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Abstract
In this paper we study three previously unstudied variants of the online Facility Location
problem, considering an intrinsic scenario when the clients and facilities are not only allowed to
arrive to the system, but they can also depart at any moment.

We begin with the study of a natural fully-dynamic online uncapacitated model where clients
can be both added and removed. When a client arrives, then it has to be assigned either to an
existing facility or to a new facility opened at the client’s location. However, when a client who
has been also one of the open facilities is to be removed, then our model has to allow to reconnect
all clients that have been connected to that removed facility. In this model, we present an optimal
O(log nact/ log log nact)-competitive algorithm, where nact is the number of active clients at the
end of the input sequence.

Next, we turn our attention to the capacitated Facility Location problem. We first
note that if no deletions are allowed, then one can achieve an optimal competitive ratio of
O(log n/ log log n), where n is the length of the sequence. However, when deletions are allowed,
the capacitated version of the problem is significantly more challenging than the uncapacitated
one. We show that still, using a more sophisticated algorithmic approach, one can obtain an
online O(logm+ log c log n)-competitive algorithm for the capacitated Facility Location prob-
lem in the fully dynamic model, where m is number of points in the input metric and c is the
capacity of any open facility.
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1 Introduction

The Facility Location is one of the central combinatorial optimization problem, extensively
studied in the literature for several decades, see, e.g., [5, 12, 14, 29, 37, 45] and the references
therein. The goal is to connect a given set of clients to a set of facilities such that the
service cost is optimized. A very natural setting for the Facility Location problem is the
online scenario, where clients arrive incrementally over time and need to be connected to
existing or newly opened facilities. Indeed, since it has been introduced over 15 years ago by
Meyerson [40], the online version of the Facility Location problem and its generalizations
received considerable amount of attention [3, 6, 7, 16, 17, 20, 21, 22, 25, 26, 33, 41, 42, 43, 48].
Typically in these models one assumes to be given a metric over a set of candidate points.
When a client appears, we are allowed to open a new facility in her location, paying some cost
for opening a new facility, and then we have to irrevocably connect the client to one of the
open facilities, paying for the connection the cost equal to the distance from the client to the
facility. In this paper, we study a more complex scenario and consider a natural extension of
this model allowing clients to be removed from the system, extending the standard dynamic
model to the fully dynamic setting. That is, in each time step either a new client arrives and
needs to be connected to one of the open facilities, or one of the clients already existing in
the system departs. Observe that if a client who has been also one of the open facilities is to
be removed, then our model has to allow to reconnect all clients that have been connected to
that removed facility.

The fully dynamic model is very natural in the context of the Facility Location
problem, where in a number of scenarios it is desirable to dynamically process the arrival
objects, and then to allow their departures. For example, if one wants to build and maintain
schools in a newly developing city, one wants to allow a steady arrival of new pupils to the
area, and also allow changes in the school demands when pupils population is declining.
Similarly, if one wants to maintain a construction of a network, where all clients are to be
connected to the servers (and pay connection costs) and each client is allowed to host a
server (and pay an opening cost), one may also want to allow the removal of some clients
and with that also a closure of some servers. Given that the relocation costs are often very
expensive, the decisions should be regarded as irrevocable, unless, as in the case of deletions,
are necessary. The framework considered in this paper is even more natural in complex
distributed settings, for example, in some more modern scenarios that have been recently
motivated by applications in peer-to-peer systems, when client and facility are coupled to
the same entity. Consider the so called p2p networks with super-peers [49] that were used
for filesharing as Gnutella [30] or can be used for decentralized online social networks [44],
distributed game systems [47], grid management systems [19] and distributed storage [34]. In
such case, some of the nodes decide to host the provided content. This decision incurs some
cost to this node, but can reduce the cost of serving other nodes. The main question asked
about such systems is about the needed ratio of superpeers to peers that guarantees that
enough capacity of superpeers is available to serve all clients [49]. This measure corresponds
exactly to competitive ratio in our models.

Before discussing our results and techniques further, let us first formally define the models
starting with the classical online variant.

