
Non-Wellfounded Proof Theory For
(Kleene+Action)(Algebras+Lattices)
Anupam Das
University of Copenhagen, Copenhagen, Denmark
anupam.das@di.ku.dk

Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
damien.pous@ens-lyon.fr

Abstract
We prove cut-elimination for a sequent-style proof system which is sound and complete for the
equational theory of Kleene algebra, and where proofs are (potentially) non-wellfounded infinite
trees. We extend these results to systems with meets and residuals, capturing ‘star-continuous’
action lattices in a similar way. We recover the equational theory of all action lattices by restrict-
ing to regular proofs (with cut) – those proofs that are unfoldings of finite graphs.

2012 ACM Subject Classification Theory of computation → Proof theory, Theory of computa-
tion → Regular languages

Keywords and phrases Kleene algebra, proof theory, sequent system, non-wellfounded proofs

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.19

Related Version Long version at https://hal.archives-ouvertes.fr/hal-01703942.

Funding This work has been funded by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 programme (CoVeCe, grant agreement No. 678157, and MiLC, grant
agreement No. 753431). This work was supported by the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-
0007) operated by the French National Research Agency (ANR).

1 Introduction

The axioms of Kleene algebras are sound and complete for the theory of regular expressions
under language equivalence [24, 27, 4]. As a consequence, the equational theory of Kleene
algebras is decidable (in fact PSpace-complete). Models of these axioms of particular
interest include formal languages and binary relations. For binary relations, the Kleene star
is interpreted as reflexive transitive closure, whence the axioms of Kleene algebra make it
possible to reason abstractly about program correctness [22, 23, 3, 19, 1]. The aforementioned
decidability result moreover makes it possible to automate interactive proofs [5, 26, 30].

There are however important extensions of Kleene algebras which are not yet fully
understood. These include action algebras [31], where two ‘residual’ operations are added,
Kleene lattices, where a ‘meet’ operation is added, and action lattices [25], where all three
operations are added. Pratt introduced residuals in order to internalise the induction rules
of the Kleene star, as we explain later; they allow us to express properties of relations such
as well-foundedness in a purely algebraic way [12]. Kozen added the meet operation to
action algebra to obtain a structure closed under taking matrices. In the context of program
verification, meets are useful since they allow us to express conjunctions of local specifications.

© Anupam Das and Damien Pous;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anupam.das@di.ku.dk
mailto:damien.pous@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.19
https://hal.archives-ouvertes.fr/hal-01703942
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

KA � e ≤ f

KA∗ � e ≤ f

L(e) ⊆ L(f)

LKA `ω e→ f

LKA `∞ e→ f

LKA− `∞ e→ f

Thm. 14

Thm. 15

[24, 27]

Thm. 13

Thm. 11

PSpace-c

AL � e ≤ f

AL∗ � e ≤ f

LAL `ω e→ f

LAL `∞ e→ f

Σ0
1

LAL− `∞ e→ f

Π0
1-c

Thm. 34

Thm. 33

Thm. 37

Thm. 32

Thm. 35

Figure 1 Context and contributions for Kleene algebra and action lattices.

Unfortunately, the decidability of the three corresponding equational theories is still open,
and there is no known notion of ‘free model’ for them that is analogous to the rational
languages for Kleene algebra. In this paper, we explore a proof-theoretic approach to such
questions: we provide sequent calculi that capture these theories which we show admit a
form of cut-elimination. Although this does not (yet) give us decidability, it does improve
our understanding of these theories:

we obtain a computational interpretation of proofs of inequalities in our systems as
program transformers, which could prove useful to describe free models;
we recover two conservativity results: action lattices are conservative over (star-continuous)
Kleene lattices and action algebra, thanks to the sub-formula property; (these results are
also implied by [29]).
we obtain structural properties, e.g., as Whitman did when he proved cut-elimination for
the theory of lattices, which we aim to exploit in consequent research.

We first focus on pure Kleene algebra, which is easier to handle and enables a simpler
presentation. Being a well-established theory, we are able to relate our results to existing
ones in the literature, identifying which issues become relevant when moving to extensions.

