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Abstract
Let Fq be the finite field of size q and let ` : Fnq → Fq be a linear function. We introduce
the Learning From Subset problem LFS(q, n, d) of learning `, given samples u ∈ Fnq from a
special distribution depending on `: the probability of sampling u is a function of `(u) and
is non zero for at most d values of `(u). We provide a randomized algorithm for LFS(q, n, d)
with sample complexity (n + d)O(d) and running time polynomial in log q and (n + d)O(d). Our
algorithm generalizes and improves upon previous results [8, 10] that had provided algorithms
for LFS(q, n, q − 1) with running time (n+ q)O(q). We further present applications of our result
to the Hidden Multiple Shift problem HMS(q, n, r) in quantum computation where the goal is
to determine the hidden shift s given oracle access to r shifted copies of an injective function
f : Znq → {0, 1}l, that is we can make queries of the form fs(x, h) = f(x − hs) where h can
assume r possible values. We reduce HMS(q, n, r) to LFS(q, n, q− r+ 1) to obtain a polynomial
time algorithm for HMS(q, n, r) when q = nO(1) is prime and q − r = O(1). The best known
algorithms [5, 8] for HMS(q, n, r) with these parameters require exponential time.
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1 Introduction

1.1 Learning with noise
Let n ≥ 1 and q > 1 be integers. We denote by Zq the ring of integers modulo q, and by Fq
the finite field on q elements, when q is some power of a prime number. When q is prime
then Zq coincides with Fq, and we will use the notation Fq. Let ` : Fnq → Fq be an n-variable
linear function. The main subject of this paper is to learn ` given partial information about
the values `(u) for uniformly random samples u from Fnq . In the ideal setting, when we have
access to the values `(u) for uniformly random samples from Fnq , the problem is canonical and
perfectly understood: after getting n independent samples, we can determine ` by Gaussian
elimination in polynomial time. But when instead of the exact values we receive only some
property satisfied by them, the problem can become much more difficult.

Since an element of Fnq can be specified with n log q bits, we will say that an algorithm
is in polynomial time if it runs in time polynomial in both n and log q. Let f(n, q) be a
function of n and q, then we say that a function g(n, q) ∈ Õ(f) if g(n, q) ≤ f(n, q) logc(nq)
for some constant c for sufficiently large n and q. By the sample complexity of an algorithm
we mean the number of samples used by it.

There is a somewhat similar context to the learning model we investigate, it is the model
where the values `(u) are perturbed by some random noise. The first example of such a work
is by Blum et al. [3] on the Learning Parity with Noise problem LPN(n, η), where η < 1/2.
Here we have access to tuples (u, b) ∈ Fn2 × F2, where u is a uniformly random element of Fn2
and b = `(u) + e, where e is a random 0–1 variable with Pr[e = 1] = η. For constant noise
rate 0 < η < 1/2, the best known algorithm for LPN(n, η) is from [3]. It has both sample
and time complexity of 2O(n/ logn), and therefore only marginally beats the trivial exhaustive
search algorithm of complexity 2O(n).

The Learning With Error problem LWE(q, n, χ) is a generalization by Regev [17] of
LPN to larger fields. Here q can be any prime number, and χ is a probability distribution
on Fq. Similar to LPN, we have access to tuples (u, b) ∈ Fnq × Fq, where u is a uniformly
random element of Fnq and b = `(u) + e, with the random variable e having distribution
χ. Under the assumptions that q is bounded by some polynomial function of n, and that
χ(0) ≥ 1/q + 1/p(n), for some polynomial p, the problem can be solved classically with
sample and time complexity 2O(n). The case when χ = Ψα, the discrete Gaussian distribution
of standard deviation αq, is of particular interest for lattice based cryptography. Indeed, one
of the main results of [17] is that for appropriate parameters, solving LWE(q, n,Ψα) is at
least as hard as quantumly solving several cryptographically important lattice problems in
the worst case. In a subsequent work a classical reduction of some of these lattice problems
to LWE was given by Peikert [15].

In [2] Arora and Ge introduced a more structured noise model for learning linear functions
over Fn2 . In the Learning Parity with Structured Noise problem LPSN(n,m) the samples
arrive in groups of size m, that is in one sampling step we receive (u1, b1), . . . , (um, bm),
where (ui, bi) ∈ Fn2 ×F2, for i = 1, . . . ,m. Here u1, . . . , um are independent random elements
drawn from Fn2 , and bi = `(ui) + ei, where the the noise vector e = (e1, . . . , em) ∈ Fm2
must have Hamming weight less than m/2. The chosen noise vector e can depend on the
sample (u1, . . . , um), but the model has an important restriction (structure) compared to the
previous error models. Since the Hamming weight of e is less than m/2, it is guaranteed that
in every sampling group the majority of the bits bi is correct, that is coincides with `(ui).
In fact, the model of Arora and Ge is somewhat more general. Let P be any m-variable
polynomial over Fm2 , for which there exists a ∈ Fm2 , such that a 6= c + c′ for all c, c′ ∈ Fm2
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satisfying P (c) = P (c′) = 0. Then the error vector can be any e ∈ Fm2 satisfying P (e) = 0.
The main result of [2] is that LPSN(n,m) can be solved in time nO(m), implying that the
linear function can be learnt in polynomial time when m is constant.

