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Abstract
Qualitative but ordered random variables, such as severity of a pathology, are of paramount
importance in biostatistics and medicine. Understanding the conditional distribution of such
qualitative variables as a function of other explanatory variables can be performed using a spe-
cific regression model known as ordinal polytomous regression. Variable selection in the ordinal
polytomous regression model is a computationally difficult combinatorial optimisation problem
which is however crucial when practitioners need to understand which covariates are physically re-
lated to the output and which covariates are not. One easy way to circumvent the computational
hardness of variable selection is to introduce a penalised maximum likelihood estimator based on
some well chosen non-smooth penalisation function such as, e.g., the `1-norm. In the case of the
Gaussian linear model, the `1-penalised least-squares estimator, also known as LASSO estimator,
has attracted a lot of attention in the last decade, both from the theoretical and algorithmic
viewpoints. However, even in the Gaussian linear model, accurate calibration of the relaxation
parameter, i.e., the relative weight of the penalisation term in the estimation cost function is
still considered a difficult problem that has to be addressed with caution. In the present pa-
per, we apply `1-penalisation to the ordinal polytomous regression model and compare several
hyper-parameter calibration strategies. Our main contributions are: (a) a useful and simple `1
penalised estimator for ordinal polytomous regression and a thorough description of how to apply
Nesterov’s accelerated gradient and the online Frank-Wolfe methods to the problem of computing
this estimator, (b) a new hyper-parameter calibration method for the proposed model, based on
the QUT idea of Giacobino et al. and (c) a code which can be freely used that implements the
proposed estimation procedure.
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1 Introduction

Ordinal polytomous variables are of paramount importance in bioinformatics where prac-
titioners may have to tackle qualitative but ordered data such as, e.g., the severity of a
certain type of cancer [23], [24], [12], [13], [14], etc. Understanding how such variables can be
explained by other variables such as, e.g., gene expressions, can help the research community
investigate the influence of certain genes in the pathology under study. Oftentimes, only a
small number of genes are relevant to the statistical modelling and variable selection needs to
be performed in order to detect which of them should be ignored and which of them should
not. The ordinal polytomous regression model is an adaptation of the classical regression
model which is extremely well suited for this type of problem, and the goal of the present
paper is to propose efficient approaches to the estimation and variable selection problems for
this specific model.

1.1 When the number of covariates exceeds the number of
observations: the blessing of sparsity

One important additional problem in standard gene expression studies is that the number
of observations (e.g. patients) is often much smaller than the number of covariates (e.g.
genes). In such cases, the problem cannot be expected to be solvable without some additional
structure because the number of unknowns is larger than the number of observations. The
main structural assumption which is usually made in such cases is that some sparsity property
holds. In the example of gene expression analysis, it is usually considered natural to assume
that only a small number of genes have significant influence on the output under study.
Therefore, only a small number of regression coefficients should be nonzero in the estimator,
although we cannot know before hand which are the ones which should be selected. Selecting
the right variables in regression is often called “support recovery”. Various approaches to
variable selection have been proposed in the statistical literature. In practical applications,
the most extensively used selection methods are the forward selection and the AIC/BIC
information criteria based approaches [2], [22] [19]. Such methods however, can hardly be
applied in situations where the number of covariates, e.g. genes, is large and one usually
resorts to convex optimisation based strategies such as the LASSO [23] and its generalisations
to nonlinear models [24], [25].

1.2 Previous work on variable selection via `1-norm penalisation

Convex optimisation based variable selection approaches are often based on penalised log-
likelihood estimation, where the penalisation term is the `1-norm. In the linear model, it
was discovered in [7] that under certain specific properties of the design matrix, known as
the Restricted Isometry Property, the `1-norm penalised least `∞ estimator, aka the Dantzig
estimator, would recover the location of the non-zero components exactly. This type of
result, was then proven for the `1-penalised least `2 estimator, aka the LASSO estimator
under weaker assumptions, including incoherence of the design matrix in [8]. The work [6]
provided interesting alternative views on the statistical properties of the LASSO and Dantzig
estimators which are still extensively used in the current literature on this topic.

