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Abstract
We introduce a fast and memory efficient approach to compute the persistent homology (PH)
of a sequence of simplicial complexes. The basic idea is to simplify the complexes of the input
sequence by using strong collapses, as introduced by J. Barmak and E. Miniam [DCG (2012)],
and to compute the PH of an induced sequence of reduced simplicial complexes that has the
same PH as the initial one. Our approach has several salient features that distinguishes it from
previous work. It is not limited to filtrations (i.e. sequences of nested simplicial subcomplexes)
but works for other types of sequences like towers and zigzags. To strong collapse a simplicial
complex, we only need to store the maximal simplices of the complex, not the full set of all its
simplices, which saves a lot of space and time. Moreover, the complexes in the sequence can be
strong collapsed independently and in parallel. As a result and as demonstrated by numerous
experiments on publicly available data sets, our approach is extremely fast and memory efficient
in practice.
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1 Introduction

In this article, we address the problem of computing the Persistent Homology (PH) of a
given sequence of simplicial complexes (defined precisely in Section 4) in an efficient way. It
is known that computing persistence can be done in O(nω) time, where n is the total number
of simplices and ω ≤ 2.4 is the matrix multiplication exponent [20, 15]. In practice, when
dealing with massive and high-dimensional datasets, n can be very large (of order of billions)
and computing PH is then very slow and memory intensive. Improving the performance
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of PH computation has therefore become an important research topic in Computational
Topology and Topological Data Analysis.

Much progress has been accomplished in the recent years in two directions. First, a number
of clever implementations and optimizations have led to a new generation of software for PH
computation [16, 27, 24, 13]. Secondly, a complementary direction has been explored to reduce
the size of the complexes in the sequence while preserving (or approximating in a controlled
way) the persistent homology of the sequence. Examples are the work of Mischaikow and
Nanda [21] who use Morse theory to reduce the size of a filtration, and the work of Dłotko
and Wagner who use simple collapses [14]. Both methods compute the exact PH of the input
sequence. Approximations can also be computed with theoretical guarantees. Approaches
like interleaving smaller and easily computable simplicial complexes, and sub-sampling of
the point sample works well upto certain approximation factor [8, 5, 25, 19, 9, 12].

In this paper, we introduce a new approach to simplify the complexes of the input
sequence which uses the notion of strong collapse introduced by J. Barmak and E. Miniam
[2]. Specifically, our approach can be summarized as follows. Given a sequence Z : {K1

f1−→
K2

g2←− K3
f3−→ · · ·

f(n−1)−−−−→ Kn} of simplicial complexes Ki connected through simplicial maps
{ fi−→ or gj←−}, we independently strong collapse the complexes of the sequence to reach a

sequence Zc : {Kc
1
fc

1−→ Kc
2

gc
2←− Kc

3
fc

3−→ · · ·
fc

(n−1)−−−−→ Kc
n}, with induced simplicial maps { f

c
i−→ or

gc
j←−} (defined in Section 4). The complex Kc

i is called the core of the complex Ki and we
call the sequence Zc the core sequence of Z. We show that one can compute the PH of
the sequence Z by computing the PH of the core sequence Zc, which is of much smaller size.

Our method has some similarity with the work of Wilkerson et. al. [29] who also use
strong collapses to reduce PH computation but it differs in three essential aspects: it is not
limited to filtrations (i.e. sequences of nested simplicial subcomplexes) but works for other
types of sequences like towers and zigzags. It also differs in the way strong collapses are
computed and in the manner PH is computed.

A first central observation is that to strong collapse a simplicial complex K, we only
need to store its maximal simplices (i.e. those simplices that have no coface). The number
of maximal simplices is smaller than the total number of simplices by a factor that is
exponential in the dimension of the complex. It is linear in the number of vertices for a
variety of complexes [4]. Working only with maximal simplices dramatically reduces the time
and space complexities compared to the algorithm of [30]. We prove that the complexity
of our algorithm is O(v2Γ0d + m2Γ0d). Here d is the dimension of the complex, v is the
number of vertices, m is the number of maximal simplices and Γ0 is an upper bound on the
number of maximal simplices incident to a vertex. As observed in [3, 4], usually m is much
smaller than the total number of simplices and Γ0 is much smaller than m (see Section 3 for
a discussion).

