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Abstract
We consider the problem Minimum Error Correction (MEC). A MEC instance is an n × m

matrix M with entries from {0, 1,−}. Feasible solutions are composed of two binary m-bit
strings, together with an assignment of each row of M to one of the two strings. The objective
is to minimize the number of mismatches (errors) where the row has a value that differs from
the assigned solution string. The symbol “−” is a wildcard that matches both 0 and 1. A MEC
instance is gapless, if in each row of M all binary entries are consecutive.

Gapless-MEC is a relevant problem in computational biology, and it is closely related to
segmentation problems that were introduced by [Kleinberg–Papadimitriou–Raghavan STOC’98]
in the context of data mining.

Without restrictions, it is known to be UG-hard to compute an O(1)-approximate solution
to MEC. For both MEC and Gapless-MEC, the best polynomial time approximation algo-
rithm has a logarithmic performance guarantee. We partially settle the approximation status
of Gapless-MEC by providing a quasi-polynomial time approximation scheme (QPTAS). Addi-
tionally, for the relevant case where the binary part of a row is not contained in the binary part
of another row, we provide a polynomial time approximation scheme (PTAS).
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1 Introduction

The minimum error correction problem (MEC) is a segmentation problem where we have
to partition a set of length m strings into two classes. A MEC instance is given by a set
of n strings over {0, 1,−} of length m, where the symbol “−” is a wildcard symbol. The
strings are represented by an n × m matrix M , where the ith string determines the ith
row Mi,∗ of M . The distance dist of two symbols a, a′ from {0, 1,−} is dist(a, a′) := 1 if
a = 0, a′ = 1 or a = 1, a′ = 0 and dist(a, a′) := 0 otherwise.

For two strings s, s′ from {0, 1,−}m where sj , s′j denotes the j-th symbol of the respective
string, dist(s, s′) :=

∑m
j=1 dist(sj , s′j). A feasible solution to MEC is a pair of two strings
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34:2 A QPTAS for Gapless MEC

σ, σ′ from {0, 1}m. The optimization goal is to find a feasible solution (σ, σ′) that minimizes
costM (σ, σ′) :=

∑n
i=1 min{dist(Mi,∗, σ), dist(Mi,∗, σ

′)}. If M is clear from the context, we
sometimes skip the index.

A MEC instance is called gapless if in each of the n rows of M , all entries from {0, 1}
are consecutive. (As regular expression, a valid row is a word of length m from the language
−∗{0, 1}∗−∗). The MEC problem restricted to gapless instances is Gapless-MEC.

Our motivation to study Gapless-MEC stems from its applications in computational
biology. Humans are diploid, and hence there exist two versions of each chromosome.
Determining the DNA sequences of these two chromosomal copies – called haplotypes – is
important for many applications ranging from population history to clinical questions [17, 18].
Many important biological phenomena such as compound heterozygosity, allele-specific
events like DNA methylation or gene expression can only be studied when haplotype-resolved
genomes are available [11].

Existing sequencing technologies cannot read a chromosome from start to end, but instead
deliver small pieces of the sequences (called reads). Like in a jigsaw puzzle, the underlying
genome sequences are reconstructed from the reads by finding the overlaps between them.

The upcoming next-generation sequencing technologies (e.g., Pacific Biosciences) have
made the production of relatively long contiguous sequences with sequencing errors feasible,
where the sequences come from both copies of chromosome. These sequences are aligned
to a reference genome or to a structure called contig. We can formulate the result of this
process as a Gapless-MEC instance: the sequences are the contiguous strings and the
contig determines the columns of the strings.

Gapless-MEC is a generalization of a problem called Binary-MEC, the version of
MEC with only instances M where all entries of M are in {0, 1}. Finding an optimal
solution to Binary-MEC is equivalent to solving the hypercube 2-segmentation problem
(H2S) which was introduced by Kleinberg, Papadimitriou, and Raghavan [9, 10] and which is
known to be NP-hard [4, 10]. The optimization version of Binary-MEC differs from H2S in
that we minimize the number of mismatches instead of maximizing the number of matches.
Binary-MEC allows for good approximations. Ostravsky and Rabiny [13] obtained a PTAS
for Binary-MEC based on random embeddings. Building on the work of Li et al. [12], Jiao
et al. [8] presented a deterministic PTAS for Binary-MEC.

Gapless-MEC was shown to be NP-hard by Cilibrasi et al. [3].2 Additionally, they
showed that allowing a single gap in each string renders the problem APX-hard. More
recently, Bonizzoni et al. [2] showed that it is unique games hard to approximate MEC
with constant performance guarantee, whereas it is approximable within a logarithmic factor
in the size of the input. To our knowledge, previous to our result their logarithmic factor
approximation was also the best known approximation algorithm for Gapless-MEC.

1.1 Our results
Our main result is the following theorem.

I Theorem 1. There is a QPTAS for Gapless-MEC.