Even when neither the Restricted Isometry Property nor the incoherence assumptions
are satisfied, the mere computational tractability of `1-penalisation based estimators makes
them the method of choice when the problem size is large.
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1.3 The problem of hyper-parameter calibration

The main advantage of `1-based penalisation is to reduce the estimation problem to a
convex optimisation one if the hyper-parameter, i.e. the relative weight associated with the
`1-penalisation term, is calibrated to an appropriate value. In practice however, finding the
right value for this hyper-parameter is often a complicated issue.

Most theoretical works come up with a formula for the hyper-parameter, see e.g. [8].
Such types of results are very important because they prove existence of a value of the
hyper-parameter that will allow exact support recovery of the sparse regression vector under
appropriate, e.g. incoherence assumptions of the design matrix. The theoretical value often
gives the right order of dependencies with respect to the dimension of the problem, the
standard deviation of the noise, and other important structural parameters, and is therefore
a good indicator of how well conditioned the problem is, at least in theory.

In practice, however, the noise level is not known beforehand and therefore, hyper-
parameter calibration cannot be performed without joint variance estimation. Reference [10]
presents efficient methods for solving this joint estimation/calibration problem and present
preliminary computational experiments showing practical relevance of the overall approach.
The square-root LASSO [5] is another interesting alternative but is sometimes reported to
have slightly worse performance in practice.

The usually preferred practical approach to hyper-parameter calibration is Cross Valida-
tion [3]. The Cross-Validation approach is very intuitive and had nice theoretical properties
when the number of covariates is smaller than the number of observations. A drawback of
Cross-Validation is the computational burden of re-sampling and computing the LASSO
estimator a large number of times. Moreover, Cross-Validation is oriented towards prediction
performance rather than accurate support selection. An alternative approach devised in [11],
based on the Hedge algorithm of [16] and the stochastic Frank-Wolfe algorithm, was shown
to outperform Cross Validation in terms of computational time for the linear model as well.

Recently, [17] devised a very efficient method called Quantile Universal Thresholding
for hyper-parameter calibration in the linear model with a view towards efficient variable
selection. Extensive numerical experiments provided in [17] show that Quantile Universal
Thresholding outperforms Cross-Validation, although Cross-Validation has to be performed
when the noise variance is unknown. Fortunately enough, recent work on fast variance
estimation, as described e.g. in [18] or based on [11], should however allow to overcome the
burden of using Cross-Validation as a subroutine in the Quantile Universal Thresholding
procedure of [17].

1.4 Contributions of the paper

The main contributions of the present paper are threefold. The first is to present a `1-
penalised maximum likelihood estimator for the ordered polytomous model and present
efficient methods for computing this estimator. The second contribution is an efficient
hyper-parameter calibration procedure based on recent work [17]. The last contribution is a
freely available software implementation which can be downloaded online [1].

WABI 2018
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2 Methods

2.1 The model and the penalised estimator
2.1.1 The standard polytomous regression model
In the ordinal polytomous regression model, the independent qualitative output variables Yi,
i = 1, . . . , n with Q modalities m1, . . . ,mQ, are assumed to result from the quantification
of a latent continuous variable Y ∗i = Xt

iβ
0 + εi, i = 1, . . . , n, where Xi is a p-dimensional

vector of covariates and where the residual εi has logistic cumulative distribution function
Φ(y) = exp(y)

1+exp(y) . More precisely, setting −∞ = γ0
0 < · · · < γ0

Q−1 < γ0
Q = +∞, we have

Yi = mq if and only if Y ∗i ∈]γq−1, γq]. For q = 1, . . . , Q, let us denote Iq the subset of {1...n}
such that i ∈ Iq if and only if Yi = mq. Let us denote by γ the vector γ = (γ1, . . . , γq−1).
The conditional likelihood given X1, . . . , Xn for this model is:

