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Abstract
We consider a search problem on trees using unreliable guiding instructions. Specifically, an
agent starts a search at the root of a tree aiming to find a treasure hidden at one of the nodes
by an adversary. Each visited node holds information, called advice, regarding the most prom-
ising neighbor to continue the search. However, the memory holding this information may be
unreliable. Modeling this scenario, we focus on a probabilistic setting. That is, the advice at a
node is a pointer to one of its neighbors. With probability q each node is faulty, independently
of other nodes, in which case its advice points at an arbitrary neighbor, chosen uniformly at
random. Otherwise, the node is sound and points at the correct neighbor. Crucially, the advice
is permanent, in the sense that querying a node several times would yield the same answer. We
evaluate efficiency by two measures: The move complexity denotes the expected number of edge
traversals, and the query complexity denotes the expected number of queries.

Let ∆ denote the maximal degree. Roughly speaking, the main message of this paper is that
a phase transition occurs when the noise parameter q is roughly 1/

√
∆. More precisely, we prove

that above the threshold, every search algorithm has query complexity (and move complexity)
which is both exponential in the depth d of the treasure and polynomial in the number of nodes n.
Conversely, below the threshold, there exists an algorithm with move complexity O(d

√
∆), and

an algorithm with query complexity O(
√

∆ log ∆ log2 n). Moreover, for the case of regular trees,
we obtain an algorithm with query complexity O(

√
∆ logn log logn). For q that is below but

close to the threshold, the bound for the move complexity is tight, and the bounds for the query
complexity are not far from the lower bound of Ω(

√
∆ log∆ n).

In addition, we also consider a semi-adversarial variant, in which an adversary chooses the
direction of advice at faulty nodes. For this variant, the threshold for efficient moving algorithms
happens when the noise parameter is roughly 1/∆. Above this threshold a simple protocol that
follows each advice with a fixed probability already achieves optimal move complexity.
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54:2 Searching a Tree with Permanently Noisy Advice

1 Introduction

This paper considers a basic search problem on trees, in which the goal is to find a treasure
that is placed at one of the nodes by an adversary. Each node of the tree holds information,
called advice, regarding which of its neighbors is closer to the treasure, and the search may
consult the advice at some nodes in order to accelerate the search. Crucially, we assume that
advice at nodes may be faulty with some probability. Many works consider noisy queries
in the context of search, but it is typically assumed that queries can be resampled (see
e.g., [12, 19, 4, 11]). In contrast, we assume that each location is associated with a single
permanent advice. That is, faults are in the physical memory associated with the node, and
hence querying the node again would yield the same answer. This difference is dramatic,
as the search under our model does not allow for simple amplification procedures (similar
to [7] albeit in the context of sorting). Searching in contexts of permanently faulty nodes
has been studied in a number of works [8, 13, 16, 17, 18], but only assuming that the faulty
nodes are chosen by an adversary. The difference between such worst case scenarios and the
probabilistic version studied here is again significant, both in terms of results and techniques
(see more details in Section 1.3).

1.1 The Noisy Advice Model
We start with some notation. Further notations are given in Section 1.4. Let T be an n-node
tree1 rooted at some arbitrary node σ. We consider an agent that is initially located at the
root σ of T , aiming to find a node τ , called the treasure, which is chosen by an adversary.
The distance d(u, v) is the number of edges on the path between u and v. The depth of a
node u is d(u) = d(σ, u). Let d = d(τ) denote the depth of τ , and let the depth D of the
tree be the maximal depth of a node. Finally, let ∆u denote the degree of node u and let ∆
denote the maximal degree in the tree.

Each node u 6= τ is assumed to be provided with an advice, termed adv(u), which provides
information regarding the direction of the treasure. Specifically, adv(u) is a pointer to one of
u’s neighbors. It is called correct if the pointed neighbor is one step closer to the treasure than
u is. Each vertex u 6= τ is faulty with probability qu (the meaning of being faulty will soon
be explained). Otherwise, u is considered sound, in which case its advice is correct. We call
qu the noise parameter of u, and define the general noise parameter as q = max{qu | u ∈ T}.