Thus we partially settle the approximability for this problem: Gapless-MEC is not APX-
hard unless NP ⊆ QP (cf. [16]). Thus our result reveals a separation of the hardness of the
gapless case and the case where we allow a single gap. Furthermore, already Binary-MEC is

2 Their result predates the hardness result of Feige [4] for H2S. The proof of the claimed NP-hardness of
H2S by Kleinberg, Papadimitriou, and Raghavan [9] was never published.
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Figure 1 Subinterval-free instance. Blocks represented by ranges shown in red on an instance M

and the blue lines are the columns, I and W shows the empty interval and central region respectively.

strongly NP-hard since the input does not contain numerical values. Therefore we can exclude
the existence of an FPTAS for both Binary-MEC and Gapless-MEC unless P = NP.

Additionally, we address the class of subinterval-free Gapless-MEC instances where
no string is contained in another string. More precisely, for each pair of rows from M we
exclude that the set of columns with binary entries from one row is a strict subset of the set
of columns with binary entries from the other row.

I Theorem 2. There is a PTAS for Gapless-MEC restricted to instances such that no
string is the substring of another string.

1.2 Overview of our approach
Our algorithm is a dynamic program (DP) that is composed of several levels. Given a general
Gapless-MEC instance, we decompose the rows of the instance into length classes according
to the length of the contiguous binary parts of the rows. For each length class we consider a
well-selected set of columns such that each row crosses at least one column and at most two.
(Row i crosses a column j, if Mi,j ∈ {0, 1}.)

We decompose each length class into two sub-classes, one that crosses exactly one column
and one that crosses exactly two columns. For the second class, it is sufficient to consider
every other column, which leaves us with many rooted instances. Thus for each sub-instance
there is a single column (the root) which is crossed by all rows of the instance.

We further decompose rooted sub-instances into the left hand side and the right hand
side of the root. Since the two sides are symmetric, we can arrange the rows and columns of
these sub-instances in such a way that all rows cross the first column. We call this type of
sub-instance SWC-instance (for “simple wildcards”). We order the rows from top to bottom
by increasing length in order to be able to further decompose the instance.

The first level of our DP solves these highly structured SWC-instances. The basic idea
that we would like to apply is that we select a constant number of rows from the instance that
represents the solution. Without further precautions, however, this strategy fails because of
differing densities within the instance: the selected rows have to represent both the entries of
columns crossed by many short rows and entries of arbitrarily small numbers of rows crossing
many columns. To resolve this issue, we observe that computing the solution strings σ and
σ′ is equivalent to finding a partition of M into two row sets, one assigned to σ and the other
assigned to σ′. If we assume to have the guarantee that for both solution strings σ and σ′ an
ε fraction of rows of the matrix M forms a Binary-MEC sub-instance, we show that the
basic idea works.

This insight motivates to separate SWC-instances from left to right into sub-instances
with the required property and to assemble them from left to right using a DP. There are,
however, several complications. In order to choose the right sub-instances, we have to take
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34:4 A QPTAS for Gapless MEC

into account that the choice depends on which rows are assigned to σ and which are assigned
to σ′. Therefore the DP has to take special care when identifying the sub-instances.

Furthermore, in order to stitch sub-instances together to form a common solution, the
solution computed in the left sub-instance has to compute a set of candidate solutions
oblivious of the choices of the right sub-instance. This means that we have to compute
a solution to the left sub-instance without looking at a fraction of rows. We present an
algorithm for these sub-instances in Section 2.

In order to combine the sub-instances, we face further technical complications due to
having distinct sub-instances for those rows assigned to σ and those rows assigned to σ′. In
Section 2.1, we introduce a DP whose DP cells are pairs of simpler DP cells, one for σ and
one for σ′.

Before we consider general instances, in Section 3 develop our techniques by considering
subinterval-free instances which are easier to handle (see Fig. 1). Observe that the instances
considered until now are special rooted sub-interval-free instances. We show how to solve
arbitrary rooted sub-interval-free instances by combining the DP with additional information
about the sub-problems that contain the root. We then introduce the notion of domination
in order to combine rooted sub-interval-free instances with a DP proceeding from left to
right. The main idea is that a dominant sub-problem dictates the solution. At the interface
of two sub-instances, there can be a (contiguous) region where none of the two sub-problems
is dominant. We show that these regions can be solved directly by considering a constant
number of rows (using the results from Section 2).

Until this point, all parts of our algorithm run in polynomial time. We lose this property
when considering length classes, in Section 4.1. The length classes allow us to separate an
instance into rooted sub-instances. The difficulty is that the left hand side of a separating
column may have a completely different structure than the right hand side of that column.
We do not know how to combine the two sides by considering only a polynomial number of
possibilities. If we allow, however, quasipolynomial running time, we can solve the problem.
We use that each of the two sub-instances (the one on the left and the one on the right) is
composed of at most logarithmically many parts. Considering all parts simultaneously allows
us to take care of dependencies between the left hand side and the right hand side and still
solve them as if they were separate instances. Combining such rooted instances from left to
right then can be done in the same spirit as combining rooted sub-interval-free instances. To
solve the entire length-class, we combine both solutions by running a new DP that considers
quadruples of DP cells.

