
A Unified PTAS for Prize Collecting TSP and
Steiner Tree Problem in Doubling Metrics

T-H. Hubert Chan1

Department of Computer Science, The University of Hong Kong, Hong Kong, China
hubert@cs.hku.hk

Haotian Jiang2

Department of Physics, Tsinghua University, Beijing, China
jht14@mails.tsinghua.edu.cn

Shaofeng H.-C. Jiang
The Weizmann Institute of Science, Rehovot, Israel
shaofeng.jiang@weizmann.ac.il

https://orcid.org/0000-0001-7972-827X

Abstract
We present a unified (randomized) polynomial-time approximation scheme (PTAS) for the prize
collecting traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem
(PCSTP) in doubling metrics. Given a metric space and a penalty function on a subset of points
known as terminals, a solution is a subgraph on points in the metric space, whose cost is the
weight of its edges plus the penalty due to terminals not covered by the subgraph. Under our
unified framework, the solution subgraph needs to be Eulerian for PCTSP, while it needs to be
a tree for PCSTP. Before our work, even a QPTAS for the problems in doubling metrics is not
known.

Our unified PTAS is based on the previous dynamic programming frameworks proposed in
[Talwar STOC 2004] and [Bartal, Gottlieb, Krauthgamer STOC 2012]. However, since it is
unknown which part of the optimal cost is due to edge lengths and which part is due to penalties
of uncovered terminals, we need to develop new techniques to apply previous divide-and-conquer
strategies and sparse instance decompositions.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems

Keywords and phrases Doubling Dimension, Traveling Salesman Problem, Polynomial Time
Approximation Scheme, Steiner Tree Problem, Prize Collecting

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.15

Related Version A full version of the paper can be found at [11], https://arxiv.org/abs/1710.
07774.

1 This work was partially supported by the Hong Kong RGC under the grant 17217716.
2 This research is supported in part by the National Basic Research Program of China Grant 2015CB358700,

the National Natural Science Foundation of China Grant 61772297, 61632016, 61761146003, and a grant
from Microsoft Research Asia.

© T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hubert@cs.hku.hk
mailto:jht14@mails.tsinghua.edu.cn
mailto:shaofeng.jiang@weizmann.ac.il
https://orcid.org/0000-0001-7972-827X
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.15
https://arxiv.org/abs/1710.07774
https://arxiv.org/abs/1710.07774
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

1 Introduction

We study prize collecting versions of two important optimization problems: the prize collecting
traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP).
In both problems, we are given a metric space and a set of points called terminals, and a
non-negative penalty function on the terminals. A solution for either problem is a connected
subgraph with vertex set from the metric. In addition, it needs to be an Eulerian (multi-
)graph3for PCTSP and a tree for PCSTP. The cost of a solution is the sum of the weights of
edges in the solution plus the sum of penalties due to terminals not visited by the solution.

Prize Collecting Problems in General Metrics. The prize collecting setting was first
considered by Balas [4], who proposed the prize collecting TSP. However, the version that
Balas considered is actually more general, in the sense that each terminal is also associated
with a reward, and the goal is to find a tour that minimizes the tour length plus the penalties,
and collects at least a certain amount of rewards. The setting that we consider was suggested
by Bienstock et al. [8], and they used LP rounding to give a 2.5-approximation algorithm for
the PCTSP and a 3-approximation for the PCSTP. Later on, a unified primal-dual approach for
several network design problems was proposed [17]; this approach improves the approximation
ratios for both PCTSP and PCSTP to 2 in general metrics. The 2-approximation had remained
the state of the art for more than a decade, until Archer et al. [1] finally broke the 2 barrier
for both problems. Subsequently, in a note [16], Goemans combined their argument with
other algorithms, and gave a 1.915-approximation for the PCTSP, which is the state of the
art.

Prize Collecting Problems in Bounded Dimensional Euclidean Spaces. PCTSP and PCSTP

are APX-hard in general metrics, because even the special cases, the TSP and the Steiner
tree problem, are APX-hard. Although the seminal result by Arora [2] showed that both TSP
and STP have PTAS’s in bounded dimensional Euclidean spaces, the prize collecting setting
was not discussed. However, we do believe that their approach may be directly applied to get
PTAS’s for the prize collecting versions of both problems, with a slight modification to the
dynamic programming algorithms. Later, A PTAS for the Steiner Forest Problem (which
generalizes the STP) was discovered by Borradaile et al. [9]. Based on this result, Bateni et
al. [7] studied the Prize Collecting Steiner Forest Problem, and gave a PTAS for the special
case when the penalties are multiplicative, but this does not readily imply a PTAS for the
PCTSP or the PCSTP.

