergesort only needs a buffer for one of the two runs, QuickMergesort should not
simply give Mergesort the smaller of the two segments to sort, but rather the largest one for
which the other segments still offers sufficient buffer space. (This will be the larger segment
of the two if the smaller one contains at least a third of the elements; see Section 6 for
details.) Our transfer theorem covers this refined version of QuickMergesort, as well, which
had not been analyzed before.2

The rest of the paper is structured as follows: In Section 2, we summarize previous work
on QuickXsort with a focus on contributions to its analysis. Section 3 collects mathematical
facts and notations used later. In Section 4 we define QuickXsort and formulate a recurrence
for its cost. Its solution is stated in Section 5. Section 6 presents the QuickMergesort as our
stereotypical instantiation of QuickXsort. The proof of the transfer spreads over Sections 7
and 8. In Section 9, we apply our result to QuickHeapsort and QuickMergesort and discuss
some algorithmic implications.

2 Previous Work

The idea to combine Quicksort and a secondary sorting method was suggested by Contone
and Cincotti [2, 1]. They study Heapsort with an output buffer (external Heapsort),3 and
combine it with Quicksort to QuickHeapsort. They analyze the average costs for external
Heapsort in isolation and use a differencing trick for dealing with the QuickXsort recurrence;
however, this technique is hard to generalize to median-of-k pivots.

Diekert and Weiß [3] suggest optimizations for QuickHeapsort (some of which need extra
space again), and they give better upper bounds for QuickHeapsort with random pivots and
median-of-3. Their results are still not tight since they upper bound the total cost of all
Heapsort calls together (using ad hoc arguments on the form of the costs for one Heapsort

2 Edelkamp and Weiß do consider this version of QuickMergesort [5], but only analyze it for median-of-
√
n

pivots. In this case, the behavior coincides with the simpler strategy to always sort the smaller segment
by Mergesort since the segments are of almost equal size with high probability.

3 Not having to store the heap in a consecutive prefix of the array allows to save comparisons over classic
in-place Heapsort: After a delete-max operation, we can fill the gap at the root of the heap by promoting
the largest child and recursively moving the gap down the heap. (We then fill the gap with a −∞
sentinel value). That way, each delete-max needs exactly blgnc comparisons.
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round), without taking the actual subproblem sizes into account that Heapsort is used on.
In particular, their bound on the overall contribution of the Heapsort calls does not depend
on the sampling strategy.

Edelkamp and Weiß [5] explicitly describe QuickXsort as a general design pattern and,
among others, consider using Mergesort as ‘X’. They use the median of

√
n elements in each

round throughout to guarantee good splits with high probability. They show by induction
that when X uses at most n lgn+ cn+ o(n) comparisons on average for some constant c, the
number of comparisons in QuickXsort is also bounded by n lgn+ cn+ o(n). By combining
QuickMergesort with Ford and Johnson’s MergeInsertion [8] for subproblems of logarithmic
size, Edelkamp and Weiß obtained an in-place sorting method that uses on the average a
close to minimal number of comparisons of n lgn − 1.3999n + o(n). In a recent follow-up
manuscript [6], Edelkamp and Weiß investigated the practical performance of QuickXsort
and found that a tuned median-of-3 QuickMergesort variant indeed outperformed the C++
library Quicksort. They also derive an upper bound for the average costs of their algorithm
using an inductive proof; their bound is not tight.

3 Preliminaries

A comprehensive list of used notation is given in Appendix A; we mention the most important
here. We use Iverson’s bracket [stmt] to mean 1 if stmt is true and 0 otherwise. P[E] denotes
the probability of event E, E[X] the expectation of random variable X. We write X D= Y to
denote equality in distribution.

We heavily use the beta distribution: For α, β ∈ R>0, X D= Beta(α, β) if X admits
the density fX(z) = zα−1(1 − z)β−1/B(α, β) where B(α, β) =

∫ 1
0 z

α−1(1 − z)β−1 dz is the
beta function. Moreover, we use the beta-binomial distribution, which is a conditional
binomial distribution with the success probability being a beta-distributed random variable.
If X D= BetaBin(n, α, β) then P[X = i] =

(
n
i

)
B(α+ i, β + (n− i))/B(α, β). For a collection

of its properties see [23], Section 2.4.7; one property that we use here is a local limit law
showing that the normalized beta-binomial distribution converges to the beta distribution.
It is reproduced as Lemma 3 in the appendix.

For solving recurrences, we build upon Roura’s master theorems [20]. The relevant
continuous master theorem is restated in the appendix (Theorem 2).

4 QuickXsort

Let X be a sorting method that requires buffer space for storing at most bαnc elements
(for α ∈ [0, 1]) to sort n elements. The buffer may only be accessed by swaps so that once
X has finished its work, the buffer contains the same elements as before, but in arbitrary
order. Indeed, we will assume that X does not compare any buffer contents; then QuickXsort
preserves randomness: if the original input is a random permutation, so will be the segments
after partitioning and so will be the buffer after X has terminated.4

We can then combine5 X with Quicksort as follows: We first randomly choose a pivot and
partition the input around that pivot. This results in two contiguous segments containing
the J1 elements that are smaller than the pivot and the J2 elements that are larger than

4 We assume in this paper throughout that the input contains pairwise distinct elements.
5 Depending on details of X, further precautions might have to be taken, e.g., in QuickHeapsort [1]. We

assume here that those have already been taken care of and solely focus on the analysis of QuickXsort.

AofA 2018
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the pivot, respectively. We exclude the space for the pivot, so J1 + J2 = n − 1; note that
since the rank of the pivot is random, so are the segment sizes J1 and J2. We then sort one
segment by X using the other segment as a buffer, and afterwards sort the buffer segment
recursively by QuickXsort.

To guarantee a sufficiently large buffer for X when it sorts Jr (r = 1 or 2), we must make
sure that J3−r ≥ αJr. In case both segments could be sorted by X, we use the larger one.
The motivation behind this is that we expect an advantage from reducing the subproblem
size for the recursive call as much as possible.