Kleene algebra

In our sequent system, called LKA, proofs are finitely branching, but possibly infinitely deep
(i.e. not wellfounded). To prevent fallacious reasoning, we give a simple validity criterion
for proofs with cut, and prove that the corresponding system admits cut-elimination. The
difficulty in the presence of infinitely deep proofs consists in proving that cut-elimination
is productive; we do so by using the natural interpretation of regular expressions as data
types for parse-trees [15], and by giving an interpretation of proofs as parse-tree transformers.
Such an idea already appears in [18] but in a simpler setting, for a finitary natural deduction
system rather than for a non-wellfounded sequent calculus.

The results we prove about LKA are summarised in Fig. 1(left). In addition to cut-
elimination (Thm. 15), we prove that the system is sound for all star-continuous Kleene
algebras (Thm. 11), and conversely, that it is complete w.r.t. the language theoretic inter-
pretation of regular expressions (Thm. 13). We actually refine this latter result by showing
that every proof from Kleene algebra axioms can be translated into a regular proof with cut
(Thm. 14), i.e., a proof with cut which is the unfolding of a finite graph. Note, however, that
regularity is not preserved by cut-elimination: the class of cut-free regular proofs in LKA is
incomplete w.r.t. Kleene algebra.

A. Das and D. Pous 19:3

Action algebras, Kleene lattices, and action lattices

Despite its finite quasi-equational presentation, the equational theory of Kleene algebra is not
finitely based: Redko proved that any finite set of equational axioms must be incomplete [32].
However, by adding two binary operations to the signature, Pratt showed how to obtain a
finitely based extension which is conservative over the equational theory of Kleene algebras [31].
These two operations, called left residual (\) and right residual (/), are ‘adjoint’ to sequential
composition and, as we mentioned, such structures are called action algebras. Kozen then
proposed action lattices [25], where the signature is extended further to include a binary meet
operation (∩). We call Kleene lattices the structures consisting of Kleene algebra extended
just with meets.

While both action algebras and action lattices are finitely based and conservatively
extend Kleene algebra, they bring some difficulties. By definition, their equational theories
are at most Σ0

1, so that they must differ from their star-continuous variants which are Π0
1-

complete [7, 29]. (Buszkowski proved the lower bound and Palka proved the upper bound.)
In contrast, by Kozen’s completeness result we have that Kleene algebra and star-continuous
Kleene algebra give rise to the same equational theory, which is PSpace-complete. This
matter remains open for Kleene lattices since Buszkowski’s lower bound does not apply.

Residuals and meets naturally correspond to linear implication and additive conjunc-
tion [20, 29], from (non-commutative intuitionistic) linear logic [17]. They are also essential
connectives in the Lambek-calculus and related substructural logics [28]. We extend LKA
accordingly into a system LAL and obtain the results summarised in Fig. 1 (right): LAL
is complete for star continuous action lattices (Thm. 35); it still admits cut-elimination
(Thm. 37); thus it is also sound w.r.t. star continuous action lattices (Thms. 32). Further-
more we are able to show that its regular fragment with cut is in fact sound and complete
for all action lattices (Thm. 33); this somewhat surprising result gives us a nontrivial yet
finite proof theoretic representation of the theory of action lattices. The proof of soundness
reasons inductively on the cycle structure of such regular proofs, and we crucially exploit the
availability of both residuals and meets: for action algebra and Kleene lattices, it remains
open whether the corresponding regular fragments with cut are sound.

Thms. 32, 34, and 37 are proved by extending the proofs of Thms. 11, 14, and 15 to
deal with the additional connectives. Amongst those, cut-elimination is the most delicate
extension, relying on higher types to interpret residuals, and proving that LAL proofs still
yield terminating programs in such a setting. Thm. 13 cannot be extended directly, due to
the lack of a free model analogous to the regular languages for Kleene algebra when adding
residuals or meet. This is why we instead rely on cut-elimination for completeness.

As explained above, while all notions are equivalent in the case of Kleene algebra (Fig. 1
(left)), complexity arguments make it possible to separate the lower and upper parts of Fig. 1
(right), except for Kleene lattices. Whether the upper part is decidable remains open, but
it is interesting to note that we managed to characterise action lattices in such a way that
the non-regular/regular distinction at the proof-level corresponds precisely to the difference
between the star continuous and general cases, respectively. One potentially fruitful direction
towards the decidability of action lattices is to characterise the image of regular proofs under
cut-elimination. We aim to explore this possibility in future work.

Related work

We briefly discussed the cut-free variant of the system LKA in [10] (with a simpler validity
criterion), observing that its regular fragment is incomplete (due to the absence of cut). Our
main contribution was a variant of it based on ‘hypersequents’, HKA, whose regular fragment
is sound and complete without cut, and admits a PSpace proof search procedure.