1.2 Learning from subset
We consider here a different model of learning linear functions where the difficulty doesn’t
come from the noisy sampling process, but from the fact that instead of obtaining the actual
values of the sampled elements, we only receive some partial information about them.

Such a model was first considered by Friedl et al. [8] with the Learning From Disequations
problem LFD(q, n) where q is a prime number. Here we never get sample elements from the
kernel of `, that is we can only sample u if `(u) 6= 0, which explains the name of the problem.
Friedl et al. [8] consider distributions p which are not necessarily uniform on their support,
in fact they only require that p(u) = p(v) whenever `(u) = `(v).

The reason to consider this learning problem in [8] is that the Hidden Shift problem
HS(q, n), a paradigmatic problem in quantum computing, can be reduced in quantum
polynomial time to LFD(q, n). In HS(q, n) we have oracle access to two injective functions
f0 and f1 over Fnq with the promise that for some element s ∈ Fnq , we have f1(x) = f0(x− s),
for all x ∈ Fnq . The element s is called the hidden shift, and the task is to find it. It is proven
in [8] that LFD(q, n) can be solved in time (n+ q)O(q). This result implies that there exists a
quantum algorithm for HS(q, n) of similar complexity. When q is constant, these algorithms
are therefore polynomial time.

In a subsequent paper [10] Ivanyos extended the work of [8] to the case when q is a
prime power, both for LFD(q, n) and HS(q, n). The complexity bounds obtained are very
similar to the bounds of [8], and therefore his results imply that LFD(q, n) can be solved in
polynomial time, and that HS(q, n) in quantum polynomial time when q is a prime power of
constant size.

Observe that the complexity bound (n+ q)O(q) is not only not polynomial in log q, but is
not even exponential, in fact it is doubly exponential. Therefore [8] and [10] not only leave
open the question whether, in general, it is possible to obtain a (quantum) algorithm for
LFD(q, n) and HS(q, n) with running time polynomial in n and q, but also the question
of the existence of algorithms which have running time polynomial in n and log q. These
questions are still open today.

In this work we introduce a generalization of the learning problem LFD. While in LFD
the sampling distribution had to avoid the kernel of `, in our model the input contains a set
A ⊆ Fq, and we sample from distributions whose support contains only those elements u, for
which `(u) ∈ A. As in [8], we require that the elements with the same `-value have identical
probabilities. We allow these probabilities to be exponentially small and even 0.

I Definition 1. Let A ⊂ Fq, where q is a prime power, let ` : Fnq → Fq be a linear function,
and let p be a distribution over Fnq . We say that the `-image of p is A if `(supp(p)) = A.
The distribution is `-symmetric if `(u) = `(v) implies p(u) = p(v). If the `-image of p is a
subset of A and p is also `-symmetric, we say that p is an (A, `)-distribution.

In other words, p is an (A, `)-distribution if p is constant on each affine subspace Vα =
{u ∈ Fnq : `(u) = α}, for α ∈ Fq, and moreover p is zero on Vα, whenever α 6∈ A. It is not hard
to see that for |A| < q, if p is simultaneously an (A, `)-distribution and an (A, `′)-distribution
then `′ is a constant multiple of `. On the other hand, non-zero constant multiples of a linear
function can not be distinguished in general in this model: for example, if A = Fq \ {0}, then
for every c 6= 0, an (A, `)-distribution is also an (A, c`)-distribution.
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I Definition 2. The Learning From Subset problem LFS(q, n, d) is parametrized by three
positive integers q, n and d, where q is a prime power and 2 ≤ d ≤ q − 1.
Input: A set A ⊂ Fq of cardinality d and a sequence of N samples u1, . . . , uN from an
(A, `)-distribution for some nonzero linear function ` : Fnq → Fq.
Output: A non zero constant multiple of `.

For d < d′, an LFS(q, n, d) instance is also an LFS(q, n, d′) instance, therefore the
problem is harder for bigger d. For d = 1 the problem is simple because it becomes a system
of linear equalities which can be solved by Gaussian elimination. When d = q we don’t
receive any information from the samples and it is impossible to identify the linear function.
When d = q − 1 and A = Fq \ {0}, the problem LFS specializes to LFD, in fact the latter is
the hardest instance of the former.

The first main result of our paper is a randomized algorithm for LFS(q, n, d) whose
complexity depends exponentially on d, but only polynomially on log q. This result shows
that the increase of information by reducing the size of the set A can indeed be algorithmically
exploited. More precisely, we show that for a sample size N which is a sufficiently large
polynomial of nd, there exists a randomized algorithm which in time polynomial in nd and
log q, with probability 1/2, determines ` up to a constant factor.

I Theorem 3. There is a randomized algorithm for LFS(q, n, d) with sample complexity
(n+ d)O(d) and running time polynomial in log q and (n+ d)O(d).

The main interest of this result is that for constant d it gives a polynomial time algorithm
for LFS. For d = q − 1 and A = Fq \ {0} it yields the same complexity bound as [8]
and [10]. But observe, that even for non constant d = o(q), it is asymptotically faster than
the algorithms in the above papers.