We consider the practically relevant version of QuickXsort, where we use as pivot the
median of a sample of k = 2t+ 1 elements, where t ∈ N0 is constant w.r.t. n. Setting t = 0
corresponds to choosing pivots uniformly at random.

4.1 Recurrence for Expected Costs
Let c(n) be the expected number of comparisons in QuickXsort on arrays of size n and x(n)
be (an upper bound for) the expected number of comparisons in X. We will assume that
x(n) fulfills x(n) = an lgn+ bn±O(n1−ε) as n→∞ for constants a, b and ε ∈ (0, 1].

For α < 1, we obtain two cases: When the split induced by the pivot is “uneven” – namely
when min{J1, J2} < αmax{J1, J2}, i.e., max{J1, J2} > n−1

1+α – the smaller segment is not
large enough to be used as buffer. Then we can only assign the large segment as a buffer
and run X on the smaller segment. If however the split is about “even”, i.e., both segments
are ≤ n−1

1+α we can sort the larger of the two segments by X. These cases also show up in the
recurrence of costs:

c(0) = c(1) = 0

c(n) = (n− 1) + E
[
[J1, J2 ≤ 1

1+α (n− 1)][J1 > J2](x(J1) + c(J2))
]

+ E
[
[J1, J2 ≤ 1

1+α (n− 1)][J1 ≤ J2](x(J2) + c(J1))
]

+ E
[
[J2 >

1
1+α (n− 1)](x(J1) + c(J2))

]
+ E

[
[J1 >

1
1+α (n− 1)](x(J2) + c(J1))

]
(n ≥ 2)

=
2∑
r=1

E[Ar(Jr)c(Jr)] + t(n) where (1)

A1(J) = [J, J ′ ≤ 1
1+α (n− 1)] · [J ≤ J ′] + [J > 1

1+α (n− 1)] with J ′ = (n− 1)− J

A2(J) = [J, J ′ ≤ 1
1+α (n− 1)] · [J < J ′] + [J > 1

1+α (n− 1)]

t(n) = (n− 1) + E[A2(J2)x(J1)] + E[A1(J1)x(J2)]

The expectation here is taken over the choice for the random pivot, i.e., over the segment
sizes J1 resp. J2. Note that we use both J1 and J2 to express the conditions in a convenient
form, but actually either one is fully determined by the other via J1 + J2 = n− 1. Note how
A1 and A2 change roles in recursive calls and toll functions since we always sort one segment
recursively and the other segment by X.

Distribution of Subproblem Sizes

If pivots are chosen as the median of a random sample of size k = 2t+ 1, the subproblem
sizes have the same distribution, J1

D= J2. Without pivot sampling, we have J1
D= U [0..n− 1],

a discrete uniform distribution. If we choose pivots as medians of a sample of k = 2t + 1
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elements, the value for J1 consists of two summands: J1 = t + I1. The first summand, t,
accounts for the part of the sample that is smaller than the pivot. Those t elements do not
take part in the partitioning round (but they have to be included in the subproblem). I1 is
the number of elements that turned out to be smaller than the pivot during partitioning.

This latter number I1 is random, and its distribution is I1 D= BetaBin(n− k, t+ 1, t+ 1),
a so-called beta-binomial distribution. The connection to the beta distribution is best
seen by assuming n independent and uniformly in (0, 1) distributed reals as input. They
are almost surely pairwise distinct and their relative ranking is equivalent to a random
permutation of [n], so this assumption is w.l.o.g. for our analysis. Then, the value P of
the pivot in the first partitioning step has a Beta(t + 1, t + 1) distribution by definition.
Conditional on that value P = p, I1 D= Bin(n−k, p) has a binomial distribution; the resulting
mixture is the so-called beta-binomial distribution. For t = 0, i.e., no sampling, we have
t+BetaBin(n−k, t+1, t+1) = BetaBin(n−1, 1, 1), so we recover the uniform case U [0..n−1].

5 The Transfer Theorem

We now state the main result of the paper: an asymptotic approximation for c(n).
I Theorem 1 (Total Cost of QuickXsort). The expected number of comparisons needed to
sort a random permutation with QuickXsort using median-of-k pivots, k = 2t + 1, and a
sorting method X that needs a buffer of bαnc elements for some constant α ∈ [0, 1] to sort
n elements and requires on average x(n) = an lgn+ bn±O(n1−ε) comparisons to do so as
n→∞ for some ε ∈ (0, 1] is

c(n) = an lgn+
(

1
H
− a · Hk+1 −Ht+1

H ln 2 + b

)
· n ± O(n1−ε + logn),

where H = I0, α
1+α

(t+ 2, t+ 1) + I 1
2 ,

1
1+α

(t+ 2, t+ 1)

is the expected relative subproblem size that is sorted by X.
Here Ix,y(α, β) is the regularized incomplete beta function

Ix,y(α, β) =
∫ y

x

zα−1(1− z)β−1

B(α, β) dz, (α, β ∈ R+, 0 ≤ x ≤ y ≤ 1).

We prove Theorem 1 in Sections 7 and 8. To simplify the presentation, we will restrict
ourselves to a stereotypical algorithm for X and its value α = 1

2 ; the given arguments,
however, immediately extend to the general statement above.

6 QuickMergesort

A natural candidate for X is Mergesort: It is comparison-optimal up to the linear term
(and quite close to optimal in the linear term), and needs a Θ(n)-element-size buffer for
practical implementations of merging.6 To be usable in QuickXsort, we use a swap-based
merge procedure as given in Algorithm 1. Note that it suffices to move the smaller of the
two runs to a buffer; we use a symmetric version of Algorithm 1 when the second run is
shorter. Using classical top-down or bottom-up Mergesort as described in any algorithms
textbook (e.g. [22]), we thus get along with α = 1

2 .

6 Merging can be done in place using more advanced tricks (see, e.g., [15]), but those tend not to be
competitive in terms of running time with other sorting methods. By changing the global structure,
a pure in-place Mergesort variant [13] can be achieved using part of the input as a buffer (as in
QuickMergesort) at the expense of occasionally having to merge runs of very different lengths.