LY |X(β, γ) =
Q∏
q=1

∏
i∈Iq

(
Φ
(
Xt
iβ − γq−1

)
− Φ

(
Xt
iβ − γq

))
. (1)

where X is the n× p matrix such that Xi is its ith row for all i in 1, ..., n.
The conditional log-likelihood is given by

lY |X(β, γ) =
n∑
i=1

Q∑
q=1

1{Yi=mq} log
(
Φ
(
Xt
iβ − γq−1

)
− Φ

(
Xt
iβ − γq

))
,

The parameters of this model are usually estimated using the maximum likelihood
principle, i.e., by finding the vector (β̂, γ̂) that maximizes lY |X . Maximization of the log-
likelihood is made easy by the well known fact that the conditional log-likelihood function is
concave.

The problem with this approach is that it cannot work when p is larger than n because,
in this case, the Hessian matrix is easily shown to be singular. The situation where p is
larger than n is however frequent in gene expression analysis as in many other problems,
and one needs an estimator which can perform variable selection in such settings with
low computational complexity. The next section introduces such an estimator based on `1
penalisation.

2.1.2 The penalised maximum likelihood estimator
One estimator of choice for the type of problem we just described (i.e. ordinal polytomous
regression) is the `1-penalised maximum likelihood estimator given by

(β̂, γ̂) ∈ argmax(b,c)∈Rp×RQ−1 lY |X(b, c)− λ ‖b‖1, (2)

where λ is a relaxation parameter. This estimator corresponds exactly to the LASSO in
the case where the log-likelihood is the one of the linear model. The main motivation for
introducing this estimator is Theorem 1.2 in [8] about the LASSO. This theorem states that
for a sufficiently sparse β in the linear model Y = Xβ + ε, ε ∼ N (0, σ2I), the risk of the
LASSO estimator is near optimal, i.e. is comparable to the risk obtained with an oracle
estimator which would know the support of β ahead of time. Moreover, support recovery is
proved to hold with large probability for a vast majority of possible supports.

The assumptions in this theorem are the following:
1. X has low coherence, i.e. the maximum scalar product of two columns of X is less than

A0/ log(p);
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2. the support and sign pattern of β have uniform distribution;
3. the nonzero components of β have magnitude above the noise level times a log factor.
It is therefore natural to expect that an appropriate translation of this result to the case
of (ordinal or not) polytomous regression model will hold as well. In the sequel, we will
present simulation based results on the penalised conditional likelihood estimator from the
view point of variable selection.

2.2 Algorithms

2.2.1 Nesterov’s algorithm

In [21, 20, 4], Nesterov introduced a new approach to convex minimization with possibly
non-differentiable functions. Nesterov’s method consists of smoothing the non-differentiable
function and then applying a refined first order scheme to the problem. The main interest of
this approach is that at iteration k, a bound of O(1/k2) on the error is guaranteed, whereas
standard gradient methods only guarantee O(1/k). Let us now describe a simple version of
this method.

The first step is to smooth the `1-norm function. Notice that, for the vector β, ‖β‖1 can
be written

‖β‖1 = max
‖u‖∞≤1

utβ, (3)

and the maximizer in this expression is simply sign(β), where sign(β) is the vector with the
component-wise signs of β. A possible simple smoothing of the `1-norm is given by

`1,µ(β) = max
‖u‖∞≤1

utβ − µ

2 ‖u‖
2
2. (4)

Notice that the maximizer u∗β in (4) exists due to continuity and coercivity, and is unique
due to the strict convexity of ‖ · ‖2

2. The main interesting feature of this smoothing is the
following proposition.

I Proposition 2.1. The function `1,µ is differentiable with Lipschitz gradient. Moreover, the
gradient is given by

∇`1,µ = u∗β (5)

where u∗β is the unique maximizer in (4) and the Lipschitz constant of the gradient is
L1 = 1/µ.

Proof. See [20, Theorem 1]. J

With this result in hand, we can present Nesterov’s accelerated gradient algorithm for
smooth optimisation in Algorithm 1 below. In order to implement the algorithm, one needs
to know the Lipschitz constant of the gradient of minus the log-likelihood, which is unknown,
and the Lipschitz constant of the smoothed `1-norm penalty, which is 1/µ. In practice, the
Lipschitz constant of the gradient of minus the log-likelihood can be estimated by random
sampling and computing ratio between the norm of the difference between gradients at
sampled points and the norm of the difference of these sample points.