Prize Collecting Problems in Special Graphs. Planar graphs is an important class of
graphs. Both problems are considered in planar graphs, and a PTAS is presented by Bateni
et al. [6] for PCTSP and PCSTP. Moreover, they noted that both problems are solvable in
polynomial time in bounded treewidth graphs, and their PTAS relies on a reduction to the
bounded treewidth cases. They also showed that the Prize Collecting Steiner Forest Problem,
which is a generalization of the PCSTP, is significantly harder, and it is APX-hard in planar
graphs and Euclidean instances. As for the minor forbidden graphs, which generalizes planar
graphs, there are PTAS’s for various optimization problems, such as TSP by Demaine et
al. [14]. However, the PTAS’s for prize collecting problems, to the best of our knowledge, are
unknown.

3 An undirected connected multi-graph is Eulerian, if every vertex has even degree.

T.H. Chan, H. Jiang, and S. Jiang 15:3

Generalizing Euclidean Dimension. Going beyond Euclidean spaces, doubling dimension [3,
13, 18] is a popular notion of dimensionality. It captures the bounded local growth of Euclidean
spaces, and does not require any specific Euclidean properties such as vector representation or
dot product. A metric space has doubling dimension at most k, if every ball can be covered
by at most 2k balls of half the radius. This notion generalizes the Euclidean dimension, in
that every subset of Rd equipped with `2 has doubling dimension O(d). Although doubling
metrics are more general than Euclidean spaces, recent results show that many optimization
problems have similar approximation guarantees for both spaces: there exist PTAS’s for
the TSP [5], a certain version of the TSP with neighborhoods [12], and the Steiner forest
problem [10], in doubling metrics.

Our Contributions. In this paper, we extend this line of research, and give a unified PTAS
framework for both PCTSP and PCSTP. We use PCX when the description applies to either
problem. Our main result is Theorem 1.

I Theorem 1. For any 0 < ε < 1, there exists an algorithm that, for any PCX instance
with n terminal points in a metric space with doubling dimension at most k, runs in time

nO(1)O(k)
· exp(

√
logn ·O(k

ε
)O(k)),

and returns a solution that is a (1 + ε)-approximation with constant probability.

Technical Issues. As a first trial, one might try to adapt the sparsity framework used in
previous PTAS’s for the TSP and Steiner forest problems [5, 12, 10] in doubling metrics.
The framework typically uses a polynomial-time estimator H on any ball B, which gives
a constant approximation for PCX on some appropriately defined sub-instance around B.
Intuitively, the estimator works because the local behavior of a (nearly) optimal solution
can be well estimated by looking at the sub-instance locally. In particular, the following
properties are needed in this framework:

If H(B) is large, then the optimal solution for the sub-instance induced on B is large;
moreover, any (nearly) optimal solution for the global instance would have a large part
of its cost due to B.
If H(B) is small, then for any (nearly) optimal solution F for the global instance, the
cost of F contributed by the sub-instance due to B should be small.

While the first property is somehow straightforward, the following example shows that
the second property is non-trivial to achieve in PCX.

Example Instance: Figure 1. The example is defined on the real line. The terminals are
grouped into two clusters. The left cluster contains 2m terminals, and the right cluster
contains m terminals. Within each cluster, the distance between adjacent terminals is 1.
The two clusters are at distance l apart. The penalty for each terminal is t. The parameters
are chosen such that l � mt and t� m. Observe that for PCX, the optimal solution is to
visit all the terminals in the left cluster with total edge weights O(m) and incur the penalty
mt for the terminals in the right cluster. The reason is that it will be too costly to add an
edge to connect terminals from different clusters, and it is better to visit the cluster with
more terminals and suffer the penalty for the cluster with fewer terminals.

ESA 2018

15:4 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Figure 1 Example instance for PCX.

Local Estimator Fails on the Example Instance. Suppose the estimator is applied around
a ball B centered at some terminal in the right cluster with radius r. Then, any constant-
approximate solution for the sub-instance needs to connect all Θ(r) terminals in the ball,
since the penalty for any single terminal is too large. This costs Θ(r). However, in the
optimal solution, no terminal in the right cluster is visited and all penalties are taken, which
has cost Ω(tr). Hence, the estimator fails to serve as an upper bound for the contribution by
ball B to the cost of an optimal solution.

The conclusion is that the optimal solution of a local sub-instance can differ a lot from
how an optimal global solution behaves for that sub-instance.

Our Insight: Trading between Weight and Penalty. Our example in Figure 1 shows that
what points a local optimal solution visits in a sub-instance can be very different from the
points in the sub-instance visited by a global optimal solution. Our intuition is that the
optimal cost of a sub-instance should reflect part of the cost in a global optimal solution
due to the sub-instance. In other words, if a sub-instance has large optimal cost, then any
global solution either (1) has a large weight within the sub-instance, or (2) suffers a large
penalty due to unvisited terminals in the sub-instance. This insight leads to the following
key ingredients to our solution.