Finally, in Section 4.2, we are able to handle all length classes simultaneously. We solve
general instances in the same spirit as the combined sub-instances of a single length class.
Instead of considering quadruples of cells, however, we form collections of quadruples that
are – figuratively speaking – stacked on top of each other. The key insight is that there are
only O(log(n)) different length classes and each collection has at most one quadruple of each
length class. Considering all possible collections adds another power of log(n) to the running
time, which is still quasi-polynomial.

1.3 Further related work
Binary-MEC is a variant of the Hamming k-Median Clustering Problem when k = 2 and
there are PTASs known [8, 13]. Li, Ma, and Wang [12] provided a PTAS for the general
consensus pattern problem which is closely related to MEC. Additionally, they provided a
PTAS for a restricted version of the star alignment problem aligning with at most a constant
number of gaps in each sequence.
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Alon and Sudakov [1] provided a PTAS for H2S, the maximization version of Binary-
MEC and Wulff, Urner and Ben-David [19] showed that there is also a PTAS for the
maximization version of MEC. For MEC, He et al. [7] studied the fixed-parameter tractabil-
ity in the parameter of fragment length with some restrictions. These restrictions allow their
dynamic programming algorithm to focus on the reconstruction of a single haplotype and,
hence, to limit the possible combinations for each column. There is an FPT algorithm param-
eterized by the coverage [14, 6]. Bonizzoni et al. [2] provided FPT algorithms parameterized
by the fragment length and the total number of corrections for MEC. There are some tools
which can be used in practice to solve MEC instances [15, 14].

Most research in haplotype phasing deals with exact and heuristic approaches to solve
MEC. Exact approaches, which solve the problem optimally, include integer linear program-
ming [5] and fixed-parameter tractable algorithms [7, 15].

1.4 Preliminaries and notation
We consider a Gapless-MEC instance, which is a matrix M ∈ {0, 1,−}n×m. The ith row
of M is the vector Mi,∗ ∈ {0, 1,−}1×m and the jth column is the vector M∗,j ∈ {0, 1,−}n×1.
The length of the binary part in Mi,∗ is |Mi,∗|. We say that the ith row of M crosses the
jth column if Mi,j ∈ {0, 1}.

For each feasible solution (σ, σ′) for M , we specify an assignment of rows Mi,∗ to solution
strings. The default assignment is specified as follows. For a row Mi,∗, we assign Mi,∗ to σ if
dist(σ,Mi,∗) ≤ dist(σ′,Mi,∗). Otherwise we assign Mi,∗ to σ′. For the rows of M assigned
to σ we write σ(M) and for the rows assigned to σ′ we write σ′(M). For a given instance,
Opt = (τ, τ ′) denotes an optimal solution. Observe that knowing Opt allows us to obtain an
optimal assignments τ(M) and τ ′(M) by assigning each row to the solution string with fewest
errors and knowing τ(M) and τ ′(M) allows us to obtain an optimal solution by selecting the
column-wise majority values.

2 Simple instances with wildcards

We consider instances of Gapless-MEC where all entries of column one inM are zero or one,
i.e., Mi,1 ∈ {0, 1} for each index i. Observe that the wildcards now have a simple structure
which we refer to as SWC-structure. An instance with SWC-structure is an SWC-instance.

I Definition 3 (Standard ordering of SWC-instances). We define the standard ordering of
rows in M such that |Mi,∗| ≤ |Mi+1,∗| for each i, i.e., we order them from top to bottom in
increasing length of the binary part.

I Definition 4 (Good SWC-instances). We call an SWC-instance M good, if it is in standard
ordering and there are at least ε|τ(M)| rows of τ(M) and at least ε|τ ′(M)| rows of τ ′(M)
that have only entries from {0, 1}.

To solve good SWC-instances, we generalize the PTAS for Binary-MEC by Jiao et
al. [8]. Our algorithm requires partitions of the set of rows. In the following two definitions,
the required number of rows may be a fractional number. To solve the problem, we allow
the assignment of fractional rows, i.e., for a row i, we can choose an x ∈ [0, 1] and assign an
x fraction of i to one set and a 1− x fraction to the other set.

The following two definitions allow us to introduce a structured view on optimal solutions.

ESA 2018



34:6 A QPTAS for Gapless MEC

Algorithm 1: SWCδ.
Input :Row sets Ui, Li, U ′i and L′i of a good SWC-instance M , numbers r, r′.

Optional: selection of rows Ũi, L̃i, Ũ ′i , L̃′i, see below.
Output :A pair of solution strings (σ, σ′).
Run the algorithm for each possible selection of the following type and keep the best
outcome (minimum number of errors); // If provided as input, skip
selection.

For each i, select (with repetition) a multi-set Ũi of 1/δ rows from Ui and L̃i from Li;
For each i, select (with repetition) a multi-set Ũ ′i of 1/δ rows from U ′i and L̃′i from L′i
such that Ũ ′ ∩ Ũ = L̃′ ∩ L̃ = ∅;

// Ũ :=
⋃
i Ũi. The values Ũ ′, L̃, and L̃′ are defined analogously.

For each column j, set σj := Majorityj(Ũ , L̃) and σ′j := Majorityj(Ũ ′, L̃′);
For each row i of M , determine the value di := dist(σ,Mi,∗)− dist(σ′,Mi,∗);
Assign the r rows with minimal values di to σ and the remaining r′ rows to σ′.