We now consider PH computation. All PH algorithms take as input a full representation
of the complexes. We thus have to convert the representation by maximal simplices used for
strong collapses into a full representation of the complexes, which takes exponential time in
the dimension (of the collapsed complexes). This exponential burden is to be expected since
it is known that computing PH is NP-hard when the complexes are represented by their
maximal faces [1]. Nevertheless, we demonstrate in this paper that strong collapses combined
with known persistence algorithms lead to major improvements over previous methods to
compute the PH of a sequence. This is due in part to the fact that strong collapses reduce
the size of the complexes on which persistence is computed. Two other factors also play a
role:
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The collapses of the complexes in the sequence can be performed independently and in
parallel. This is due to the fact that strong collapses can be expressed as simplicial maps
unlike simple collapses [28].
The size of the complexes in a sequence does not grow by much in terms of maximal
simplices, as observed in many practical cases. As a consequence, the time to collapse
the i-th simplicial complex Ki in the sequence is almost independent of i. For filtrations,
this is a clear advantage over methods that use a full representation of the complexes
and suffer an increasing cost as i increases.

As a result, our approach is extremely fast and memory efficient in practice as demon-
strated by numerous experiments on publicly available data sets.

An outline of this paper is as follows. Section 2 recalls the basic ideas and constructions
related to simplicial complexes and strong collapses. We describe our core algorithm in
Section 3. In Section 4, we prove that zigzag modules are preserved under strong collapse.
In Section 5, we provide experimental results.

2 Preliminaries

In this section, we provide a brief review of the notions of simplicial complex and strong
collapse as introduced in [2]. We assume some familiarity with basic concepts like homotopic
maps, homotopy type, homology groups and other algebraic topological notions. Readers
can refer to [17] for a comprehensive introduction of these topics.

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K
is a collection of subsets of a non-empty finite set X, such that for every subset A in K,
all the subsets of A are in K. From now on we will call an abstract simplicial complex
simply a simplicial complex or just a complex. An element of K is called a simplex. An
element of cardinality k + 1 is called a k-simplex and k is called its dimension. A simplex
is called maximal if it is not a proper subset of any other simplex in K. A sub-collection L
of K is called a subcomplex, if it is a simplicial complex itself. L is a full subcomplex
if it contains all the simplices of K that are spanned by the vertices (0-simplices) of the
subcomplex L.

A vertex to vertex map ψ : K → L between two simplicial complexes is called a simplicial
map, if the images of the vertices of a simplex always span a simplex. Simplicial maps are thus
determined by the images of the vertices. In particular, there is a finite number of simplicial
maps between two given finite simplicial complexes. Simplicial maps induce continuous maps
between the underlying geometric realisations of the simplicial complexes. Two simplicial
maps φ : K → L and ψ : K → L are contiguous if, for all σ ∈ K, φ(σ) ∪ ψ(σ) ∈ L. Two
contiguous maps are known to be homotopic [22, Theorem 12.5].

Dominated vertex. Let σ be a simplex of a simplicial complex K, the closed star of σ in
K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈ K| τ ∪ σ ∈ K}.
The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which do not intersect
with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩ σ = ∅}.

Taking a join with a vertex transforms a simplicial complex into a simplicial cone.
Formally if L is a simplicial complex and a is a vertex not in L then the simplicial cone aL
is defined as aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L}. A vertex v in K is called a
dominated vertex if the link of v in K, lkK(v) is a simplicial cone, that is, there exists a
vertex v′ 6= v and a subcomplex L in K, such that lkK(v) = v′L. We say that the vertex v′

ESA 2018
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v′v v′ v′v′

Figure 1 Illustration of an elementary strong collapse. In the complex on the left, v is dominated
by v′. The link of v is highlighted in red. Removing v leads to the complex on the right.

is dominating v and v is dominated by v′. The symbol K \ v(deletion of v from K) refers
to the subcomplex of K which has all simplices of K except the ones containing v. Below
is an important remark from [2, Remark 2.2], which proposes an alternative definition of
dominated vertices.