1.1 The model
We study the performance of online algorithms for the Facility Location problem in the
standard framework of competitive analysis (cf. [11, 46]). A randomized algorithm for the
Facility Location problem is α-competitive if for any input sequence, its expected cost



M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:3

is at most α times the optimal cost for the corresponding instance of the offline Facility
Location. Note that the corresponding instance of the offline problem contains only the
clients that are active at the end of the input sequence. We consider a standard special
version of the Facility Location problem, where the set of clients and the set of possible
facility locations are identical (see, e.g., [8, 23, 40]).

1.1.1 Online facility location
We consider the Facility Location problem, where points (from some metric space) arrive
in online fashion. When a point x arrives, we can first open a facility in x and then we
have to assign x to some open facility. These choices are irrevocable. We consider only
the Facility Location problem with uniform opening costs, which are all, without loss
of generality, equal to 1. The restriction to the study of uniform costs makes the problem
interesting, since without this assumption, no bounded competitive ratio can be obtained (as
described in the full version of this paper).

The cost of an obtained solution for a point set X is:

|F|+
∑
x∈X

dist(x, a(x)) ,

where F is the set of open facilities and a(x) is the open facility to which x is assigned. The
cost of a point x ∈ S is equal to its connecting cost (distance to the open facility assigned
to x) plus its opening cost (if x is an open facility then the opening cost is 1, and it is 0
otherwise).

The model defined here has been studied in the past, see e.g., Fotakis [23] for a survey or
Meyerson [40]. (One frequently assumes (see e.g., [40]) that the opening cost in any facility
is equal to some f , but simple scaling makes this problem equivalent to the one studied in
our paper, that is, with f = 1.)

1.1.2 Online facility location with deletions
In this paper, we consider a fully-dynamic online setting, in which in each time step either a
new point (from some metric space) arrives in an online fashion, or a point already in the
input is deleted. To cope with the case when an open facility is deleted, we have to allow
the input points to be reassigned, and possibly to open other facilities. We consider the
following, very natural model:

In the online process, the requests are arriving online, and each request is either an arrival
of a new demand point from a metric space, or a request to remove a previously inserted
demand point.
When a new demand point x arrives, the algorithm must at once and irrevocably decide
if a new facility will open at x, and then must assign x to some open facility (possibly to
itself, if a facility was open at x).
When a point x is requested to be removed, then x is deleted from the system and if x
was an open facility, then all points assigned to x will be immediately reassigned to other
facilities and some of these points may become open facilities.

1.1.3 Online capacitated facility location
We also consider a more general model of online capacitated Facility Location with
deletions, in which each open facility can handle at most c clients, that is, at any moment at
most c clients can be connected to any single facility. Again, we study only a uniform case
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(in which each facility has the same capacity c), since otherwise no bounded competitive
ratio can be obtained (see full version of the paper).

The goal of an algorithm for the Facility Location in any of the models defined above
is to minimize the cost of the solution and to obtain an algorithm that is α-competitive for
α as small as possible. The performance of the algorithm may be a function of the length
of the input sequence n, the number of points nact active in a given moment, the size of the
input metric space m, and the capacity c.

We note that in the model of uncapacitated Facility Location, the known results (as
well as our new results) work for any metric space, even if it is unknown to the algorithm.
However, for the new algorithm for online capacitated Facility Location with deletions
(cf. Theorem 4.4), we will assume that the underlying metric is known to the algorithm in
advance.

1.2 Related work
As one of the fundamental problems in operations research and combinatorial optimization,
the Facility Location problem has been studied extensively in the past, see, e.g., the
standard exposition in [14] and more recent advances in [4, 5, 29, 45], and the references
therein. In the online setting, an early research focused on the k-median problem (see, e.g.,
[39]), which is a variant of the Facility Location problem where exactly k facilities have to
be opened. Soon after, Meyerson [40] designed a simple randomized online algorithm in the
uncapacitated model without deletion. His online algorithm is O(log n/ log log n)-competitive,
where n is the number of points in the input. (In fact, only a competitive ratio of O(log n)
was proven in [40], but Fotakis [22] extended the analysis from [40] to obtain a competitive
ratio of O(log n/ log log n).) Fotakis [22] later has shown that this bound is asymptotically
tight and no online algorithm is o(log n/ log log n)-competitive; the lower bound holds for
randomized algorithms against the oblivious adversary, for uniform facility costs, and for
very simple metric spaces, such as the real line. For more discussion about the history of the
online version of the uncapacitated Facility Location problem (including deterministic
online algorithms and incremental online algorithms), we refer to a survey by Fotakis [23].

