
On Nondeterministic Derandomization of
Freivalds’ Algorithm: Consequences, Avenues and
Algorithmic Progress
Marvin Künnemann
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
marvin@mpi-inf.mpg.de

Abstract
Motivated by studying the power of randomness, certifying algorithms and barriers for fine-
grained reductions, we investigate the question whether the multiplication of two n× n matrices
can be performed in near-optimal nondeterministic time Õ(n2). Since a classic algorithm due to
Freivalds verifies correctness of matrix products probabilistically in time O(n2), our question is
a relaxation of the open problem of derandomizing Freivalds’ algorithm.

We discuss consequences of a positive or negative resolution of this problem and provide
potential avenues towards resolving it. Particularly, we show that sufficiently fast deterministic
verifiers for 3SUM or univariate polynomial identity testing yield faster deterministic verifiers for
matrix multiplication. Furthermore, we present the partial algorithmic progress that distinguish-
ing whether an integer matrix product is correct or contains between 1 and n erroneous entries
can be performed in time Õ(n2) – interestingly, the difficult case of deterministic matrix product
verification is not a problem of “finding a needle in the haystack”, but rather cancellation effects
in the presence of many errors.

Our main technical contribution is a deterministic algorithm that corrects an integer matrix
product containing at most t errors in time Õ(

√
tn2 + t2). To obtain this result, we show how

to compute an integer matrix product with at most t nonzeroes in the same running time. This
improves upon known deterministic output-sensitive integer matrix multiplication algorithms for
t = Ω(n2/3) nonzeroes, which is of independent interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases matrix product verification, certifying computation, fine-grained com-
plexity and algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.56

Related Version A full version of the paper is available at [27], https://arxiv.org/abs/1806.
09189.

Acknowledgements The author wishes to thank Markus Bläser, Russell Impagliazzo, Kurt Mehl-
horn, Ramamohan Paturi, and Michael Sagraloff for early discussions on this work and Karl
Bringmann for comments on a draft of this paper.

1 Introduction

Fast matrix multiplication algorithms belong to the most exciting algorithmic developments
in the realm of low-degree polynomial-time problems. Starting with Strassen’s polynomial
speedup [38] over the naive O(n3)-time algorithm, extensive work (see, e.g., [13, 41, 29]) has
brought down the running time to O(n2.373) (we refer to [8] for a survey). This leads to
substantial improvements over naive solutions for a wide range of applications; for many

© Marvin Künnemann;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 56; pp. 56:1–56:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marvin@mpi-inf.mpg.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.56
https://arxiv.org/abs/1806.09189
https://arxiv.org/abs/1806.09189
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


56:2 On Nondeterministic Derandomization of Freivalds’ Algorithm

problems, the best known algorithms make crucial use of fast multiplication of square or
rectangular matrices. To name just a few examples, we do not only obtain polynomial
improvements for numerous tasks in linear algebra (computing matrix inverses, determinants,
etc.), graph theory (finding large cliques in graphs [33], All-Pairs Shortest Path for bounded
edge-weights [4]), stringology (context free grammar parsing [40], RNA folding and language
edit distance [9]) and many more, but also strong subpolynomial improvements such as a
2Ω(
√

log n)-factor speed-up for the All-Pairs Shortest Path problem (APSP) [46] or similar
improvements for the orthogonal vectors problem (OV) [3]. It is a famous open question
whether the matrix multiplication exponent ω is equal to 2.

Matrix multiplication is the search version of the MM-Verification problem: given
n × n matrices A,B and a candidate C for the product matrix, verify whether AB = C.
There is a surprisingly simple randomized algorithm due to Freivalds [15] that is correct
with probability at least 1/2: Pick a random vector v ∈ {0, 1}n, compute the matrix-vector
products Cv and A(Bv), and declare AB = C if and only if Cv = ABv. Especially given
the simplicity of this algorithm and the widely-shared hope that ω = 2, one might conjecture
that a deterministic version of Freivalds’ algorithm exists. Alas, while refined ways to pick
the random vector v reduce the required number of random bits to logn+O(1) [32, 26], a
Õ(n2)-time deterministic algorithms for matrix product verification remains elusive.

The motivation of this paper is the following question:

Can we solve Boolean, integer or real matrix multiplication in nondeterministic Õ(n2) time?

Here we say that a functional problem f is in nondeterministic time t(n) if f admits
a t(n)-time verifier : there is a function v, computable in deterministic time t(n), where
n denotes the problem size of x, such that for all x, y there exists a certificate c with
v(x, y, c) = 1 if and only y = f(x).1

Note that a Õ(n2)-time derandomization of Freivalds’ algorithm would yield an affirmative
answer: guess C, and verify AB = C using the deterministic verification algorithm. In
contrast, a nondeterministic algorithm may guess additional information, a certificate beyond
a guess C on the matrix product, and use it to verify that C = AB. Surprising faster
algorithms in such settings have recently been found for 3SUM and all problems subcubic
equivalent to APSP under deterministic reductions [11]; see [43, 42] for an overview over
subcubic equivalences to APSP.

In this paper, we discuss consequences of positive or negative resolutions of this question,
propose potential avenues for an affirmative answer and present partial algorithmic progress.
In particular, we show that (1) sufficiently fast verifiers for 3SUM or univariate polynomial
identity testing yield faster nondeterministic matrix multiplication algorithms, (2) in the
integer case we can detect existence of between 1 and n erroneous entries in C in determin-
istic time Õ(n2) and (3) we provide a novel deterministic output-sensitive integer matrix
multiplication algorithm that improves upon previous deterministic algorithms if AB has at
least n2/3 nonzeroes.

1.1 Further Motivation and Consequences
Our motivation stems from studying the power of randomness, as well as algorithmic
applications in certifiable computation, and consequences for the fine-grained complexity of
polynomial-time problems.

1 Throughout the paper, we view any decision problem P as a binary-valued functional problem. Thus a
t(n)-time verifier for P shows that P is in nondeterministic and co-nondeterministic time t(n).



M. Künnemann 56:3

Power of Randomness: Matrix-product verification has one of the simplest randomized
solution for which no efficient derandomization is known – the currently best known deter-
ministic algorithm simply computes the matrix product AB in deterministic time O(nω)
and checks whether C = AB. Exploiting nondeterminism instead of randomization may
yield insights into when and under which conditions we can derandomize algorithms without
polynomial increases in the running time.

A very related case is that of univariate polynomial identity testing (UPIT): it has a
similar status with regards to randomized and deterministic algorithms. As we will see,
finding Õ(n2)-time nondeterministic derandomizations for UPIT is a more difficult problem,
so that resolving our main question appears to be a natural intermediate step towards
nondeterministic derandomizations of UPIT, see Section 1.2.