I Remark (1). A vertex v ∈ K is dominated by another vertex v′ ∈ K, if and only if all the
maximal simplices of K that contain v also contain v′ [2].

Strong collapse. An elementary strong collapse is the deletion of a dominated vertex
v from K, which we denote with K ↘↘e K \ v. Figure 1 illustrates an easy case of an
elementary strong collapse. There is a strong collapse from a simplicial complex K to its
subcomplex L, if there exists a series of elementary strong collapses from K to L, denoted as
K ↘↘ L. The inverse of a strong collapse is called a strong expansion. If there exists
a combination of strong collapses and/or strong expansion from K to L then K and L are
said to have the same strong homotopy type.

The notion of strong homotopy type is stronger than the notion of simple homotopy type
in the sense that if K and L have the same strong homotopy type, then they have the same
simple homotopy type, and therefore the same homotopy type [2]. There are examples of
contractible or simply collapsible simplicial complexes that are not strong collapsible.

A complex without any dominated vertex will be called a minimal complex. A core
of a complex K is a minimal subcomplex Kc ⊆ K, such that K ↘↘ Kc. Every simplicial
complex has a unique core up to isomorphism. The core decides the strong homotopy type
of the complex, and two simplicial complexes have the same strong homotopy type if and
only if they have isomorphic cores [2, Theorem 2.11].

Retraction map. If a vertex v ∈ K is dominated by another vertex v′ ∈ K, the vertex map
r : K → K \ v defined as: r(w) = w if w 6= v and r(v) = v′, induces a simplical map that is a
retraction map. The homotopy between r and the identity iK\v over K \ v is in fact a strong
deformation retract. Furthermore, the composition (iK\v)r is contiguous to the identity iK
over K [2, Proposition 2.9].

Nerve of a simplicial complex. A closed cover U of a topological space X is a set of closed
sets of X such that X is a subset of their union. The nerve of a cover U is an abstract
simplicial complex, defined as the set of all non-empty intersections of the elements of U .
The nerve is a well known construction that transforms a continuous space to a combinatorial
space preserving its homotopy type. The nerve N (K) of a simplicial complex K is defined
as the nerve of the set of maximal simplices of the complex K (considered as a cover of
the complex). Hence all the maximal simplices of K will be the vertices of N (K) and their
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Figure 2 Left: K (in grey), Right: N (K) (in grey) and N 2(K) (in blue). N 2(K) is isomorphic
to a full-subcomplex of K highlighted in blue on the left.

non-empty intersection will form the simplices of N (K). For j ≥ 2 the iterative construction
is defined as N j(K) = N (N j−1(K)). This definition of nerve preserves the homotopy type,
K ' N (K)[2]. A remarkable property of this nerve construction is its connection with strong
collapses.

Taking the nerve of any simplicial complex K twice corresponds to a strong collapse.

I Theorem 1. [2, Proposition 3.4] For a simplicial complex K, there exists a subcomplex L
isomorphic to N 2(K), such that K↘↘L.

An easy consequence of this theorem is that a complex K is minimal if and only if it is
isomorphic to N 2(K) [2, Lemma 3.6]. This means that we can keep collapsing our complex
K by applying N 2(.) iteratively until we reach the core of the complex K. The sequence
K,N 2(K), ...,N 2p(K) is a decreasing sequence in terms of number of simplices.

3 Algorithm

In this section, we describe an algorithm to strong collapse a simplicial complex K, provide
the details of the implementation and analyze its complexity. We construct N 2(K) as defined
in Section 2.