1.3 Hidden multiple shifts
The original motivation for [8] to study LFD was its connection to the hidden shift problem.
This problem was implicitly introduced by Ettinger and Høyer [7], while studying the dihedral
hidden subgroup problem. The hidden shift problem can be defined in any group G. We
are given two injective functions f0 and f1 mapping G to some arbitrary finite set. We are
promised that for some element s ∈ G, we have f1(xs) = f0(x), for every x ∈ G, and the task is
to find s. As shown in [7], when G is abelian, the hidden shift in G is quantum polynomial time
equivalent to the hidden subgroup problem in the semidirect product GoZ2. In the semidirect
product the group operation is defined as (x1, b1).(x2, b2) = (x1 + (−1)b1x2, b1 + b2), and the
function f(x, b) = fb(x) hides the the subgroup {(0, 0), (s, 1)}. The quantum complexity of
HS in the cyclic group Zq (or equivalently, the complexity of the hidden subgroup in the
dihedral group Zq o Z2) is a famous open problem in quantum computing. In [7] there is
a quantum algorithm for this problem of polynomial quantum sampling complexity, but
followed by an exponential time classical post-processing. The currently best known quantum
algorithm is due to Kuperberg [13], and it is of subexponential complexity 2O(

√
log q). Note

that one could also consider shifts of non-injective functions. The extension of HS to such
cases can become quite difficult even over Zn2 where HS for injective functions is identical to
the hidden subgroup problem. Results in this direction can be found e.g. in [9], [4] and [18].

As one could expect, the polynomial time algorithm for LFS with constant d has
further consequences for quantum computing. Indeed, using this learning algorithm, we can
solve in quantum polynomial time some instances of the hidden multiple shifts problem, a
generalization of the hidden shift problem, which we define now.
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For an element s ∈ Znq , a subset H ⊆ Zq of cardinality at least 2, and a function f : Znq →
{0, 1}l, where l is an arbitrary positive integer, we define the function fs : Znq ×H 7→ {0, 1}l
as fs(x, h) = f(x− hs). We think about fs(x, h) as the hth shift of f by s. The task in the
hidden multiple shift problem is to recover s when we are given oracle access, for some f
and H, to fs. This problem doesn’t necessarily have a unique solution. Indeed, let us define
δ(H, q) as the largest divisor of q such that h− h′ is divisible by δ(H, q) for every h, h′ ∈ H.
Pick h0 ∈ H. Then for any s′ ∈ q

δ(H,q)Z
n
q and h ∈ H, we have hs′ = h0s

′ + (h− h0)s′ = h0s
′

whence h(s+ s′) = hs+ h0s
′ and therefore

fs+s′(v, h) = f(v − h(s+ s′)) = f(v − h0s
′ − hs) = f ′s(v, h),

where f ′(v) = f(v − h0s
′). This means that s and s + s′ are indistinguishable by the set

of shifts of f , and therefore we can only hope to determine (the coordinates of) s modulo
q

δ(H,q) . When q is a prime number, this problem of course doesn’t arise.

I Definition 4. The Hidden Multiple Shift problem HMS(q, n, r) parametrized by three
positive integers q, n and r, where q > 1 and 2 ≤ r ≤ q − 1.
Input: A set H ⊆ Zq of cardinality r.
Oracle input: A function fs : Znq ×H → {0, 1}l, where s ∈ Znq and f : Znq → {0, 1}l is an
injective function.
Output: s mod q

δ(H,q) .

The HMS problem was first considered by Childs and van Dam [5]. They investigated the
cyclic case n = 1 and assumed that H is a contiguous interval and presented a polynomial
time quantum algorithm for such an H of size qΩ(1). Their result could probably be extended
to constant n. However, for ‘medium-size’ n and q, such a result seems to be very difficult
to achieve. Obtaining an efficient algorithm for medium sized n, q is also stated as an
open problem [6], and it is noted that such a result would greatly simplify their algorithm.
Intuitively, for small H the HMS appears to be ‘too close’ to the HS for which the so far
best result is still what is given in [8].

For r = q, the HMS problem can be solved in quantum polynomial time. Indeed, in
that case H = Zq, and Znq × H = Zn+1

q is an abelian group. The function fs hides the
subgroup generated by (s, 1), therefore we have an instance of the abelian hidden subgroup
problem. When r = 1 the problem is void, there is no hidden shift. When r = 2, we have the
standard hidden shift problem for which [8] and [10] gave a quantum algorithm of complexity
(n + q)O(q) = (n + q)O(q+1−r). Their method at a high level is a quantum reduction to
(several instances of) LFS(q, n, q − 1). These extreme cases suggest a strong connection
between the classical complexity of LFS(q, n, d) and the quantum complexity of HMS(q, n, r)
when r = q + 1− d. Indeed, this turns out to be true. In our second main result we give a
polynomial time quantum Turing reduction of HMS(q, n, r) to LFS(q, n, q+ 1− r), to obtain
an algorithm of complexity (n+ q)O((q−r)2) for the former problem.

I Theorem 5. Let q be a prime. Then there is a quantum algorithm which solves HMS(q, n, r)
with sample complexity and in time (n+ q)O((q−r)2).

The above Theorem yields a polynomial time algorithm for HMS(q, n, r) for the case
when q− r is constant and q = nO(1). We also present a Fourier sampling based algorithm for
HMS which is polynomial time for a different set of parameters satisfying r

q = 1− Ω( logn
n ).

We have the following result.

I Theorem 6. There is a quantum algorithm that solves HMS(q, n, r) with high probability
in time O(poly(n)( qr )n+O(1)).