AofA 2018
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Merge(A[`..r],m,B[b..e])
// Merges runs A[`,m− 1] and A[m..r] in-place into A[l..r] using scratch space B[b..e]

1 n1 := r − `+ 1; n2 := r − `+ 1
// Assumes A[`,m− 1] and A[m..r] are sorted, n1 ≤ n2 and n1 ≤ e− b+ 1.

2 for i = 0, . . . , n1 − 1 do Swap(A[`+ i], B[b+ i]) end for
3 i1 := b; i2 := m; o := `

4 while i1 < b+ n1 and i2 ≤ r
5 if B[i1] ≤ A[i2] then Swap(A[o], B[i2]); o := o+ 1; i1 := i1 + 1
6 else Swap(A[o], A[i1]); o := o+ 1; i2 := i2 + 1 end if
7 while i1 < b+ n1 do Swap(A[o], B[i2]); o := o+ 1; i1 := i1 + 1 end while

Algorithm 1 A simple merging procedure that uses the buffer only by swaps. We move the first
run A[`..r] into the buffer B[b..b+n1− 1] and then merge it with the second run A[m..r] (still stored
in the original array) into the empty slot left by the first run. By the time this first half is filled, we
either have consumed enough of the second run to have space to grow the merged result, or the
merging was trivial, i.e., all elements in the first run were smaller.

6.1 Average Case of Mergesort
The average number of comparisons for Mergesort has the same – optimal – leading term
n lgn as in the worst and best case; and this is true for both the top-down and bottom-up
variants. The coefficient of the linear term of the asymptotic expansion, though, is not a
constant, but a bounded periodic function with period lgn, and the functions differ for best,
worst, and average case and the variants of Mergesort [21, 7, 17, 10, 11].

In this paper, we will confine ourselves to an upper bound for the average case x(n) =
an lgn+ bn±O(n1−ε) with constant b valid for all n, so we will set b to the supremum of
the periodic function. We leave the interesting challenge open to trace the precise behavior
of the fluctuations through the recurrence, where Mergesort is used on a logarithmic number
of subproblems with random sizes.

We use the following upper bounds for top-down [11] and bottom-up [17] Mergesort7

xtd(n) = n lgn− 1.24n+ 2 and xbu(n) = n lgn− 0.26n ± O(1). (2)

7 Solving the Recurrence: Leading Term

We start with Equation (1). Since α = 1
2 for our Mergesort, we have α

1+α = 1
3 and 1

1+α = 2
3 .

(The following arguments are valid for general α, including the extreme case α = 1, but in
an attempt to de-clutter the presentation, we stick to α = 1

2 here.) We rewrite A1(J1) and
A2(J2) explicitly in terms of the relative subproblem size:

A1(J1) =
[

J1

n− 1 ∈
[1

3 ,
1
2

]
∪
(2

3 , 1
]]
, A2(J2) =

[
J2

n− 1 ∈
[1

3 ,
1
2

)
∪
(2

3 , 1
]]
.

Graphically, if we view J1/(n− 1) as a point in the unit interval, the following picture shows
which subproblem is sorted recursively; (the other subproblem is sorted by Mergesort).

7 Edelkamp and Weiß [5] use x(n) = n lgn− 1.26n± o(n); Knuth [14, 5.2.4–13] derived this formula for
n a power of 2 (a general analysis is sketched, but no closed result for general n is given). Flajolet and
Golin [7] and Hwang [11] continued the analysis in more detail; they find that the average number of
comparisons is n lgn− (1.25± 0.01)n±O(1), where the linear term oscillates in the given range.
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Figure 1 The weights wn,j for n = 101, t = 1; note the singular point at j = 50.
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Obviously, we have A1 +A2 = 1 for any choice of J1, which corresponds to having exactly
one recursive call in QuickMergesort.

7.1 The Shape Function
The expectations E[Ar(Jr)c(Jr)] in Equation (1) are actually finite sums over the values
0, . . . , n− 1 that J := J1 can attain. Recall that J2 = n− 1− J1 and A1(J1) +A2(J2) = 1
for any value of J . With J = J1

D= J2, we find

2∑
r=1

E[Ar(Jr)c(Jr)] =
n−1∑
j=0

wn,j · c(j), where

wn,j = P[J = j] ·
[

j
n−1 ∈ [ 1

3 ,
1
2 ] ∪ ( 2

3 , 1]
]

+ P[J = j] ·
[

j
n−1 ∈ [ 1

3 ,
1
2 ) ∪ ( 2

3 , 1]
]

=


2 · P[J = j] if j

n−1 ∈ [ 1
3 ,

1
2 ) ∪ ( 2

3 , 1]

1 · P[J = j] if j
n−1 = 1

2

0 otherwise

We thus have a recurrence of the form required by the Roura’s continuous master theorem
(CMT) (see Theorem 2 in Appendix B) with the weights wn,j from above (Figure 1 shows
an example how these weights look like).

It remains to determine P[J = j]. Recall that we choose the pivot as the median of
k = 2t+ 1 elements for a fixed constant t ∈ N0, and the subproblem size J fulfills J = t+ I

with I D= BetaBin(n− k, t+ 1, t+ 1). So we have for i ∈ [0, n− 1− t] by definition

P[I = i] =
(
n− k
i

)B
(
i+ t+ 1, (n− k − i)) + t+ 1

)
B(t+ 1, t+ 1)

=
(
n− k
i

)
(t+ 1)i(t+ 1)n−k−i

(k + 1)n−k

(For details, see [23, Section 2.4.7].) Now the local limit law for beta binomials (Lemma 3 in
Appendix C says that the normalized beta binomial I/n converges to a beta variable “in
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density”, and the convergence is uniform. With the beta density fP (z) = zt(1− z)t/B(t+
1, t+ 1), we thus find by Lemma 3 that

P[J = j] = P[I = j − t] = 1
n
fP (j/n) ± O(n−2), (n→∞).

The shift by the small constant t from (j − t)/n to j/n only changes the function value by
O(n−1) since fP is Lipschitz continuous on [0, 1]. (Details of that calculation are also given
in [23], page 208.)