Data structure. Basically, we represent K as the adjacency matrix M between the vertices
and the maximal simplices of K. We will simply call M the adjacency matrix of K. The
rows of M represent the vertices and the columns represent the maximal simplices of K. For
convenience, we will identify a row (resp. column) and the vertex (resp. maximal simplex)
it represents. An entry M [vi][σj ] associated with a vertex vi and a maximal simplex σj
is set to 1 if vi ∈ σj , and to 0 otherwise. For example, the matrix M in the left of the
Table 1 corresponds to the leftmost simplicial complex K in Figure 2. Usually, M is very
sparse. Indeed, each column contains at most d+ 1 non-zero elements since the simplices
of a d-dimensional complex have at most d+ 1 vertices, and each line contains at most Γ0
non-zero elements where Γ0 is an upper bound on the number of maximal simplices incident
to a given vertex. As already mentionned, in many practical situations, Γ0 is a small fraction
of the number of maximal simplices. It is therefore beneficial to store M as a list of vertices
and a list of maximal simplices. Each vertex v in the list of vertices points to the maximal
simplices that contain v, and each simplex in the list of maximal simplices points to its
vertices. This data structure is similar to the SAL data structure of [3].

ESA 2018
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Table 1 From left to right M , N (M) and N 2(M).

σ1 σ2 σ3 σ4 σ5
a 0 0 1 0 0
b 1 1 1 0 0
c 1 0 0 0 0
d 0 0 1 1 0
e 0 1 0 1 1
f 0 0 0 0 1

b d e
σ1 1 0 0
σ2 1 0 1
σ3 1 1 0
σ4 0 1 1
σ5 0 0 1

σ2 σ3 σ4
b 1 1 0
d 0 1 1
e 1 0 1

Core algorithm. Given the adjacency matrix M of K, we compute the adjacency matrix C
of the core Kc. It turns out that using basic row and column removal operations, we can
easily compute C from M . Loosely speaking our algorithm recursively computes N 2(K)
until it reaches Kc.

The columns of M (which represent the maximal simplices of K) correspond to the
vertices of N (K). Also, the columns of M that have a non-zero value in a particular row
v correspond to the maximal simplices of K that share the vertex associated with row v.
Therefore, each row of M represents a simplex of the nerve N (K). Not all simplices of N (K)
are associated with rows of M but all maximal simplices are since they correspond to subsets
of maximal simplices with a common vertex. To remedy this situation, we remove all the
rows of M that correspond to non-maximal simplices of N (K). This results in a new smaller
matrix M whose transpose, noted N (M), is the adjacency matrix of the nerve N (K). We
then exchange the roles of rows and columns (which is the same as taking the transpose)
and run the very same procedure as before so as to obtain the adjacency matrix N 2(M) of
N 2(K).

The process is iterated as long as the matrix can be reduced. Upon termination, we
output the reduced matrix C := N 2p(M), for some p ≥ 1, which is the adjacency matrix of
the core Kc of K. Removing a row or column is the most basic operation of our algorithm.
We will discuss it in more detail later in the paragraph Domination test.

Example. As mentioned before, the matrix M in the left of the Table 1 represents the
simplicial complex K in the left of Figure 2. We go through the rows first, rows a and c
are subsets of row b and row f is a subset of e. Removing rows a, c and f and transposing
M yields the adjacency matrix N (M) of N (K) in the middle. Now, row σ1 is a subset of
σ2 and of σ3, and σ5 is a subset of σ2 and of σ4. We remove these two rows of N (M) and
transpose N (M) so as to get N 2(M) (the rightmost matrix of Figure 2), which corresponds
to the core drawn in blue in Figure 2.

Domination test. Now we explain in more detail how to detect the rows that need to be
removed. Let v be a row of M and σv be the associated simplex in N (K). If σv is not
a maximal simplex of N (K), it is a proper face of some maximal simplex σv′ of N (K).
Equivalently, the row v′ of M that is associated with σv′ contains row v in the sense that
the non zero elements of v appear in the same columns as the non zero elements of v′. We
will say that row v is dominated by row v′ and determining if a row is dominated by another
one will be called the row domination test. Notice that when a row v is dominated by a row
v′, the same is true for the associated vertices since all the maximal simplices that contain
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vertex v also contain vertex v′, which is the criterion to determine if v is dominated by v′
(See Remark 1 in Section 2). The algorithm removes all dominated rows and therefore all
dominated vertices of K.

After removing rows, the algorithm removes the columns that are no longer maximal in
K, which might happen since we removed some rows. Removing a column may lead in turn
to new dominated vertices and therefore new rows to be removed. When the algorithm stops,
there are no rows to be removed and we have obtained the core Kc of the complex K. Note
that the algorithm provides a constructive proof of Theorem 1.