The extension of the online model to deal with deletion of the facilities makes the
Facility Location problem significantly more challenging. While this model is very
natural, it requires a different approach that must permit to reverse some of the decisions
in the online algorithm, and we are not aware of any study of algorithms for the online
Facility Location problem in the fully dynamic setting, where deletions are allowed.

We note however, that similar fully dynamic models for optimization problems on graphs
have been considered in the past, though only in limited settings. For example, a number of
graph optimization problems have been considered in fully dynamic models in the setting
of data streams, in the so-called turnstile model. This model has been investigated in two
scenarios: in the context of geometric graph optimization problems (see, e.g., [15, 28, 35]), and
only very recently, in the context of standard graph optimization problems (see, e.g., a recent
survey [38] and the references therein). The main focus of these studies is to design algorithms
that process a stream of data (in this case, edge or vertex insertions and deletions) and using
very limited space, to maintain some basic graph features. For geometric graph optimization
problems, where the input is defined over a set of points in the discrete d-dimensional space
{1, 2, . . . ,∆}d, it has been shown that many basic properties (e.g., k-median, minimum
spanning tree, minimum weight matching, MaxCut) can be approximated very efficiently
even with poly-logarithmic space (see, e.g., [28, 24]). The uncapacitated Facility Location
problem has been studied in the context of data streaming, initiated with work of Indyk [28],
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who gave a poly(log ∆)-space streaming algorithm that approximates the optimal cost of
the Facility Location problem within a factor of O(log2 ∆). The best currently known
streaming algorithm using poly(log ∆)-space gives an (1 + ε)-approximation for this problem
[15]. The research in data streaming for standard graph optimization problems has been
traditionally focusing on the insertion-only model, where one was aiming to design streaming
algorithms with O(n poly logn) space (cf. [38] and the references therein). Only very recently,
Ahn et al. [1] initiated the study of algorithms that allow both insertions and deletions
(see also [13]). This line of research led to a number of efficient data streaming algorithms
for fundamental graph problems, such as testing connectivity or bipartiteness, computing
spanning trees and various graph sparsifiers, maximum matching, that can be (approximately)
computed in small, O(n poly logn) space not only in the insertion only model, but also in
the model with deletions [1, 2, 31, 32, 38].

We also note that recently there has been some research on the standard online Steiner
tree problem with deletions, see e.g., [27, 36].

1.3 New results
The main contribution of this paper is the first thorough study of the online Facility
Location problem with deletions and design of new algorithms for this model in several
natural settings.

We begin with the study of the simplest, uncapacitated model. We present in Theorem
2.2 an online O(log nact/ log log nact)-competitive algorithm for the uncapacitated Facility
Location problem with deletions, where nact is the number of active clients at the end of the
input sequence; this bound gives an asymptotically optimal competitive ratio. Our algorithm
is an extension of the classical insertion-only algorithm for the Facility Location problem
due to Meyerson [40], and we show that one can modify the analysis from [40] to allow
deletions.

Next, we turn our attention to the capacitated Facility Location problem. We first
prove (Observation 3.1) that if no deletions are permitted, then a simple modification of
Meyerson’s algorithm for online Facility Location can be applied to achieve an optimal
competitive ratio of O(log n/ log log n). However, when deletions are allowed, then the
capacitated version of the problem is significantly more challenging than the uncapacitated
one. We show that still, using more involved approach incorporating hierarchically well-
separated trees, one can obtain an online O(logm + log c log n)-competitive algorithm for
the capacitated Facility Location problem with deletions, in the fully dynamic model,
where n is the number of queries, m is the number of points in the input metric, and c is the
capacity of the facilities (Theorem 4.4).

We notice that while the algorithms from Theorem 2.2 and Observation 3.1 do not need
to know the input metric, the result from Theorem 4.4 assumes that the input metric is
known to the algorithm.

Our work demonstrates that despite the fact that the online Facility Location problem
with deletion is clearly more complex than the classical online problem with insertions only,
the most natural variants of these problems, for both the uncapacitated and the capacitated
model for uniform facility costs, have very efficient online algorithms that achieve competitive
ratios matching or almost matching those of the insertion only variants of the problem.