The first step towards applying the CMT is to identify a shape function w(z) that
approximates the relative subproblem size probabilities w(z) ≈ nwn,bznc for large n. With
the above observation, a natural choice is

w(z) = 2
[ 1

3 < z < 1
2 ∨ z > 2

3
] zt(1− z)t

B(t+ 1, t+ 1) . (3)

We show in Appendix D that this is indeed a suitable shape function, i.e., it fulfills Equa-
tion (10) from the CMT.

7.2 Computing the Toll Function

The next step in applying the CMT is a leading-term approximation of the toll function. We
consider a general function x(n) = an lgn + bn ± O(n1−ε) where the error term holds for
any constant ε > 0 as n→∞. We start with the simple observation that

J lg J = J
(
lg(Jn ) + lgn

)
= n ·

(
J
n lg J

n + J
n lgn

)
= J

n n lgn + J
n lg
(
J
n

)
n. (4)

= J
n n lgn ± O(n). (5)

For the leading term of E[x(J)], we thus only have to compute the expectation of J/n, which is
essentially a relative subproblem size. In t(n), we also have to deal with the conditionals A1(J)
resp. A2(J), though. By approximating J

n with a beta distributed variable, the conditionals
translate to bounds of an integral. Details are given in Lemma 4 (see Appendix E). This
yields

t(n) = n− 1 + E[A2(J2)x(J1)] + E[A1(J1)x(J2)]
= aE[A2(J2)J1 lg J1] + aE[A1(J1)J2 lg J2)] ± O(n)

=
Lemma a

2a · t+ 1
2t+ 2 ·

(
I0, 1

3
(t+ 2, t+ 1) + I 1

2 ,
2
3
(t+ 2, t+ 1)

)
· n lgn ± O(n)

= a
(
I0, 1

3
(t+ 2, t+ 1) + I 1

2 ,
2
3
(t+ 2, t+ 1)

)
︸ ︷︷ ︸

ā

· n lgn ± O(n), (n→∞). (6)

Here we use the incomplete regularized beta function

Ix,y(α, β) =
∫ y

x

zα−1(1− z)β−1

B(α, β) dz, (α, β ∈ R+, 0 ≤ x ≤ y ≤ 1)

for concise notation. (Ix,y(α, β) is the probability that a Beta(α, β) distributed random
variable falls into (x, y) ⊂ [0, 1], and I0,x(α, β) is its cumulative distribution function.)
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7.3 Which Case of the CMT?
We are now ready to apply the CMT (Theorem 2). As shown in Section 7.2, our toll function
is Θ(n logn), so we have α = 1 and β = 1. We hence compute

H = 1−
∫ 1

0
z w(z) dz

= 1−
∫ 1

0
2
[ 1

3 < z < 1
2 ∨ z > 2

3
] zt+1(1− z)t

B(t+ 1, t+ 1) dz

= 1− 2 t+ 1
k + 1

∫ 1

0

[ 1
3 < z < 1

2 ∨ z > 2
3
] zt+1(1− z)t

B(t+ 2, t+ 1) dz

= 1−
(
I 1

3 ,
1
2
(t+ 2, t+ 1) + I 2

3 ,1(t+ 2, t+ 1)
)

= I0, 1
3
(t+ 2, t+ 1) + I 1

2 ,
2
3
(t+ 2, t+ 1) (7)

For any sampling parameters, we have H > 0, so the overall costs satisfy by Case 1 of
Theorem 2

c(n) ∼ t(n)
H

∼ ān lgn
H

, (n→∞). (8)

7.4 Cancellations
Combining Equations (6) and (8), we find c(n) ∼ an lgn, as (n→∞), since I0, 1

3
+ I 1

3 ,
1
2

+
I 1

2 ,
2
3

+ I 2
3 ,1 = 1. The leading term of the number of comparisons in QuickXsort is the same

as in X itself, regardless of how the pivot elements are chosen! This is not as surprising as it
might first seem. We are typically sorting a constant fraction of the input by X and thus only
do a logarithmic number of recursive calls on a geometrically decreasing number of elements,
so the linear contribution of Quicksort (partitioning and recursion cost) is dominated by
even the first call of X, which has linearithmic cost. This remains true even if we allow
asymmetric sampling, e.g., by choosing the pivot as the smallest (or any other order statistic)
of a random sample.

Edelkamp and Weiß [5] give the above result for the case of using the median of
√
n

elements, where we effectively have exact medians from the perspective of analysis. In this
case, the informal reasoning given above is precise, and in fact, in this case the same form of
cancellations also happen for the linear term [5, Thm. 1]. (See also the “exact ranks” result
in Section 9.) We will show in the following that for practical schemes of pivot sampling, i.e.,
with fixed sample sizes, these cancellations happen only for the leadings-term approximation.
The pivot sampling scheme does affect the linear term significantly; and to measure the
benefit of sampling, the analysis thus has to continue to the next term of the asymptotic
expansion of c(n).

Relative Subproblem Sizes

The integral
∫ 1

0 zw(z) dz is precisely the expected relative subproblem size for the recursive
call, whereas for t(n) we are interested in the subproblem that is sorted using X whose
relative size is given by

∫ 1
0 (1− z)w(z) dz = 1−

∫ 1
0 zw(z) dz. We can thus write ā = aH.