Removing columns is done in very much the same way: we just exchange the roles of
rows and columns.

Computing the retraction map r. The algorithm also provides a direct way to compute
the retraction map r defined in Section 2. The retraction map corresponding to the strong
collapses executed by the algorithm can be constructed as follows. A row r being removed in
M corresponds to a dominated vertex in K and the row which contains r corresponds to a
dominating vertex. Therefore we map the dominated vertex to the dominating vertex and
compose all such maps to get the final retraction map from K to its core Kc. The final map
is simplicial as well, as it is a composition of simplicial maps.

Reducing the number of domination tests. We first observe that, when one wants to
determine if a row v is dominated by some other row, we don’t need to test v with all other
rows but with at most d of them. Indeed, at most d+ 1 rows can intersect a given column
since a simplex can have at most d+ 1 vertices. For example, in Table 1 (Left), to check if
row e (highlighted in brown) is dominated by another row, we pick the first non-zero column
σ2 (highlighted in Gray) and compare e with the non-zero entries {b} of σ2.

A second observation is that we don’t need to test all rows and columns for domination,
but only the so-called candidate rows and columns. We define a row r to be a candidate
row for the next iteration if at least one column containing one of the non-zero elements
of r has been removed in the previous column removal iteration. Similarly, by exchanging
the roles of rows and columns, we define the candidate columns. Candidate rows and
columns are the only rows or columns that need to be considered in the domination tests of
the algorithm. Indeed, a column τ of M whose non-zero elements all belong to rows that are
present from the previous iteration cannot be dominated by another column τ ′ of M , since τ
was not dominated at the previous iteration and no new non-zero elements have ever been
added by the algorithm. The same argument follows for the candidate rows.

We maintain two queues, one for the candidate columns (colQueue) and one for the
candidate rows (rowQueue). These queues are implemented as First in First out (FIFO)
queues. At each iteration, we pop out a candidate row or column from its respective queue
and test whether it is dominated or not. After each successful domination test, we push
the candidate columns or rows in their appropriate queue in preparation for the subsequent
iteration. In the first iteration, we push all the rows in rowQueue and then alternatively use
colQueue and rowQueue. Algorithm 1 gives the pseudo code of our algorithm.

Time Complexity. The most basic operation in our algorithm is to determine if a row is
dominated by another given row, and similarly for columns. In our implementation, the
rows (columns) of the matrix that are considered by the algorithm are stored as sorted lists.
Checking if one sorted list is a subset of another sorted list can be done in time O(l), where l
is the size of the longer list. Note that the length of a row list is at most Γ0 where Γ0 denotes

ESA 2018
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Algorithm 1 Core algorithm.
1: procedure Core(M) . Returns the matrix corresponding to the core of K
2: rowQueue← push all rows of M (all vertices of K)
3: colQueue← empty
4: while rowQueue is not empty do
5: v ← pop(rowQueue)
6: σ ← the first non-zero column of v
7: for non-zero rows w in σ do
8: if v is a subset of w then
9: Remove v from M

10: push all non-zero columns τ of v to colQueue if not pushed before
11: break
12: end if
13: end for
14: end while
15: while colQueue is not empty do
16: τ ← pop(colQueue)
17: v ← the first non-zero row of τ
18: for non-zero columns σ in v do
19: if τ is subset of σ then
20: Remove τ from M

21: push all non-zero rows w of τ to rowQueue if not pushed before
22: break
23: end if
24: end for
25: end while
26: if rowQueue is not empty then
27: GOTO 4
28: end if
29: return M . The core consists of the remaining rows and columns
30: end procedure

an upper bound on the number of maximal simplices incident to a vertex. The length of a
column list is at most d+ 1 where d is the dimension of the complex. Hence checking if a
row is dominated by another row takes O(Γ0) time and checking if a column is dominated
by another column takes O(d) time.