ESA 2018
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1.4 Our proof methods
The basic idea of the proof of Theorem 3 is a variant of linearization used in [8] and in
[2], presented in the flavor of [10]. To give a high level description, observe that every u
such that p(u) 6= 0 is a zero of the polynomial f(A,`)(x) =

∏
a∈A(`(x) − a). By Hilbert’s

Nullstellensatz, over the algebraic closure of Fq, the polynomials which vanish on all the
zeros of f(A,`) are multiples of f(A,`). In particular, every such polynomial which is also of
degree at most d must be a scalar multiple of f(A,`). Interestingly, one could show that this
consequence remains true with high probability, if we replace “all the zeros” by sufficiently
many random samples provided that our (A, `)-distribution is uniform (or nearly uniform) in
the sense that p(u) (the probability of sampling u) is the same (or almost the same) for every
u such that `(u) ∈ A, independently on the actual value of `(u). Therefore, in the (nearly)
uniform case one could compute a nontrivial scalar multiple of f(A,`) by finding a nontrivial
solution of a system of N homogeneous linear equations in (n+ d)d unknowns (these are the
coefficients of the various monomials in f(A,`)). Then ` could be determined by factoring
this polynomial. This method would be a direct generalization of the algorithms given in [8]
and [10]. Indeed, in those papers one could just take A = Fq \ {0}. However, the proofs
(and in case of [10] even the algorithmic ingredients) are designed specially for small q and
straightforward extensions would result in algorithms of complexity depending exponentially
not only on d but on log q as well. Here we give an algorithm that depends polynomially
on log q and that works without any assumption on uniformity. (In the case A = Fq \ {0}
uniformity can actually be simulated by multiplying the sample vectors by random nonzero
scalars.) Then, instead of divisibility by f(A,`) we prove that, with high probability, the
polynomials that are zero on sufficiently many samples are divisible by `(x)− a for the “most
frequent” value a ∈ A. Then we find a scalar multiple of ` by factoring a nonzero polynomial
from the space of those which are zeros on all the samples.

The subexponential LWE-algorithm of Arora and Ge [2] is based on implicitly solving a
problem that can be cast as an instance of LFS where one of the coefficients of the linear
function ` is known, 0 ∈ A, and the (A, `) distribution is such that 0 is the most likely value.
More details are given in the full version [11].

The algorithm for solving HMS(q, n, r) in Theorem 5 is based on the following. After
applying some standard preprocessing, we obtain samples of states that are projections to
an r-dimensional space of QFT(|(u, s)〉) where QFT denotes the quantum Fourier transform
on Znq , the vector u ∈ Znq is sampled from the uniform distribution on Znq and (·, ·) denotes
the standard scalar product of Znq . If we are able to determine the scalar product (u, s)
for n linearly independent u using the projected states, then s can also be computed using
Gaussian elimination. However when q is not large enough compared to n then the error
probability for computing (u, s) is too large and we get a system of noisy linear equations
for which no efficient algorithms are known. Instead, we can devise a measurement, that
at the cost of sacrificing a 1− 1/qO(1) fraction of the samples, yields samples u such that
(u, s) belongs to a small subset of Zq for sure. More precisely, the samples follow an (A, `)
distribution where A is of size q − r + 1 and ` = (s, ·). Then we apply Theorem 3 and some
easy other steps to determine s.

Paper organization: In Section 2, we provide the algorithm for LFS(q, n, d) and prove
Theorem 3. In Section 3 we propose a Fourier sampling based algorithm for HMS(q, n, r)
and prove Theorem 6. Finally, in Section 4 we reduce HMS(q, n, r) to LFS(q, n, q − r + 1)
and prove Theorem 5. We provide a complete proof for Theorem 3 here, the proofs for the
other results are given in the full version [11].



G. Ivanyos, A. Prakash, and M. Santha 66:7

2 An algorithm for LFS

Let p be an (A, `)-distribution on Fnq , where |A| = d. We define αp as the element α ∈ A for
which Pr[`(u) = α] is maximal (breaking a tie arbitrarily). We start the proof with our main
technical Lemma 8 which links p to the space of n-variable polynomials of degree d.

The proof of Lemma 8 requires the following variant of the Schwartz-Zippel lemma [21, 19]
(proved in [11]) where the polynomial g(x) is not divisible by a linear function `(x) and the
samples are drawn from an affine subspace Vα = {u ∈ Znq : `(u) = α} for a fixed α ∈ Fq.

I Lemma 7. Let g(x1 . . . , xn), be a degree d polynomial in Fq[x1, . . . , xn] that is not divis-
ible by `(x1, . . . , xn) − α where α ∈ Fq and `(x1, . . . , xn) is a nonzero homogeneous linear
polynomial. Let u = (β1, . . . , βn) be sampled uniformly at random from the affine subspace
Vα = {u ∈ Znq : `(u) = α}, then Pru∼Vα [g(u) = 0] ≤ d

q .

I Lemma 8. Let N = Ω
((
n+d
d

)
d2 log

(
n+d
d

))
and let u1, . . . , uN be sampled independently

from an (A, `)-distribution on Fnq , where |A| = d < q. Then with probability at least 1/2, every
polynomial g(x1, . . . , xn) over Fnq of degree at most d, for which g(ui) = 0 for i = 1, . . . , N ,
is divisible by `(x1, . . . , xn)− αp.