1. Inferring Local Behavior from Estimator. In Lemma 5, we show that the value
returned by the local estimator (which consists of both the weight and the penalty) on
a ball B gives an upper bound on the weight w(F |B) of any (near) optimal solution F
inside ball B. We emphasize that this estimator is an upper bound for the weight w(F |B)
only, and is not an upper bound for both the weight and penalty of the optimal solution
inside the ball. In the example in Figure 1, a global optimal solution does not visit the
right cluster at all, and hence, the local estimator on the right cluster does give an upper
bound on the weight part of the global solution due to the right cluster. This turns out to
be sufficient because the sparsity of a solution is defined with respect to only the weight
part (and not the penalty part).
Hence, the local estimator can be used in the sparsity decomposition framework [5, 12, 10]
to identify a critical instance W1 (i.e., the local estimator reaches some threshold, but
still not too large) around some ball B. Since the instance W1 is sparse enough, an
approximate solution F1 can be obtained by the dynamic program framework. Then,
one can recursively solve for an approximate solution F2 for the remaining instance W2.
However, we need to carefully define W2 and combine the solutions F1 and F2, because,
as we remarked before, even if the approximate algorithm returns F1 for the instance W1,
a near optimal global solution might not visit any terminals in W1.

T.H. Chan, H. Jiang, and S. Jiang 15:5

2. Adaptive Recursion. In all previous applications of the sparsity decomposition frame-
work, after a critical ball B around some center u is identified, the original instance is
decomposed into sub-instances W1 and W2 that can be solved independently.
An issue in applying this framework is that after obtaining solutions F1 and F2 for the
sub-instances, in the case that F1 and F2 are far away from each other as in our example
in Figure 1 where it is too costly to connect them directly, it is not clear immediately
which of F1 and F2 should be the weight part of the global solution and which would
become the penalty part.
We use a novel idea of the adaptive recursion, in which W2 depends on the solution F1
returned for W1. The high level idea is that in defining the instance W2, we add an extra
terminal point at u, which becomes a representative for solution F1. The penalty of u
in W2 is the sum of the penalties of terminals in W1 minus the cost c(F1) of solution F1.
After a solution F2 for W2 is returned, if F2 does not visit the terminal u, then edges in F1
are discarded, otherwise the edges in F1 and F2 are combined to return a global solution.
We can see that in either case, the sum c(F1) + c(F2) of the costs of the two solutions
reflect the cost of the global solution. In the first case, F2 does not visit u and hence,
c(F2) contains the penalty due to u, which is the penalties of unvisited terminals in W1
minus c(F1). Therefore, when c(F1) is added back, the sum simply contains the original
penalties of unvisited terminals in W1.
In the second case, F2 does visit u and does not incur a penalty due to u. Therefore,
c(F1) + c(F2) does reflect the cost of the global solution after combining F1 and F2.

Revisiting the Sparsity Structural Lemma. Many PTAS’s in the literature for TSP-like
problems in doubling metrics rely on the sparsity structural lemma [5, Lemma 3.1]. Intuitively,
it says that if a solution is sparse, then there exists a structurally light solution that is
(1 + ε)-approximate. Hence, one can restrict the search space to structurally light solutions,
which can be explored by a dynamic program algorithm. Because of the significance of this
lemma, we believe that it is worthwhile to give it a more formal inspection, and in particular,
resolve some significant technical issues as follows.

Issue with Conditioning on the Randomness of Hierarchical Decomposition. Given a
hierarchical decomposition and a solution T , the first step is to reroute the solution such
that every cluster is only visited through some designated points known as portals. The
randomness in the hierarchical decomposition is used to argue that the expected increase
in cost to make the solution portal-respecting is small.
However, typically the randomness in the hierarchical decomposition is still needed in
subsequent arguments. Hence, if one analyzes the portal-respecting procedure as a
conceptually separate step, then subsequent uses of the randomness of the hierarchical
decomposition need to condition on the event that the portal-respecting step does not
increase the cost too much. Moreover, edges added in the portal-respecting step are
actually random objects depending on the hierarchical decomposition, and hence, will in
fact cross some clusters with probability 1. Unfortunately, even in the original paper by
Talwar [20] on the QPTAS for TSP in doubling metrics, these issues were not addressed
properly.
Issues with Patching Procedure. A patching procedure is typically used to reduce the
number of times a cluster is crossed. In the literature, after reducing the number of
crossings, the triangle inequality is used to implicitly add some shortcutting edges outside
the cluster. However, it is never argued whether these new shortcutting edges are still
portal-respecting. It is plausible that making them portal-respecting might introduce
new crossings.

ESA 2018

15:6 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

From the above discussion, it is evident that one should consider the portal-respecting
step and the patching procedure together, because they both rely on the randomness of
the hierarchical decomposition. To make our arguments formal, we need a more precise
notation to describe portals, and we actually revisit the whole randomized hierarchical
decomposition to make all relevant definitions precise. We analyze the portal-respecting step
and the patching procedure together through a sophisticated accounting argument so that
the patching cost is eventually charged back to the original solution (as opposed to stopping
at the transformed portal-respecting solution).

Moreover, we give a unified patching lemma that works for both PCTSP and PCSTP. Even
though our proofs use similar ideas as previous works, the charging argument is significantly
different. Specifically, our argument does not rely on the small MST lemma [20, Lemma 6],
which was also used in [5].