At each iteration on the rows (Lines 7-13 of Algorithm 1), each row is checked against at
most d other rows (since a maximal simplex has at most d+ 1 vertices), and at each iteration
of the columns (Lines 18-24 of Algorithm 1), each column is checked against at most Γ0
other columns (since a vertex can belong to at most Γ0 maximal simplices). Since, at each
iteration on the rows, we remove at least one row, the total number of iterations on the rows
is at most O(v2), where v is the total number of vertices of the complex K. Similarly, at each
iteration on the columns, we remove at least one column and the total number of iterations
on columns is O(m2), where m is the total number of maximal simplices of the complex K.
The worst-case time complexity of our algorithm is therefore O(v2Γ0d+m2Γ0d). In practice,
m is much smaller than n, the total number of simplices, and Γ0 is much smaller than Γ, the
maximum number of simplices incident on a vertex. Typically Γ grows exponentially with
d while Γ0 remains almost constant as d increases. See Table 5 in [3] and related results
in [4], and also the plots in Section 5.
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4 Strong collapse of zigzag sequences

To be able to present our main result, we need to begin with some brief background on
zigzag persistence. Readers interested in more details can refer to [6, 7, 11].

Given a zigzag sequence of simplicial complexes Z : {K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(n−1)−−−−→
Kn}, if we compute the homology classes of all Kis, we get the sequence P(Z) : {Hp(K1) f∗1−→

Hp(K2) g∗2←− Hp(K3) f∗3−→ · · ·
f∗(n−1)−−−−→ Hp(Kn)}. Here Hp(−) denotes the homology class of

dimension p with coefficients from a field F and ∗ denotes an induced homomorphism. P(Z)
is a sequence of vector spaces connected through homomorphisms, called a Zigzag module.
More formally, a zigzag module V is a sequence of vector spaces {V1 −→ V2 ←− V3 −→ · · · ←→ Vn}
connected with homomorphisms {−→,←−} between them. A zigzag module arising from a
sequence of simplicial complexes captures the evolution of the topology of the sequence.

For two integers b and d, 1 ≤ b ≤ d ≤ n; we can define an interval module I[b, d] by
assigning Vi to F when i ∈ [b, d], and null spaces otherwise, the maps between any two F vector
spaces is identity and is zero otherwise. For example I[2, 4] : {0 0−→ F I←− F I−→ F 0←− 0 0−→ 0},
here n = 6. Any zigzag module can be decomposed as the direct sum of finitely many
interval modules, which is unique upto the permutations of the interval modules [6]. The
multiset of all the intervals [bj , dj ] corresponding to the interval module decomposition of any
zigzag module is called a zigzag (persistence) diagram. The zigzag diagram completely
characterizes the zigzag module, that is, there is bijective correspondence between them
[6, 31].

Two different zigzag modules V : {V1 −→ V2 ←− V3 −→ · · · ←→ Vn} and W : {W1 −→ W2 ←−
W3 −→ · · · ←→Wn}, connected through a set of homomorphisms φi : Vi →Wi are equivalent
if the φis are isomorphisms and the following diagram commutes [6, 11].

V1 V2 V3 · · · Vn−1 Vn

W1 W2 W3 · · · Wn−1 Wn

φ1 φ2 φ3 φn−1 φn

Note that the length of the modules and the directions of the arrows in them should
be consistent. Two equivalent zigzag modules will have the same interval decomposition,
therefore the same zigzag diagram.

A zigzag sequence is called a simplicial tower if all maps are forward. i.e. only fis. A
tower is called a filtration if the maps are only inclusions.

Strong collapse of the zigzag module. Given a zigzag sequence Z : {K1
f1−→ K2

g2←−
K3

f3−→ · · ·
f(n−1)−−−−→ Kn}. We define the core sequence Zc of Z as Zc : {Kc

1
fc

1−→ Kc
2

gc
2←−

Kc
3

fc
3−→ · · ·

fc
(n−1)−−−−→ Kc

n}. Where Kc
i is the core of Ki. The forward maps are defined as,

f cj := rj+1fjij ; and the backward maps are defined as gcj := rjgjij+1. The maps ij : Kc
j ↪→ Kj

and rj : Kj → Kc
j are the composed inclusions and the retractions maps defined in Section

2 respectively.