Practical Applications – Deterministic Certifying Algorithms: Informally, a certifying
algorithm for a functional problem f is an algorithm that computes, for each input x, besides
the desired output y = f(x) also a certificate c such that there is a simple verifier that checks
whether c proves that y = f(x) indeed holds [31]. If we fix our notion of simplicity to be
that of being computable by a fast deterministic algorithm, then our notion of verifiers turns
out to be a suitable notion to study existence of certifying algorithms – it only disregards
the running time needed to compute the certificate c.

Having a fast verifier for matrix multiplication would certainly be desirable – while
Freivalds’ algorithm yields a solution that is sufficient for many practical applications, it can
never completely remove doubts on the correctness. Since matrix multiplication is a central
ingredient for many problems, fast verifiers for matrix multiplication imply fast verifiers for
many more problems.

In fact, even if ω = 2, finding combinatorial2 strongly subcubic verifiers is of interest, as
these are more likely to yield practical advantages over more naive solutions. In particular, the
known subcubic verifiers for all problems subcubic equivalent to APSP (under deterministic
reductions) [11] all rely on fast matrix multiplication, and might not yet be relevant for
practical applications.

Barriers for SETH-based Lower Bounds: Given the widely-shared hope that ω = 2, can
we rule out conditional lower bounds of the form nc−o(1) with c > 2 for matrix multipli-
cation, e.g., based on the Strong Exponential Time Hypothesis (SETH) [19]? Carmosino
et al. [11] proposed the Nondeterministic Strong Exponential Time Hypothesis (NSETH)
that effectively postulates that there is no O(2(1−ε)n)-time co-nondeterministic algorithm for
k-SAT for all constant k. Under this assumption, we can rule out fast nondeterministic or
co-nondeterministic algorithms for all problems that have deterministic fine-grained reduc-
tions from k-SAT. Conversely, if we find a nondeterministic matrix multiplication algorithm
running in time nc+o(1), then NSETH implies that there is no SETH-based lower bound of
nc′−o(1), with c′ > c, for matrix multiplication using deterministic reductions.

Barriers for Reductions in Case of a Negative Resolution: Suppose that there is a
negative resolution of our main question, specifically that Boolean matrix multiplication has
no nc−o(1)-time verifier for some c > 2 (observe that this would imply ω > 2). Then by a
simple O(n2)-time nondeterministic reduction from Boolean matrix multiplication to triangle
finding (implicit in the proof of Theorem 1.1 below) and a known O(n2)-time reduction from
triangle finding to Radius [1], Radius has no nc−o(1)-time verifier. This state of affairs would
rule out certain kinds of subcubic reductions from Radius to Diameter, e.g., deterministic

2 Throughout this paper, we call an algorithm combinatorial, if it does not use sophisticated algebraic
techniques underlying the fastest known matrix multiplication algorithms.

ESA 2018



56:4 On Nondeterministic Derandomization of Freivalds’ Algorithm

many-one-reductions, since these would transfer a simple O(n2)-time verifier for Diameter3
to Radius. Note that finding a subcubic reduction from Radius to Diameter is an open
problem in the fine-grained complexity community [1].

1.2 Structural Results: Avenues Via Other Problems
We present two particular avenues for potential subcubic or even near-quadratic matrix
multiplication verifiers: finding fast verifiers for either 3SUM or univariate polynomial
identity testing.

3SUM

One of the core hypotheses in the field of hardness in P is the 3SUM problem [16]. Despite
the current best time bound of O(n2 · poly log log n

log2 n
) [6, 12] being only slightly subquadratic,

recently a strongly subquadratic verifier running in time Õ(n3/2) was found [11]. We
have little indication to believe that this verification time is optimal; for the loosely related
computational model of decision trees, a remarkable near-linear time bound has been obtained
just this year [25].

By a simple reduction, we obtain that any polynomial speedup over the known 3SUM
verifier yields a subcubic Boolean matrix multiplication verifier. In particular, establishing a
near-linear 3SUM verifier would yield a positive answer to our main question in the Boolean
setting.

I Theorem 1.1. Any O(n3/2−ε)-time verifier for 3SUM yields a O(n3−2ε)-time verifier for
Boolean matrix multiplication.

Under the BMM hypothesis, which asserts that there is no combinatorial O(n3−ε)-time
algorithm for Boolean matrix multiplication (see, e.g., [2]), a n3/2−o(1)-time lower bound
(under randomized reductions) for combinatorial 3SUM algorithms is already known [22, 43].
The above result, however, establishes a stronger, non-randomized relationship between the
verifiers’ running times by a simple proof exploiting nondeterminism.

UPIT

Univariate polynomial identity testing (UPIT) asks to determine, given two degree-n poly-
nomials p, q over a finite field of polynomial order, represented as arithmetic circuits with
O(n) wires, whether p is identical to q. By evaluating and comparing p and q at n + 1
distinct points or Õ(1) random points, we can solve UPIT deterministically in time Õ(n2)
or with high probability in time Õ(n), respectively. A nondeterministic derandomization,
more precisely, a O(n2−ε)-time verifier, would have interesting consequences [47]: it would
refute the Nondeterministic Strong Exponential Time Hypothesis posed by Carmosino et
al. [11], which in turn would prove novel circuit lower bounds, deemed difficult to prove. We
observe that a sufficiently strong nondeterministic derandomization of UPIT would also give
a faster matrix multiplication verifier.

3 We verify that a graph G has diameter d as follows: For every vertex v, we guess the shortest path
tree originating in v. It is straightforward to use this tree to verify that all vertices v′ have distance at
most d from v in time O(n). Thus, we can prove that the diameter is at most d in time O(n2). For the
lower bound, guess some vertex pair u, v and verify that their distance is indeed d using a single-source
shortest path computation in time O(m + n log n) = O(n2).



M. Künnemann 56:5

I Theorem 1.2. Any O(n3/2−ε)-time verifier for UPIT yields a O(n3−2ε)-time verifier for
integer matrix multiplication.

Note that this avenue might seem more difficult to pursue than a direct attempt at
resolving our main question, due to its connection to NSETH and circuit lower bounds.
Alternatively, however, we can view the specific arithmetic circuit obtained in our reductions
as an interesting intermediate testbed for ideas towards derandomizing UPIT. In fact, our
algorithmic results were obtained by exploiting the connection to UPIT, and exploiting the
structure of the resulting specialized circuits/polynomials.

1.3 Algorithmic Results: Progress on Integer Matrix Product
Verification

Our main result is partial algorithmic progress towards the conjecture in the integer setting.
Specifically, we consider a restriction of MM-Verification to the case of detecting a
bounded number t of errors. Formally, let MM-Verificationt denote the following problem:
given n× n integer matrices A,B,C with polynomially bounded entries, produce an output
“C = AB” or “C 6= AB”, where the output must always be correct if C and AB differ in at
most t entries.