CSL 2018

19:4 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

Palka proposed a sequent system for star continuous action lattices in [29], for which
she proved cut-elimination. Its non-star rules are precisely those of LKA, but the system is
wellfounded and relies on an ‘omega-rule’ for Kleene star with infinitely many premisses, in
the traditional school of infinitary proof theory, cf. [33]. Such an approach does not admit
a notion of finite proof analogous to our regular proofs, corresponding to the upper parts
of Fig. 1. Wurm also proposed a (finite, and thus wellfounded) sequent system for Kleene
algebra [34]. Unfortunately his cut-admissibility theorem does not hold – see [10].

The normalisation theory of linear logic with (least and greatest) fixed point operators has
been studied in [14] and, more comprehensively, in [13]. While the latter is a rather general
framework, its exposition still differs significantly from the current work for various reasons.
One immediate difference is that their setting is commutative while ours is non-commutative,
and so those results are not directly applicable. A more important difference is that they
do not have any atoms in their language, reasoning only on closed formulae. This is rather
significant from the point of view of normalisation, since the convergence of cut-elimination
becomes more complicated in presence of atoms. The argument we give in Sect. 4 uses
different ideas that are closely related to the language-based models of our algebras and the
natural interpretation of language inclusions as programs [18]. A game semantics approach
to cut-elimination for non-wellfounded proofs is given in [8], though in that work only finitely
many cuts in a proof are considered and so it does not seem sufficient to handle the star
rules in this work.

2 Preliminaries on Kleene algebra and extensions

Let A be a finite alphabet. Regular expressions [21] are generated as follows:

e, f ::= e · e | e+ e | e∗ | 1 | 0 | a ∈ A

Sometimes we may simply write ef instead of e · f . Each expression e generates a rational
language L(e) ⊆ A∗, defined in the usual way.

A Kleene algebra is a tuple (K, 0, 1,+, ·, ·∗) where (K, 0, 1,+, ·) is an idempotent semiring
and where the following properties hold, where x ≤ y is a shorthand for x+ y = y.

1 + xx∗ ≤ x∗ if xy ≤ y then x∗y ≤ y if yx ≤ y then yx∗ ≤ y (1)

There are several equivalent variants of this definition [9]. Intuitively we have that x∗y
(resp., yx∗) is the least fixpoint of the function z 7→ y + xz (resp., z 7→ y + zx). We write
KA � e ≤ f if the inequality e ≤ f holds universally in all Kleene algebras – or, equivalently,
if it is derivable from the axioms of Kleene algebra. Kozen [24] and Krob [27] showed that
this axiomatisation is complete for language inclusions, corresponding to the right-to-left
implication in the following characterisation (the other direction is routine).

I Theorem 1 ([24, 27]). KA � e ≤ f if and only if L(e) ≤ L(f).

A Kleene algebra is star-continuous if for all elements x, y, z, xy∗z is the least upper bound
of the sequence (xyiz)i∈N, where y0 = 1 and yi+1 = yyi. In presence of the other laws,
star-continuity is equivalent to the following condition:

∀xyzt, (∀i ∈ N, xyiz ≤ t)⇒ xy∗z ≤ t .

We write KA∗ � e = f when the equality e = f holds in all star-continuous Kleene algebras.
Formal languages form a star-continuous Kleene algebra, and so by completeness of Kleene
algebra w.r.t. rational languages, we have KA∗ � e = f iff KA � e = f ; this is the triangle
on the left in Fig. 1.

A. Das and D. Pous 19:5

∆→ e Γ, e,Σ→ f
cut

Γ,∆,Σ→ f
id
e→ e

0-l
Γ, 0,∆→ e

Γ,∆→ e
1-l

Γ, 1,∆→ e
1-r
→ 1

Γ, e, f,∆→ g
·-l

Γ, e · f,∆→ g

Γ, e,∆→ g Γ, f,∆→ g
+-l

Γ, e+ f,∆→ g

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f

Γ→ e ∆→ f
·-r

Γ,∆→ e · f
Γ→ ei

+-ri i ∈ {1, 2}
Γ→ e1 + e2

∗-r1
→ e∗

Γ→ e ∆→ e∗
∗-r2

Γ,∆→ e∗

Figure 2 The rules of LKA.