I Theorem 2. Zigzag modules P(Z) and P(Zc) are equivalent.

Proof. Consider the following diagram
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K1 K2 K3 · · · Kn−1 Kn

Kc
1 Kc

2 Kc
3 · · · Kc

n−1 Kc
n

f1

r1 r2

g2

r3

fn−1

rn−1 rn

fc
1

gc
2

fc
n−1

and the associated diagram after computing the p-th homology groups

Hp(K1) Hp(K2) Hp(K3) · · · Hp(Kn−1) Hp(Kn)

Hp(Kc
1) Hp(Kc

2) Hp(Kc
3) · · · Hp(Kc

n−1) Hp(Kc
n)

f∗1

r∗1 r∗2

g∗2

r∗3

f∗n−1

r∗n−1 r∗n

(fc
1 )∗

(gc
2)∗

(fc
n−1)∗

Since there exists a strong deformation retract between rj and ij , the induced homomorphisms
r∗j and i∗j are isomorphisms [17, Corollary 2.11]. Also, f cj rj = rj+1fjijrj is contiguous to
rj+1fj , since ijrj is contiguous to the identity on Kj and contiguity is preserved under
composition, see [2, Proposition 2.9] and similarly gcjrj+1 is contiguous to rjgj . Now, since
contiguous maps are homotopic at the level of geometric realization and homotopic maps
induce the same homomorphism, we have (f cj rj)∗ = (rj+1fj)∗ and thus (f cj )∗r∗j = r∗j+1f

∗
j

and similarly (gcj)∗r∗j+1 = r∗j g
∗
j , see [17, Proposition (1) page 111]. Therefore all the squares

in the lower diagram commute and the set of maps r∗j s are isomorphisms, therefore P(Z)
and P(Zc) are equivalent and hence their zigzag diagrams are identical. J

In fact, using the more general notion of quiver representation [11], this result follows for
the multidimensional persistence as well.

5 Computational experiments

For each data set, we consider as the input sequence a nested sequence (filtration) of Vietoris-
Rips (VR) complexes associated with a set of increasing values of the scale parameter (called
snapshots). The snapshots are specific values of the scale parameter at which we choose to
strong collapse the complex. The choice of snapshots strongly dictates the performance and
the quality of computed PD. Sparse snapshots will lead to faster computation but to coarser
PD where the points of persistence less than the interval between two snapshots have been
removed. On the other hand, choosing denser snapshots will lead to a comparatively slower
algorithm but will provide more refined PD. We first independently strong collapse all these
complexes, then assemble the resulting individual cores using the induced simplicial maps
introduced in Section 4. The resulting new sequence with induced simplicial maps between
the collapsed complexes is usually a simplicial tower we call the core tower. We then convert
the core tower into an equivalent filtration using the Sophia software [26], which implements
the algorithm described by Kerber and Schreiber in [18]. Finally, we run the persistence
algorithm of the Gudhi library [16] to obtain the persistence diagram (PD) of the equivalent
filtration. By the results of Section 4, the obtained PD is the same as the PD of the initial
sequence.

The total time to compute the PD of the core sequence is the sum of three terms: 1. the
maximum time taken to collapse all the individual complexes (assuming they are computed in
parallel), 2. the time taken to assemble the individual cores to form the core tower, 3. the time
to compute the persistent diagram of the core tower. Table 2 summarises the results of the
experiments. In both cases, the original filtration and the core tower, we use Gudhi through
Sophia using the command <./sophia -cgudhi inputTowerFile outputPDFile>. When we
use the -cgudhi option, Sophia reports two computation times. The first one is the total time
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Table 2 The rows are, from top to down: dataset X , number of snapshots (snp), total number
of simplices in the original filtration (Flt) in millions, number of simplices in the collapsed tower
(Twr), total number of simplices in the equivalent filtration (EqF), ratio of Flt and EqF (Flt/EqF)
in thousands, PD computation time for the original filration (PDF), maximum collapse time (MCT),
assembly time (AT), PD computation time of the tower (PDT), sum MCT+AT+PDT (Total), ratio
of PDF and Total (PDF/Total). All times are noted in seconds. For the first three datasets, we
sampled points randomly from the initial datasets and averaged the results over five trials.