The quantity
∫ 1

0 zw(z) dz, the average relative size of the recursive call is of independent
interest. While it is intuitively clear that for t→∞, i.e., the case of exact medians as pivots,
we must have a relative subproblem size of exactly 1

2 , this convergence is not apparent from
the behavior for finite t: the mass of the integral

∫ 1
0 zw(z) dz concentrates at z = 1

2 , a point
of discontinuity in w(z). It is also worthy of note that the expected subproblem size is
initially larger than 1

2 (0.694 for t = 0), then decreases to ≈ 0.449124 around t = 20 and
then starts to slowly increase again.
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8 Solving the Recurrence: The Linear Term

Since c(n) ∼ an lgn for any choice of t, the leading term alone does not allow to make
distinctions to judge the effect of sampling schemes. To compute the next term in the
asymptotic expansion of c(n), we consider the values c′(n) = c(n) − an lgn. c′(n) has
essentially the same recursive structure as c(n), only with a different toll function:

c′(n) = c(n)− an lgn

=
2∑
r=1

E
[
Ar(Jr)c(Jr)

]
− an lgn+ t(n)

=
2∑
r=1

(
E
[
Ar(Jr)

(
c(Jr)− aJr lg Jr

)]
+ aE

[
Ar(Jr)Jr lg Jr

])
− an lgn

+ (n− 1) + E
[
A2(J2) · x(J1)

]
+ E

[
A1(J1) · x(J2)

]
=

2∑
r=1

E
[
Ar(Jr)c′(Jr)

]
+ (n− 1)− an lgn

+ aE
[(
A1(J1) +A2(J2)

)
J1 lg J1

]
+ bE[A2(J2)J1]

+ aE
[(
A2(J2) +A1(J1)

)
J2 lg J2

]
+ bE[A1(J1)J2] ± O(n1−ε)

Since J1
D= J2 we can simplify

E
[(
A1(J1) +A2(J2)

)
J1 lg J1

]
+ E

[(
A2(J2) +A1(J1)

)
J2 lg J2

]
= E

[(
A1(J1) +A2(J2)

)
J1 lg J1

]
+ E

[(
A2(J1) +A1(J2)

)
J1 lg J1

]
= E

[
J1 lg J1 ·

((
A1(J1) +A1(J2)

)
+
(
A2(J1) +A2(J2)

))]
= 2E[J lg J ]
=
(4)

2E[Jn ] · n lgn+ 2 · 1
ln 2E[Jn ln J

n ] · n

=
Lemma b

n lgn− 1
ln 2
(
Hk+1 −Ht+1

)
n ± O(n1−ε).

Plugging this back into our equation for c′(n), we find

c′(n) =
2∑
r=1

E
[
Ar(Jr)c′(Jr)

]
+ (n− 1)− an lgn

+ a
(
n lgn− 1

ln 2
(
Hk+1 −Ht+1

)
n
)

+ b
(
I0, 1

3
(t+ 2, t+ 1) + I 1

2 ,
2
3
(t+ 2, t+ 1)

)
· n ± O(n1−ε)

=
2∑
r=1

E
[
Ar(Jr)c′(Jr)

]
+ t′(n)

where
t′(n) = b′n ± O(n1−ε) with b′ = 1− a

ln 2
(
Hk+1 −Ht+1

)
+ b ·H

Apart from the smaller toll function t′(n), this recurrence has the very same shape as the
original recurrence for c(n); in particular, we obtain the same shape function w(z) and the
same H > 0 and obtain

c′(n) ∼ t′(n)
H

∼ b′n

H
.
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Table 1 QuickXsort penalty. QuickXsort with x(n) = n lgn+ bn yields c(n) = n lgn+ (q + b)n
where q, the QuickXsort penalty, is given in the table.

t = 0 t = 1 t = 2 t = 3 t = 10 t→∞

α = 1 1.1146 0.5070 0.3210 0.2328 0.07705 0
α = 1

2 0.9120 0.4050 0.2526 0.1815 0.05956 0

8.1 Error Bound
Since our toll function is not given precisely, but only up to an error term O(n1−ε) for a
given fixed ε ∈ (0, 1], we also have to estimate the overall influence of this term. For that
we consider the recurrence for c(n) again, but replace t(n) (entirely) by C · n1−ε. If ε > 0,∫ 1

0 z
1−εw(z) dz <

∫ 1
0 w(z) dz = 1, so we still find H > 0 and apply case 1 of the CMT. The

overall contribution of the error term is then O(n1−ε). For ε = 0, H = 0 and case 2 applies,
giving an overall error term of O(logn).

This completes the proof of Theorem 1.

9 Discussion

Since all our choices for X are leading-term optimal, so will QuickXsort be. We can thus
fix a = 1 in Theorem 1; only b (and the allowable α) still depend on X. We then basically
find that going from X to QuickXsort adds a “penalty” q in the linear term that depends
only on the sampling size (and α), but not on X. Table 1 shows that this penalty is ≈ n

without sampling, but can be reduced drastically when choosing pivots from a sample of 3 or
5 elements. (Note that the overall costs for pivot sampling are O(logn) for constant t.)

As we increase the sample size, we converge to the situation studied by Edelkamp and
Weiß using median-of-

√
n, where no linear-term penalty is left [5]. Given that q is less than

0.08 already for a sample of 21 elements, these large sample versions are mostly of theoretical
interest. It is noteworthy that the improvement from no sampling to median-of-3 yields a
reduction of q by more than 50%, which is much more than its effect on Quicksort itself
(where it reduces the leading term of costs by 15% from 2n lnn to 12

7 n lnn).
We now apply our transfer theorem to the two most well-studied choices for X, Heapsort

and Mergesort, and compare the results to analyses and measured comparison counts from
previous work. The results confirm that solving the QuickXsort recurrence exactly yields
much more accurate predictions for the overall number of comparisons than previous bounds
that circumvented this.

9.1 QuickHeapsort
The basic external Heapsort of Cantone and Cincotti [1] always traverses one path in the
heap from root to bottom and does one comparison for each edge followed, i.e., blgnc or
blgnc − 1 many per deleteMax. By counting how many leaves we have on each level, Diekert
and Weiß found [3, Eq. 1]

n
(
blgnc − 1

)
+ 2
(
n− 2blgnc

)
± O(logn) ≤ n lgn− 0.913929n ± O(logn)

comparisons for the sort-down phase. (The constant of the linear term is 1− 1
ln 2−lg(2 ln 2), the

supremum of the periodic function at the linear term). Using the classical heap construction
method adds on average 1.8813726n comparisons [4], so here

x(n) = n lgn+ 0.967444n ± O(nε) for any ε > 0.
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Table 2 Comparison of estimates from this paper (W), Theorem 6 of [1] (CC) and Theorem 1
of [3] (DW); shown is the difference between the estimate and the observed average.