Paper Organization. Section 2 gives the formal notation and describes the outline of
the sparsity decomposition framework to solve PCX. Section 3 gives the properties of the
local sparsity estimator. Section 4 gives the technical details of the sparsity decomposition
and shows that approximate solutions in sub-instances can be combined to give a good
approximation to the global instance. Some proofs, together with other sections, are omitted
due to space limit, and they can be found in the full version [11].

2 Preliminaries

We consider a metric space M = (X, d) (see [15, 19] for more details on metric spaces), where
we refer to an element x ∈ X as a point or a vertex. For x ∈ X and ρ ≥ 0, a ball B(x, ρ) is the
set {y ∈ X | d(x, y) ≤ ρ}. The diameter Diam(Z) of a set Z ⊂ X is the maximum distance
between points in Z. For S, T ⊂ X, we denote d(S, T) := min{d(x, y) : x ∈ S, y ∈ T}, and
for u ∈ X, d(u, T) := d({u}, T). Given a positive integer m, we denote [m] := {1, 2, . . . ,m}.

A set S ⊆ X is a ρ-packing, if any two distinct points in S are at a distance more than ρ
away from each other. A set S is a ρ-cover for Z ⊆ X, if for any z ∈ Z, there exists x ∈ S
such that d(x, z) ≤ ρ. A set S is a ρ-net for Z, if S is a ρ-packing and a ρ-cover for Z. We
assume the access to an oracle that takes a series of balls {Bi}i where each Bi is identified by
the center and radius, and returns a point x ∈ X such that ∀i, x /∈ Si4. A greedy algorithm
can construct a ρ-net efficiently given the access to this oracle.

We consider metric spaces with doubling dimension [3, 18] at most k; this means that
for all x ∈ X, for all ρ > 0, every ball B(x, 2ρ) can be covered by the union of at most 2k
balls of the form B(z, ρ), where z ∈ X. The following fact captures a standard property of
doubling metrics.

I Fact 2 (Packing in Doubling Metrics [18]). Suppose in a metric space with doubling
dimension at most k, a ρ-packing S has diameter at most R. Then, |S| ≤ (2R

ρ)k.

Edges. An edge5 e is an unordered pair e = {x, y} ∈
(
X
2
)
whose weight w(e) = d(x, y) is

induced by the metric space (X, d). Given a set F of edges, its vertex set V (F) := ∪e∈F e ⊂ X
is the vertices covered (or visited) by the edges in F . If T ⊂ X is a set of vertices, we use
the shorthand T \ F := T \ V (F) to denote the vertices in T that are not covered by F .

4 Such an oracle is trivial to construct for finite metric spaces. It may also be efficiently constructed for
many special infinite metric spaces, such as bounded dimensional Euclidean spaces.

5 To have a complete description, we also need the notion of self-loop, which is simply a singleton {x}.

T.H. Chan, H. Jiang, and S. Jiang 15:7

Problem Definition. We give a unifying framework for the prize collecting traveling salesman
problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP), and we use PCX

when the description applies to both problems. An instance W = (T, π) of PCX consists of a
set T ⊂ X of terminals (where |W | := |T | = n) and a penalty function π : T → R+. The goal
is to find a (multi-)set F ⊂

(
X
2
)
of edges with minimum cost6 cW (F) := w(F) + π(T \ F),

such that the following additional conditions are satisfied for each specific problem:
For PCTSP, the edges in the multi-set F form a circuit on V (F); for |V (F)| = 1, F
contains only a single self-loop (with zero weight).
For PCSTP, the edges F form a connected graph on V (F), where we also allow the
degenerate case when F is a singleton containing a self-loop. The vertices in V (F) \ T
are known as Steiner points.

Simplifying Assumptions and Rescaling Instance. Fix some constant ε > 0. Since we
consider asymptotic running time to obtain (1 + ε)-approximation for PCX, we consider
sufficiently large n > 1

ε . Since F can contain a self-loop, an optimal solution covers at least
one terminal u. Moreover, there is some terminal v (which could be the same as u) such that
the solution covers v and does not cover any terminal v′ with d(u, v′) > d(u, v). Since we aim
for polynomial time algorithms, we can afford to enumerate the O(n2) choices for u and v.

For some choice of u and v, suppose R := d(u, v). Then, R is a lower bound on the
cost of an optimal solution. Moreover, the optimal solution F has weight w(F) at most nR,
and hence, we do not need to consider points at distances larger than nR from u. Since F
contains at most 2n edges (because of Steiner points in PCSTP), if we consider an εR

32n2 -net
S for X and replace every point in F with its closest net-point in S, the cost increases by
at most ε ·OPT. Hence, after rescaling, we can assume that inter-point distance is at least
1 and we consider distances up to O(n

3

ε) = poly(n). By the packing property of doubling
dimension (Fact 2), we can hence assume |X| ≤ O(nε)O(k) ≤ O(n)O(k).