Proof. For j = 0, . . . , N we set Pj to be the set of polynomials in Fq[x1, . . . , xn] of degree at
most d which take zero value on the first j samples:

Pj = {g(x1, . . . , xn) : deg g ≤ d and g(ui) = 0 for i = 1, . . . , j}.
In particular, P0 is the set of all polynomials of degree at most d. We consider P0 as a
vector space of dimension

(
n+d
d

)
over Fq. Since, for u ∈ Fnq , the map g 7→ g(u) is linear on

Fq[x1, . . . , xn], we conclude that P0, . . . , PN is a non-increasing sequence of subspaces of P0.
Set π = Pr[`(u) = αp], and observe that π ≥ 1

d . Let P
′ be the set of polynomials from P0

which are divisible by `(x1, . . . , xn)− αp. Then an equivalent way to state the lemma is that
PN ⊂ P ′, with probability at least 1/2.

We first claim that, for every j = 1, . . . , N ,

Pr[Pj = Pj−1|Pj−1 6⊆ P ′] ≤ 1− 1
d(d+ 1) . (1)

In order to prove this bound, we note that the condition Pj−1 6⊆ P ′ means that there
exists a non zero g ∈ Pj−1 \P ′. Fix such a g. The event Pj = Pj−1 is equivalent to f(uj) = 0,
for all f ∈ Pj−1. Therefore

Pr[Pj = Pj−1|Pj−1 6⊆ P ′] ≤ Pr[∀f ∈ Pj−1, f(uj) = 0] ≤ Pr[g(uj) = 0].

The probability that g(uj) = 0 can be bounded as follows:

Pr[g(uj) = 0] ≤ Pr[g(uj) = 0|`(uj) 6= αp] · (1− π) + Pr[g(uj) = 0|`(uj) = αp] · π

≤ (1− π) + π
d

q
.

The first inequality follows simply by decomposing the event g(uj) = 0 according to whether
`(uj) is different from, or equal to αp. In the second case, which happens with probability
π, Lemma 7 is applicable and it states that g(uj) = 0 with probability at most d/q. This
explains the second inequality. Using π ≥ 1/d and q ≥ d+ 1, a simple calculation gives

1− π + π dq ≤ 1− 1
d(d+1) ,

from which the inequality (1) follows.

ESA 2018
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Algorithm 1 Algorithm for LFS(q, n, d).
Require: A set A ⊂ Fq of cardinality d and a sequence of N elements u1, . . . , uN from Fnq .

1. Find a nonzero polynomial g(x1, . . . , xn) of degree at most d over Fq, if it exists, such
that g(ui) = 0 for i = 1, . . . , N .

2. Compute the linear factors of g.
3. Find a linear factor f of g and a nonzero element γ ∈ Fq, if exist, such that γ(f(ui)−

f(0)) ∈ A, for i = 1, . . . , N . Return the linear function γ(f(x1, . . . , xn)− f(0)).

We can use the conditional probability in (1) to upper bound the probability of the event
that Pj−1 6⊆ P ′ and Pj = Pj−1 hold simultaneously. But if Pj = Pj−1 then Pj−1 ⊆ P ′

is equivalent to Pj ⊆ P ′, therefore we can infer, for every j = 1, . . . , N that Pr[Pj 6⊆
P ′ and Pj = Pj−1] ≤ 1− 1

d(d+1) .

Iterating the above argument k-times, we obtain, for every k ≤ N and j ≤ N − k + 1,

Pr[Pj+k−1 6⊆ P ′ and Pj+k−1 = Pj−1] ≤
(

1− 1
d(d+ 1)

)k
. (2)

Indeed, as before, we can bound the probability on the left hand side by the conditional
probability Pr[Pj+k−1 = Pj−1|Pj+k−1 6⊆ P ′]. Under the condition Pj+k−1 6⊆ P ′, there exists
a non zero g ∈ Pj+k−1 \ P ′, and we fix such a g. Then

Pr[Pj+k−1 6⊆ P ′ and Pj+k−1] ≤ Pr[g(uj+i) = 0, for i = 0, . . . , k − 1]

≤
k−1∏
i=0

Pr[g(uj+i) = 0] ≤ (1− 1
d(d+ 1))k,

where for the second inequality we used that the samples uj+i are independent.
Taking k = Ω(d2 log

(
n+d
d

)
), N = (

(
n+d
d

)
+ 1)k and j = mk + 1, for m = 0, 1, . . . ,

(
n+d
d

)
,

in inequality (2), we get Pr[P(m+1)k 6⊆ P ′ and P(m+1)k = Pmk] ≤ 1
2
(
n+d
d

)−1
.

For the complement of the union of these
(
n+d
d

)
+ 1 events, we derive then

Pr[
(n+d
d )⋂

m=0

(
P(m+1)k ⊆ P ′ or P(m+1)k ⊂ Pmk

)
] ≥ 1

2 .

If P(m+1)k ⊂ Pmk for some m, then dim(P(m+1)k) < dim(Pmk). We can not have simultan-
eously dim(P(m+1)k) < dim(Pmk), for m = 0, 1, . . . ,

(
n+d
d

)
, because otherwise dim(PN ) would

be negative. Therefore, with probability at least 1/2, P(m+1)k ⊆ P ′, for some m ≤
(
n+d
d

)
,

implying PN ⊆ P ′. J

We now present an algorithm for LFS(q, n, d) and show that it solves the problem
efficiently when the input contains a polynomially large number of samples u1, . . . , uN ∈ Fnq
from an (A, `)-distribution, with |A| = d constant.