Our main result is an algorithm that solves MM-Verificationt in near-quadratic time
for t = O(n) and in strongly subcubic time for t = O(nc) with c < 2.

I Theorem 1.3. For any 1 ≤ t ≤ n2, MM-Verificationt can be solved deterministically
in time O((n2 + tn) log2+o(1) n).

Interestingly, this shows that detecting the presence of very few errors is not a difficult
case. Instead of a needle-in-the-haystack problem, we rather need to find a way to deal with
cancellation effects in the presence of at least Ω(n) errors.

As a corollary, we obtain a different near-quadratic-time randomized algorithm for MM-
Verification than Freivalds’ algorithm: Run the algorithm of Theorem 1.3 for t = n in
time Õ(n2). Afterwards, either C = AB holds or C has at least Ω(n) erroneous entries.
Thus it suffices to sample Θ(n) random entries i, j and to check whether Ci,j = (AB)i,j for
all sampled entries (by naive computation of (AB)i,j in time O(n) each) to obtain an Õ(n2)-
time algorithm that correctly determines C = AB or C 6= AB with constant probability.
Potentially, this alternative to Freivalds’ algorithm might be simpler to derandomize.

Finally, our algorithm for detecting up to t errors can be extended to a more involved
algorithm that also finds all erroneous entries (if no more than t errors are present) and
correct them in time Õ(

√
tn2 + t2). In fact, this problem turns out to be equivalent to the

notion of output-sensitive matrix multiplication os-MMt: Given n × n matrices A,B of
polynomially bounded integer entries with the promise that AB contains at most t nonzeroes,
compute AB.

I Theorem 1.4. Let 1 ≤ t ≤ n2. Given n × n matrices A,B,C of polynomially bounded
integers, with the property that C differs from AB in at most t entries, we can compute
AB in time O(

√
tn2 log2+o(1) n+ t2 log3+o(1) n). Equivalently, we can solve os-MMt in time

O(
√
tn2 log2+o(1) n+ t2 log3+o(1) n).

Previous work by Gasieniec et al. [17] gives a Õ(n2 + tn) randomized solution, as well as
a Õ(tn2) deterministic solution. Because of the parameter-preserving equivalence between t
error correction and os-MMt, this task is also solved by the randomized Õ(n2 + tn)-time

ESA 2018



56:6 On Nondeterministic Derandomization of Freivalds’ Algorithm

algorithm due to Pagh [34]4 and the deterministic O(n2 + t2n log5 n)-time algorithm due to
Kutzkov [28]. Note that our algorithm improves upon Kutzkov’s algorithm for t = Ω(n2/3),
in particular, our algorithm is strongly subcubic for t = O(n3/2−ε) and even improves upon
the best known fast matrix multiplication algorithm for t = O(n0.745).

1.4 Further Related Work
There is previous work that claims to have resolved our main question in the affirmative.
Unfortunately, the approach is flawed; we detail the issue in the full version of this article [27].

Other work considers MM-Verification and os-MM in quantum settings, e.g., [10, 23].
Furthermore, better running times can be obtained if we restrict the distribution of the
errors over the guessed matrix/nonzeroes over the matrix product: Using rectangular matrix
multiplication, Iwen and Spencer [20] show how to compute AB in time O(n2+ε) for any
ε > 0, if no column (or no row) of AB contains more than n0.29462 nonzeroes. Furthermore,
Roche [35] gives a randomized algorithm refining the bound of Gasieniec et al. [17] using, as
additional parameters, the total number of nonzeroes in A,B,C and the number of distinct
columns/rows containing an error.

For the case of Boolean matrix multiplication, several output-sensitive algorithms are
known [36, 48, 5, 30], including a simple deterministic O(n2 + tn)-time algorithm [36] and,
exploiting fast matrix multiplication, a randomized Õ(n2tω/2−1)-time solution [30]. Note
that in the Boolean setting, our parameter-preserving reduction from error correction to
output-sensitive multiplication (Proposition 3.1) no longer applies, so that these algorithms
unfortunately do not immediately yield error correction algorithms.

1.5 Paper Organization
After collecting notational conventions and introducing polynomial multipoint evaluation
as our main algorithmic tool in Section 2, we give a high-level description over the main
ideas behind our results in Section 3. We prove our structural results in Section 4. Our first
algorithmic result on error detection is proven in Section 5. Unfortunately, the details for
our technically most demanding result, i.e., Theorem 1.4, had to be omitted due to space
constraints – they are available in the full version of this article [27]. We conclude with open
questions in Section 6.

2 Preliminaries

Recall the definition of a t(n)-time verifier for a functional problem f : there is a function v,
computable in deterministic time t(n) with n being the problem size of x, such that for all
x, y there exists a certificate c with v(x, y, c) = 1 if and only y = f(x). Here, we assume the
word RAM model of computation with a word size w = Θ(logn).

For n-dimensional vectors a, b over the integers, we write their inner product as 〈a, b〉 =∑n
k=1 a[k] · b[k], where a[k] denotes the k-th coordinate of a. For any matrix X, we write Xi,j

for its value at row i, column j. We typically represent the n×n matrix A by its n-dimensional
row vectors a1, . . . , an, and the n×n matrix B by its n-dimensional column vectors b1, . . . , bn

such that (AB)i,j = 〈ai, bj〉. For any I ⊆ [n], J ⊆ [n], we obtain a submatrix (AB)I,J of AB
by deleting from AB all rows not in I and all columns not in J .

4 For t = ω(n), Jacob and Stöckel [21] give an improved randomized Õ(n2(t/n)ω−2)-time algorithm.



M. Künnemann 56:7

Fast Polynomial Multipoint Evaluation

Consider any finite field F and let M(d) be the number of additions and multiplica-
tions in F needed to multiply two degree-d univariate polynomials. Note that M(d) =
O(d log d log log d) = O(d log1+o(1) n), see, e.g. [44].

I Lemma 2.1 (Multipoint Polynomial Evaluation [14]). Let F be an arbitrary field. Given a
degree-d polynomial p ∈ F[X] given by a list of its coefficients (a0, . . . , ad) ∈ Fd+1, as well as
input points x1, . . . , xd ∈ F, we can determine the list of evaluations (p(x1), . . . , p(xd)) ∈ Fn

using O(M(d) log d) additions and multiplications in F.

Thus, we can evaluate p on any list of inputs x1, . . . , xn in time O((n+ d) log2+o(1) d).