I Definition 5 (Trisection). An ε-trisection of an instance M for τ is a partition of the rows
into three consecutive ranges that have the following properties.
1. The first range U contains row M1,∗ and (1− ε)|τ(M)| rows of τ(M).
2. The second range L is consecutive to first row set containing (ε− ε2)|τ(M)| rows of τ(M).
3. The third range X contains the remaining rows in M .
To avoid ambiguity, we choose L and X such that the first row is in τ(M).

We define an ε-trisection U ′, L′, and X ′ for τ ′ analogously, replacing τ(M) by τ ′(M).

I Definition 6 (Subdivision of trisections). We consider the rows sets U,L,U ′, L′ from
Definition 5 and additionally, we divide each of these sets into 1/ε2 disjoint subsets denoted
as Ui, Li, U ′i , L′i. For each i, Ui contains ε2 · |U | rows from τ(M) and Li contains ε2 · |L| rows
from τ(M). Analogously, each U ′i contains ε2 · |U ′| rows from τ ′(M) and L′i contains ε2 · |L′|
rows from τ ′(M). To avoid ambiguity, each set Ui and Li starts with a (fractional) row of
τ(M) and each set U ′i and L′i starts with a (fractional) row of τ ′(M).

We introduce a new algorithm SWCδ for our setting. For an instance M , we consider the
rows sets U,L,U ′, L′ from the ε-trisections of M and their subsets according to Definition 6.
Additionally, we select a multi-set of rows from U ′i ∩τ ′(M) and L′i∩τ ′(M). We then compute
the majority weighting according to Definition 7 for each column j using multisets based on
the minimum number of errors. The main idea is to find two small row sets that represent
the whole instance M . The intuitive meaning is that we select rows from the upper part
with a much lower density then the rows of the lower part. We therefore introduce a bias
such that all rows are equally important.

I Definition 7 (Weighted majority). Let j be an integer and let Ũ and L̃ be two matrices
with at least j columns. In Ũ∗,j and L̃∗,j , we replace all zeros by −1 and then all wildcard
symbols by zero. We then compute the number ν :=

∑
i′∈Ũi,j

(1− ε)i′/(ε− ε2) +
∑
i′∈L̃i,j

i′.
Then Majorityj(Ũ , L̃) = 0 if ν < 0 and Majorityj(Ũ , L̃) = 1 if ν ≥ 0.

With this preparation, we are now ready to present the algorithm. The input has a long list
of parameters that will allow our dynamic programs later on to control the execution. The
reason is that we do not know τ and τ ′. Therefore the algorithm takes guesses of row sets as
input. The values r and r′ are guesses of |τ(M)| and |τ ′(M)|.
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Observe that for small (i.e., constant) values of r or r′, the algorithm SWCδ can be
replaced by an exact algorithm since we know τ(M) if and only if we know τ ′(M), and we
are able to guess constantly many rows.

I Lemma 8. Let M be a good SWC-instance. For sufficiently large r = |τ(M)| and r′ =
|τ ′(M)|, let Ui, Li, U ′i , L′i be a subdivision (Definition 6) of an ε-trisection U,L,X,U ′, L′, X ′
of M . Then SWCε3 is a (1 +O(ε))-approximation algorithm for M .

The proof is based on a randomized argument using Chernoff bounds. In Lemma 8, we
cannot control which rows of X and X ′ are assigned to which solution string. For our
dynamic programs, we need a stronger statement. We would like to be able to compute a
solution for an instance and afterwards change a fraction of assignments (guessing candidates
for τ(X), τ ′(X ′)) without losing the approximation guarantee. The next lemma is a key
ingredient of our result.

I Lemma 9. Let M be a good SWC-instance and ε > 0 sufficiently small. Let U,L,X be
an ε-trisection for τ(M) and U ′, L′, X ′ an ε-trisection for τ ′, with subdivisions Ui, Li, U ′i , L′i
according to Definition 6. Let (σ, σ′) be the solution computed by SWCε3 with r = |τ(M)|,
r′ = |τ ′(M)|. Then re-assigning the rows σ(X) to τ(X) and σ′(X ′) to τ ′(X ′) gives a
(1 +O(ε))-approximation for the instance M .

Proof. For ease of presentation, we assume that all appearing numbers are integers. It is
easy to adapt the proof by rounding fractional numbers appropriately.

We first analyze the computed solution string σ. Let η be the total number of errors of
(τ, τ ′) within M and let ηP be the total number of errors of (σ, σ′) within P := U ∪ L. Due
to Lemma 8, we have ηP ≤ (1 +O(ε))η.

We may assume r ≥ r′ since otherwise we can simply rename the two strings τ , τ ′.
Additionally, by renaming of σ and σ′, we may assume that |σ(P ) ∩ τ(P )| ≥ |σ′(P ) ∩ τ(P )|.
Therefore |τ(P )| ≥ n/3 and |σ(P )∩ τ(P )| ≥ n/6. (Recall that the matrix M has n rows and
m columns. The value n/3 is a safe bound on n/2− ε2n, for ε2 ≤ 1/6.)
I Claim 1. There is a set I of m− 25η/n indices j such that σj = τj for all j ∈ I.