WABI 2018
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Algorithm 1 Nesterov’s algorithm for penalised log-likelihood estimation.
Input An initial point θ(0) = (β(0), γ(0)), e.g. θ(0) = 0, the relaxation coefficient λ, the
Lipschitz constants L0 (resp. L1) of the gradient of - the log-likelihood (resp. of `1,µ) and
the maximum number of iterations N ∈ N∗
for k = 0...N − 1 do
Compute g(k) = ∇

(
−l(θ(k)) + λ`1,µ(β(k))

)
Compute θ(k,1):

θ(k,1) = argminτ∈Rp+Q−1〈g(k), τ − θ(k)〉+ L0 + L1

2 ‖τ − θ(k)‖2
2.

Compute θ(k,2):
θ(k,2) = argminτ∈Rp+Q−1(

∑
0≤k′≤k

1
2(k′ + 1)g

(k′), τ − θ(k′)〉) + L0 + L1

2 ‖τ − θ(0)‖2
2.

Update θ(k+1):
θ(k+1) = k + 1

k + 3 θ(k,1) + 2
k + 3 θ(k,2).

end for

Output θ̂(N).

2.2.2 The Frank-Wolfe algorithm
The Frank–Wolfe (FW) algorithm, proposed by Marguerite Frank and Philip Wolfe in
1956 [15], is another convex optimisation algorithm. The difference between the FW algorithm
and the Nesterov one is that FW applies to constrained optimisation.

The main trick that is needed to implement the Frank-Wolfe algorithm is to reformulate
the penalised problem

(β̂, γ̂) ∈ argmax(b,c)∈Rp×RQ−1 lY |X(b, c)− λ ‖b‖1. (6)

as a constrained optimisation problem

(β̂, γ̂) ∈ argmax(b,c)∈Rp×RQ−1 lY |X(b, c) with ‖b‖1 ≤ r (7)

for an appropriate value of r. In this new formulation, the problem of choosing λ is translated
into the problem of choosing r.

Generally speaking, each iteration of the FW algorithm consists of finding

sk = argmins∈DsT∇f(xk),

then upgrade xk+1 = xk + 2
k+2 (sk−xk), where f is the function to minimize, k is the current

iteration, and D is the set on which we want to optimize f . In the case where D is the
hypercube defined by ‖β‖1 ≤ r (as in our case), determining sk is simple, since it is the
point:

of coordinate r for the component such that ∇β lỸ |X(β, γ) is minimal,
and zero for all the other components.

However, the logistic regression is a special case in which constraints have to be put
on β, but not on γ. Practically speaking, the choice has been to alternate iterations of
the Frank-Wolfe algorithm (to optimize β with γ fixed) with a simple gradient descent (to
optimize γ with β fixed).
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Algorithm 2 Find a λ that cancels all β components following a dichotomy approach.
V: number of non-zero coefficients of β, as a function of λ.
δ: desired accuracy, set by the user (default value: δ = 0.01).
λmax = 1
while V(λmax) 6= 0 do
λmax = λmax × 2

end while
λmin = λmax

2
if λmax = 1 then
λmin=0

end if
while λmax − λmin ≥ δ do
λmean = λmax−λmin

2
if V (λmean) = 0 then
λmax = λmean

else
λmin = λmean

end if
end while
Output λ# = λmean.

2.3 Hyperparameter calibration
2.3.1 Selection of the parameter by AIC
The first implemented method to select the λ parameter is to use the Akaike information
criterion (AIC) [2]. This AIC is a compromise between the likelihood of the model and the
number of non-zero parameters. More precisely, AIC = −2lY |X(β, γ) + 2‖β‖0, and the goal
is to find a set of parameters that minimizes this value. The method of choosing lambda
processes in three steps. In the first one, the objective to is determine a penalty λ# that is
large enough to cancel all β components. This objective is realized by using Algorithm 2.