3 Technical Overview

We first observe a simple parameter-preserving equivalence of the following problems,
MM-Verificationt Given `× n, n× `, `× ` matrices A,B,C such that AB and C differ in

0 ≤ z ≤ t entries, determine whether AB = C, i.e., z = 0,
AllZeroest Given `×n, n×` matrices A,B such that AB has 0 ≤ z ≤ t nonzeroes, determine

whether AB = 0, i.e., z = 0.
We also obtain a parameter-preserving equivalence of their “constructive” versions,
MM-Correctiont Given ` × n, n × `, ` × ` matrices A,B,C such that AB and C differ in

0 ≤ z ≤ t entries, determine AB,
os-MMt Given ` × n, n × ` matrices A,B such that AB has 0 ≤ z ≤ t nonzeroes, deter-

mine AB.
For any problem Pt among the above, let TP (n, `, t) denote the optimal running time to solve
Pt with parameters n, ` and t.

I Proposition 3.1. Let ` ≤ n and 1 ≤ t ≤ n2. We have

TMM-Verification(n, `, t) = Θ(TAllZeroes(n, `, t))
TMM-Correction(n, `, t) = Θ(Tos-MM(n, `, t)).

Proof. By setting C = 0, we can reduce AllZeroest and os-MMt to MM-Verificationt

and MM-Correctiont, respectively, achieving the lower bounds of the claim.
For the other direction, let a1, . . . , a` ∈ Zn be the row vectors of A, b1, . . . , b` ∈ Zn be the

column vectors of B and c1, . . . , c` ∈ Z` be the column vectors of C. Let ei denote the vector
whose i-th coordinate is 1 and whose other coordinates are 0. We define `× (n+ `), (n+ `)× `
matrices A′, B′ by specifying the row vectors of A′ as

a′i = (ai,−ei),

and the column vectors of B′ as

b′j = (bj , cj).

Note that (A′B′)i,j = 〈a′i, b′j〉 = 〈ai, bj〉−cj [i], thus (A′B′)i,j = 0 if and only if (AB)i,j = Ci,j .
Consequently, A′B′ has at most t nonzeroes, and checking equality of A′B′ to the all-zero
matrix is equivalent to checking AB = C. The total time to solve MM-Verificationt is
thus bounded by O((n+ `)`) + TAllZeroes(n+ `, `, t) = O(TAllZeroes(n, `, t)), as desired.

Furthermore, by computing C ′ = A′B′ (which contains at most t nonzero entries), we
can also correct the matrix product C by updating Ci,j to Ci,j + C ′i,j . This takes time
O((n+ `)`) + Tos-MM(n+ `, `, t) = O(Tos-MM(n, `, t)), as desired. J

ESA 2018



56:8 On Nondeterministic Derandomization of Freivalds’ Algorithm

Because of the above equivalence, we can focus on solving AllZeroest and os-MMt in
the remainder of the paper. The key for our approach is the following multilinear polynomial

fA,B
MM (x1, . . . , x`; y1, . . . , y`) :=

∑
i,j∈[`]

xi · yj · 〈ai, bj〉,

where again the a1, . . . , a` denote the row vectors of A and the b1, . . . , b` denote the column
vectors of B. Note that the nonzero monomials of fA,B

MM correspond directly to the nonzero
entries of AB. We introduce a univariate variant

g(X) = gA,B(X) := fA,B
MM (1, X, . . . ,X`−1; 1, X`, . . . , X`(`−1)),

which has the helpful property that monomials xiyj of fMM are mapped to the monomial
X(i−1)+`(j−1) in a one-to-one manner, preserving coefficients. To obtain a more efficient
representation of g than to explicitly compute all coefficients 〈ai, bj〉, we can exploit linearity
of the inner product: we have g(X) =

∑n
k=1 qk(X)rk(X`), where qk(Z) =

∑`
i=1 ai[k]Zi−1

and rk(Z) =
∑`

j=1 bj [k]Zj−1. This representation is more amenable for efficient evaluation,
and immediately yields a reduction to univariate polynomial identity testing (UPIT) (see
Theorem 4.2 in Section 4).

To solve the detection problem, we use an idea from sparse polynomial interpolation [7, 49]:
If AB has at most t nonzeroes, then for any root of unity ω of sufficiently high order,
g(ω0) = g(ω1) = g(ω2) = · · · = g(ωt−1) = 0 is equivalent to AB = 0. By showing how to
do fast batch evaluation of g using the above representation, we obtain an Õ((`+ t)n)-time
algorithm for AllZeroest in Section 5, proving Theorem 1.3.

Towards solving the correction problem, the naive approach is to use the Õ((`+ t)n)-time
AllZeroest algorithm in combination with a self-reduction to obtain a fast algorithm for
finding a nonzero position (i, j) of AB: If the AllZeroes algorithm determines that AB
contains at least one nonzero entry, we split the product matrix AB into four submatrices,
detect any one of them containing a nonzero entry, and recurse on it. After finding such
an entry, one can compute the correct nonzero value (AB)i,j = 〈ai, bj〉 in time O(n). One
can then “remove” this nonzero from further search (analogously to Proposition 3.1) and
iterate this process. Unfortunately, this only yields an algorithm of running time Õ(tn2),
even if AllZeroes would take near-optimal time Õ(n2). A faster alternative is to use the
self-reduction such that we find all nonzero entries whenever we recurse on a submatrix
containing at least one nonzero value. However, this process only leads to a running time of
Õ(
√
tn2 + nt2). Here, the bottleneck Õ(nt2) term stems from the fact that performing an

AllZeroes test for t submatrices (e.g., when t nonzeroes are spread evenly in the matrix)
takes time t · Õ(nt).

We still obtain a faster algorithm by a rather involved approach: The intuitive idea is to
test submatrices for appropriately smaller number of nonzeroes z � t. At first sight, such an
approach might seem impossible, since we can only be certain that a submatrix contains no
nonzeroes if we test it for the full number t of potential nonzeroes. However, by showing
how to reuse and quickly update previously computed information after finding a nonzero,
we make this approach work by obtaining “global” information at a small additional cost of
Õ(t2). Doing these dynamic updates quickly crucially relies on the efficient representation of
the polynomial g. The details are given in the full version of this article [27].



M. Künnemann 56:9

4 Structural Results: Avenues Via Other Problems

In this section, we show the simple reductions translating verifiers for 3SUM or UPIT to
matrix multiplication.

4.1 3SUM
We consider the following formulation of the 3SUM problem: given sets S1, S2, S3 of
polynomially bounded integers, determine whether there exists a triplet s1 ∈ S1, s2 ∈
S2, s3 ∈ S3 with s1 + s2 = s3. It is known that a combinatorial O(n3/2−ε)-time algorithm for
3SUM (for any ε > 0) yields a combinatorial O(n3−ε′)-time Boolean matrix multiplication
(BMM) algorithm (for some ε′ > 0). This follows by combining a reduction from Triangle
Detection to 3SUM of [22] and using the combinatorial subcubic equivalence of Triangle
Detection and BMM [43]5. While this only yields a nontight BMM-based lower bound for
3SUM for deterministic or randomized combinatorial algorithms, we can establish a tight
relationship for the current state of knowledge of combinatorial verifiers. In fact, allowing
nondeterminism, we obtain a very simple direct proof of a stronger relationship of the running
times than known for deterministic reductions.