Proof of Claim. We concentrate on the columns of M where both strings τ and σ have at
most n/12 errors within P . By counting the errors, there are at most 12η/n columns where
τ has at least n/12 errors. Similarly, there are at most 12(1 + O(ε))ηP /n < 13η/n many
columns where σ has at least n/12 errors. Therefore there is a set I of at least m− 25η/n
columns where simultaneously both τ and σ have less than n/12 errors each.

Now suppose that the claim was not true and there was an index j ∈ I with τj 6= σj . Then,
since |τ(P ) ∩ σ(P )| ≥ n/6, either σj or τj is erroneous in at least n/12 rows of τ(P ) ∩ σ(P ),
a contradiction. ♦

Next we analyze σ′ for the columns I. Let j be a column (i.e., an index) from I. By
symmetry, we may assume σj = τj = 0. We aim to show that an optimal solution has always
sufficiently many errors to pay for wrong entries of σ′.

Let ηj be the number of errors of (τ, τ ′) in column j of M and let ηP,j be the number of
errors of (σ, σ′) in column j of P . Let η′′j = ηj + ηP,j .
I Claim 2. For each column j of I, either σ′j = τ ′j or η′′j ≥ (ε− ε2)|τ ′(M)|/2.

Proof of Claim. We distinguish two cases. We first assume τ ′j = 0. If also σ′j = 0, we are
done. We therefore assume σ′j = 1. If there are more than |τ ′(L′)|/2 ones in column j of
L′, (τ, τ ′) has more than |τ ′(L′)|/2 errors in column j and thus ηj ≥ |τ ′(L′)|/2. Otherwise

ESA 2018



34:8 A QPTAS for Gapless MEC

σ′(L′) has at least |τ ′(L′)|/2 zeros in column j and therefore ηP,j ≥ |τ ′(L′)|/2. We obtain
η′′j ≥ |τ ′(L′)|/2 ≥ (ε− ε2)|τ ′(M)|/2 as claimed.

In the second case, τ ′j = 1 and we assume that σ′j = 0. If there are more than r′/2 ones
in column j of U ′, (σ, σ′) has more than r′/2 errors in column j and thus ηP,j ≥ |τ ′(U ′)|/2.
Otherwise τ ′(U ′) has at least r′/2 zeros in column j and therefore ηj ≥ |τ ′(U ′)|/2. Again,
we obtain η′′j ≥ |τ ′(U ′)|/2 ≥ (1− ε)|τ ′(M)|/2 as claimed. ♦

Since by our assumption |τ ′(X ′)| < ε2|τ ′(M)|, Claim 2 implies that within I, after
reassigning the rows we still have a (1 +O(ε))-approximation.

To finish the proof, we argue that η is large enough to pay for all errors in X and X ′
outside of I. Let ηI be the number of errors due to assigning σ to τ(X) and σ′ to τ ′(X ′)
within the interval I. Then, using the size of I stated in Claim 1, the total number of errors
of (σ, σ′) in M is at most (1 +O(ε))η + ηI + ε2n · 25η/n, i.e., the errors of SWCε3 within P ,
the errors within X and X ′ in the columns of I, and all other entries of X ∪X ′. The obtained
approximation ratio is ((1 +O(ε))η+ ηI + ε2n · 25η/n/η ≤ (η+O(ε)η+ 25ε2η)/η = 1 +O(ε).

The first inequality uses that for some constant k, (1 + kε)η ≥ η + ηI . J

2.1 A DP for SWC-instances
Let M be an SWC-instance with rows {1, 2, . . . n}. We define starti to be the start and endi
the end of string number i of M , i.e., the column number of the matrix where the binary
part starts and ends. For a sub-matrix M ′ of M , startM ′ determines the index of the first
column of M ′ and endM ′ the index of the last column of M ′. We next specify the parts of
which the DP cells are composed. We divide the input instance into blocks defined as follows.

I Definition 10 (Block). Given a good SWC-instance M , a block B is a sub-instance
determined by three numbers 1 ≤ a < b < c ≤ n as follows. The first column of B is column
1 of M . The last column of B is endb. The first row of B is a and the last row is n. We
write UB for the rows from a to b− 1, LB for the rows from b to c− 1, and XB for the rows
from c to n.

The idea is that a block determines a trisection. We subdivide each block into chunks and
select rows from these chunks. Chunks are closely related to subdivisions of trisections, but
we do not assume the knowledge of (τ, τ ′).

I Definition 11 (Chunk). Let B be a block determined by the numbers a, b, c. We partition
B into 2/ε2 many chunks (ranges or rows). These chunks are determined by numbers
a = a1 < a2 < · · · < a1/ε2+1 = b = b1 < b2 < · · · < b1/ε2+1 = c. The `th chunk of UB is the
submatrix composed of the rows a` to a`+1 − 1 and the `th chunk of LB is the submatrix
composed of the rows b` to b`+1 − 1.

I Definition 12 (Selection). For each block B with a set of chunks C, we consider multiset
T of rows of size 2/ε5. We require that T contains 1/ε3 rows from each chunk in C.