I Theorem 9. There is a randomized implementation of Algorithm 1 which runs in time
polynomial in log q,

(
n+d
d

)
and N . Moreover, when u1, . . . , uN are independent samples from

an (A, `)-distribution on Fnq where |A| = d and N = Ω
((
n+d
d

)
d2 log

(
n+d
d

))
, then it finds

successfully ` up to a constant factor with probability at least 1/2.
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Proof. We first describe the randomized implementation with the claimed running time.
Throughout the proof by polynomial time we mean time polynomial in log q,

(
n+d
d

)
and N .

For Step 1, we consider the
(
n+d
d

)
dimensional vector space of n-variable polynomials over

Fq of degree at most d. The system of requirements g(ui) = 0, for i = 1, . . . , N , is equivalent
to a system of N homogeneous linear equations for the

(
n+d
d

)
coefficients of g, where in the

ith equation, the coefficients of the variables are the values of the monomials taken at ui.
Therefore a solution, if it exists, can be computed in polynomial time using standard linear
algebra.

We use Kaltofen’s algorithm [12] (the finite field case is dealt with explicitly in [20]) to
find the irreducible factors of g. It is a Las Vegas randomized algorithm, and it runs in
polynomial time given the representation of the input polynomial as a list of all coefficients.
We can then easily select the linear factors out of the irreducible factors, therefore Step 2
can also be done in polynomial time.

For Step 3, note that g has at most d ≤ n linear factors, therefore it is enough to see that
each individual factor f can be dealt with in polynomial time. This can be done as follows.
If f(ui) = f(0) for every i, then an appropriate γ can be found if and only if 0 ∈ A. Indeed,
if 0 ∈ A then any nonzero γ satisfies the condition, while otherwise no satisfying γ exists.
Otherwise, pick any i such that β = f(ui)− f(0) 6= 0 and try γ = α/β for every α ∈ A.

We now turn to the proof of correctness of the algorithm when the samples come from
an (A, `)-distribution. As

∏
α∈A (`(ui)− α) = 0, for every i, the algorithm finds a nonzero

polynomial g in Step 1. By Lemma 8, with probability at least 1/2, every polynomial of
degree at most d, which is zero on ui, for i = 1, . . . , N , is divisible by `(x1, . . . , xn) − αp.
Assume that this is the case. Then, in particular, g has a linear factor f(x) which is a constant
multiple of `(x)− αp, that is f(x) = β(`(x)− αp), for some non zero β ∈ Fq. It is easy to
check that for γ = β−1, we have γ(f(x)− f(0)) = `(x), and therefore γ(f(ui)− f(0)) ∈ A,
for i = 1, . . . , N . Thus the algorithm in its last step will find successfully and return a linear
function `′(x) such that `′(ui) ∈ A, for every i.

To finish the proof, we claim that `′(x) is a constant multiple of `(x). The polynomial
h(x1, . . . , xn) =

∏
α∈A(`′(x1, . . . , xn) − α) is zero on every ui and hence, by our assump-

tion, h(x1, . . . , xn) is divisible by `(x1, . . . , xn) − αp. Then, as Fq[x1, . . . , xn] is a unique
factorization domain, there exists α ∈ A such that `′(x1, . . . , xn)− α is a scalar multiple of
`(x1, . . . , xn)− αp, implying the claim. J

Theorem 3 is an immediate consequence of this result. For constant d we have the following
corollary.

I Corollary 10. There is a randomized algorithm that solves LFS(q, n, d) for constant d with
sample complexity poly(n) and running time poly(n, log q).

We next present our algorithms for HMS(q, n, r), we first give a basic Fourier sampling based
algorithm in section 3 and then an algorithm that reduces HMS(q, n, r) to LFS(q, n, q−r+1)
in section 4.

3 Fourier sampling algorithm for HMS(q, n, r)

We first describe briefly the standard pre-processing procedure for HMS(q, n, r). starting
with the uniform superposition, append a register consisting of l qubits, initialized to 0 and
query the oracle for fs to obtain,

1√
qnr

∑
v∈Znq

∑
h∈H |v〉 |h〉 →

1√
qnr

∑
v∈Znq

∑
h∈H |v〉 |h〉 |fs(v, h)〉 .

The last l qubits are then measured to obtain the state,

ψws := 1√
r

∑
h∈H |w + hs〉 |h〉 ,
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where w ∈ Znq is uniformly random. This w is the unique element of Znq such that the
measured value for the function fs equals f(w).

It is standard to then apply the quantum Fourier transform on Znq to the states ψws and
to measure the first register to obtain tuples (u, φus ) where u ∈ Znq is uniformly random and
φus := 1√

r

∑
h∈H ω

(u,hs) |h〉 . We therefore assume without loss of generality that the quantum
input for HMS(q, n, r) are N samples of the form (u, φus ) for uniformly random u ∈ Znq .

We next give the Fourier sampling based algorithm for HMS(q, n, r) and prove Theorem
6. The basic idea for the algorithm is to consider the input state φus = 1√

r

∑
h∈H ω

(u,hs) |h〉
for HMS(q, n, r), as an approximation to the state κus := 1√

q

∑q−1
h=0 ω

(u,hs) |h〉 . The inner
product between the two states is φus

† · κus = 1√
qr

∑
h∈H 1 =

√
r/q.