I Theorem 4.1. If 3SUM admits a (“combinatorial”) O(n3/2−ε)-time verifier, then BMM
admits a (“combinatorial”) O(n3−2ε)-time verifier.6

Thus, significant combinatorial improvements over Carmosino et al.’s 3SUM verifier yield
strongly subcubic combinatorial BMM verifiers. In particular, a Õ(n)-time verifier for 3SUM
would yield an affirmative answer to our main question in the Boolean setting. Note that an
analogous improvement of the O(n3/2√logn) [18] size bound in the decision tree model to a
size of O(n log2 n) has recently been obtained [25].

To establish this strong relationship, our reduction exploits the nondeterministic setting
– without nondeterminism, no reduction is known that would give a O(n 8

3−ε)-time BMM
algorithm even if 3SUM could be solved in an optimal O(n) time bound.

Proof of Theorem 4.1. Given the n× n Boolean matrices A,B,C, we first check whether
all entries (i, j) with Ci,j = 1 are correct. For this, for each such i, j, we guess a witness k
and check that Ai,k = Bk,j = 1, which verifies that Ci,j = (AB)i,j = 1.

To check the remaining zero entries Z = {(i, j) ∈ [n]2 | Ci,j = 0}, we construct a
3SUM instance S1, S2, S3 as follows. Let W = 2(n + 1). For each (i, j) ∈ Z, we include
iW 2 + jW in our set S3. For every (i, k) with Ai,k = 1, we include iW 2 + k in our set S1,
and, for every (k, j) with Bk,j = 1, we include jW − k in our set S2. Clearly, any witness
Ai,k = Bk,j = 1 for (AB)i,j = 1, (i, j) ∈ Z yields a triplet a = iW 2 + k ∈ S1, b = jW − k ∈
S2, c = iW 2 + jW ∈ S3 with a+ b = c. Conversely, any 3SUM triplet a ∈ S1, b ∈ S2, c ∈ S3
yields a witness for (AB)i,j = 1, where (i, j) ∈ Z is the zero entry represented by c, since
(iW 2 + k) + (jW − k′) = i′W 2 + j′W for i, i′, j, j′, k, k′ ∈ [n] if only if i = i′, j = j′ and
k = k′ by choice of W . Thus, the 3SUM instance is a NO instance if and only if no (i, j) ∈ Z
has a witness for (AB)i,j = 1, i.e., all (i, j) ∈ Z satisfy Ci,j = (AB)i,j = 0.

Note that reduction runs in nondeterministic time O(n2), using an oracle call of a 3SUM
instance of size O(n2), which yields the claim. J

5 K. G. Larsen obtained an independent proof of this fact, see https://simons.berkeley.edu/talks/
kasper-larsen-2015-12-01.

6 Strictly speaking, the notion of a “combinatorial” algorithm is not well-defined, hence we use quotes here.
However, our reductions are so simple that they should qualify under any reasonable exact definition.

ESA 2018

https://simons.berkeley.edu/talks/kasper-larsen-2015-12-01
https://simons.berkeley.edu/talks/kasper-larsen-2015-12-01


56:10 On Nondeterministic Derandomization of Freivalds’ Algorithm

4.2 UPIT
Univariate Polynomial Identity Testing (UPIT) is the following problem: Given arithmetic
circuits Q,Q′ on a single variable, with degree n and O(n) wires, over a field of order
poly(n), determine whether Q ≡ Q′, i.e., the outputs of Q and Q′ agree on all inputs. Using
evaluation on n+ 1 distinct points, we can deterministically solve UPIT in time Õ(n2), while
evaluating on Õ(1) random points yields a randomized solution in time Õ(n). Williams [47]
proved that a O(n2−ε)-time deterministic UPIT algorithm refutes the Nondeterministic
Strong Exponential Time Hypothesis posed by Carmosino et al. [11]. We establish that
a sufficiently strong (nondeterministic) derandomization of UPIT also yields progress on
MM-Verification.

I Theorem 4.2. If UPIT admits a (“combinatorial”) O(n3/2−ε)-time verifier for some
ε > 0, then there is a (“combinatorial”) O(n3−2ε)-time verifier for matrix multiplication over
polynomially bounded integers and over finite fields of polynomial order.

Proof. We only give the proof for matrix multiplication over a finite field F of polynomial
order. Using Chinese Remaindering, we can easily extend the reduction to the integer case
(see Proposition 5.3 below).

Consider g(X) =
∑

i,j∈[n]〈ai, bj〉X(i−1)+n(j−1) over F as defined in Section 3 (with ` = n).
As described there, we can write g(X) =

∑n
k=1 qk(X)rk(Xn) with qk(Z) =

∑n
i=1 ai[k]Zi−1

and rk(Z) =
∑n

j=1 bj [k]Zj−1. Let k ∈ [n] and note that qk, rk and Xn have arithmetic
circuits with O(n) wires using Horner’s scheme. Chaining the circuits of Xn and rk, and
multiplying with the output of the circuit for qk, we obtain a degree-O(n2) circuit Qk with
O(n) wires. It remains to sum up the outputs of the circuits Q1, . . . , Qn. We thus obtain
a circuit Q with O(n2) wires and degree O(n2). Since by construction AB = 0 if and only
Q ≡ 0, we obtain an UPIT instance Q,Q′, with Q′ being a constant-sized circuit with
output 0, that is equivalent to our MM-Verification instance. Thus, any O(n3/2−ε)-time
algorithm for UPIT would yield a O(n2(3/2−ε))-time MM-Verification algorithm, as
desired. J

It is known that refuting NSETH implies strong circuit lower bounds [11], so pursuing this
route might seem much more difficult than attacking MM-Verification directly. However,
to make progress on MM-Verification, we only need to nondeterministically derandomize
UPIT for very specialized circuits. In this direction, our algorithmic results exploit that
we can derandomize UPIT for these specialized circuits, as long as they represent sparse
polynomials.

5 Deterministically Detecting Presence of 0 < z ≤ t Errors

In this section we prove the first of our main algorithmic results, i.e., Theorem 1.3.

I Theorem 5.1. For any 1 ≤ t ≤ n2, MM-Verificationt can be solved deterministically
in time O((n2 + tn) log2+o(1)(n)).

We prove the claim by showing how to solve the following problem in time Õ((`+ t)n).