We consider two models for faulty nodes. The main model assumes that the advice at
a faulty node points to one of its neighbors chosen uniformly at random (and so possibly
pointing at the correct one). We also consider an adversarial variant, called the semi-
adversarial model, where this neighbor is chosen by an oblivious adversary. That is, an
adversary specifies for each node what advice it would have assuming it is faulty. Then,
faulty nodes are still chosen randomly as in the main model, but their advice is specified by
the adversary.

The agent can move by traversing edges of the tree. At any time, the agent can query its
hosting node in order to “see” the corresponding advice and to detect whether the treasure
is present there. The protocol terminates when the agent queries the treasure. We evaluate
a search algorithm A by two measures: The move complexity, termedM(A), is the expected
number of edge traversals, and the query complexity, termed Q(A), is the expected number

1 We present the model for trees, but it should be clear that it can be similarly defined for arbitrary
graphs (see also Section 5).
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of queries2. Expectation is taken over both the randomness involved in sampling advice
and the possible probabilistic choices made by A. We note that when considering walking
algorithms, we assume that the agent does not know the structure of the tree in advance,
and discovers it as it moves. Conversely, when focusing on minimizing the query complexity
only, we assume that the tree structure is known to the algorithm.

The noise parameters (qu)u∈T govern the accuracy of the environment. On the one
extreme, if qu = 0 for all nodes, then advice is always correct. This case allows to find the
treasure in d moves, by simply following each encountered advice. Alternatively, it also
allows to find the treasure using O(logn) queries, by performing a separator based search.
On the other extreme, if qu = 1 for all nodes, then advice is essentially meaningless, and the
search cannot be expected to be efficient. An intriguing question is therefore to identify the
largest value of q that allows for efficient search.

1.2 Our Results
Consider the noisy advice model on trees with maximum degree ∆ and depth D. Roughly
speaking, we show that 1/

√
∆ is the threshold for the noise parameter q, in order to obtain

search algorithms with low expected complexities.
The proof that there is no algorithm with low expected complexities when the noise

exceeds 1/
√

∆ is rather simple, and in fact, holds even if the algorithm has access to the
advice of all internal nodes. Intuitively, the argument is as follows (the formal proof appears
in Section 4.1). Consider a complete ∆-ary tree of depth D and assume that the treasure τ
is placed at a leaf. The first observation (Lemma 10) is that the expected number of leaves
having more advice point to them than to τ is a lower bound on the query complexity. The
next observation is that there are roughly ∆D leaves whose distance from τ is 2D. For each
of those leaves u, the probability that more advice points towards it than towards τ can be
approximated by the probability that all nodes on path connecting u and τ are faulty. As
this latter probability is q2D, the expected number of leaves that have more pointers leading
to them is roughly ∆Dq2D, which explodes when q � 1/

√
∆. This essentially establishes the

lower bound for the noise regime.
The main technical difficulties we had to face appeared when we aimed to show that

the 1/
√

∆ lower bound is, in fact, tight, and moreover, that there exist extremely efficient
algorithms when the noise is above the threshold. In this regard, we note two technical
contributions. The first appears in the construction of the moving algorithm Awalk. Even
though the algorithm should be designed to quickly find an adversarially placed treasure, it
is in fact based on a Bayesian approach. The challenging part is identifying the correct prior.
Constructing algorithms that ensure worst-case guarantees through a Bayesian approach
was done in [4] which studies a closely related, yet much simpler problem of search on the
line. Apart from [4] we are unaware of other works that follow this approach. The second
technical contribution corresponds to the query setting, where we mimic the resampling of
advice at separator nodes, by locally applying the moving algorithm.

1.2.1 Upper Bounds
In Section 2, we present a walking algorithm that is optimal up to a constant factor for
the regime of noise below the threshold. Furthermore, this algorithm does not require prior
knowledge of either the tree’s structure, or the values of ∆, q, d, or n.

2 The success probability after a fixed number of rounds is another quantity of interest. It is left for
future work.

ESA 2018



54:4 Searching a Tree with Permanently Noisy Advice

Using this walking algorithm, we derive two query algorithms (in Section 3). The first
is optimal up to a factor of O(log2(∆) logn) and the second is restricted to regular trees,
but is optimal up to a factor of O(log(∆) log logn). Note that the query algorithms use the
knowledge of the tree structure, as well as bounds on the regime of noise.

Before stating our theorems, we need the following definition.

I Definition 1. Condition (?) holds with parameter 0 < ε < 1 if for every node v, we have

qv <
1− ε−∆−

1
4

v
√

∆v + ∆
1
4
v

.