An action lattice is a Kleene algebra with three additional binary operations, left and
right residuals (\, /), and meet (∩) defined by the following equivalences:

∀xyz, y ≤ x\z ⇔ xy ≤ z ⇔ x ≤ z/y and ∀xyz, z ≤ x∩ y ⇔ z ≤ x∧ z ≤ y

An action algebra is a Kleene algebra with residuals, a Kleene lattice is a Kleene algebra with
meets. We extend regular expressions accordingly, writing AL � e ≤ f when the inequation
e ≤ f holds in all action lattices, and AL∗ � e ≤ f when it holds in all star continuous action
lattices. Note that while rational languages are closed under residuals and intersection, thus
forming an action lattice, they are not the ‘free’ one: Thm. 1 fails. The equational theories
generated by all action lattices and by the star-continuous ones actually differ, cf. [7, 29].

3 The sequent system LKA

A sequent is an expression Γ→ e, where Γ is a list of regular expressions and e is a regular
expression. For such a sequent we refer to Γ as the antecedent and e as the succedent, or
simply the ‘left’ and ‘right’ hand sides, respectively. We say that a sequent e1, . . . , en → e is
valid if KA∗ � e1 · · · · · en ≤ e. I.e., the comma is interpreted as sequential composition, and
the sequent arrow as inclusion. We may refer to expressions as ‘formulae’ when it is more
natural from a proof theoretic perspective, e.g. ‘subformula’ or ‘principal formula’.

The rules of LKA are given in Fig. 2. We call LKA− the subset of LKA where the cut
rule is omitted (which corresponds to the system called LKA in [10]). Leaving the ∗-rules
aside, these rules are those of the non-commutative variant of intuitionistic linear logic [17],
restricted to the following connectives: multiplicative conjunction (·), additive disjunction
(+) and additive falsity (0) (for which there is no right rule). The rules for Kleene star can be
understood as those arising from the characterisation of e∗ as a fixed point: e∗ = µx.(1 + ex).
In contrast, Palka [29] follows the alternative interpretation of Kleene star as an infinite
sum, e∗ = Σie

i, whence her left rule for Kleene star with infinitely many premisses, and the
infinitely many right rules she uses for this operation.

As previously mentioned, we consider infinitely deep proofs, so it is necessary to impose
a validity criterion to ensure that derivations remain sound.

I Definition 2. A (binary, possibly infinite) tree is a prefix-closed subset of {0, 1}∗, which
we view with the root, ε, at the bottom; elements of {0, 1}∗ are called nodes. A preproof
is a labelling π of a tree by sequents such that, for every node v with children v1, . . . vn

(n = 0, 1, 2), the expression
π(v1) · · · π(vn)

π(v)
is an instance of an LKA rule. Given a node v in

a preproof π, we write πv for the sub-preproof rooted at v, defined by πv(w) = π(vw). A

CSL 2018

19:6 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

preproof is regular if it has finitely many distinct subtrees, i.e. it can be expressed as the
infinite unfolding of a finite graph. A preproof is cut-free if it does not use the cut-rule.

We will use standard proof theoretic terminology about principal formulas and ancestry in
proofs, e.g. from [6]. (see [11, App. A] for further details). The notion of validity below is
similar to [13], adapted to our setting.

I Definition 3. A thread is a maximal path through the graph of (immediate) ancestry in a
preproof. By definition it must start at a conclusion formula or at a cut formula and it only
goes upwards. A thread is valid if it is principal for a ∗-l step infinitely often. A preproof
is valid if every infinite branch eventually has a valid thread. A proof is a valid preproof.
We write LKA `∞ Γ→ e if the sequent Γ→ e admits a proof, LKA `ω Γ→ e if it admits a
regular proof, and LKA− `∞ Γ→ e if it admits a cut-free proof.

Notice that every valid thread eventually follows a unique (star) formula, by the subformula
property. Let us consider some examples of (pre)proofs. In all cases, we will use the symbol
• to indicate circularities (i.e. to identify roots of the same subtree), colours to mark some of
the threads, and double lines to denote finite derivations.