I Lemma 5.2. Let Fp be a prime field with a given element ω ∈ Fp of order at least `2.
Let A,B be ` × n, n × `-matrices over Fp. There is an algorithm running in time O((` +
t)n log2+o(1) n) with the following guarantees:
1. If AB = 0, the algorithm outputs “AB = 0”.
2. If AB has 0 < z ≤ t nonzeroes, the algorithm outputs “AB 6= 0”.



M. Künnemann 56:11

Given such an algorithm working over finite fields, we can check matrix products of
integer matrices using the following proposition.

I Proposition 5.3. Let A,B be n× n matrices over the integers of absolute values bounded
by nc for some c ∈ N. Then we can find, in time O(n2 logn), distinct primes p1, p2, . . . , pd

and corresponding elements ω1 ∈ Fp1 , ω2 ∈ Fp2 , . . . , ωd ∈ Fpd
, such that

i) AB = 0 if and only if AB = 0 over Fpi
for all 1 ≤ i ≤ d,

ii) d = O(1), and
iii) for each 1 ≤ i ≤ d, we have pi = O(n2) and ωi has order at least n2 in Fpi .
Note that the obvious approach of choosing a single prime field Fp with p ≥ n2c+1 is not
feasible for our purposes: the best known deterministic algorithm to find such a prime takes
time nc/2+o(1) (see [39] for a discussion), quickly exceeding our desired time bound of O(n2).

Proof of Proposition 5.3. Let d = c+ 1 and note that any entry (AB)i,j =
∑n

k=1Ai,kBk,j

is in [−n2c+1, n2c+1]. Thus for any number m > n2c+1, we have (AB)ij ≡ 0 (mod m) if and
only if (AB)i,j = 0. By Chinese Remaindering, we obtain that any distinct primes p1, . . . , pd

with pi ≥ n2 satisfy i) and ii), as AB = 0 if and only if AB = 0 over Fpi
for all 1 ≤ i ≤ d,

using the fact that
∏d

i=1 pi ≥ n2d > n2c+1.
By Bertrand’s postulate, there are at least d primes in the range {n2 + 1, . . . , 2d(n2 + 1)},

thus using the sieve of Eratosthenes, we can find p1, . . . , pd with pi ≥ n2 + 1 and pi ≤
2d(n2 + 1) in time O(n2 log logn) (see [44, Theorem 18.10]). It remains to find elements
ω1 ∈ Fp1 , . . . , ωd ∈ Fpd

of sufficiently high order. For each 1 ≤ j ≤ d, this can be achieved in
time O(n2 logn) by exhaustive testing: We keep a list L ⊆ F×pj

= Fpj \{0} of “unencountered”
elements, which we initially set to F×pj

. Until there are no elements in L remaining, we pick
any α ∈ L and delete all elements in the subgroup of F×pj

generated by α from L. We set ωj to
the last α that we picked (which has to generate the complete multiplicative group F×pj

) and
thus is a primitive (pj − 1)-th root of unity. Since pj − 1 ≥ n2, the order of ωj is at least n2,
as desired. Observe that the number of iterations is bounded by the number of subgroups
of F×pj

, i.e., the number of divisors of pj − 1. Thus, we have at most O(log pj) iterations,
each taking time at most O(pj), yielding a running time of O(pj log pj) = O(n2 logn). J

Combining Proposition 3.1 with the algorithm of Lemma 5.2 and Proposition 5.3, we
obtain the theorem.

Proof of Theorem 5.1. Given any instance A,B,C of MM-Verificationt, we convert it
to an instance A′, B′ of AllZeroes as in Proposition 3.1. We construct primes p1, . . . , pd

as in Proposition 5.3 in time O(n2 logn). For each j ∈ [d], we convert A′, B′ to matrices
over Fpj

in time O(n2) and test whether A′B′ = 0 over Fpj
for all j ∈ [d] using Lemma 5.2

in time O((n2 + tn) log2+o(1) n). We output “AB = C” if and only if all tests succeeded.
Correctness follows from Proposition 5.3 and Lemma 5.2, and the total running time is
O((n2 + tn) log2+o(1) n), as desired. J

In the remainder, we prove Lemma 5.2. As outlined in Section 3, define the polynomial
g(X) =

∑
i,j∈[`]〈ai, bj〉X(i−1)+`(j−1) over Fp. We aim to determine whether g ≡ 0. To do so,

we use the following idea from Ben-Or and Tiwari’s approach to black-box sparse polynomial
interpolation (see [7, 49]). Suppose that ω ∈ Fp has order at least `2. Then the following
proposition holds.

I Proposition 5.4. Assume AB has 0 ≤ z ≤ t nonzeroes. Then g(ω0) = g(ω) = g(ω2) =
· · · = g(ωt−1) = 0 if and only if g ≡ 0, i.e., z = 0.

ESA 2018



56:12 On Nondeterministic Derandomization of Freivalds’ Algorithm

Proof. By assumption on A,B, we have g(X) =
∑

m∈M cmX
m, whereM = {(i−1)+`(j−1) |

〈ai, bj〉 6= 0} with |M | = z ≤ t and c(i−1)+`(j−1) = 〈ai, bj〉. Writing M = {m1, . . . ,mz} and
defining vm = ωm, we see that g(ω0) = · · · = g(ωt−1) = 0 is equivalent to

cm1 + · · ·+ cmz = 0,
cm1vm1 + · · ·+ cmzvmz = 0,
cm1v

2
m1

+ · · ·+ cmz
v2

mz
= 0,
. . .

cm1v
t−1
m1

+ · · ·+ cmz
vt−1

mz
= 0.

Since ω has order at least `2, we have that vm = ωm 6= ωm′ = vm′ for all m,m′ ∈ M

with m 6= m′. Thus the above system is a Vandermonde system with unique solution
(cm1 , . . . , cmz

) = (0, . . . , 0), since z ≤ t. This yields the claim. J

It remains to compute g(ω0), . . . , g(ωt−1) in time Õ((`+ t)n).

I Proposition 5.5. For any σ1, . . . , σt ∈ Fp, we can compute g(σ1), . . . , g(σt) in time
O((`+ t)n log2+o(1) `).

Proof. Recall that g(X) =
∑n

k=1 qk(X)·rk(X`), where qk(Z) =
∑`

i=1 ai[k]Zi−1 and rk(Z) =∑`
j=1 bj [k]Zj−1. Let 1 ≤ k ≤ n. Using fast multipoint evaluation (Lemma 2.1), we can

compute qk(σ1), . . . , qk(σt) using O((`+ t) log2+o(1) `) additions and multiplications in Fp.
Furthermore, since we can compute σ`

1, . . . , σ
`
t using O(t log `) additions and multiplications

in Fp, we can analogously compute rk(σ`
1), . . . , rk(σ`

t) in time O((`+ t) log2+o(1) `). Doing
this for all 1 ≤ k ≤ n yields all values qk(σu), rk(σ`

u) with k ∈ [n], u ∈ [t] in time O((` +
t)n log2+o(1) `). We finally aggregate these values to obtain the desired outputs g(σu) =∑n

k=1 qk(σu) · rk(σ`
u) with u ∈ [t]. The aggregation only uses O(tn) multiplications and

additions in Fp, thus the claim follows. J

Together with Proposition 5.4, this yields Lemma 5.2 and thus the remaining step of the
proof of Theorem 5.1.