Note that since ∆v ≥ 2, the condition is always satisfiable when taking a small enough ε. In
the following theorems the O notation hides only a polynomial a polynomial term in 1/ε.

Note, all our algorithms are deterministic, hence, expectation is taken with respect only
to the sampling of the advice.

I Theorem 2. There exists a deterministic walking algorithm Awalk such that for any constant
ε > 0, if Condition (?) holds with parameter ε thenM(Awalk) = O(

√
∆d).

I Theorem 3.
1. For any ε > 0, there exists a deterministic query algorithm Asep such that if Condition

(?) holds with parameter ε then the query complexity is Q(Asep) = O(
√

∆ log ∆ · log2 n).
2. Assume that q < c/

√
∆ for a small enough constant c > 0. Then there exists a determin-

istic query algorithm A2−layers such that, restricted to (not necessarily complete) ∆-ary
trees, Q(A2−layers) = O(

√
∆ logn · log logn).

1.2.2 Lower Bounds
We establish the following lower bound. The main part of the proof is to be found in Section
4. We refer the reader to the full version of this work [5, Section 2 and Appendix A] for the
missing parts.

I Theorem 4. The following holds for any randomized algorithm A and any integer ∆ ≥ 3.
1. Exponential complexity above the threshold.

Consider a complete ∆-ary tree. For every constant ε > 0, if q ≥ 1+ε√
∆−1 · (1 + 1

∆−1 ), then
both Q(A) andM(A) are exponential in D.

2. Lower bounds for any q.
(a) Consider a complete ∆-ary tree. Then Q(A) = Ω(q∆ log∆ n).
(b) For any integer d, there is a tree with at most d∆ nodes, and a placement of the
treasure at depth d, such thatM(A) = Ω(dq∆).

Observe that taken together, Theorems 2,4,3 and Condition (?) imply that for any ε > 0 and
large enough ∆, efficient search can be achieved if q < (1− ε)/

√
∆ but not if q > (1 + ε)/

√
∆.

1.2.3 Memory-less Algorithms
Query algorithms assume the knowledge of the tree and hence cannot avoid memory com-
plexity which is linear in n. In contrast, our walking algorithm Awalk uses memory that is
composed of advice accumulated during the walk, and hence remains low, in expectation.

Finally, we analyse the performance of simple memoryless algorithms called probabilistic
following, suggested in [15]. At every step, the algorithm follows the advice at the current
vertex with some fixed probability λ, and performs a random walk step otherwise. It turns out
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that such algorithms can perform well, but only in a very limited regime of noise. Specifically,
we prove:

I Theorem 5. There exist positive constants c1, c2 and c3 such that the following holds. If
for every vertex u, qu < c1/∆u then there exists a probabilistic following algorithm that finds
the treasure in less than c2d expected steps. On the other hand, if q > c3/∆ then for any
probabilistic following strategy the move complexity on a complete ∆-ary tree is exponential
in the depth of the tree.

Since this algorithm is randomized, expectation is taken over both the randomness involved
in sampling advice and the possible probabilistic choices made by the algorithm.

Interestingly, when qu < c1/∆u for all vertices, this algorithm works even in a semi-
adversarial model. In fact, it turns out that in the semi-adversarial model, probabilistic
following algorithms are the best possible, as the threshold for efficient search, with respect
to any algorithm, is roughly 1/∆. Due to lack of space these results are discussed and proved
in the full version of this work [5, Appendix E].

1.3 Related Work
In computer science, search algorithms have been the focus of numerous works. Due to
their importance, trees are particularly popular structures to investigate search, see e.g.,
[20, 3, 22, 21]. Within the literature on search, many works considered noisy queries
[12, 19, 11], however, it was typically assumed that noise can be resampled at every query.
As mentioned, dealing with permanent faults incurs challenges that are fundamentally
different from those that arise when allowing queries to be resampled. To illustrate this
difference, consider the simple example of a star graph and a constant q < 1. Straightforward
amplification can detect the target in O(1) expected number of queries. In contrast, in our
model, it can be easily seen that Ω(n) is a lower bound for both the move and the query
complexities, for any constant noise parameter.