2 Online uncapacitated facility location

We begin with the study of the simplest, uncapacitated model, and describe an insertion-only
online algorithm for uncapacitated Facility Location due to Meyerson [40].
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Algorithm M:

When a new demand point x arrives then find its nearest open facility y and set dx =
min{dist(x, y), 1}. Next, with probability dx open a new facility at point x and assign x to
it; otherwise, assign x to y.

Meyerson [40] proved that Algorithm M is O(log n/ log log n)-competitive in the model
with insertions only (see also [22, 23]).

The most natural approach to obtain an online algorithm for the Facility Location
problem with deletions is to attempt to modify Algorithm M. Indeed, there is a simple
modification of Algorithm M that addresses the deletions. The following Algorithm M*
proceeds as in Algorithm M, except that when a facility is removed, it reprocesses all the
points that are now not assigned to any facility using the original algorithm.

Algorithm M*:

When a new demand point x arrives then find its nearest open facility y and set dx =
min{dist(x, y), 1}. Next, with probability dx open a new facility at point x and assign x to
it; otherwise, assign x to y.

When a point x that is an open facility is to be deleted, then reassign all points assigned
to x using the algorithm for the insertions.

While it is appealing to hope that Algorithm M* has performance similar to that of
Algorithm M for insertions only, but in fact asymptotically, it does no better than opening
facilities at all points.

I Claim 2.1. Algorithm M* has competitive ratio of Ω(nact).

Proof. For any k ∈ N+, consider a star metric with center o connected to points X =
{x1, . . . , xk} at distance ε = 1

k from o. Consider the following input sequence:
1. Add k2 clients a1, . . . , ak2 located at o.
2. For each i = 1, . . . , k add a client bi located at xi.
3. Remove the clients a1, . . . , ak2−1 in that order.

We will analyze the performance of algorithm M∗ in the above scenario. While doing
that, we assume that whenever clients are reassigned, they are reassigned in the order in
which they were originally assigned.

Consider the first two stages, when all the clients are added. In step 1, client a1 opens
a facility and then all other clients at o connect to a1. In step 2, each bi opens a facility
with probability ε and connects to a1 otherwise. For the remainder of the analysis, let us
assume that at least one of the clients bj opens a facility. This happens with probability
p1 = 1− (1− ε)k = Ω(1).

Next, we remove a1 and reassign all other clients assigned to a1. One by one, each client
at o flips a coin and with probability ε connects to one of the bi’s; otherwise it opens a facility.
As soon as some ai opens a facility, all other clients at o connect to ai, and each client at
X that has not yet opened a facility (and hence was initially connected to a1) does so with
probability ε; otherwise it connects to ai. If no ai opens a facility, then each client at X that
has not yet opened a facility, opens one with probability 2ε, and otherwise it connects to one
already open facility at some bj .

We then remove all other clients a2, . . . , ak2−1. Each time the client removed has a facility
opened, the scenario described in the previous paragraph repeats. Removal of a client with
no facility opened has, of course, no effect on the other clients.
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Note that each time we remove a client at o that has a facility open, each of the bj ’s
opens a facility with probability at least ε, unless it has already opened a facility. How many
times does that happen? Let us count the number of ai’s with 2 ≤ i ≤ k2 − 1 that at some
moment open a facility (and then get removed). Each of the ai’s flips a coin exactly once
(which corresponds to the situation that at some moment we have already removed a1, . . . , aj

for some j < i, and there is no facility open at aj+1, . . . , ai−1, with points aj+1, . . . , ai−1
connected to facilities from X ). Furthermore, the coin flip for ai is independent from coin flips
made by a2, . . . , ai−1, ai+1, . . . , ak2−1. Therefore the number of ai’s that at some moment
open a facility and then get removed has the binomial distribution with parameters k2 − 2
and ε. Hence, by Chernoff bound, with probability p2 ≥ 1− e−ε(k2−2)/6 = Ω(1), there are at
least ε(k2 − 2)/2 ≥ k/2− 1 of those clients. Therefore, we can conclude that each bj opens a
facility with probability at least p3 = 1− (1− ε)k/2−1 = Ω(1).