The selection T will take the role of Ũ and L̃ in SWCδ.

I Definition 13 (DP cell). For each block B, each set of chunks C of B and each selection
T of rows from B, there is a DP cell represented by D(B,C, T ). A DP cell D(B,C, T ) is a
predecessor of D(B̂, Ĉ, T̂ ) if the following conditions hold.

â = b and b̂ = c, where b, c, â, b̂ are the numbers from Definition 10.
The chunks from C between b and c are exactly the chunks from Ĉ between â to b̂.
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For each pair of chunks from T × T̂ with the same range of rows, the selections T and T̂
restricted to the pair are the same.

The value of D(B,C, T ) will be an approximation of the minimum number of errors that
we can have in M until the last column of B.

We now describe the dynamic program for a pair of solution strings (σ, σ′) by using joint
DP cells (ζ, ζ ′). For σ′, we use the same notation as in Definitions 10, 11 and 12, but we use
the symbol prime ( ·′ ) for all occurring variables.

I Definition 14 (DP cell for a pair). A joint DP cell (ζ, ζ ′) = (D(B,C, T ), D′(B′, C ′, T ′)) is
composed of two single cells defined as in Definition 13. We require that

the rows of C and C ′ where chunks start are pairwise distinct, and
T ∩ T ′ = ∅.

I Definition 15 (Predecessor of a joint DP cell). A DP cell (ζ̂, ζ̂ ′) is a predecessor of (ζ, ζ ′) if
(i) ζ̂ = ζ and ζ̂ ′ is a predecessor of ζ ′; or (ii) ζ̂ is a predecessor of ζ and ζ̂ ′ = ζ ′.

Algorithm (SWCσ,σ
′
). The general idea of the algorithm is to guess trisections. Suppose

we initially chose blocks B,B′ that are the trisections of the entire matrix M for τ and τ ′.
Then we obtain an approximation of the prefix of (τ, τ ′) restricted to B,B′ (whichever ends
first) by sampling rows of UB ,LB ,UB′ , and LB′ . The sampled rows for LB and LB′ provide
the interface to the next step. Suppose LB′ starts at an earlier row than LB . Then we guess
the trisection of M for τ restricted to the rows of LB′ and XB′ . Let B′′ be that block of our
algorithm. Then UB′′ = LB and we sample rows of LB′′ in order to approximate a new infix
of τ . More precisely, the DP does the following.

We globally guess a number r that represent |τ(M)|. Thus r′ := n− r represents |τ ′(M)|.
We split the processing into an initialization phase and an update phase. In the initialization
phase, we assign values to each DP cell (ζ, ζ ′) based on SWCε3 with the following parameters.
We obtain Ui, Li from the chunks C and U ′i , L

′
i from the chunks C ′. In the execution of

SWCε3 , we use the selections T, T ′ instead of trying all possible selections, i.e., T and T ′
determine all Ũi, L̃i, Ũ ′i , and L̃′i in the algorithm. Let B̃ be the matrix with rows from 1 to
the min{c−1, c′−1} and columns one to min{endB , endB′}. The solution of the computation
is a pair of strings (σζ,ζ′ , σ′ζ,ζ′), the prefixes of the two computed strings until endB̃. The
value of (ζ, ζ ′) is costB̃(σζ,ζ′ , σ′ζ,ζ′).

In the update phase, we compute the value and the pair of strings of the DP cell (ζ, ζ ′)
as follows. We inductively assume that all DP cells for predecessors of (ζ, ζ ′) have been
updated already. We try all predecessor pairs of DP cells and keep the one that gives the
best result. Let (ζ, ζ ′) be a predecessor of (ζ, ζ ′). By symmetry, we assume without loss
of generality that b′ < b. There are two cases how the two pairs interact. The first case is
ζ = ζ. We run SWCε3 on the columns end

B
′ + 1 to endB with the parameters from (ζ, ζ ′)

(see initialization). To obtain the full solution, we append the computed string for B′ to the
string σ′

ζ,ζ
′ (which is one of the solution strings of the predecessor pair). Let B̃ be the matrix

with rows from 1 to the min{c− 1, c′ − 1} and columns one to endB′ . The solution of the
computation is a pair of strings (σζ,ζ′ , σ′ζ,ζ′), the prefixes of the two computed strings from
column one to endB̃ . The potential new value of (ζ, ζ ′) is costB̃(σζ,ζ′ , σ′ζ,ζ′). We replace the
stored solution with the potential new solution if the cost has decreased.

The second case is ζ ′ = ζ. This case is the crux of the joint DP, since we have a “switch”
of the role of σ and σ′. We run SWCε3 on the columns endB to endB′ with the parameters
from (ζ, ζ ′) (see initialization). To obtain the full solution, we then append the computed
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string for B to the string σζ,ζ′ (which is one of the solution strings of the predecessor pair).
Let B̃ be the matrix with rows from 1 to the min{c− 1, c′ − 1} and columns one to endB′ .
The solution of the computation is a pair of strings (σζ,ζ′ , σ′ζ,ζ′), the prefixes of the two
computed strings until endB̃′ . The potential new value of (ζ, ζ ′) is costB̃(σζ,ζ′ , σ′ζ,ζ′). We
replace the stored solution with the potential new solution if the cost has decreased.