I Example 4. Here is a regular and cut-free proof of (b+ c)∗ → (c+ b)∗:

∗-r1
→ (c+ b)∗

b+ c→ c+ b

...
∗-l •

(b+ c)∗ → (c+ b)∗
∗-r2

b+ c, (b+ c)∗ → (c+ b)∗
∗-l •

(b+ c)∗ → (c+ b)∗

I Example 5 (Atomicity of identity). As in many common sequent systems, initial identity
steps can be reduced to atomic form, although for this we crucially rely on access to non-
wellfounded (yet regular) proofs. As usual, we proceed by induction on the size of an identity
step, whence the crucial case is for the Kleene star,

∗-r1
→ e∗

IH

e→ e

...
∗-l •
e∗ → e∗

∗-r2
e, e∗ → e∗

∗-l •
e∗ → e∗

where the derivation marked IH is obtained by the inductive hypothesis.

Note that while LKA− satisfies the subformula property, the size and number of sequents
occurring in a cut-free proof is not a priori bounded, due to the ∗-l rule:

I Example 6 (A non-regular proof). The only cut-free proof of the sequent a, a∗ → a∗a is
the one on the left below:

a→ a∗a

a, a→ a∗a

...
∗-l
a, a, a, a∗ → a∗a

∗-l
a, a, a∗ → a∗a

∗-l
a, a∗ → a∗a

a→ a∗a

∗-l •
a, a∗ → a∗a a, a∗a→ a∗a

cut
a, a, a∗ → a∗a

∗-l •
a, a∗ → a∗a

This proof contains all sequents of the form a, . . . , a, a∗ → a∗a, whence non-regularity. A
regular proof with cuts is given on the right above; see [10] for more details on the lack of
regularity in LKA− and how to recover regularity in a cut-free setting, using ‘hypersequents’.

A. Das and D. Pous 19:7

I Example 7 (Two invalid preproofs). The following preproofs are not valid; they derive
invalid sequents.

1-r
→ 1

...
∗-r2 •

a→ 1∗
∗-r2 •

a→ 1∗ → b∗

id
a→ a

id
a∗ → a∗

∗-r2
a, a∗ → a∗

...
∗-l •
a∗ → b∗

cut
a, a∗ → b∗

∗-l •
a∗ → b∗

The left preproof is cut-free and infinite; since it does not contain any ∗-l-rule, it cannot be
valid. On the right the principal formula of the ∗-l-rule is the cut formula of the cut-rule so
that the only infinite thread is the one along the occurrences of b∗, and this formula is never
principal for a ∗-l step.

The notion of validity we use here actually generalises the notion of fairness we used in [10],
where we were working only with cut-free preproofs:

I Proposition 8. A cut-free preproof is valid if and only if it is fair for ∗-l, i.e. every infinite
branch contains infinitely many occurrences of ∗-l.

Proof sketch. The left-right implication is immediate. Conversely, every infinite path in a
fair cut-free preproof has infinitely many ∗-l steps, but there are only finitely many possible
principal formulae by the subformula property. One can thus extract a valid thread. J

An alternative criterion for cut-free preproofs is obtained as follows:

I Proposition 9. A cut-free preproof is valid if and only if it has no infinite branch with a
tail of only ∗-r2-steps.

Proof. Define the ‘weight’ of a sequent to be the multiset of its formulae, ordered by the
subformula relation. This measure strictly decreases when reading LKA− rules bottom-up,
except for the right premisses of rules ∗-l and ∗-r2; for the latter, it either remains unchanged
(when Γ is empty) or it strictly decreases. Thus every infinite branch of a cut-free preproof
either contains infinitely many ∗-l steps, or eventually contains only ∗-r2 steps. J

Observe that the proof on the left in Ex. 7 does not satisfy this condition.
The cut-free system LKA− is sound and complete for Kleene algebras. Thanks to the

completeness theorem for Kleene algebras, Thm. 1, it suffices to prove soundness with respect
to star-continuous Kleene algebra. We first prove the following lemma:

I Lemma 10. If LKA− `∞ Γ, e∗,∆→ f then, for each n ∈ N, LKA− `∞ Γ, en,∆→ f .

Proof. We define appropriate preproofs from by induction on n. Replace every direct ancestor
of e∗ by en, adjusting origins as follows,

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f
7→

Γ,∆→ f
1-l

Γ, 1,∆→ f
or

Γ, e, en−1,∆→ f
·-l

Γ, en,∆→ f

when n = 0 or n > 0, respectively. In the latter case we appeal to the inductive hypothesis.
Notice that, on branches where e∗ is never principal, this is simply a substitution of en

for e∗ everywhere along the branch. The preproof resulting from this entire construction is
fair since every infinite branch will share a tail with the proof we began with. J

We can now prove soundness w.r.t. star continuous Kleene algebra:

CSL 2018

19:8 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

I Theorem 11 (Soundness). If LKA− `∞ e1, . . . , en → e, then KA∗ � e1 · · · · · en ≤ e.