Hierarchical Nets. As in [5], we consider some parameter s = (logn) c
k ≥ 4, where 0 < c < 1

is a universal constant that is sufficiently small. Set L := O(logs n) = O(k logn
log logn). A greedy

algorithm can construct NL ⊆ NL−1 ⊆ · · · ⊆ N1 ⊆ N0 = N−1 = · · · = X such that for each
i, Ni is an si-net for Ni−1, where we say distance scale si is of height i.

Net-Respecting Solution. As defined in [5], a graph F is net-respecting with respect
to {Ni}i∈[L] and ε > 0 if for every edge {x, y} in F , both x and y belong to Ni, where
si ≤ ε · d(x, y) < si+1. By [5, Lemma 1.6], any graph F may be converted to a net-respecting
F ′ visiting all points that F visits, and w(F ′) ≤ (1 +O(ε)) · w(F).

Given an instance W of a problem, let OPT(W) be an optimal solution; when the context
is clear, we also use OPT(W) to denote the cost c(OPT(W)), which includes both its weight
and the incurred penalty; similarly, OPTnr(W) refers to an optimal net-respecting solution.

2.1 Overview

We achieve a PTAS for PCX by a unified framework, which is based on the framework of
sparse instance decomposition as in [5, 12, 10].

6 When the context is clear, we drop the subscript in cW (·).

ESA 2018

15:8 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Sparse Solution [5]. Given an edge set F and a subset S ⊆ X, F |S := {e ∈ F : e ⊆ S} is
the edges in F totally contained in S. An edge set F is called q-sparse, if for all i ∈ [L] and
all u ∈ Ni, w(F |B(u,3si)) ≤ q · si.

Sparsity Structural Property. An important technical lemma [5, Lemma 3.1] in this frame-
work states that if a (net-respecting) solution F is sparse, then with constant probability,
there is some (1 + ε)-approximate solution F̂ that is structurally light with respect to some
randomized hierarchical decomposition. Then, a bottom-up dynamic program based on
the hierarchical decomposition searches for the best solution with the lightness structural
property in polynomial time.
I Remark. We observe that this technical lemma is used crucially in all previous works on
PTAS’s for TSP variants in doubling metrics. Hence, we believe that its proof should be
verified rigorously. In Section 1, we outlined the technical issue in the original proof [5], and
this issue actually appeared as far as in the first paper on TSP for doubling metrics [20].
In the full version, we give a detailed description to complete the proof of this important
lemma.

Sparsity Heuristic. As in [5, 12, 10], we estimate the local sparsity of an optimal net-
respecting solution with a heuristic. For i ∈ [L] and u ∈ Ni, given an instance W , the
heuristic H(i)

u (W) is supposed to estimate the sparsity of an optimal net-respecting solution
in the ball B′ := B(u,O(si)). We shall see in Section 3 that the heuristic actually gives a
constant approximation to some appropriately defined sub-instance W ′ in the ball B′.

Divide and Conquer. Once we have a sparsity estimator, the original instance can be
decomposed into sparse sub-instances, whose approximate solutions can be found efficiently.
As we shall see, the partial solutions are combined with the following extension operator.
The algorithm outline is described in Figure 2.

I Definition 3 (Solution Extension). Given two partial solutions F and F ′ of edges, we define

the extension of F with F ′ at point u as F "u F
′ :=

{
F ∪ F ′, if u ∈ V (F) ∩ V (F ′);
F, otherwise.

Analysis of Approximation Ratio. We follow the inductive proof as in [5] to show that with
constant probability (where the randomness comes from DP), ALG(W) in Figure 2 returns
a solution with expected length at most 1+ε

1−ε · OPTnr(W), where expectation is over the
randomness of decomposition into sparse instances in Step 4.

As we shall see, in ALG(W), the subroutine DP is called at most poly(n) times (either
explicitly in the recursion or in the heuristic H(i)). Hence, with constant probability, all
solutions returned by all instances of DP have appropriate approximation guarantees.

Suppose F1 and F2 are solutions returned by DP(W1) and ALG(W2), respectively. We
use ci as a shorthand for cWi , for i = 1, 2, and c as a shorthand for cW . Since we assume that
W1 is sparse enough and DP behaves correctly, c1(F1) ≤ (1 + ε) · OPT(W1). The induction
hypothesis states that E[c2(F2)|W2] ≤ 1+ε

1−ε · OPTnr(W2).
In Step 4, equation (2) guarantees that E[OPT(W1)] ≤ 1

1−ε ·(OPTnr(W)−E[OPTnr(W2)]).
By equation (1), c(F2 "u F1) ≤ c1(F1) + c2(F2). Hence, it follows that

E[ALG(W)] ≤ E[c1(F1) + c2(F2)] ≤ 1 + ε

1− ε · OPTnr(W) = (1 +O(ε)) · OPT(W),

achieving the desired ratio.