For the last strings, we additionally consider special cells that are defined as before, but
with c = n or c′ = n. Intuitively, we use these cells when only at most 1/ε4 rows of τ(M)
or τ ′(M) are left. For pairs of cells containing such ζ or ζ ′, our computation considers the
optimal solution within the computation instead of SWCε3 .

I Theorem 16. The algorithm SWCσ,σ′
is a PTAS for SWC-instances.

3 Subinterval-free instances

We show how to generalize the results of the previous section in order to handle instances
where no interval of a string s is a proper subinterval of a string s′ and thus show Theorem 2.
To this end, we first show how to handle the rooted version of sub-interval free instances,
where there is one column j such that each string of the instance crosses j.

We order the rows of a subinterval-free instance M from top to bottom such that for each
pair i, i′ of rows with the binary part of i starting on the left of the binary part of i′, i is
above i′. In other words, the binary strings are ordered from top to bottom with increasing
starting position (i.e., column). Observe that the sub-string freeness property ensures that
the last binary entry of i′ is not on the left of the last binary entry of i.

I Lemma 17. Let M be a Gapless-MEC instance such that no string is the substring of
another string. Furthermore we assume that there is a column j of M such that each string
of the instance crosses j. Then there is a PTAS for M .

General sub-interval-free instances. We use Lemma 17 to handle general sub-interval free
instances. Instead of a single column j crossed by all strings, we determine a sequence
q = (q1, q2, . . . ) of columns with the property that each string crosses exactly one of them.
Let s1 be the first string in M . Then we choose q1 to be the column of the last entry of s1.

We recursively specify the remaining columns. For a given j such that we know qj , let si
be the last (i.e., bottom-most) string that crosses qj . Then we choose qj+1 to be the last
(i.e., rightmost) column of string si+1.

A simple induction shows that by the no-substring property and the chosen order of
strings, each string crosses at least one column of q and none of them crosses more than
two. In particular, for each j, the solution on the left hand side of qj depends on rows of M
disjoint from the rows that determine the solution on the right hand side of qj+1.

In order to combine the solution on the right hand side of qj with the solution on the left
hand side of qj+1, we introduce a notion of dominance.

I Definition 18 (Dominance). We say that a submatrix V1 of M τ -dominates a submatrix
V2 of M if for each column c that is in both V1 and V2, either at least one of the two matrices
has no binary entries or the number of binary entries in τ(V1) is at least 1/ε2 times the
number in τ(V2). We say that V1 is τ -dominant over V2 for a column c, if the one column
submatrix of V1 determined by c dominates V2. We analogously define τ ′-dominance.

Consider a submatrix −→V of M that only contains rows that cross qi and a submatrix ←−V
of M that only contains rows that cross qi+1. We observe that if −→V is τ -dominant over ←−V
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for some column c, it is also τ -dominant for all columns on the left hand side of c: until qi is
reached, when moving to the left the number of binary entries of τ(−→V ) increases and the
number of binary entries of τ(←−V ) decreases. Analogously, if ←−V is τ -dominant over −→V for
some column c, it is also τ -dominant for all columns on the right hand side of c.

We therefore have a possibly empty interval I without τ -dominance such that the columns
of −→V on the left hand side of I are τ -dominant and the columns of ←−V on the right hand side
of I are τ -dominant. (See also Figure 1.)

I Definition 19 (Dominance region). The dominance region of −→V with respect to ←−V is the
set of columns where −→V is dominant over ←−V , and vice versa.

Within the dominance region, our old DP can simply compute solutions without considering
interferences: the dominated set of rows is small enough to be ignored, applying Lemma 9.

Within the interval I, the DP cells on both sides of I have to “cooperate.” We obtain
a Binary-MEC block in the middle with additional rows on the top and bottom. This
sub-instance can be solved directly.

4 A QPTAS for general instances

To solve the general instances, the main observation is that we divide the rows into their
at most log2(m) length classes Λi, and the ith length class Λi is the set of all strings of
length ` with ` ∈ (m/2i+1,m/2i]. First we present an algorithm to solve each length class
Λi separately by constructing their corresponding columns.

4.1 Length classes
We show how we can handle length classes of strings. To this end, let us assume w.l.o.g. that
m (i.e., the number of columns in M) is a power of 2. Then for each i ≥ 0, the ith length
class Λi is the set of all strings of length ` with ` ∈ (m/2i+1,m/2i]. We observe the following
known property of length classes.

I Lemma 20. For each i ≥ 0 there is a set qi = {qi,1, qi,2, . . . } of columns such that (a)
each string in Λi crosses at least one column from qi and (b) no string from Λi crosses more
than two columns from qi. Furthermore, we can choose the sets such that qi ⊆ qi+1.

Proof. At level i, for each k with 1 ≤ k ≤ 2i+1 we select the column with index k ·m/2i+1.
We observe that the distance between two consecutive columns from qi is m/2i+1, which
matches the shortest length of strings in Λi: if a minimal string starts right after a column
of qi, its last entry will cross the next column of qi.