Proof. First observe that every rule of LKA is sound: if its premisses are valid then so is its
conclusion. Let π be an LKA− proof of Σ→ f . We proceed by structural induction on the
multiset of formulae in its conclusion, via case analysis on the last rule. For all but two cases,
we just use soundness of the rule and the induction hypotheses. The first remaining case is
∗-r2, where we must appeal to a sub-induction since the measure does not always strictly
decrease in the right premiss (Prop. 9). The last case is ∗-l, where Σ = Γ, e∗,∆. By Lem. 10,
π can be transformed into proofs πn of Γ, fn,∆ → f for each n ∈ N. Each πn derives a
sequent whose weight is strictly smaller than that of Σ → f , which is thus valid by the
inductive hypothesis. Finally, this means that Γ, f∗,∆→ g is valid, by star-continuity. J

For completeness of LKA−, we can get a direct proof by starting from the free model of
rational languages (Fig. 1). This strategy is no longer possible for Kleene lattices, action
algebras and action lattices, for which we will need to go through cut-elimination. We first
prove completeness for sequents whose antecedent is a word:

I Lemma 12. If a1 . . . an is a word in L(e) for some expression e, then there is a finite
proof of the sequent a1, . . . , an → e using only right logical rules.

Proof. By a straightforward induction on e. J

I Theorem 13 (Completeness). If L(e1 · · · · · en) ⊆ L(e) then LKA− `∞ e1, . . . , en → e.

Proof. This is proved like in [10] for HKA: all left rules of LKA− are invertible so that they
can be applied greedily; doing so, one obtains an infinite tree whose leaves are sequents of
the shape a1, . . . , ak → e, with k ≥ 0, where a1 . . . ak is a word in L(e1 · · · · · en) and thus in
L(e) by assumption. Those leaves can be replaced by finite derivations using by Lem. 12.
Notice, that we obtain fairness, since any infinite branch of only left rules must contain ∗-l
infinitely often. J

The previous proof builds infinite and non-regular derivations whenever the language of the
starting antecedent is infinite. For instance, it would yield the proof given on the left in
Ex. 6. By using a different technique, we show in the following theorem, that we can get
regular proofs if we allow the cut-rule.

I Theorem 14 (Regular completeness). If KA � e ≤ f then LKA `ω e→ f .

Proof. We prove the statement for equalities. Consider the relation ≡ defined by e ≡ f if
LKA `ω e → f and LKA `ω f → e. This relation is an equivalence on regular expressions
thanks to the cut rule, and it is easily shown to be preserved by all contexts (i.e. it is a
congruence). Also remark that we have e+ f ≡ f iff LKA `ω e→ f , thanks to the cut-rule
and the rules about sum. It then suffices to show that regular expressions quotiented by
≡ form a Kleene algebra. The (in)equational axioms defining KA can be proved by finite
derivations. The only difficulty is in dealing with the two implications from the definition of
Kleene algebra (1). We implement them as follows:

id
f → f

...
∗-l •
e∗, f → f

IH

e, f → f
cut

e, e∗, f → f
∗-l •

e∗, f → f

id
f → f

IH

f, e→ f

...
∗-l •
f, e∗ → f

cut
f, e, e∗ → f

∗-l •
f, e∗ → f

A. Das and D. Pous 19:9

where the derivations marked IH are obtained from the inductive hypothesis. The preproofs
we construct in this way are valid and regular, by inspection. In particular, the only infinite
branch not in IH in the above derivations has a valid thread on e∗, coloured in green. J

Note the asymmetry when we interpret the two implications: the premisses of the cut rule
are swapped when we move from one to the other. This asymmetry comes from the fact that
we have a single left rule for Kleene star, which unfolds the star from the left.

4 Cut-elimination for LKA

This section is devoted to proving the following cut-elimination theorem.

I Theorem 15. If LKA `∞ Γ→ e then LKA− `∞ Γ→ e.

Combined with Thm. 11, it establishes the soundness of our criterion for proofs with cuts.
This serves as a ‘warm-up’ for the analogous result for the extended system (Sect. 6), which
is obtained using the same template.