A search problem on graphs in which the set of nodes with misleading advice is chosen
by an adversary was studied in [16, 17, 18], as part of the more general framework of the liar
models [1, 2, 6, 9, 23]. Data structures with adversarial memory faults have been investigated
in the so called faulty-memory RAM model introduced in [14]. In particular, data structures
supporting the same operations as search trees with adversarial memory faults were studied
in [13, 8]. Interestingly, the data structures developed in [8] can cope with up to O(logn)
faults, happening at any time during the execution of the algorithm, while maintaining
optimal space and time complexity. All these worst case models are, however, significantly
different from the randomized one we consider, both in terms of techniques and results. The
subject of queries with probabilistic memory faults, as the ones we study here, has been
explicitly studied in the context of sorting [7].

The noisy advice model considered in this paper actually originated in the recent biolo-
gically centered work [15], aiming to abstract navigation relying on guiding instructions in
the context of collaborative transport by ants. There, a group of ants carry a large load of
food aiming to transport it to their nest, while basing their navigation on unreliable advice
given by pheromones that are laid on the terrain. In that work, the authors modelled ant
navigation as a probabilistic following algorithm, and noticed that an execution of such an
algorithm can be viewed as an instance of Random Walks in Random Environment (RWRE)
[24, 10]. Relying on results from this subfield of probability theory, the authors showed that
when tuned properly, such algorithms enjoy linear move complexity on grids, provided that
the bias towards the correct direction is sufficiently high.

ESA 2018



54:6 Searching a Tree with Permanently Noisy Advice

1.4 Notations
Denote p = 1 − q, and for a node u, pu = 1 − qu. For two nodes u, v, let 〈u, v〉 denote
the simple path connecting them, excluding the end nodes, and let [u, v〉 = 〈u, v〉 ∪ {u}
and [u, v] = [u, v〉 ∪ {v}. For a node u, let T (u) be the subtree rooted at u. We denote by
−−→
adv(u) (resp. ←−−adv(u)) the set of nodes whose advice points towards (resp. away from) u. By
convention u /∈ −−→adv(u) ∪←−−adv(u). Unless stated otherwise, log is the natural logarithm.

1.5 Organization
In Section 2 we present our optimal walking algorithm. Section 3 presents our query
algorithms, while most of the details regarding the more elaborated algorithm on regular
trees are only shown in the full version of this work [5, Appendix G]. In Section 4 we show
the lower bounds for both the move and query complexities. In Section 5, we give a list of
open problems. Theorem 5 and the threshold of Θ(1/∆) that applies to the semi-adversarial
setting are proved in the full version of this work.

2 Optimal Walking Algorithm

In this section we prove Theorem 2. At a very high level, at any given time, the walking
algorithm processes the advice seen so far, identifies a promising node to continue from on
the border of the already discovered connected component, moves to that node, and explores
one of its neighbors.

2.1 Algorithm Design following a Greedy Bayesian Approach
In our setting the treasure is placed by an adversary. However, we can still study algorithms
induced by assuming that it is placed in one of the vertices according to some known
distribution and see how they measure up in our worst case setting. As mentioned, this
approach is similar to [4], which studies the closely related, yet much simpler problem of
search on the line. Of course, the success of this scheme highly depends on the choice of the
prior distribution we take.

To make our life easier, let us first assume that the structure of the tree is known to the
algorithm. Also, we assume the treasure is placed in one of the leaves of the tree according
to some known distribution θ, and denote by adv the advice on the nodes we have already
visited. Aiming to find the treasure as fast as possible, a possible greedy algorithm explores
the vertex that, given the advice seen so far, has the highest probability of having the treasure
in its subtree.

We extend the definition of θ to internal nodes by defining θ(u) to be the sum of θ(w)
over all leaves w of T (u). Given some u that was not visited yet, and given the previously
seen advice adv, the probability of the treasure being in u’s subtree T (u), is:

P (τ ∈ T (u) | adv) = P (τ ∈ T (u))
P (adv) P (adv | τ ∈ T (u))

= θ(u)
P (adv)

∏
w∈−→adv(u)

(
pw + qw

∆w

) ∏
w∈←−adv(u)

qw
∆w

.