Since strings do not start before column 1 and column m is contained in each qi, claim
(a) follows. To see (b), observe that a maximum length string of Λi is at most m/2i. Let j
be an index. The number of columns from qi,j to the column right before qi,j+1 and from
qi,j+1 to right before qi+2 are exactly m/2i+1 . If the string starts directly at a column qi,j
from qi, it would cross column qi,j+1 and end right before column qi,j+2. The last claimed
property follows directly from the construction of the sets qi. J

For each i, we now separate Λi into two sub-instances. One sub-instance Λ′i is formed
by those rows from Λi that only cross one column of qi and the second sub-instance Λ′′i is
formed by those rows that cross exactly two columns of Λi.
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I Definition 21 (DP for a length class Λi). For each index j let ξ′j be the sets of DP cells
for Λ′i and for the odd indices j let ξ′′j be the set of cells for Λ′′i . We define a super-cell that
starts in j, (Z ′j , Z ′′j , Z ′j+1, Z

′′
j+2) ∈ ξ′j × ξ′′j × ξ′j+1 × ξ′′j+2 and the super-cell that ends in j,

(Z ′j−1, Z
′′
j−2, Z

′
j , Z

′′
j ) ∈ ξ′j−1 × ξ′′j−2 × ξ′j × ξ′′j .

I Lemma 22. There is a QPTAS for Gapless-MEC if all strings are in the same class Λi.

4.2 The general QPTAS
Finally we combine our insights to an algorithm for general instances by combining different
length classes. For different length classes Λi, we construct their corresponding columns as
explained in the previous section. The main idea is that for each column j, we only have to
consider those quadruple of super-cells according to Definition 21 that cross j from all the
length classes simultaneously. We therefore consider at most O(log(n)) quadruples of super-
cells simultaneously. In the dynamic program, we consider a joint quadruple of super-cells
from all the length classes. Then the overall complexity of a joint cell is quasi-polynomial:
the number of different cells is

(
nO(logn))O(logn) = nO(log2 n).

Let Qi,j be the set of quadruples of length class i crossing column j such that the strings
are ordered from shortest length class to the longest. For each length class i, a quadruple
q ∈ Qi,j is the set of rows starting at j, cross j, or end in j. If j is the index of qi,`, the
quadruple q starts in j if it is formed by cells (Z ′`, Z ′′` , Z ′`+1, Z

′′
`+2) and ends in j if it is formed

by (Z ′`−1, Z
′′
`−2, Z

′
`, Z
′′
` ) (see Definition 21). If j lies between qi,` and qi,`+1, j crosses those

quadruples that contain Z ′` and Z ′`+1. If none of the cases are true, we do not consider q in
the cells for column j.

Let us consider a log(n) vector of quadruples v, with one quadruple Qi,j for each i and,
consider quadruples starting at, ending at, or crossing column j for length class i. We require
that if for some i, the quadruple q ∈ Qi,j ends at j, then for all the length classes Λk with
k > i the same condition holds (with index larger than i). This also implies that if for some
i, the quadruple of length class i starts at j, then the same also holds for all quadruples of
shorter length classes (with index larger than i). In particular, in order to be able to combine
neighboring vectors of quadruples, we do not allow to mix starting and ending quadruples.
Let φ be the set of all log(n) vectors of tuples as described above (with one tuple of each
length class). The tuple for each length class is defined as in Lemma 22 and the DP for
general instances follows the ideas of Lemma 22: We move from left to right column by
column. In the initialization step, the joint DP cell is initialized based on Algorithm 1 using
φ. We guess the blocks, chunks and selections from each length class and consider them
jointly in a DP cell.

For column j, let us consider a vector v ∈ φ. We distinguish whether v has starting or
ending quadruples. (One of the two cases must apply due to the shortest length class.) For a
v ∈ φ with starting quadruples, let d be the smallest number such that there is a quadruple
of length class d starting at j. To compute v we consider all v′ ∈ φ with the following
properties. (a) v′ has the same quadruples for all length classes d′ < d and (b) for d′ ≥ d,
the right hand sides of the quadruples of length class d′ in v′ compatible the left hand sides
of the quadruples of v. The super-cells from the left and right hand side are compatible if
the intersecting strings from the left and right hand side are assigned to the same types of
solution string σ or σ′.

For a v ∈ φ with ending quadruples, let d be the smallest number such that there is a
quadruple of length class d ending at j − 1. (In the very first column of the instance, we do
not need this value.) To compute v we consider all v′ ∈ φ with the following properties. (a)
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v′ has the same quadruples for all length classes d′ < d and (b) for d′ ≥ d, the right hand
sides of the quadruples of length class d′ in v′ match the left hand sides of the quadruples of
v in column j − 1. Then the value of v is the sum of the minimum value over all such v′ and
the number of errors in column j obtained by applying SWCε3 exactly as in the proof of
Lemma 22.

The approximation ratio follows by arguing that the expected number of errors at each
column is at most (1 +O(ε)) of OPT (see Lemma 22). This finishes the proof of Theorem 1.
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