T.H. Chan, H. Jiang, and S. Jiang 15:9

Generic Algorithm. We describe a generic framework that applies to PCX. Similar
framework is also used in [5, 12, 10] to obtain PTAS’s for TSP related problems. Given an
instance W , we describe the recursive algorithm ALG(W) as follows. This description is
mostly the same with that in [10], except that the decomposition in Step 4 is more involved.

1. Base Case. If |W | = n is smaller than some constant threshold, solve the problem by
brute force, recalling that |X| ≤ O(nε)O(k).

2. Sparse Instance. If for all i ∈ [L], for all u ∈ Ni, H(i)
u (W) is at most q0 · si, for some

appropriate threshold q0, call the subroutine DP(W) to return a solution, and terminate.
3. Identify Critical Instance. Otherwise, let i be the smallest height such that there

exists u ∈ Ni with critical H(i)
u (W) > q0 · si; in this case, choose u ∈ Ni such that

H(i)
u (W) is maximized.

4. Divide and Conquer. Define a sub-instance W1 from around the critical instance
(possibly using randomness). Loosely speaking, W1 is a sparse enough sub-instance
induced in the region around u at distance scale si. Since it is sparse enough, we apply
the dynamic programming algorithm on W1 and get solution F1.
We define an appropriate sub-instance W2 with the information of F1. Intuitively, W2
captures the remaining sub-problem not included in W1. We emphasize that as opposed
to previous work [5, 12, 10], W2 can depend on F1 (through the choice of the penalty
function). Moreover, we ensure that any solution F2 of W2 can be extended to F2 "u F1
as a solution for W , and the following holds:

cW (F2 "u F1) ≤ cW1(F1) + cW2(F2). (1)

We solve W2 recursively and suppose the solution is F2. We note that H(i)
u (W2) ≤ q0 · si,

and hence the recursion will terminate.
Moreover, the following property holds:

E[OPT(W1)] ≤ 1
1− ε · (OPTnr(W)−E[OPTnr(W2)]), (2)

where the expectation is over the randomness of the decomposition.
We return F := F2 "u F1 as a solution to W .

Figure 2 Algorithm Outline.

Analysis of Running Time. As mentioned above, if H(i)
u (W) is found to be critical, then in

the decomposed sub-instances W1 and W2, H(i)
u (W2) should be small. Hence, it follows that

there will be at most |X| · L = poly(n) recursive calls to ALG. Therefore, as far as obtaining
polynomial running times, it suffices to analyze the running time of the dynamic program
DP. The details are provided in the full version.

3 Sparsity Estimator for PCX

Recall that in the framework outlined in Section 2, given an instance W of PCX, we wish to
estimate the weight of OPTnr(W)|B(u,3si) with some heuristic H(i)

u (W). We consider a more
general sub-instance associated with the ball B(u, tsi) for t ≥ 1.

ESA 2018

15:10 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Auxiliary Sub-Instance. Given an instance W = (T, π), i ∈ [L], u ∈ Ni and t ≥ 1, the
sub-instance W (i,t)

u is characterized by terminal set W ∩B(u, tsi), equipped with penalties
given by the same π. Using the classical (deterministic) 2-approximation algorithms by
Goemans and Williamson for PCX [17], we obtain a 2-approximation and then make it
net-respecting to produce solution F (i,t)

u , which has cost c(F (i,t)
u) ≤ 2(1 +O(ε)) ·OPT(W (i,t)

u).

Defining the Heuristic. The heuristic is defined as H(i)
u (W) := c(F (i,4)

u).
In order to show that the heuristic gives a good upper bound on the local sparsity of an

optimal net-respecting solution, we need the following structural result in Proposition 4 [10,
Lemma 3.2] on the existence of long chain in well-separated terminals in a Steiner tree. As
we shall see, the corresponding argument for the case PCTSP is trivial.

Given an edge set F , a chain in F is specified by a sequence of points (p1, p2, . . . , pl) such
that there is an edge {pi, pi+1} in F between adjacent points, and the degree of an internal
point pi (where 2 ≤ i ≤ l − 1) in F is exactly 2.

I Proposition 4 (Well-Separated Terminals Contains A Long Chain). Suppose S and T are
sets in a metric space with doubling dimension at most k such that Diam(S ∪ T) ≤ D, and
d(S, T) ≥ τD, where 0 < τ < 1. Suppose F is an optimal net-respecting Steiner tree covering
the terminals in S ∪ T . Then, there is a chain in F with weight at least τ2

4096k2 ·D such that
any internal point in the chain is a Steiner point.

I Lemma 5 (Local Sparsity Estimator). Let F be an optimal net-respecting solution for an
instance W of PCX. Then, for any i ∈ [L], u ∈ Ni and t ≥ 1, we have

w(F |B(u,tsi)) ≤ c(F
(i,t+1)
u) +O(sktε)O(k) · si.

Proof. We follow the proof strategy in [10, Lemma 3.3], except that now a feasible solution
needs not visit all terminals and can incur penalties instead. We denote B := B(u, tsi) and
B̂ := B(u, (t+ 1)si).