The last factor is qw/∆w because it is the probability that the advice at w points exactly
the way it does in adv, and not only away from τ . Note that the advice seen so far is
never for vertices in T (u) as we consider a walking algorithm, and u has not been visited
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yet. Therefore, if τ ∈ T (u) then correct advice in adv points to u. We ignore the term
pw + qw/∆w as it is normally quite close to 1, and applying a log we can approximate the
relative strength of a node by:

log(θ(u)) +
∑

w∈←−adv(u)

log
(
qw
∆w

)
.

We do not want to assume that our algorithm knows qw, but we do assume that in the worst
scenario qw ∼ 1/

√
∆w. Assigning this value and rescaling we finally define:

score(u) = 2
3 log(θ(u))−

∑
w∈←−adv(u)

log(∆w).

When comparing two specific vertices u and v, score(u) > score(v) iff:∑
w∈〈u,v〉∩−→adv(u)

log(∆w)−
∑

w∈〈u,v〉∩−→adv(v)

log(∆w) > 2
3 log

(
θ(v)
θ(u)

)
.

This is because any advice that is not on the path between u and v contributes the same to
both sides, as well as advice on vertices on the path that point sideways, and not towards u
or v3. Since we use this score to compare two vertices that are neighbors of already explored
vertices, and our algorithm is a walking algorithm, then we will always have all the advice
on this path. In particular, the answer to whether score(u) > score(v), does not depend
on the specific choices of the algorithm, and does not change throughout the execution of
the algorithm, even though the scores themselves do change. The comparison depends only
on the advice given by the environment.

Let us try and justify the score criterion at an intuitive level. Consider the case of a
complete ∆-ary tree, with θ being the uniform distribution on the leaves4. Here score(u) >
score(v) if (cheating a little by thinking of log(∆) and log(∆− 1) as equal):∣∣−−→adv(u) ∩ 〈u, v〉

∣∣− ∣∣−−→adv(v) ∩ 〈u, v〉
∣∣ > 2

3
(
d(u)− d(v)

)
.

If, for example, we consider two vertices u, v ∈ T at the same depth, then score(u) > score(v)
if there is more advice pointing towards u than towards v. If the vertices have different
depths, then the one closer to the root has some advantage, but it can still be beaten.

For general trees, perhaps the most natural θ to take is the uniform distribution on all
nodes (or just on all leaves - this choice is actually similar). It is also a generalization of the
example above. Unfortunately, however, while this works well on the complete ∆-ary tree,
we show in the full version of this paper [5, Appendix D], that this approach fails on other
(non-complete) ∆-ary trees.

2.2 Algorithm Awalk

In our context, there is no distribution over treasure location and we are free to choose θ as
we like. We take θ to be the distribution defined by a simple random process. Starting at

3 It is tempting to define score(u) as the sum of weighted advice from the root to u. However, when
comparing two vertices, the advice of their least common ancestor would be counted twice, which we
prefer to avoid.

4 Actually, a similar formula could be derived choosing θ to be the uniform distribution over all nodes,
but for technical reasons it is easier to restrict it to leaves only.

ESA 2018



54:8 Searching a Tree with Permanently Noisy Advice

the root, at each step, walk down to a child uniformly at random. until reaching a leaf. For
a leaf v, define θ(v) as the probability that this process eventually reaches v. Our extension
of θ can be interpreted as θ(v) being the probability that this process passes through v.
Formally, θ(σ) = 1, and θ(u) = (∆σ

∏
w∈〈σ,u〉(∆w − 1))−1. It turns out that this choice,

slightly changed, works remarkably well, and gives an optimal algorithm in noise conditions
that practically match those of our lower bound. For a vertex u 6= σ, define:

β(u) =
∏

w∈[σ,u〉

∆w.

It is a sort of approximation of 1/θ(u), which we prefer for technical convenience. Indeed, for
all u, 1/β(u) ≤ θ(u). A wonderful property of this β (besides the fact that it gives rise to an
optimal algorithm) is that to calculate β(v) (just like θ), one only needs to know the degrees
of the vertices from v up to the root. It is hard to imagine distributions on leaves that allow
us to calculate the probability of being in a subtree without knowing anything about it!

In the walking algorithm, if v is a candidate for exploration, these nodes must have been
visited already and so the algorithm does not need any a priori knowledge of the structure of
the tree. The following claim will be soon useful:

I Claim 6. The following two inequalities hold for every c < 1:∑
v∈T

cd(v)

β(v) ≤
1

1− c ,
∑
v∈T

d(v)cd(v)

β(v) ≤ c

(1− c)2 .