One can then apply, e.g. Nesterov’s or the stochastic Frank-Wolfe algorithm with different
values of the hyperparameter. One possible set of values is λ0 = 0, λ1 = λ#

50 , λ2 = 2×λ#
50 , ...,

λ49 = 49×λ#
50 . The AIC value is then computed for each obtained model and, at the end of

the day, the model with smallest AIC is finally selected.

2.3.2 BIC Selection
λ is chosen in the same manner than for the AIC method, except for the fact that the value
to optimize is, this time, BIC = −2 lY |X(β, γ) + log(n)‖β‖0.

2.3.3 Adapting the Quantile Universal Threshold selection to ordinal
polytomous regression

Quantile Universal Threshold (QUT) [17] is a simulation-based method. Its objective is to be
sure that, if the vector Y to be predicted has no link with the matrix of predictive variables
X, then the vector β of the regression coefficients will be the null vector with probability
1− α, where α is set by the user (α is set to 5% in Section 3).

The working principle of QUT is as follows.

WABI 2018
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Algorithm 3 QUT : successive evaluations of gamma knowing lambda, and of lambda
knowing gamma.

λ =
√

2× log(2×max(p, 1))×max(0.01, std(Y)) (initialization of λ)
for i = 1 ... 3 do
Choose γ based on the current λ with Nesterov.
Choose λ based on the current γ with QUT.

end for
Output λ.

Randomly pick a large number of vectors of the same size than Y . For instance, in the
case study of Section 3, 100 vectors Ỹ1...Ỹ100 are picked as permutations of the original Y
vector. That is to say, Ỹi has the same number of subjects in each category as the initial
vector Y .
For each random vector Ỹi, find a λi large enough such that, when the `1-penalised
maximum likelihood estimator described in Section 2.1.2 is optimized, β is the null vector.
The obtained λi are sorted, and then we select the value such that a proportion 1− α of
the λi is below this threshold.

To speed up the second step of this process, the following property is used: if λ# =
‖∇β lỸ |X(β = ~0, γ)‖∞, then the optimisation of the `1-penalised maximum likelihood
estimator with a penalty of λ# returns β = ~0. Please note that λ# is not necessarily the
smallest possible penalisation such as β = ~0.
γ is required in order to compute λ#. However γ is not known, and λ is needed to calculate
it. So, a loop has been implemented as in Algorithm 3.

Thanks to the shortcut λ# = ‖∇β lỸ |X(β = ~0, γ)‖∞, the computation time to obtain λ
is greatly reduced, leading to the fastest determination of λ (see Section 3), as it requires
only a few the optimisation of the `1-penalised maximum likelihood estimator. Note that a
version of the QUT whose second step is performed by dichotomy, as in Algorithm 2, has
been implemented too, but it underperforms the other methods in terms of computation
time.

2.3.4 Selection of the r parameter by Online Frank-Wolfe algorithm

The method follows the procedure described in [11] with small necessary adjustments in
order to accommodate for the specific constraints associated with our estimator. We refer
the reader to the associated longer report [9] for complete details.

3 Simulation results

3.1 Description of the experiments

We now assess the practical performance of the proposed methods. For this purpose, we
performed various numerical experiments on simulated data. The simulation and testing
procedure works as follows.
1. The number of subjects n, the number of variables p, the number of influential variables s,

and the underlying threshold vector γ0 are set (Section 3.2 contains the authors’ choices).
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2. The vector of underlying parameters β0 is randomly picked. This vector is of size p such
that p− s of its components are null, while the other s components follow a Gaussian
law N (0, 1)

3. The matrix X of explanatory variables is then drawn. This is a matrix of size n× p, in
which each component follows a law N (0, 1).

4. The noise vector ε of Y ∗ is drawn. It is of size n, where each component follows a
logistic(1,1) law.

5. Y ∗ = Xβ0 + ε is computed, and then Y based on Y ∗ and γ0.
6. Steps 2, 3, 4, and 5 above allows the construction of a database. They are repeated 50

times, leading to 50 different databases.
7. Each of these 50 databases is divided into a learning sample ( 2

3 of the subjects) and a
testing one (the other third).