Instance observed W CC DW

Fig. 4 [1], n = 102, k = 1 806 +67 +158 +156
Fig. 4 [1], n = 102, k = 3 714 +98 — +168
Fig. 4 [1], n = 105, k = 1 1 869 769 −600 +90 795 +88 795
Fig. 4 [1], n = 105, k = 3 1 799 240 +9 165 — +79 324
Fig. 4 [1], n = 106, k = 1 21 891 874 +121 748 +1 035 695 +1 015 695
Fig. 4 [1], n = 106, k = 3 21 355 988 +49 994 — +751 581

Tab. 2 [3], n = 104, k = 1 152 573 +1 125 +10 264 +10 064
Tab. 2 [3], n = 104, k = 3 146 485 +1 136 — +8 152
Tab. 2 [3], n = 106, k = 1 21 975 912 +37 710 +951 657 +931 657
Tab. 2 [3], n = 106, k = 3 21 327 478 +78 504 — +780 091

Both [1] and [3] report averaged comparison counts from running time experiments. We
compare them in Table 2 against the estimates from our result and previous analyses. While
the approximation is not very accurate for n = 100 (for all analyses), for larger n, our
estimate is correct up to the first three digits, whereas previous upper bounds have almost
one order of magnitude bigger errors. Note that it is expected for our bound to still be on
the conservative side since we used the supremum of the periodic linear term for Heapsort.

9.2 QuickMergesort
For QuickMergesort, Edelkamp and Weiß [5, Fig. 4] report measured average comparison
counts for a median-of-3 version using top-down Mergesort: the linear term is shown to be
between −0.8n and −0.9n. In a recent manuscript [6], they also analytically consider the
simplified median-of-3 QuickMergesort which always sorts the smaller segment by Mergesort
(i.e., α = 1). It uses n lgn− 0.7330n+ o(n) comparisons on average (using b = −1.24). They
use this as a (conservative) upper bound for the original QuickMergesort.

Our transfer theorem shows that this bound is off by roughly 0.1n: median-of-3 Quick-
Mergesort uses at most c(n) = n lgn− 0.8350n±O(logn) comparisons on average. Going to
median-of-5 reduces the linear term to −0.9874n, which is better than the worst-case for
top-down Mergesort for most n.

Skewed Pivots for Mergesort?

For Mergesort with α = 1
2 the largest fraction of elements we can sort by Mergesort in one step

is 2
3 ; this suggests that using a slightly skewed pivot might be beneficial since it will increase

the subproblem size for Mergesort and decrease the size for recursive calls. Indeed, Edelkamp
and Weiß allude to this variation: “With about 15% the time gap, however, is not overly big,
and may be bridged with additional efforts like skewed pivots and refined partitioning.” (the
statement appears in the arXiv version of [5], arxiv.org/abs/1307.3033). And the above
mentioned StackExchange post actually chooses pivots as the second tertile.

Our analysis above can be extended to skewed sampling schemes (omitted due to space
constraints), but to illustrate this point it suffices to pay a short visit to “wishful-thinking
land” and assume that we can get exact quantiles for free. We can show (e.g., with Roura’s
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discrete master theorem [20]) that if we always pick the exact ρ-quantile of the input, for
ρ ∈ (0, 1), the overall costs are

cρ(n) =


n lgn+

(
1 + h(ρ)

1− ρ + b

)
n ± O(n1−ε) if ρ ∈ ( 1

3 ,
1
2 ) ∪ ( 2

3 , 1)

n lgn+
(

1 + h(ρ)
ρ

+ b

)
n ± O(n1−ε) otherwise

for h(x) = x lg x+ (1− x) lg(1− x). The coefficient of the linear term has a strict minimum
at ρ = 1

2 : Even for α = 1
2 , the best choice is to use the median of a sample. (The result

is the same for fixed-size samples.) For QuickMergesort, skewed pivots turn out to be a
pessimization, despite the fact that we sort a larger part by Mergesort. A possible explanation
is that skewed pivots significantly decrease the amount of information we obtain from the
comparisons during partitioning, but do not make partitioning any cheaper.

9.3 Future Work
More promising than skewed pivot sampling is the use of several pivots. The resulting
MultiwayQuickXsort would be able to sort all but one segment using X and recurse on only
one subproblem. Here, determining the expected subproblem sizes becomes a challenge, in
particular for α < 1; we leave this for future work.

We also confined ourselves to the expected number of comparisons here, but more details
about the distribution of costs are possible to obtain. The variance follows a similar recurrence
as the one studied in this paper and a distributional recurrence for the costs can be given.
The discontinuities in the subproblem sizes add a new facet to these analyses.

Finally, it is a typical phenomenon that constant-factor optimal sorting methods exhibit
periodic linear terms. QuickXsort inherits these fluctuations but also smooths them through
the random subproblem sizes. Explicitly accounting for these effects is another interesting
challenge for future work.
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[a, b) . . . . . . . . . . . . . . . real intervals, the end points with round parentheses are excluded, those
with square brackets are included.

[m..n], [n] . . . . . . . . . . . integer intervals, [m..n] = {m,m+ 1, . . . , n}; [n] = [1..n].

[stmt], [x = y] . . . . . . . Iverson bracket, [stmt] = 1 if stmt is true, [stmt] = 0 otherwise.

Hn . . . . . . . . . . . . . . . . .nth harmonic number; Hn =
∑n

i=1 1/i.

x± y . . . . . . . . . . . . . . .x with absolute error |y|; formally the interval x± y = [x− |y|, x+ |y|]; as
with O-terms, we use one-way equalities z = x± y instead of z ∈ x± y.

B(α, β) . . . . . . . . . . . . . the beta function, B(α, β) =
∫ 1

0 z
α−1(1− z)β−1 dz

Ix,y(α, β) . . . . . . . . . . . the regularized incomplete beta function; Ix,y(α, β) =
∫ y
x

zα−1(1−z)β−1

B(α,β) dz

for α, β ∈ R+, 0 ≤ x ≤ y ≤ 1.

ab, ab . . . . . . . . . . . . . . . factorial powers; “a to the b falling resp. rising.”