Proof. To prove the first inequality, follow the same random walk defining θ. Starting at the
root, at each step choose uniformly at random one of the children of the current vertex. Now,
while passing through a vertex v collect cd(v) points. No matter what choices are made, the
number of points is at most 1 + c+ c2 + ... = 1/(1− c). On the other hand,

∑
v∈T θ(v)cd(v)

is the expected number of points gained. The result follows since 1/β(v) ≤ θ(v). The second
inequality is derived similarly, using the fact that c+ 2c2 + 3c3 + . . . = c/(1− c)2. J

For a vertex u ∈ T and previously seen advice adv define:

score(u) = 2
3 log

(
1

β(u)

)
−

∑
w∈←−adv(u)

log(∆w).

Algorithm Awalk keeps track of all vertices that are children of the vertices it explored so
far, and repeatedly walks to and then explores the one with highest score according to the
current advice, breaking ties arbitrarily. Note that the algorithm does not require prior
knowledge of either the tree’s structure, or the values of ∆, q, d or n.

2.3 Analysis
Recall the definition of Condition (?) from Definition 1. The next lemma provides a large
deviation bound tailored to our setting. The proof can be found in Appendix C of the full
version [5].

I Lemma 7. Consider independent random variables X1, . . . , X`, where Xi takes the values
(− log ∆i, 0, log ∆i) with respective probabilities (pi + qi

∆i
, qi(1 − 2

∆i
), qi∆i

), for parameters
pi, qi = 1− pi and ∆i > 0. Assume that Condition (?) holds for some ε > 0. Then for every
integer (positive or negative) m,

P

(∑̀
i=1

Xi ≥ m

)
≤ (1− ε)`

e
3m

4

∏̀
i=1

1√
∆i

.
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The next theorem states that Awalk is optimal up to a constant factor for the regime of noise
below the threshold. It establishes Theorem 2.

I Theorem 8. Assume that Condition (?) holds for some fixed ε > 0. Then M(Awalk) =
O(d
√

∆), where the constant hidden in the O notation only depends polynomially on 1/ε.

Proof. Denote the vertices on the path from σ to τ by σ = u0, u1, . . . , ud = τ in order.
Denote by Ek the expected time to reach uk once uk−1 is reached. We will show that for all
k, Ek = O(

√
∆), and by linearity of expectation this concludes the proof.

Once uk−1 is visited, Awalk only goes to some of the nodes that have score at least as
high as uk. We can therefore bound Ek from above by assuming we go through all of them,
and this expression does not depend on the previous choices of the algorithm and the nodes
it saw before seeing uk. The length of this tour is bounded by twice the sum of distances of
these nodes from uk. Hence,

Ek ≤ 2
k∑
i=1

∑
u∈C(ui)

P (score(u) ≥ score(uk)) · d(uk, u).

Where C(uk) = T (uk−1) \ T (uk), and so ∪ki=1C(ui) = T \ T (uk). Recall that scores are
defined so that u has a larger score than uk, if the sum of weighted arrows on the path 〈uk, u〉
is at least 2

3 log(β(u)/β(uk)). Setting m to be this value, Lemma 7 allows to calculate this
probability exactly. Indeed, a vertex x on the path should point towards uk: this happens
with probability px + qx/∆x. Otherwise, it points towards u with probability qx/∆x, and
elsewhere with probability qx(1− 2/∆x). Denoting c = 1− ε,

Ek
2 ≤

k∑
i=1

∑
u∈C(ui)

cd(uk,u)−1

e
3
4 ·

2
3 log

(
β(u)
β(uk)

)√√√√ ∏
v∈〈u,uk〉

1
∆v
· d(uk, u)

= 1
c

k∑
i=1

∑
u∈C(ui)

cd(uk,u)√
β(u)
β(uk)

√
∆ui

β(uk)
β(ui) ·

β(u)
β(ui)

· d(uk, u)

≤
√

∆
c

k∑
i=1

cd(uk,ui)
∑

u∈C(ui)

cd(ui,u) β(ui)
β(u) ·

(
d(uk, ui) + d(ui, u)

)
.

By Claim 6, applied to the tree rooted at ui, we get:

∑
u∈C(ui)

cd(ui,u)β(ui)
β(u) <

1
1− c , and

∑
u∈C(ui)

cd(ui,u)β(ui)
β(u) d(ui, u) < c

(1− c)2 .