The optimal offline solution opens a facility at ak2 and connects all points b1, . . . , bk

to ak2 , and it has cost 1 + εk = 2. On the other hand, with probability p1p2 = Ω(1)
algorithm M∗ opens at least kp3 = Ω(k) facilities from b1, . . . , bk in expectation. This gives
an Ω(k) = Ω(nact) competitive ratio. So asymptotically M∗ does no better than just opening
facilities at all points. J

2.1 Asymptotically optimal competitive ratio for uncapacitated facility
location with deletions

Claim 2.1 shows one of the main challenges that online algorithms with deletions must cope
with: we cannot let points attempt to open a facility too frequently, since then we would
open too many facilities, and at the same time we have to be able to open some facilities
in the neighborhood of the facilities that we are closing. To address this challenge we have
to provide a delicate online strategy that will maintain a right balance between these two
desirables.

Algorithm 1:

Newly arriving points: When a new demand point x arrives then find its nearest open
facility y and set d′ = min{dist(x, y), 1}. With probability d′ open a new facility at point x
and assign x to it; otherwise, assign x to y and set px := d′. (The algorithm will memorize
px for future use.)

Deletion: When a point that is not an open facility is to be deleted, then just remove that
point.

When a point that is an open facility is to be deleted, then reassign all points assigned
to it: When a point x is to be reassigned, then find its nearest open facility y and set
d′ = min{dist(x, y), 1}. Let px be the last value used in the processing of x. If d′ ≤ 2px, then
assign x to y; otherwise with probability d′ open a new facility at x; else, with probability
1− d′ assign x to y and set px := d′.

The following theorem analyzes the performance of Algorithm 1.

I Theorem 2.2. Algorithm 1 is O(log nact/ log log nact)-competitive, where nact is the number
of active clients at the end of the input sequence (in particular, as n is the input length, we
have nact ≤ n).

Proof. We follow the approach of Meyerson [40], with special care taken to deal with
deletions.
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Consider any optimal solution. For a fixed facility v, let S be the set of clients connected
to v in the optimal solution. Let d∗ be the average distance from the points of S to v. We
split S into h+ 1 subsets S0, S1, . . . , Sh, where h = d2 log |S|/ log log |S|e. Points in S0 are
at distance at most d∗ from v. For 1 ≤ i ≤ h, points in Si are at distance greater than
d∗(log |S|)(i−1)/2, but at most d∗(log |S|)i/2 from v. Note that each point is contained in
some Si, as d∗(log |S|)h/2 ≥ d∗|S|, and a single client at distance more than d∗|S| would
contradict the average distance d∗.

For each set Si we split the time into two epochs: the second epoch starts when the first
point in Si becomes an open facility in the solution of the algorithm – note that the second
epoch might never start.

Consider the first epoch of some Si. The part of the cost of the final solution incurred by
the points in Si during the first epoch is the total connection cost of these points at the end
of the first epoch plus possibly a single opening cost. The connection cost of a point x ∈ Si

is upper bounded by twice the probability of the last coin flip of x, regardless of whether
that connection was preceded by a coin flip or not. To bound the total connection cost of Si

in the first epoch it is therefore enough to bound the sum of the probabilities of all the coin
flips related to Si made during that epoch.

I Lemma 2.3. The expected value of the sum of the probabilities of the coin flips related to
points in Si and made before the first facility in Si opens is at most 1.

Proof. Let P1, P2, . . . , PM be the probabilities of all coin flips (with non-zero probabilities)
made for points in Si and let X1, X2, . . . , XM be the outcomes of these coin flips, so that
P [Xj = 1] = Pj (note that each Pj is a random variable, and not a constant since its value
might possibly depend on earlier coin flips). Also, add to both sequences a virtual „sentinel”
coin flip with PM+1 = 1, XM+1 = 1. Define Z0 = 0 and Zj+1 = Zj + Pj+1 − Xj+1 for
j = 1, . . . ,M + 1. Then the sequence {Zj} forms a martingale. Let T = min{j > 0 : Xj = 1}
be the position of the first heads in {Xj}. Note, that T is well defined, since XM+1 = 1.
Also note, that T = min{j > 0 : Zj ≤ Zj−1}, i.e., T is a stopping time for {Zj}. Since T is
bounded, from the Doob’s optional stopping time theorem we get that E[ZT ] = E[Z0] = 0.
However, we also have

ZT =
T∑

j=1
Pj − 1,

and thus the claim follows. Note that the claim does not hold with equality, since the above
expression might include the virtual coin flip added to make T well defined. J

It follows that the total cost incurred by the points of Si during the first epoch is a
constant, so the overall cost of the first epoch is O(h).