We show that proofs can be considered as certain transducers, transforming parse-trees of
input words of languages computed by terms. We design them so that a given computation
only explores a finite prefix of the proof, which we call the head. We then prove that cut-
reductions, restricted to the head of a proof, preserve these computations, always terminate,
and eventually produce some non-cut rules. We can then repeatedly apply this procedure to
remove all cuts from an infinite proof, in a productive way.

4.1 Programs from proofs
We first define programs and their reduction semantics, based on which we prove cut-
elimination, in Sect. 4.2. We fix in this section a (valid) LKA proof π and we let v range
over its nodes, which we recall are elements of {0, 1}∗, cf. Dfn. 2.

I Definition 16 (Programs). Programs are defined by the following syntax, where x ranges
over a countable set of variables, and i ranges over {1, 2}.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | v[~M]

Intuitively, programs compute parse-trees for words belonging to the language of an expression.
Given a node v of π such that π(v) = Γ→ e, the last entry corresponds to the application
of the subproof πv, rooted at v, to a list ~M of programs for the antecedent (Γ); it should
eventually return a parse-tree for the succedent (e). This is formalised using the following
notion of types.

I Definition 17 (Typing environment). A typing environment, written E, is a list of pairs of
variables and expressions (written x : e), together with a finite antichain of nodes: for any two
nodes v and w in the antichain, v is not a prefix of w. We write E,F for the concatenation
of two typing environments, which is defined only when this antichain condition on nodes is
preserved.

Intuitively, typing environments keep track of which variables and proof nodes are used in
a program, to impose linearity constraints; these constraints become crucial when we add
residuals and meets, in Sect. 5.

I Definition 18 (Types). A program M has type e in an environment E, written E `M : e
if this judgement can be derived from the rules in Fig. 3.

CSL 2018

19:10 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

x : e ` x : e ` ? : 1
E `M : e F ` N : f
E, F ` 〈M,N〉 : ef

E `M : ei

E ` iniM : e1 + e2 ` [] : e∗

E `M : e E′ ` N : e∗

E,E′ `M :: N : e∗
∀i, Ei `Mi : ei π(v) = e1, . . . , en → f

v,E1, . . . , En ` v[~M] : f

Figure 3 Typing rules for programs.

I Example 19. With the proof from Ex. 4, letting ε denote the root node, we have:

ε, x : b, y : c ` ε[in0x :: in1y :: []] : (c+ b)∗

ε, z : b+ c, z′ : b+ c, q : (b+ c)∗ ` ε[z :: z′ :: q] : (c+ b)∗

I Observation 20. Let x1, . . . , xn be variables. We have a1 . . . an ∈ L(e) iff there exists
a program M such that x1 : a1, . . . , xn : an ` M : e. This (unused) observation has no
counterpart when considering extensions of Kleene algebra, where there is no longer an
appropriate notion of ‘language’ for expressions that constitutes a free model.

I Definition 21 (Reduction). Reduction, written , is the closure under all contexts of the
following rules defined by case analysis on the last step of the subproof πv rooted at v. These
rules are written concisely for lack of space; in each case, v0 and v1 are the nodes of the
premisses, when they exist. We moreover assume that the sizes of the vectors match those
that arise from the various rules. See [11, App. B] for an extensive definition.

id : v[M] M cut : v[~M, ~N, ~P] v1[~M, v0[~N], ~P]

1-l : v[~M, ?, ~N] v0[~M, ~N] 1-r : v[] ?

·-l : v[~M, 〈M,N〉, ~N] v0[~M,M,N, ~N] ·-r : v[~M, ~N] 〈v0[~M], v1[~N]〉

+-l : v[~M, iniM, ~N] vi[~M,M, ~N] +-ri : v[~M] ini(v0[~M])

∗-l : v[~M, [], ~N] v0[~M, ~N] and ∗-r1 : v[] []

v[~M,M :: N, ~N] v1[~M,M,N, ~N] ∗-r2 : v[~M, ~N] v0[~M] :: v1[~N]

When useful we write, say, cut to indicate a reduction according to the cut rule above.

I Example 22. Continuing with the proof from Ex. 4 we have the following complete
reductions. The second program still contains calls to proofs in the end because the inputs
were under-specified.