And so:

Ek
2 ≤

√
∆

c(1− c)

k∑
i=1

cd(uk,ui)d(uk, ui) +
√

∆
(1− c)2

k∑
i=1

cd(uk,ui)

≤ (1 + c)
√

∆
(1− c)3 ≤ 2

√
∆

ε3 = O
(√

∆
)
,

where we again used the equality c+ 2c2 + 3c3 + . . . = c/(1− c)2. J
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3 Query Algorithms

3.1 An O(
√

∆ log ∆ log2 n) Queries Algorithm
Our next goal is to prove the first item in Theorem 3. As is common in search on trees, our
technique in this section is based on separators. We say a node u is a separator of T if all
the connected components of T \ {u} are of size at most |T |/2. It is well known that such
a node exists. Assume there is some local procedure, that given a vertex u decides with
probability 1− δ in which one of the connected components of T \ {u}, the treasure resides.
Applying this procedure on a separator of the tree, and then focusing the search recursively
only on the component it pointed out, results in a type of algorithm we call a separator based
algorithm. It uses the local procedure at most dlog2 ne times, and by a union bound, finds
the treasure with probability at least 1− dlog2 neδ. Broadly speaking, we will be interested
in the expected running time of this sort of algorithm conditioned on it being successful.
This sort of conditioning complicates matters slightly. In what follows, we assume that the
set of separators for the tree is fixed.

Proof. (of the first item in Theorem 3) The algorithm we build is denoted Asep. It runs a
separator based algorithm in parallel to some arbitrary exhaustive search algorithm. The
meaning of in parallel here simply means that the two algorithms are run in an alternating
fashion. Fix some small h. The local exploration procedure, denoted localh, for a vertex u
proceeds as follows.

Procedure localh(u). Consider the tree Th(u) rooted at u consisting of all vertices satisfy-
ing log∆ β(v) < h together with their children. So a leaf of v ∈ Th(u) is either a leaf of T , or
satisfies ∆h ≤ β(v) < ∆h+1. Denote the second kind a nominee. Call a nominee promising if
the number of weighted arrows pointing to v is large, specifically, if

∑
w∈[u,v〉Xw ≥ 2

3h log ∆,
where Xw = log ∆w if the advice at w is pointing to v, Xw = − log ∆w if it is pointing
to u, and Xw = 0 otherwise. Viewing it as a query algorithm, we now run the walking
algorithm Awalk on Th(u) (starting at its root u) until it either finds the treasure or finds
a promising nominee. In the latter case, localh(u) declares that the treasure is on the
connected component of T \ {u} containing this nominee. If τ ∈ Th(u) then set τu = τ .
Otherwise let τu be the leaf of Th(u) closest to the treasure, and so in this case τu is a
nominee. Say that u is h-misleading if either (1) τ 6∈ Th(u) and τu is not promising, or (2)
there is some promising nominee v ∈ Th(u) that is not in the same connected component
of T \ {u} as τu. Note that if u is not h-misleading then localh(u) necessarily outputs the
correct component of T \ {u}, namely, the one containing the treasure. The proof of the
following lemma appears in the full version of this work, [5, Appendix F]. The part regarding
regular trees will be needed later.

I Lemma 9. For any u, P (u is h-misleading) ≤ (∆+1)(1−ε)h. Also, for any event X such
that X occurring always implies that u is not misleading, we have P (X)Q (localh(u) | X) =
O(
√

∆ log ∆ ·h). In the case the tree is regular, these bounds become 2(1− ε)h and O(
√

∆ ·h)
respectively. The constant hidden in the O notation only depends polynomially on 1/ε.

Taking h = −3 log(2n)/ log(1 − ε), gives P (u is misleading) ≤ 1/n2. Denote by Good
the event that none of the separators encountered are misleading. By a union bound,
P (Good c) ≤ 1/n.