A.2 Stochastics-related Notation
P[E], P[X = x] . . . . . . probability of an event E resp. probability for random variable X to

attain value x.

E[X] . . . . . . . . . . . . . . . expected value of X; we write E[X | Y ] for the conditional expectation of
X given Y , and EX [f(X)] to emphasize that expectation is taken w.r.t.
random variable X.

X
D= Y . . . . . . . . . . . . . equality in distribution; X and Y have the same distribution.

U(a, b) . . . . . . . . . . . . . .uniformly in (a, b) ⊂ R distributed random variable.

Beta(α, β) . . . . . . . . . . Beta distributed random variable with shape parameters α ∈ R>0 and
β ∈ R>0.

Bin(n, p) . . . . . . . . . . . .binomial distributed random variable with n ∈ N0 trials and success
probability p ∈ [0, 1].

BetaBin(n, α, β) . . . . . beta-binomial distributed random variable; n ∈ N0, α, β ∈ R>0;

A.3 Notation for the Algorithm
n . . . . . . . . . . . . . . . . . . length of the input array, i.e., the input size.

k, t . . . . . . . . . . . . . . . . sample size k ∈ N≥1, odd; k = 2t+ 1, t ∈ N0.

x(n), a, b . . . . . . . . . . .Average costs of X, x(n) = an lgn+ bn±O(n1−ε).

t(n), ā, b̄ . . . . . . . . . . . . toll function t(n) = ān lgn+ b̄n±O(n1−ε)

J1, J2 . . . . . . . . . . . . . . (random) subproblem sizes; J1 + J2 = n− 1; J1 = t+ I1;

I1, I2 . . . . . . . . . . . . . . . (random) segment sizes in partitioning; I1
D= BetaBin(n− k, t+ 1, t+ 1);

I2 = n− k − I1; J1 = t+ I1

B The Continuous Master Theorem

We restate Roura’s CMT here for convenience.

I Theorem 2 (Roura’s Continuous Master Theorem (CMT)). Let Fn be recursively defined by

Fn =


bn , for 0 ≤ n < N ;

tn +
n−1∑
j=0

wn,j Fj , for n ≥ N ,
(9)
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where tn, the toll function, satisfies tn ∼ Knα logβ(n) as n→∞ for constants K 6= 0, α ≥ 0
and β > −1. Assume there exists a function w : [0, 1] → R≥0, the shape function, with∫ 1

0 w(z)dz ≥ 1 and
n−1∑
j=0

∣∣∣∣wn,j − ∫ (j+1)/n

j/n

w(z) dz
∣∣∣∣ = O(n−d), (n→∞), (10)

for a constant d > 0. With H := 1−
∫ 1

0
zαw(z) dz, we have the following cases:

1. If H > 0, then Fn ∼
tn
H

.

2. If H = 0, then Fn ∼
tn lnn
H̃

with H̃ = −(β + 1)
∫ 1

0
zα ln(z)w(z) dz.

3. If H < 0, then Fn = O(nc) for the unique c ∈ R with
∫ 1

0
zcw(z) dz = 1.

Theorem 2 is the “reduced form” of the CMT, which appears as Theorem 1.3.2 in Roura’s
doctoral thesis [19], and as Theorem 18 of [16]. The full version (Theorem 3.3 in [20]) allows
us to handle sublogarithmic factors in the toll function, as well, which we do not need here.

C Local Limit Law for the Beta-Binomial Distribution

Since the binomial distribution is sharply concentrated, one can use Chernoff bounds on
beta-binomial variables after conditioning on the beta distributed success probability. That
already implies that BetaBin(n, α, β)/n converges to Beta(α, β) (in a specific sense). We can
obtain stronger error bounds, though, by directly comparing the PDFs. Doing that gives the
following result; a detailed proof is given in [23], Lemma 2.38.

I Lemma 3 (Local Limit Law for Beta-Binomial, [23], Lemma 2.38).
Let (I(n))n∈N≥1 be a family of random variables with beta-binomial distribution, I(n) D=
BetaBin(n, α, β) where α, β ∈ {1} ∪ R≥2, and let fB(z) be the density of the Beta(α, β)
distribution. Then we have uniformly in z ∈ (0, 1) that

n · P
[
I = bz(n+ 1)c

]
= fB(z) ± O(n−1), (n→∞).

That is, I(n)/n converges to Beta(α, β) in distribution, and the probability weights converge
uniformly to the limiting density at rate O(n−1).

D Smoothness of the Shape Function

In this appendix we show that w(z) as given in Equation (3) on page 8 fulfills Equation (10)
on page 16, the approximation-rate criterion of the CMT. We consider the following ranges
for bzncn−1 = j

n−1 separately:
bznc
n−1 <

1
3 and 1

2 <
bznc
n−1 <

2
3 .

Here wn,bznc = 0 and so is w(z). So actual value and approximation are exactly the same.
1
3 <

bznc
n−1 <

1
2 and bzncn−1 >

2
3 .

Here wn,j = 2P[J = j] and w(z) = 2fP (z) where fP (z) = zt(1−z)t/B(t+1, t+1) is twice
the density of the beta distribution Beta(t+ 1, t+ 1). Since fP is Lipschitz-continuous on
the bounded interval [0, 1] (it is a polynomial) the uniform pointwise convergence from
above is enough to bound the sum of

∣∣wn,j −∫ (j+1)/n
j/n

w(z) dz
∣∣ over all j in the range by

O(n−1).
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bznc
n−1 ∈ {

1
3 ,

1
2 ,

2
3}.

At these boundary points, the difference between wn,bznc and w(z) does not vanish (in
particularly 1

2 is a singular point for wn,bznc), but the absolute difference is bounded.
Since this case only concerns 3 out of n summands, the overall contribution to the error
is O(n−1).