Given an optimal net-respecting solution F for instance W of PCX, we shall construct
another net-respecting solution in the following steps.
1. Remove edges in F |B .
2. Add edges F (i,t+1)

u corresponding to some approximate solution to the instance W (i,t+1)
u

restricted to the ball B̂.
3. Let η := Θ(ε

(t+1)k2), where the constant in Theta depends on Proposition 4. Let j be the
integer such that sj ≤ max{1,Θ(ε

(t+1)k2) · si} < sj+1.
Add edges in a minimum spanning tree H of Nj ∩B(u, (t+ 2)si) and edges to connect H
to F (i,t+1)

u .
Convert each added edge into a net-respecting path if necessary. Observe that the weight
of edges added in this step is O(stkε)O(k) · si.

4. So far we have accounted for every terminal inside B̂, which is either visited or charged
with its penalty according to c(F (i,t+1)

u). We will give a more detailed description to
ensure that the terminals outside B̂ that are covered by F will still be covered by the new
solution.
For PCTSP, we will show that this step can be achieved by increasing the weight by at
most O(stkε)O(k) · si; for PCSTP, this can be achieved by replacing some edges without
increasing the weight.

Hence, after the claim in Step 4 is proved, the optimality of F implies the result.

T.H. Chan, H. Jiang, and S. Jiang 15:11

Ensuring Terminals Outside B̂ are accounted for. We achieve this by considering the
following steps.
1. Consider a connected component C in F \ (F |B). Recall that the goal is to make sure

that all terminals outside B̂ that are visited by C will also be visited in the new solution.
2. Pick some x in C ∩B. If no such x exists, this implies that we have the trivial situation

F |B = ∅. Let Ĉ ⊆ C be the maximal connected component containing x that is contained
within B̂. Define S := Ĉ∩B (which contains x) and T := {y ∈ Ĉ∩B̂ : ∃v /∈ B̂, {y, v} ∈ F},
which corresponds to the points that are connected to the outside B̂. Again, the case
that T = ∅ is trivial.

Case (a): There exists y ∈ T , d(u, y) ≤ (t + 1
2)si. In this case, this implies there is

some v /∈ B̂ such that {y, v} ∈ F and d(y, v) ≥ si

2 . Since F is net-respecting, this implies
that y ∈ Nj and hence, the component Ĉ (and also C) is already connected to H.

Case (b): For all y ∈ T , d(u, y) > (t + 1
2)si. We next show that there is a long chain

contained in Ĉ. For PCTSP, this is trivial, because we know that T contains only y, and Ĉ is
a chain from a = x to b = y of length at least d(x, y) ≥ si

2 .
For PCSTP, by the optimality of F , it follows that Ĉ is an optimal net-respecting Steiner

tree covering vertices in S ∪ T . Hence, using Proposition 4, Ĉ contains some chain from a to
b with length at least 4ηsi (where the constant in the Theta in the definition of η is chosen
such that this holds).

Once we have found this chain from a to b, we remove the edges in this chain. Hence, we
can use this extra weight to connect a and b to their corresponding closest points in Nj via a
net-respecting path; observe that for PCTSP, it suffices to connect only b = y to it closest
point in Nj .

Finally, observe that for PCTSP, it is possible to carry out the above procedures such that
all vertices with odd degrees are in the minimum spanning tree H. Therefore, extra edges are
added to ensure that the degree of every vertex is even to ensure the existence of an Euler
circuit. This has extra cost at most w(H) ≤ O(stkε)O(k) · si. This completes the proof. J

I Corollary 6 (Threshold for Critical Instance). Suppose F is an optimal net-respecting solution
for an instance W of PCX, and q ≥ Θ(skε)Θ(k). If for all i ∈ [L] and u ∈ Ni, H(i)

u (W) ≤ qsi,
then F is 2q-sparse.

4 Decomposition into Sparse Instances

In Section 3, we define a heuristic H(i)
u (W) to detect a critical instance around some point

u ∈ Ni at distance scale si. We next describe how the instance W of PCX can be decomposed
into W1 and W2 such that equations (1) and (2) in Section 2.1 are satisfied.

Decomposing a Critical Instance. We define a threshold q0 := Θ(skε)Θ(k) according to
Corollary 6. As stated in Section 2.1, a critical instance is detected by the heuristic when a
smallest i ∈ [L] is found for which there exists some u ∈ Ni such that H(i)

u (W) = c(F (i,4)
u) >

q0s
i. Moreover, in this case, u ∈ Ni is chosen to maximize H(i)

u (W). To achieve a running
time with an exp(O(1)k log(k)) dependence on the doubling dimension k, we also apply the
technique in [12] to choose the cutting radius carefully.

I Claim 7 (Choosing Radius of Cutting Ball). Denote T(λ) := c(F (i,4+2λ)
u). Then, there exists

0 ≤ λ < k such that T(λ+ 1) ≤ 30k · T(λ).