6 Open Questions

It remains to answer our main question. To this end, can we exploit any of the avenues
presented in this work? In particular: Can we (1) find a faster 3SUM verifier, (2) find a
faster UPIT algorithm for the circuits given in Theorem 4.2, or (3) instead of derandomizing
Freivalds’ algorithm, nondeterministically derandomize the sampling-based algorithm follow-
ing from our main algorithmic result (which detects up to O(n) errors using Theorem 1.3,
and then samples and checks Θ(n) random entries)?

A further natural question is whether we can use the sparse polynomial interpolation
technique by Ben-Or and Tiwari [7] (see also [49, 24] for alternative descriptions of their
approach) to give a more efficient deterministic algorithm for output-sensitive matrix mul-
tiplication. Indeed, they show how to use O(t) evaluations of a t-sparse polynomial p to
efficiently interpolate p (for p = gA,B , this corresponds to determining AB). Specifically, the
O(t) evaluations define a certain Toeplitz system whose solution yields the coefficients of a
polynomial ζ(Z) =

∏z
i=1(Z − ri) where ri is the value of the i-th monomial of p evaluated at

a certain known value. By factoring ζ into its linear factors, we can determine the monomials
of p (i.e., for p = gA,B, the nonzero entries of AB). In our case, we can then obtain AB
by naive computations of the inner products at the nonzero positions in time O(nt). The



M. Künnemann 56:13

bottleneck in this approach appears to be deterministic polynomial factorization into linear
factors: In our setting, we would need to factor a degree-(≤ t) polynomial over a prime
field Fp of size p = Θ(n2). We are not aware of deterministic algorithms faster than Shoup’s
O(t2+ε ·√p log2 p)-time algorithm [37], which would yield an O(n2 +nt2+ε)-time algorithm at
best. However, such an algorithm would be dominated by Kutzkov’s algorithm [28]. Can we
sidestep this bottleneck? Note that some works improve on Shoup’s running time for suitable
primes (assuming the Extended Riemann Hypothesis; see [44, Chapter 14] for references).

References

1 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equiv-
alences between graph centrality problems, APSP and diameter. In Proc. 26th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA’15), pages 1681–1697, 2015.
doi:10.1137/1.9781611973730.112.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’14), pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

3 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), pages 218–230, 2015. doi:10.1137/1.9781611973730.17.

4 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences, 54(2):255–262, 1997. doi:10.1006/
jcss.1997.1388.

5 Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and sparse matrix multi-
plications. In Proc. 12th International Conference on Database Theory (ICDT’09), pages
121–126, 2009. doi:10.1145/1514894.1514909.

6 Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3SUM.
Algorithmica, 50(4):584–596, 2008. doi:10.1007/s00453-007-9036-3.

7 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In Proc. 20th Annual ACM Symposium on
Theory of Computing (STOC’88), pages 301–309, 1988. doi:10.1145/62212.62241.

8 Markus Bläser. Fast matrix multiplication. Theory of Computing, Graduate Surveys, 5:1–
60, 2013. doi:10.4086/toc.gs.2013.005.

9 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams.
Truly sub-cubic algorithms for language edit distance and RNA-folding via fast bounded-
difference min-plus product. In Proc. 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’16), pages 375–384, 2016. doi:10.1109/FOCS.2016.48.

10 Harry Buhrman and Robert Spalek. Quantum verification of matrix products. In Proc.
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 880–889,
2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109654.

11 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Pa-
turi, and Stefan Schneider. Nondeterministic extensions of the Strong Exponential
Time Hypothesis and consequences for non-reducibility. In Proc. 2016 ACM Confer-
ence on Innovations in Theoretical Computer Science (ITCS’16), pages 261–270, 2016.
doi:10.1145/2840728.2840746.

12 Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution,
and some geometric 3SUM-hard problems. In Proc. 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’18), pages 881–897, 2018. doi:10.1137/1.9781611975031.
57.

ESA 2018

http://dx.doi.org/10.1137/1.9781611973730.112
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1137/1.9781611973730.17
http://dx.doi.org/10.1006/jcss.1997.1388
http://dx.doi.org/10.1006/jcss.1997.1388
http://dx.doi.org/10.1145/1514894.1514909
http://dx.doi.org/10.1007/s00453-007-9036-3
http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.4086/toc.gs.2013.005
http://dx.doi.org/10.1109/FOCS.2016.48
http://dl.acm.org/citation.cfm?id=1109557.1109654
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1137/1.9781611975031.57
http://dx.doi.org/10.1137/1.9781611975031.57


56:14 On Nondeterministic Derandomization of Freivalds’ Algorithm

13 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal on Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)
80013-2.

14 Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast Fourier
transform revisited. In Proc. 4th Annual ACM Symposium on Theory of Computing
(STOC’72), pages 88–93, 1972. doi:10.1145/800152.804900.

15 Rusins Freivalds. Fast probabilistic algorithms. In Proc. 8th International Symposium
on Mathematical Foundations of Computer Science (MFCS’79), pages 57–69, 1979. doi:
10.1007/3-540-09526-8_5.

16 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computa-
tional geometry. Computational Geometry, 5:165–185, 1995. doi:10.1016/0925-7721(95)
00022-2.

17 Leszek Gasieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and Takeshi
Tokuyama. Efficiently correcting matrix products. Algorithmica, 79(2):428–443, 2017.
doi:10.1007/s00453-016-0202-3.

18 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th
IEEE Annual Symposium on Foundations of Computer Science (FOCS’14), pages 621–630,
2014. doi:10.1109/FOCS.2014.72.

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

20 Mark A. Iwen and Craig V. Spencer. A note on compressed sensing and the complexity
of matrix multiplication. Information Processing Letters, 109(10):468–471, 2009. doi:
10.1016/j.ipl.2009.01.010.

21 Riko Jacob and Morten Stöckel. Fast output-sensitive matrix multiplication. In Proc.
23rd Annual European Symposium on Algorithms (ESA’15), pages 766–778, 2015. doi:
10.1007/978-3-662-48350-3_64.

22 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–
343, 2016. doi:10.1007/s00453-014-9946-9.

23 Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving quantum query complex-
ity of boolean matrix multiplication using graph collision. In Proc. 39th International
Colloquium on Automata, Languages, and Programming (ICALP’12), pages 522–532, 2012.
doi:10.1007/978-3-642-31594-7_44.