8. Each of the regression methods listed in Section 3.2 is finally applied to the 50 learning
samples. The performances of the models are measured on the 50 corresponding test
samples based on the criteria defined in Section 3.2.

3.2 Results

The methods we decided to compare are the following.
λ parameter selection by AIC as in Section 2.3.1.
λ parameter selection by BIC as in Section 2.3.2.
λ parameter selection according to Quantile Universal Threshold, as presented in Sec-
tion 2.3.3.
The use of the Frank-Wolfe algorithm, to solve the constrained optimization with selection
of the r parameter using Online Frank-Wolfe, as defined in Sections 2.2.2 and 2.3.4. This
model is named “OFW” in Tables 1 and 2.
The absence of variable selection. That is to say, the model obtained when the likelihood
is maximized without penalty. This model is simply named “λ = 0” in Tables 1 and 2.
The model that predicts, for each subject in the test sample, the largest category of the
learning sample. It is named “null model” in Tables 1 and 2, as this is the best possibility
if no explanatory variable is taken into account.

λ = 0 and the null model are only performed to check if the first four methods work well.
Indeed, when dealing with the logistic regression, it is important to check if the predictive
model is better than simply placing all patients in the majority category. Moreover, when
working on variables selection, it can be useful to check if the obtained model is better than
the one with no selection.

Two experiments have been performed. In the first one, n > p, there are 50 variables, the
learning sample has been constituted by 200 subjects, while the test sample has 100 subjects
(see Table 1). In the other experiment, p > n, the learning sample has 100 subjects, the test
one has 50 subjects, and there are 200 variables (Table 2). In both cases, the number of
significant variables was set to s = 5.

We considered Q = 3 categories for Y , and we set γ0 ∈ [0, 3], as unbalanced categories
were wanted to complicate the regression problem. With this choice of γ0, Yi is in the first
category for all Y ∗i ≤ 0, i.e., for half of the simulated subjects. The Nesterov algorithm runs
for 200 iterations, while the Franck-Wolfe one iterates 200 times.

For each method, four performance criteria are studied.

WABI 2018
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Table 1 Monte Carlo simulations with nlearning = 200, p = 50, ntest = 100.

choice of λ correctly average prediction CRW Time λ Nb of
(or r) ranked likelihood error (or r) variables
BIC 66.7 0.48 0.35 59.4 2464.9 14.8 3.9
QUT ‖‖∞ 65.4 0.48 0.36 57.9 53.0 22.0 2.6
AIC 65.3 0.47 0.36 58.6 2458.9 10.2 7.1
OFW 63.3 0.46 0.39 55.2 199.0 7.2 39.6
λ = 0 60.0 0.44 0.43 55.3 20.1 0.0 50.0
null model 49.0 - - 33.3 0 - 0

The percentage of subjects in the test sample which are correctly ranked by the model
fitted on the learning sample. This percentage is named “correctly ranked” in Tables 1
and 2.

The average likelihood. That is, the geometric mean of the probabilities that the model
fitted to the learning sample assigns the actual categories of subjects in the test sample.
This is what we called “average likelihood” in Tables 1 and 2.

The average prediction error. That is to say, the average gap between the predicted
category and the actual category, named “prediction error” in Tables 1 and 2.

The percentage of correctly ranked subjects, weighted by the size of the categories. More

precisely, we calculate 100 ×
n∑
i=1

1prediction is right
Q× p
#IYi

, where #IYi
is the number of

subjects in the same category than Yi. This criterion attaches greater importance to the
proper classification of subjects that are in a poorly represented category. It is referenced
as “CRW” in Tables 1 and 2.

The “average likelihood” and “correctly-ranked weighted” criteria are relevant when
classes are very unbalanced (like 98 %, 1 %, and 1 %), which can really occur in practice. In
the case study, the “correctly ranked” criterion has been considered first, as this is probably
the most natural criterion for not too unbalanced categories like the ones used during our
simulations. Tables 1 and 2 are sorted according to this criterion.