Consider now the cost incurred by any point x ∈ Si in the second epoch. If x does not
make any coin flips in the second epoch, then any connection made by x has cost upper
bounded by 2d∗(log |S|)i/2, since there is an open facility in Si at this point. Consider now
the case when x does make a coin flip during the second epoch. We then upper bound the
cost of the last connection made by x by twice the probability of the last coin flip of x. We
also need to bound the cost of a facility that x might potentially open. The expected number
of facilities opened by x is the sum of the probabilities of all its coin flips. Each term in
this sum is at least twice the previous one, and so the expected number of facilities opened
by x is at most twice the probability of the last coin flip of x. This probability is at most
2d∗(log |S|)i/2 since there is an open facility in Si.
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To sum up, the total cost incurred by x ∈ Si during the second epoch is at most
8d∗(log |S|)i/2. Consider first the case where Si is not the innermost layer, i.e., 0 < i ≤ h.
Any x ∈ Si is then connected to v in the optimum solution, and thus incurs a cost of at
least d∗(log |S|)(i−1)/2. Therefore, the cost incurred by such x in the second epoch is at most√

log |S| times the corresponding cost in the optimal solution. Consider now the innermost
layer. For any client in S0 Algorithm 1 pays at most O(d∗), leading to O(d∗|S0|) total cost
of the second epoch, which by the definition of d∗ is at most a constant factor more than the
connection cost payed by the optimal algorithm.

Note that in the analysis we completely ignore the cost generated by the clients, that are
removed during the course of the algorithm, as those clients in the end generate no cost to
Algorithm 1. J

Since even in the incremental model (when points can only arrive, not vanish) there is an
Ω(log n/ log log n)-lower bound (cf. [22]), Algorithm 1 is optimal up to a constant factor.

3 Capacitated online facility location (with insertions only)

Our result in Theorem 2.2 shows that for uncapacitated Facility Location with deletions,
one can extend the approach from earlier works (see [40] and also [22]) to design online
algorithms that achieve asymptotically optimal competitive ratio. However, the model
of capacitated Facility Location with deletions is significantly more complex. Still, in
the most basic case, the model with insertions only, we observe that Algorithm M can be
extended to the model of capacitated Facility Location. We run Algorithm M with a
single modification: the nearest facility y now is the nearest facility that is not fully saturated,
that is, that has still available capacity.

I Observation 3.1. Algorithm M in the capacitated case is O(log n/ log log n)-competitive in
the model with insertions only.

Proof. We only sketch the proof, since it is a straightforward modification of the original
proof of Meyerson [40] and Fotakis [22]. Similarly as described in the proof of Theorem 2.2,
we partition the set S of clients connected to some open facility v into subsets S0, . . . , Sh,
depending on their distance to v. What is different from the analysis of Meyerson and Fotakis
is the way in which we split time into epochs for each layer Si, as here the first and second
epoch can possibly interlace. Formally, the cost incurred by a client belongs to the first
epoch, if at the moment when the client appears there is no unsaturated open facility in the
layer Si. If there is an unsaturated open facility in the layer Si, then the cost incurred by
the client is classified to the second epoch.

The total cost of clients of the first epoch is bounded by Lemma 2.3, and is at most
` + n/c, where ` is the total number of sets Si, as at most n/c facilities may be saturated
during the course of the algorithm. Note that ` is exactly (h+ 1) = O(log n/ log log n) times
greater than the number of open facilities in the optimal solution. Also, as each facility can
serve only c clients, the term n/c is not greater than the cost of the optimal solution.