24 Erich Kaltofen and Yagati N. Lakshman. Improved sparse multivariate polynomial in-
terpolation algorithms. In Proc. 1st International Symposium on Symbolic and Algebraic
Computation (ISSAC’88), pages 467–474, 1988. doi:10.1007/3-540-51084-2_44.

25 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees
for k-SUM and related problems. CoRR, abs/1705.01720, 2017. To appear in STOC’18.
arXiv:1705.01720.

26 Tracy Kimbrel and Rakesh K. Sinha. A probabilistic algorithm for verifying matrix products
using O(n2) time and log2 n+O(1) random bits. Information Processing Letters, 45(2):107–
110, 1993. doi:10.1016/0020-0190(93)90224-W.

27 Marvin Künnemann. On nondeterministic derandomization of Freivalds’ algorithm: Con-
sequences, avenues and algorithmic progress. CoRR, abs/1806.09189, 2018. arXiv:
1806.09189.

28 Konstantin Kutzkov. Deterministic algorithms for skewed matrix products. In Proc. 30th
International Symposium on Theoretical Aspects of Computer Science (STACS’13), pages
466–477, 2013. doi:10.4230/LIPIcs.STACS.2013.466.

29 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC’14), pages 296–303,
2014. doi:10.1145/2608628.2608664.

http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1145/800152.804900
http://dx.doi.org/10.1007/3-540-09526-8_5
http://dx.doi.org/10.1007/3-540-09526-8_5
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.1007/s00453-016-0202-3
http://dx.doi.org/10.1109/FOCS.2014.72
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1016/j.ipl.2009.01.010
http://dx.doi.org/10.1016/j.ipl.2009.01.010
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/s00453-014-9946-9
http://dx.doi.org/10.1007/978-3-642-31594-7_44
http://dx.doi.org/10.1007/3-540-51084-2_44
http://arxiv.org/abs/1705.01720
http://dx.doi.org/10.1016/0020-0190(93)90224-W
http://arxiv.org/abs/1806.09189
http://arxiv.org/abs/1806.09189
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.466
http://dx.doi.org/10.1145/2608628.2608664


M. Künnemann 56:15

30 Andrzej Lingas. A fast output-sensitive algorithm for boolean matrix multiplication. In
Proc. 17th Annual European Symposium on Algorithms (ESA’09), pages 408–419, 2009.
doi:10.1007/978-3-642-04128-0_37.

31 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying
algorithms. Computer Science Review, 5(2):119–161, 2011. doi:10.1016/j.cosrev.2010.
09.009.

32 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993. doi:10.1137/0222053.

33 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http:
//eudml.org/doc/17394.

34 Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation
Theory, 5(3):9:1–9:17, 2013. doi:10.1145/2493252.2493254.

35 Daniel S. Roche. Error correction in fast matrix multiplication and inverse. CoRR,
abs/1802.02270, 2018. arXiv:1802.02270.

36 Claus-Peter Schnorr and C. R. Subramanian. Almost optimal (on the average) combi-
natorial algorithms for boolean matrix product witnesses, computing the diameter (ex-
tended abstract). In Proc. 2nd International Workshop on Randomization and Approx-
imation Techniques in Computer Science (RANDOM’98), pages 218–231, 1998. doi:
10.1007/3-540-49543-6_18.

37 Victor Shoup. On the deterministic complexity of factoring polynomials over finite fields. In-
formation Processing Letters, 33(5):261–267, 1990. doi:10.1016/0020-0190(90)90195-4.

38 Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–
356, Aug 1969. doi:10.1007/BF02165411.

39 Terence Tao, Ernest Croot III, and Harald Helfgott. Deterministic methods to
find primes. Mathematics of Computation, 81(278):1233–1246, 2012. doi:10.1090/
S0025-5718-2011-02542-1.

40 Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of Com-
puter and System Sciences, 10(2):308–315, 1975. doi:10.1016/S0022-0000(75)80046-8.

41 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proc. 44th Annual ACM Symposium on Theory of Computing Conference (STOC’12),
pages 887–898, 2012. doi:10.1145/2213977.2214056.

42 Virginia Vassilevska Williams. Fine-grained algorithms and complexity. In Proc. 21st
International Conference on Database Theory (ICDT’18), pages 1:1–1:1, 2018. doi:10.
4230/LIPIcs.ICDT.2018.1.

43 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. 51th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’10), pages 645–654, 2010. doi:10.1109/FOCS.2010.67.

44 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cam-
bridge University Press, 2013.

45 Jirí Wiedermann. Fast nondeterministic matrix multiplication via derandomization of
Freivalds’ algorithm. In Proc. 8th IFIP International Conference on Theoretical Computer
Science (TCS’14), pages 123–135, 2014. doi:10.1007/978-3-662-44602-7_11.

46 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proc. 46th Annual
ACM Symposium on Theory of Computing (STOC’14), pages 664–673, 2014. doi:10.1145/
2591796.2591811.

47 Ryan Williams. Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs
of batch evaluation. In Proc. 31st Conference on Computational Complexity (CCC’16),
pages 2:1–2:17, 2016. doi:10.4230/LIPIcs.CCC.2016.2.

ESA 2018

http://dx.doi.org/10.1007/978-3-642-04128-0_37
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1137/0222053
http://eudml.org/doc/17394
http://eudml.org/doc/17394
http://dx.doi.org/10.1145/2493252.2493254
http://arxiv.org/abs/1802.02270
http://dx.doi.org/10.1007/3-540-49543-6_18
http://dx.doi.org/10.1007/3-540-49543-6_18
http://dx.doi.org/10.1016/0020-0190(90)90195-4
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1090/S0025-5718-2011-02542-1
http://dx.doi.org/10.1090/S0025-5718-2011-02542-1
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.1
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1007/978-3-662-44602-7_11
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2


56:16 On Nondeterministic Derandomization of Freivalds’ Algorithm

48 Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transactions on
Algorithms, 1(1):2–13, 2005. doi:10.1145/1077464.1077466.

49 Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic Compu-
tation, 9(3):375–403, 1990. doi:10.1016/S0747-7171(08)80018-1.

http://dx.doi.org/10.1145/1077464.1077466
http://dx.doi.org/10.1016/S0747-7171(08)80018-1

	Introduction
	Further Motivation and Consequences
	Structural Results: Avenues Via Other Problems
	Algorithmic Results: Progress on Integer Matrix Product Verification
	Further Related Work
	Paper Organization

	Preliminaries
	Technical Overview
	Structural Results: Avenues Via Other Problems
	3SUM
	UPIT

	Deterministically Detecting Presence of 0< z <= t Errors
	Open Questions