X 1-sphere 2-Annulus dragon netw-sc senate eleg
Snp 80 80 46 69 107 77
Flt(106) 0.12 13.91 7.96 22.35 2.56 1.18
Twr 54 252 1,641 380 104 298
EqF 573 1,954 8,437 957 270 431
Flt/EqF(103) 0.21 7.12 0.94 23.35 9.48 2.74
PDF 0.65 174.18 69.92 243.86 24.92 10.87
MCT 0.005 0.022 0.065 0.009 0.003 0.002
AT 0.045 0.136 0.408 0.078 0.06 0.157
PDT 0.01 0.02 0.08 0.01 0.005 0.006
Total 0.060 0.178 0.553 0.097 0.068 0.165
PDF/Total 10.8 978.5 126.4 2514.0 366.5 65.9

taken by Sophia which includes (1) reading the tower, (2) transforming it to a filtration and
(3) computing PD using Gudhi. The second reported time is just the time taken by Gudhi
to compute PD. In our comparisons, we just report the time taken by Gudhi for the original
filtration, while, for the core tower, we report the total time taken by Sophia.

The dataset of the first column (1-sphere) of Table 2 consists of 100 random points sampled
from a unit circle in dimension 2. The dataset of the second column (2-Annulus) consists of
150 random points sampled from a two dimension annulus of radii {0.6, 1}. For all the other
experiments, we use datasets from a publicly available repository [10]. These datasets have
been previously used to benchmark different publicly available software computing PH [23].
For the third experiment (dragon), we randomly picked 150 points from the 2000 points
of the dataset drag 2 of [10]. The fourth and fifth column respectively correspond to the
dataset netw-sc and senate of [10], here we used the distance matrix. The sixth column
corresponds to the dataset eleg of [10], and here again we used the distance matrix. The first
three datasets are point sets in Euclidean space. For the other three, the distance matrices
of the datasets were available at [10]. The [initial value, increment, final value] of the scale
parameter are [0.1, 0.005, 0.5], [0.1, 0.005, 0.5], [0, 0.001, 0.046], [0.1, 0.05, 3.5], [0, 0.001, 0.107]
and [0, 0.001, 0.077] for the examples in Table 2 (from left to right). The filtration value of a
simplex is the value of the snapshot at which it first appeared. For more detail about the
datasets and the computation of the distance matrices of the last three datasets please refer
to [23].

The plots below count the maximal simplices and the dimensions of the complexes across
the filtration (in solid) and the collapsed tower (as dashed). Blue and red correspond re-
spectively to the filtration and the collapsed tower of the data netw-sc. Similarly green and
brown correspond respectively to the filtration and the collapsed tower of the data senate.
Finally, black and cyan correspond to the filtration and the collapsed tower of the data
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eleg respectively. We can observe that in all cases the number of maximal simplices never
increases. Also they are far fewer in number compared to the total number of simplices.
Observe that for the uncollapsed filtrations blue, green and black, the dimension of the
complexes increases quite rapidly with the snapshot index. Another key fact to observe is
that the dimension of the complexes in the corresponding core tower are much smaller than
their counterparts in the filtration. This has a huge effect on the performances since the
total number of simplices depends exponentially on the dimension.
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Noticeably, in our experiments, the computing time of our approach is reduced by 1 to 3
orders of magnitude, and the gain increases with the size of the filtration. A similar reduction
of 2 to 4 orders of magnitude is achieved for the number of simplices. Observations from the
plots combined with the experimental results of Table 2 clearly indicate that our method is
extremely fast and memory efficient.

The implementation of the Core algorithm 1 bench-marked here is coded in C++ and
will be available as an open-source package of the next release of the Gudhi library [16].
The code was compiled using the compiler <clang-900.0.38> and all computations were
performed on <2.8 GHz Intel Core i5> machine with 16 GB of available RAM.

The experiments above are limited to filtrations of VR-complexes, by far the most
commonly used type of sequences in Topological Data Analysis. We intend to experiment on
Zigzag sequences in future work.
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