The cost of clients of the second epoch is bounded as in the proof of Theorem 2.2, i.e.,
Algorithm M pays at most d∗(log |S|)i/2 for each client from Si, whereas optimal solution
pays at least d∗(log |S|)(i−1)/2, assuming i > 0. The cost of clients from S0 is bounded
analogously as in the proof of Theorem 2.2. J
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4 Capacitated facility location with deletions

The result in Section 3 may give a hope that also our result from Theorem 2.2 for uncapacitated
Facility Location with deletions can be easily extended to the model of capacitated
Facility Location with deletions. For example, let us think of a simple extension of
Algorithm 1 to the capacitated case. Perhaps the most natural idea is to let d be the distance
to the closest open unsaturated facility, i.e., a facility which still can serve additional clients.
Unfortunately this line of reasoning does not lead to a meaningful competitive ratio, because
in the case when all the clients arrive at the same location all the distances are equal to zero
and therefore such a modified version of Algorithm 1 would be deterministic. Playing against
a deterministic algorithm is very convenient for the adversary, as the adversary might remove
all the clients which were not turned into open facilities by the algorithm, leading to Ω(c)
competitive ratio.

One natural idea to introduce randomness to the algorithm is to increase the value of d,
so that even if the distance to the closest facility is zero, the client might still decide to open
a new facility. However, this idea alone does not seem to lead to any reasonable competitive
factor. Below, we present a typical hard example for one possible implementation of this
idea. (Note, that this competitive ratio is as bad as the one obtained by an algorithm that
opens facilities in all input points.)

I Claim 4.1. Let A be Algorithm 1 modified, so that d is the maximum of the distance to
the closest unsaturated facility and 10/c. Then, the competitive ratio of A is Ω(c).

Proof. Consider a star metric with the center o and the remaining 10c2 points at distance
1
2 from o. Let us analyze the performance of A on the following input sequence. First, we
repeat c times the following insertion: insert a point at o and then 10c points in different
leaves of the metric, and then, at the end, remove all points located in the leaves.

The optimal solution will have one open facility at one of the c points located at o, and
so the optimal cost is 1. We claim that the expected size of the solution found by A is Ω(c).

To see this, consider a single round of insertions. If at the beginning of the round, there
are no unsaturated facilities at o, then one is created with probability Θ(1). If that happens,
then each of the clients inserted at the leaves opens a facility with probability 1

2 + 10/c until
the facility is saturated. Since there are 10c such clients, w.h.p. the facility gets saturated.
It also follows, that for any round, w.h.p. there are no unsaturated facilities at o at the
beginning of the round.

The expected number of facilities opened at o is the sum over all rounds of insertions
of the probabilities that a facility is open at the beginning of the round. Based on the
observations of the previous paragraph, this probability is Θ(1) for each round, and the claim
follows. J

4.1 Hierarchically well-separated trees and facility location
We will present an online algorithm for the capacitated Facility Location problem in
the fully dynamic setting with low competitive ratio, with both insertions and deletions.
We begin with a brief overview. We will assume that (unlike in the rest of the paper) the
input metric is given in advance, V is the set of all points in the metric space, and m is the
number of points in the metric space, m = |V|. We use the embedding of the original metric
space into hierarchically well-separated trees (cf. [9, 10, 18]), on which we run our Facility
Location algorithm. Once we run the algorithm on a hierarchically well-separated tree
T, for every open facility, we will evenly split its capacity into h = O(log c) parts and then
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allocate each partial capacity solely to the points in one of h areas we will define later. Then
we use a key property which ensures that every point v that would use an open facility u in
the offline uncapacitated optimal solution, to find a replacement facility with still available
capacity that is at the same distance from v in T as the distance from u to v in T.

Our approach relies on the concept of hierarchically well-separated trees (HSTs), which
are metric spaces defined on the leaves of weighted rooted trees (cf. [9, 10, 18]). It is known
(see [18]) that for every metric space, there is an HST with stretch O(logm). Let T be such
an HST for the metric given in our instance. Let the level of an internal node in the tree T

be the number of edges on the path to the root. Let ∆ denote the diameter of the resulting
metric space. In our paper, we will assume, without loss of generality, that the diameter of
the original metric space is ∆ = 1. (Indeed, if a pair of points is at distance larger than 1,
then in the Facility Location problem we will never allocate one of them to another, since
it is always cheaper to pay 1 to open a new facility; therefore, we can treat any distance
larger than 1 as equal to 1.) We also modify short distances in the metric, that is, for any
pair of points in the metric we assume their distance is at least 1/c. Note that as nact/c is a
lower bound on the cost of the optimum solution such modification of the metric increases
the cost of the optimum solution at most by a constant factor. Then using the framework
of HSTs, we will assume that the metric in the instance of capacitated online Facility
Location we are solving is a shortest paths metric in a tree T of depth h = log c, satisfying
the following conditions:

any edge connecting vertices of depth i and i+ 1 is of length 2−i,
the set of potential clients are leaves of T,
all leaves of T are at the same depth h.