ESA 2018

15:12 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Proof. The proof is omitted and can be found in the full version. J

Cutting Ball and Sub-Instances. Suppose λ ≥ 0 is picked as in Claim 7, and sample
h ∈ [0, 1

2] uniformly at random. Define B := B(u, (4 + 2λ + h)si). The original instance
W = (T, π) is decomposed into instances W1 and W2 as follows:

For W1 = (T1, π1), the terminal set is T1 := (B ∩ T)∪ {u}, where for v 6= u π1(v) := π(v)
and π1(u) := +∞. We denote the cost function associated with W1 by c1.
Suppose F1 is the (random) solution for instance W1 (that covers u) returned by the
dynamic program for sparse instances (which can be found in the full version). Then,
instanceW2 = (T2, π2) is defined with respect to F1. The terminal set is T2 := (T \B)∪{u}.
For v ∈ T2 \ {u}, π2(v) := π(v) is the same; however, π2(u) := π(T ∩ B) − c1(F1) =
π(T ∩B ∩ F1)− w(F1).

Observe that the instance W2 depends on F1 through the choice of the penalty for u.

I Lemma 8 (Combining Solutions of Sub-Instances). Suppose instance W1 is defined with cost
function c1 and instance W2 is defined with respect to F1 of W1. Furthermore, suppose F̂2 is
a solution to instance W2, whose cost function is denoted as c2. Then, we have the following.
(i) Suppose F̂1 is any solution to W1 that contains u, and let F := F̂2 "u F̂1. If F̂2 covers

u, then F = F̂2 ∪ F̂1 is a solution to W with cost c(F) ≤ c1(F̂1) + c2(F̂2); if F2 does
not cover u, then F = F̂2 is a solution to W with cost c(F) ≤ c1(F1) + c2(F̂2). This
implies (1) in Section 2.1.

(ii) The sub-instance W2 does not have a critical instance with height less than i, and
H(i)
u (W2) = 0.

(iii) H(i)
u (W1) ≤ O(s)O(k) · q0 · si.

Proof. The proof is omitted and can be found in the full version. J

I Lemma 9 (Combining Costs of Sub-Instances). Suppose F is an optimal net-respecting
solution for instance W of PCX. Then, for any realization of the decomposed sub-instances W1
and W2 as described above, there exist (not necessarily net-respecting) solution F̂1 for W1 and
net-respecting solution F̂2 for W2 such that (1− ε) ·E

[
c1(F̂1)

]
+ E

[
c2(F̂2)

]
≤ cW (F), where

the expectation is over the randomness to generate W1 and W2. Recall that the randomness
to generate W1 and W2 involves the random ball B and the randomness used in the dynamic
program to generate F1 to produce instance W2 and its cost function c2.

Proof. The proof is omitted and can be found in the full version. J

References
1 Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard J.

Karloff. Improved approximation algorithms for prize-collecting steiner tree and TSP.
SIAM J. Comput., 40(2):309–332, 2011.

2 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, 1998.

3 P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111(4):429–448,
1983.

4 Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

5 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563–1581, 2016.

T.H. Chan, H. Jiang, and S. Jiang 15:13

6 M Bateni, Chandra Chekuri, Alina Ene, Mohammad Taghi Hajiaghayi, Nitish Korula, and
Dániel Marx. Prize-collecting steiner problems on planar graphs. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1028–1049.
Society for Industrial and Applied Mathematics, 2011.

7 MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting
steiner forest. Algorithmica, 62(3-4):906–929, 2012.

8 Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David Williamson. A note on
the prize collecting traveling salesman problem. Mathematical programming, 59(1):413–420,
1993.

9 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approxima-
tion scheme for euclidean steiner forest. ACM Trans. Algorithms, 11(3):19:1–19:20, 2015.

10 T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. A PTAS for the steiner forest
problem in doubling metrics. In FOCS, pages 810–819. IEEE Computer Society, 2016.

11 T.-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang. A unified PTAS for prize
collecting TSP and steiner tree problem in doubling metrics. CoRR, abs/1710.07774, 2017.

12 T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. In SODA, pages 754–765. SIAM,
2016.

13 Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete & Computational
Geometry, 22(1):63–93, 1999. doi:10.1007/PL00009449.

14 Erik D Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction
decomposition in h-minor-free graphs and algorithmic applications. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 441–450. ACM, 2011.

15 M. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and
Combinatorics. Springer-Verlag, Berlin, 1997.

16 Michel X Goemans. Combining approximation algorithms for the prize-collecting tsp. arXiv
preprint arXiv:0910.0553, 2009.

17 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

18 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In FOCS, pages 534–543. IEEE Computer Society, 2003.

19 J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002.

20 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In STOC,
pages 281–290. ACM, 2004.

ESA 2018

http://dx.doi.org/10.1007/PL00009449

	Introduction
	Preliminaries
	Overview

	Sparsity Estimator for PC^X
	Decomposition into Sparse Instances