Q(Asep) = P (Good )Q (Asep | Good ) + P (Good c)Q (Asep | Good c) . (1)
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As Asep runs an exhaustive search algorithm in parallel, the second term is O(1). For the first
term, note that conditioning on Good , all local procedures either find the treasure or give
the correct answer, and so there are O(logn) of them and they eventually find the treasure.
Denote by ui the i-th vertex that localh is executed on. By linearity of expectation, and
applying Lemma 9, the first term of (1) is P (Good )

∑
iQ (localh(ui) | Good ) = O(logn ·√

∆ log ∆ · h) = O(
√

∆ log ∆ log2 n). As log(1 + x) > x always, then −1/ log(1 − ε) ≤ 1/ε,
and the hidden factor in the O is as stated. J

3.2 An Almost Tight Result for Regular Trees
We now turn our attention to the second item in Theorem 3. Due to space constraints, we
only sketch the argument here and refer the interested reader to the full version for details.
At a high level, we run two algorithms in parallel (i.e., in an alternating fashion): Afast , and
Amid . Algorithm Afast is actually Asep applied with parameter h = Θ(log logn) instead of
Θ(logn). Using Lemma 9, with probability 1 − 1/logO(1)(n), the local procedure of Afast
always detects the correct component for each separator, and Afast needs an expected number
of O(

√
∆ · logn · log logn) queries to find the treasure. This is the running time we are

aiming for.
Algorithm Amid is similar to Asep except it uses a different subroutine for local exploration.

It then remains to show that it finds the treasure using a relatively low expected number
of queries even conditioning on the event that caused Afast to fail, namely, the event that
there is a misleading separator at the scale h = Θ(log logn). The query complexity of Amid
does blow up under this event but we show that the blowup is not that bad, and can be
compensated by the fact that the bad event has small probability. This is the core of the
proof, and what requires most work. In fact, the complexity of the arguments led us to
restrict the discussion to regular trees and also modify the subroutine for local exploration
to ease the analysis.

4 Lower Bounds

We next prove Items (1) of Theorem 4. Items (2a) and (2b) are proved in Appendix A of the
full version of this paper.

4.1 Exponential Complexity Above the Threshold
We wish to prove Item (1) in Theorem 4. Namely, that for every fixed ε > 0, and for every
complete ∆-ary tree, if q ≥ 1+ε√

∆−1 · (1 + 1
∆−1 ), then every randomized search algorithm has

query (and move) complexity which is both exponential in the depth d of the treasure and
polynomial in n. In fact, this lower bound holds even if the algorithm has access to the
advice of all internal nodes. The following lemma is proved in stated here without proof:

I Lemma 10. Assume the treasure is placed in a leaf τ of the complete ∆-ary tree. Denote by
adv the random advice on all internal nodes, then the expected number of leaves u satisfying
|−−→adv(u)| > |−−→adv(τ)|, is a lower bound on the query complexity of any algorithm.

Using Lemma 10, all we need to do is approximate the number of leaves u satisfying
|−−→adv(u)| > |−−→adv(τ)|. When comparing the number of pointers that point towards each of
two different nodes, only the pointers of the internal nodes on the path between them may
influence on the result. The probability that a leaf u “beats” the treasure τ in the sense of
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Lemma 10, is at least the probability that exactly one node on the path points to u and
none of the rest point towards the treasure. This probability is at least

q

∆ ·
(
q ·
(

1− 1
∆

))d(u,τ)−2
.

There are precisely (∆− 1)D leaves whose distance from the treasure is 2D. Therefore, the
expected number of leaves that beat the treasure is at least:

q

∆(∆− 1)Dq2D−2 ·
(

1− 1
∆

)2D−2
= ∆
q(∆− 1)2 ·

(
q2(∆− 1)3

∆2

)D
≥ ∆
q(∆− 1)2 · (1 + ε)2D.

Item (1) in Theorem 4 follows.

5 Open Problems

Closing the small gap between the upper and lower bounds for the query setting remains
open. The noisy advice model may well be interesting to study in other search settings.
In particular, obtaining efficient search algorithms for general graphs is highly intriguing.
Even though the likelihood of a node being the treasure under a uniform prior can still be
computed in principle, it is not so easy to compare two nodes as in Theorem 8 because there
may be more than a single path between them.

In a limited regime of noise, we believe that memoryless strategies might very well be
efficient also on general graphs, and we pose the following conjecture. Proving it may require
the use of tools from the theory of RWRE, which seem to be lacking in the context of general
graph topologies.

I Conjecture 11. There exists a probabilistic following algorithm that finds the treasure in
expected linear time on any undirected graph assuming q < c/∆ for a small enough c > 0.
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