I Definition 4.2. For two leaves u, v of T, define dist_log(u, v) = b− log distT(u, v)c.

Less formally, dist_log(u, v) is the depth of the lowest common ancestor of u and v in T,
which follows from the assumption that the weights of edges of T are powers of two depending
on their depth. From the triangle inequality we have the following property.

I Claim 4.3. For u, v, w ∈ V we have dist_log(u,w) ≥ min{dist_log(u, v), dist_log(v, w)}.

4.2 Algorithm for fully dynamic capacitated facility location in HSTs
In this section, we present an algorithm for fully dynamic capacitated Facility Location
in a hierarchically well-separated tree T, Algorithm 2. We will analyze its performance in
the next section.

We will assume the input metric space is the shortest path metric in a hierarchically
well-separated tree T, with all input points coming from the leaves of T, as defined in the
previous section. In the algorithm below, when a new facility is opened at a point v, then its
capacity c is evenly split into h parts, denoted as functions capi(v) for 0 ≤ i < h. We will
design the algorithm so that the capacity capi(v) will be used solely by clients u such that
dist_log(u, v) = i, that is, by the clients such that the lowest common ancestor of u and v in
T is of depth i. Apart from that constraint, the algorithm mimics Algorithm 1 from Section
2.1.

Algorithm 2:

insert v:
Call connect(v).

delete v:
For all clients of v (in arbitrary order) call connect(u).
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connect v:
If maxv is undefined, then set maxv = 0.
Let u be the closest point to v such that capi(u) > 0, where i = dist_log(u, v).
If such u does not exist, then open(v) and exit.
p = min{1, distT(u, v) + 12 h ln n

c }.
If p ≤ 2 maxv, then connect v to u and decrease capi(u) by one.
Otherwise: (i) set maxv = p, (ii) with probability p open(v), and with probability
1− p connect v to u and decrease capi(u) by one.

open v:
Open a facility at v.
For each 0 ≤ i < h set capi(v) = bc/hc.

In the full version of this paper we prove the following main result for the capacitated
case of Facility Location with deletion.

I Theorem 4.4. There is an O(logm+log c log n)-competitive online algorithm for capacitated
Facility Location with deletions.

5 Conclusions

In this paper we present the first thorough study of natural variants of the online Facility
Location problem, when the clients and facilities are not only allowed to arrive to the system,
but they can also depart from the system at any moment. In this fully-dynamic online problem,
we study two fundamental settings: uncapacitated and capacitated Facility Location
for uniform facility costs. For uncapacitated Facility Location, we design an extension
of the classical insertion-only randomized algorithm for the Facility Location problem
due to Meyerson [40], and show that it achieves an asymptotically optimal competitive
ratio of O(log nact/ log log nact) (Theorem 2.2). The capacitated Facility Location is more
complex, and here we first show (Observation 3.1) that if no deletions are allowed, then
one can achieve an asymptotically optimal competitive ratio of O(log n/ log log n), the same
bound as it is known for the uncapacitated variant. When deletions are allowed, the task
is more challenging, but we still are able to incorporate the framework of hierarchically
well-separated trees to obtain an online O(logm + log c log n)-competitive algorithm for the
capacitated Facility Location problem with deletions (Theorem 4.4).

Our work demonstrates that despite the fact that the online Facility Location problem
with deletion is clearly more complex than the classical online problem with insertions only,
the most natural variants of these problems, for both the uncapacitated and the capacitated
model for uniform facility costs, have very efficient online algorithms that achieve competitive
ratios matching or almost matching those of the insertion only variants of the problem.
It is an interesting open problem whether one can improve the competitive ratio for the
capacitated case with deletions, in particular whether it is possible to remove the dependence
on m.
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