The inverse Fourier transform on Zq, when applied to κus gives |(u, s)〉. If we could
determine the inner products |(u, s)〉 for a set of n linearly independent ui for prime q, then s
can be determined by solving a system of linear equations. More generally, in order to make
this approach work k should be large enough so that the ui generate Znq , in this case the
secret s can be recovered from the inner products using linear algebra. In fact, the following
result from [16] shows that the additive group Znq is generated by k = n + O(1) random
elements of Znq with constant probability.

I Fact 11. [16] Let G be a finite abelian group with a minimal generating set of size r. The
expected number of elements chosen independently and uniformly at random from G such
that the chosen elements generate G is at most r + σ where σ < 2.12 is an explicit constant.

The above fact holds for any abelian group, for the special case of Znq we have r = n and the
constant σ can be taken to be 1 [1]. We therefore have that k = 2n+O(1) random elements
of Znq generate the additive group Znq with constant probability.

If we apply the Fourier transform to each φuis , with probability (r/q)k/2 we obtain the
scalar products of s with the members of a generating set for Znq . The answer s may be
verified by repeating the experiment for poly(n)(q/r)k/2 trials and finding the most frequently
occurring solutions over the different trials.

I Theorem 6. There is a quantum algorithm that solves HMS(q, n, r) with high probability
in time O(poly(n)( qr )n+O(1)).

We next show that the above algorithm runs in time poly(n) for parameters q, r such that
r
q = 1− Ω( logn

n ). For this choice of parameters, we can bound the factor ( qr )n+O(1) in the
running time bound above as follows,(

r

q

)n+O(1)
≥
(

1− c1 logn
n

)c2n+c3

≥ e−c logn = n−O(1)

where c, c1, c2 are suitable constants. We therefore have,

I Corollary 12. If rq = 1−Ω( logn
n ), then there is a quantum algorithm that solves HMS(q, n, r)

with high probability in time poly(n).

4 Reducing HMS(q, n, r) to LFS(q, n, q − r + 1)

In this section we assume that q is a prime number and work over the field Fq. Recall that
the input for HMS(q, n, r) is a collection of samples of vector-state pairs (u, φus ) where u is
a uniformly random vector from Fnq , and φus = 1√

r

∑
h∈H ω

(u,s)h |h〉 . For t ∈ Fq define the
state µt := 1√

r

∑
h∈H ω

ht |h〉 , so that φus = µ(u,s).
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The approach in Section 3 recovers the inner product (ui, s) for O(n) random vectors
ui and then uses Gaussian elimination to determine s with high probability. However, the
µt’s are only nearly orthogonal to each other, so the measurement in Section 3 may fail to
recover the correct value of (u, s) with probability too large for our purposes.

A particularly interesting case is when q = poly(n) and c = q − r is a constant for which
we provide a polynomial time algorithm in Corollary 20. In this case, the error probability
for the measurement in Section 3 is 1 − r/q = c/q, that is there are a constant expected
number of errors for every q samples. If q = O(nα) for α < 1 then there are O(n1−α) errors
in expectation for every n samples. There are no known polynomial time algorithms for
recovering the secret s ∈ Znq from a system of n linear equations where an O(n1−α) fraction
of the equations are incorrect for a constant α.

Instead, we reduce HMS(q, n, r) to LFS(q, n, d) with d = (q−r)+1, A = {r−1, . . . , q−1}
and the linear function `(·) given by `(x) = (s, x). We then use the Algorithm 1 to recover a
scalar multiple of s0 = λs. Further, we show that the scalar λ can be recovered efficiently.

The reduction performs a quantum measurement on φus to determine if (u, s) belongs to
A = {r − 1, . . . , q − 1}. We discard the u’s which do not belong to A, and also some of the
u’s such that (u, s) ∈ A to obtain samples from an (A, `) distribution. We next provide a
sketch of the reduction from HMS(q, n, r) to LFS(q, n, d), the reduction is analyzed over the
next few subsections and a more precise statement is given in Proposition 17.

Let V be the hyperplane spanned by µ0, . . . , µr−2. Let (u, φus ) be a pair from the input
samples. We perform the measurement on φus according to the decomposition of Cr = V ⊕V ⊥,
and retain u if and only if the result of the measurement is ‘in V ⊥. Otherwise we discard u.
An efficient implementation of the measurement in (V, V ⊥) is given later in this section.

Observe that measuring a state µj ‘in V ⊥ is only possible if µj 6∈ V , in particular
j 6∈ {0, . . . , r − 2}. Thus if we measure φs(u) ’in V ⊥ we can be sure that (s, u) is in
A = {r − 1, . . . , q − 1}. We only keep u from a sample pair (u, τ) if this measurement,
applied to the state τ , results ‘in V ⊥’. The u’s that are retained are samples from an (A, `)
distribution over Fnq .

We bound the probability of retaining a sample pair (u, φus ) for this procedure. We bound
the success probability for the special case when (s, u) = r − 1. As u is uniformly random
over Fnq the value of (s, u) is uniformly distributed over Zq, this bound therefore suffices for
our purposes.

In the standard basis |h〉 (h ∈ H), the vector µt has entry 1√
r
ωht in the h-th position.