Table 1 summarizes the results in the case where the number of subjects in the training
sample is 200, the number of subjects in the testing one is 100, and the number of explanatory
variables is 50. Table 2, summarizes the results in the case where the number of subjects in
the training sample is 100, the number of subjects in the testing one is 50, and the number
of explanatory variables is 200.

To finish describing Tables 1 and 2, let us note that “nb of variables” represents the
number of variables that the model considers as influential.

Wilcoxon tests have also been performed in order to determine if the differences between
the methods are statistically significant. Tables 3 and 4 show the results of these Wilcoxon
tests. In the nlearning = 200, p = 50 case, the difference between correctly ranked subjects
for BIC (66,7%) and QUT (65,4%) is significant with a p-value of 8, 03 × 10−3, even if
this difference is only equal to 1,3%. Conversely, in the nlearning = 100, p = 200 case, the
difference between QUT, BIC, OFW is not significant. This case may require more simulated
data if we want to separate these methods correctly. Finally, in any cases, QUT, BIC, OFW,
and AIC are significantly better than λ =0 and the null model.
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Table 2 Monte Carlo simulations with nlearning = 100, p = 200, ntest = 50.

choice of λ correctly average prediction CRW Time λ Nb of
(or r) ranked likelihood error (or r) variables
QUT ‖‖∞ 61.0 0.43 0.42 52.4 33.5 16.9 1.3
BIC 60.7 0.44 0.42 54.0 982.9 11.9 3.5
OFW 59.8 0.43 0.42 50.2 72.4 6.4 54.1
AIC 55.4 0.42 0.48 50.1 995.8 8.9 9.2
null model 48.1 - - 33.3 0 - 0
λ = 0 36.7 0.22 0.77 40.0 12.8 0.0 200.0

Table 3 Paired Wilcoxon tests associated to Monte Carlo simulations with nlearning = 200, p =
50, ntest = 100.

QUT‖‖∞ AIC OFW λ = 0 null model
BIC 8.03× 10−3 3.69× 10−3 7.83× 10−7 1.71× 10−9 7.38× 10−10

QUT‖‖∞ - 7.03× 10−1 3.36× 10−3 9.54× 10−8 7.83× 10−10

AIC - - 8.99× 10−4 2.02× 10−8 7.32× 10−10

OFW - - - 1.58× 10−6 7.44× 10−10

λ = 0 - - - - 1.95× 10−9

Table 4 Paired Wilcoxon tests associated to Monte Carlo simulations with nlearning = 100, p =
200, ntest = 50.

BIC OFW AIC null model λ = 0
QUT 6.74× 10−1 3.77× 10−1 2.93× 10−4 8, 66× 10−9 9.13× 10−10

BIC - 4.86× 10−1 5.47× 10−4 1, 62× 10−8 1.32× 10−9

OFW - - 2.66× 10−5 1, 17× 10−8 1.31× 10−9

AIC - - - 1, 87× 10−5 3.33× 10−9

null model - - - - 6, 95× 10−7

4 Discussion

First of all, the four variable selection methods work better than λ = 0 and the null model.
This shows that the algorithms work correctly, and that variable selection is useful. The
absence of variable selection is particularly harmful in the case where p > n, see Table 2. It
makes sense because, in this case, the optimisation of the unpenalised likelihood allows an
infinite number of solutions. This p > n case is very common in practice.

In the experiment shown in Table 1, the BIC works a bit better than the other methods,
while in the experiment summarized in Table 2, QUT, BIC, and OFW are very close. In
terms of computation time, QUT is the most interesting approach. Indeed, as explained in
Section 2.3.3, this method allows to choose λ by executing the regression only a few times.

5 Conclusion

The present paper proposed a new estimator for sparse ordinal polytomous regression in a
high dimensional setting together with a strategy for hyper-parameter calibration based on
previous results from [17]. Performance of the method was assessed via extensive numerical
experiments. The forthcoming report [9] will include further implementation details, and
improvements, and additional numerical results on large real datasets.
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