Together, we find that Equation (10) is fulfilled as claimed:
n−1∑
j=0

∣∣∣∣wn,j − ∫ (j+1)/n

j/n

w(z) dz
∣∣∣∣ = O(n−1) (n→∞). (11)

E Approximation by (Incomplete) Beta Integrals

I Lemma 4. Let J D= BetaBin(n− c1, α, β) + c2 be a random variable that differs by fixed
constants c1 and c2 from a beta-binomial variable with parameters n ∈ N and α, β ∈ N≥1.
Then the following holds
(a) For fixed constants 0 ≤ x ≤ y ≤ 1 holds

E
[
[xn ≤ J ≤ yn] · J lg J

]
= α

α+ β
Ix,y(α+ 1, β) · n lgn ± O(n), (n→∞).

The result holds also when any or both of the inequalities in [xn ≤ J ≤ yn] are strict.
(b) E[Jn ln J

n ] = α
α+β (Hα −Hα+β)±O(n−h) for any h ∈ (0, 1).

Proof. We start with part (a). By the local limit law for beta binomials (Lemma 3) it is
plausible to expect a reasonably small error when we replace E

[
[xn ≤ J ≤ yn] · J lg J

]
by

E
[
[x ≤ P ≤ y] · (Pn) lg(Pn)

]
where P D= Beta(α, β) is beta distributed. We bound the error

in the following.
We have E

[
[xn ≤ J ≤ yn] ·J ln J

]
= E

[
[xn ≤ J ≤ yn] · Jn

]
·n lnn±O(n) by Equation (4);

it thus suffices to compute E
[
[xn ≤ J ≤ yn] · Jn

]
. We first replace J by I D= BetaBin(n, α, β)

and argue later that this results in a sufficiently small error. We expand

E
[
[x ≤ I

n ≤ y] · In
]

=
bync∑
i=dxne

i
n · P[I = i]

= 1
n

bync∑
i=dxne

i
n · nP[I = i]

=
Lemma 3

1
n

bync∑
i=dxne

i
n ·
(

(i/n)α−1(1− (i/n))β−1

B(α, β) ± O(n−1)
)

= 1
B(α, β) ·

1
n

bync∑
i=dxne

f(i/n) ± O(n−1),

where f(z) = zα(1− z)β−1.
Note that f(z) is Lipschitz-continuous on the bounded interval [x, y] since it is continuously

differentiable (it is a polynomial). Integrals of Lipschitz functions are well-approximated by
finite Riemann sums; see Lemma 2.12 (b) of [23] for a formal statement. We use that on the
sum above

1
n

bync∑
i=dxne

f(i/n) =
∫ y

x

f(z) dz ± O(n−1), (n→∞).
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Inserting above and using B(α+ 1, β)/B(α, β) = α/(α+ β) yields

E
[
[x ≤ I

n ≤ y] · In
]

=
∫ y
x
zα(1− z)β−1 dz

B(α, β) ± O(n−1)

= α

α+ β
Ix,y(α+ 1, β) ± O(n−1); (12)

recall that

Ix,y(α, β) =
∫ y

x

zα−1(1− z)β−1

B(α, β) dz = P
[
x < P < y

]
denotes the regularized incomplete beta function.

Changing from I back to J has no influence on the given approximation. To compensate
for the difference in the number of trials (n− c1 instead of n), we use the above formulas for
with n− c1 instead of n; since we let n go to infinity anyway, this does not change the result.
Moreover, replacing I by I + c2 changes the value of the argument z = I/n of f by O(n−1);
since f is smooth, namely Lipschitz-continuous, this also changes f(z) by at most O(n−1).
The result is thus not affected by more than the given error term:

E
[
[x ≤ J

n ≤ y] · Jn
]

= E
[
[x ≤ I

n ≤ y] · In
]
±O(n−1)

We obtain the claim by multiplying with n lgn.
Versions with strict inequalities in [xn ≤ J ≤ yn] only affect the bounds of the sums

above by one, which again gives a negligible error of O(n−1).

This concludes the proof of part (a).

For part (b), we follow a similar route. The function we integrate is no longer Lipschitz
continuous, but a weaker form of smoothness is sufficient to bound the difference between the
integral and its Riemann sums. Indeed, the above cited Lemma 2.12 (b) of [23] is formulated
for the weaker notion of Hölder-continuity: A function f : I → R defined on a bounded
interval I is called Hölder-continuous with exponent h ∈ (0, 1] when

∃C ∀x, y ∈ I :
∣∣f(x)− f(y)

∣∣ ≤ C|x− y|h.

This generalizes Lipschitz-continuity (which corresponds to h = 1).
As above, we replace J by I D= BetaBin(n, α, β), which affects the overall result by

O(n−1). We compute

E
[
I
n ln I

n

]
=

n∑
i=0

i
n ln i

n · P[I = i]

=
Lemma 3

1
n

n∑
i=0

i
n ln i

n ·
(

(i/n)α−1(1− (i/n))β−1

B(α, β) ± O(n−1)
)

= − 1
B(α, β) ·

1
n

n∑
i=0

f(i/n) ± O(n−1),

where now f(z) = ln(1/z) · zα(1 − z)β−1. Since the derivative is ∞ for z = 0, f cannot
be Lipschitz-continuous, but it is Hölder-continuous on [0, 1] for any exponent h ∈ (0, 1):
z 7→ ln(1/z)z is Hölder-continuous (see, e.g., [23], Prop. 2.13.), products of Hölder-continuous
function remain such on bounded intervals and the remaining factor of f is a polynomial in
z, which is Lipschitz- and hence Hölder-continuous.
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By Lemma 2.12 (b) of [23] we then have

1
n

n∑
i=0

f(i/n) =
∫ 1

0
f(z) dz ± O(n−h)

Recall that we can choose h as close to 1 as we wish; this will only affect the constant hidden
by the O(n−h). It remains to actually compute the integral; fortunately, this “logarithmic
beta integral” has a well-known closed form (see, e.g., [23], Eq. (2.30)).∫ 1

0
ln(z) · zα(1− z)β−1 = B(α+ 1, β)

(
Hα −Hα+β

)
Inserting above, we finally find

E[Jn ln J
n ] = E[ In ln I

n ] ± O(n−1)

= α

α+ β

(
Hα −Hα+β

)
± O(n−h)

for any h ∈ (0, 1). J
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