Let A ∈ Cr×r be the matrix with rows from the collection {µt : 0 ≤ t ≤ r − 1}, that is

A = 1√
r


1 ωh1 · · · ωh1(r−1)

1 ωh2 · · · ωh2(r−1)

...
...

. . .
...

1 ωhr · · · ωhr(r−1)

 , (3)

where h1, . . . , hr are the elements of H, say, in increasing order. The matrix A is 1√
r
times a

Vandermonde matrix and as such, it is well known that it has determinant r−r/2
∏
j<i≤r(ωhi−

ωhj ). In particular, the states µ0, . . . , µr−1 are linearly independent. With a more careful
analysis, we show in Lemma 13 below that detA is sufficiently far from zero.

I Lemma 13. Let c = q − r and A be the matrix in (3) then | detA∗A| = Ω(q−c2 ( q
r

)r).
Using the above lemma, we bound the probability of retaining u if (u, s) = r − 1. It might
be possible to prove similar bounds for other values of (s, u) ∈ A, however the bound for the
particular value r − 1 suffices for our purpose.
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I Lemma 14. The (V, V ⊥)-measurement applied to a state of the form µt, returns “in V ”
with probability 1 if t ∈ {0, . . . , r − 2}, while for t ∈ {r − 1, . . . , q − 1}, the probability that
“in V ⊥” is returned depends only on t and is Ω

(
q−c

2 ( q
r

)r) for t = r − 1.

We describe next the implementation of the (V, V ⊥) measurement that acts on O(log q)
qubits. Using universality constructions and the Solovay-Kitaev theorem, it is well known
that an arbitrary unitary operator can be approximated using an exponential number of
elementary gates in the number of qubits.

I Fact 15. [14] An arbitrary unitary operation U on t qubits can be simulated to error ε
using O(t24t logc(t24t/ε)) elementary gates.

The ability to implement an arbitrary unitary operation on log q qubits implies the ability to
perform the measurement (W,W⊥) for an arbitrary subspace W ⊂ Cq.

Denote the quantum state corresponding to unit vector w ∈ Cq as |w〉 :=
∑q
i=1 wi |i〉. Let

k be the dimension of W and let w1, w2, · · · , wk be an orthonormal basis for W . Let UW be
a unitary operation that maps the standard basis vectors |i〉 → |wi〉. Then the measurement
in (W,W⊥) on state |φ〉 can be implemented by first computing U−1

W |φ〉 and then measuring
in the standard basis. The state |φ〉 belongs to W if and only if the result of measurement in
the standard basis belongs to the set {1, 2, · · · , k}. As the (V, V ⊥) measurement is on log q
qubits, by Fact 15 we have,

I Claim 16. The measurement (V, V ⊥) can be implemented to precision 1/qO(1) in time
Õ(q2).

The implementation of the (V, V ⊥) measurement above shows that the sampling procedure
can be performed efficiently. The procedure yields a sample from an (A, `) distribution with
|A| = (q − r) + 1 when the measurement outcome is V ⊥. By Lemma 14 the outcome V ⊥

occurs with probability Ω
(
q−c

2 ( q
r

)r) if (u, s) = r − 1. As u is uniformly random on Fnq at

least a Ω
(
q−c

2−1 ( q
r

)r) fraction of the samples are retained. We therefore have the following
proposition,

I Proposition 17. There is a quantum procedure that that runs in time Õ(q2), and given
a pair (u, φus ) where u ∈ Znq is uniformly random and φus = µ(u,s), with probability at least
O
(
q−c

2−1 ( q
r

)r) returns a sample from a (A, `) distribution with |A| = c+1 and `(x) = (s, x).

In order to solve HMS(q, n, r) given a scalar multiple s0 = λs found using Theorem 9,
we need to find the scalar λ. We show that using O(q) further input pairs we can find the
value of λ using a simple trial and error procedure given by the following lemma.

I Lemma 18. Given t ∈ Fq and a state τ ∈ Cr, there is a quantum procedure that returns
YES with probability 1 if τ = µt, while if τ = µt′ for some t′ ∈ Fq \ {t}, it returns YES with

probability at most p :=
{

1/4 if q < 3r/2
1−O(1/q) otherwise.

Combining the results proved in this section with Algorithm 1, we next obtain a quantum
algorithm for HMS(q, n, r) for the case of prime q.

Theorem 9 shows that given N = Ω(
(
n+d
d

)
d2 log(

(
n+d
d

)
)) samples from an (A, `) distribu-

tion, a scalar multiple of the function ` can be found with constant probability. Proposition 17
above shows that the expected time to obtain N samples from the (A, `) distribution is
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Õ(Nqc2+3) where we used that each measurment requires time Õ(q2) and ignored the factor
(r/q)r < 1. The number of samples and the time required for determining the scalar λ
in Lemma18 are negligible compared to these quantities. We therefore have the following
theorem,

I Theorem 19. Let q be a prime and let c = q − r. Then there is a quantum algorithm
which solves HMS(q, n, r) with sample complexity Õ(nc+1qc

2+1) and in time Õ(nc+1qc
2+3).

The algorithm runs in time polynomial in n, log q for the case when q = poly(n). We therefore
we have the following corollary,

I Corollary 20. Let q = poly(n) be a prime number and c = q − r be a constant, then there
is an efficient quantum algorithm for HMS(q, n, r).
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