ε[in0x :: in1y :: []]
 1[in0x, in1y :: []]
 10[in0x] :: 11[in1y :: []]
 100[x] :: 11[in1y :: []]
 in1x :: 11[in1y :: []]
 in1x :: 111[in1y, []]
 in1x :: 1110[in1y] :: 1111[[]]
 4 in1x :: in0y :: []

ε[z :: z′ :: q]
 1[z, z′ :: q]
 10[z] :: 11[z′ :: q]
 10[z] :: 111[z′, q]
 10[z] :: 1110[z′] :: 1111[q]

As one might expect, we have subject reduction. We need the following notion of extension
to state it properly.

A. Das and D. Pous 19:11

I Definition 23 (Extension). Given two typing environments E,E′, we say that E′ extends
E if E and E′ coincide after removing all nodes, and if all nodes in E′ are either already in
E, or are immediate successors of some nodes in E.

I Proposition 24 (Subject reduction). If E ` M : e and M M ′, then E′ ` M ′ : e for
some environment E′ extending E.

For instance, along the reductions on the left in Ex. 22, the antichain part of the typing
environment evolves as follows: {ε}, {1}, {10, 11}, {100, 11}, {11}, {111}, {1110, 1111}, ∅.

Our objective now is to prove that well-typed programs terminate. For the sake of
simplicity, we work in the sequel with the ‘leftmost innermost’ strategy: a redex v[~M] is fired
only when the programs in ~M are irreducible and there are no other redexes to its left.

I Definition 25 (Runs). The run of a program M is the sequence of nodes corresponding to
the redexes fired during the (potentially infinite) leftmost innermost reduction of M .

I Lemma 26. If E ` M : e then every node w appears at most once in the run of M ; in
this case we have that w = uv for some nodes u, v with u in E and, for every prefix v′ of v,
uv′ appears in the run of M before w.

Proof. These are immediate consequences of Prop. 24. J

In particular, the run of a well-typed program has finitely many connected components. We
finally obtain that well typed programs terminate, thanks to the validity criterion.

I Proposition 27. If E `M : e, then the run of M is finite.

Proof. Suppose the run of M is infinite. Then by Lem. 26 and König’s Lemma one can
extract an infinite branch of π which is contained in the run. By validity, this branch must
eventually have a thread along a star formula f∗ which is infinitely often principal. By
analysis of the reduction rules, and thanks to the innermost strategy, we may find an infinite
sequence of programs of type f∗ whose sizes are strictly decreasing, which is impossible. J

4.2 Cut reduction
Our cut-elimination argument is driven by a standard set of cut reduction rules, which
we do not have space to present in the main text. These include key and commutative
cases, as usual, and are fully presented in [11, App. D]. To produce an infinite cut-free
proof, we must show that we may produce proofs with arbitrarily large cut-free prefixes in a
continuous manner. The main difficulty is to show that such a procedure is productive, i.e.,
eventually produces non-cut steps. To this end, we use the previous notion of ‘run’ to drive
cut-reductions.

I Definition 28 (Head). Let π be a proof of Γ → e. The head of π, written hd(π), is the
run of the program ε[~x] in π, where ~x is a list of variables of the same length as Γ.

Note that the above program is well-typed in the appropriate environment. The head is a
sequence of nodes, but we shall sometimes see it as the underlying sequence of programs. Also
note that the nodes of a cut step appearing in the head correspond to program reductions
where the redex is a cut (cut).

I Definition 29 (Weight). The weight of a proof π, written w(π), is the multiset of cut-
reductions in its head, ordered by their distance to the end of the head.

CSL 2018

19:12 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

I Lemma 30. Let π′ be obtained from a proof π by a cut-reduction. We have that:
(i) π′ is a valid proof;
(ii) |hd(π′)| ≤ |hd(π)|, where |s| is the length of a sequence s;
(iii) if the reduced cut was the last cut step in hd(π), then w(π′) < w(π).

Proof sketch. By case analysis; key cases strictly decrease the length of the head while it is
only conserved by commutative cases. We list and discuss all cases in [11, App. D]; one of
the two ∗-key cases is the following one:

∆→ e Σ→ e∗
∗-r2

∆,Σ→ e∗
Γ,Π→ f Γ, e, e∗,Π→ f

∗-l
Γ, e∗,Π→ f

cut
Γ,∆,Σ,Π→ f

7→ ∆→ e

Σ→ e∗ Γ, e, e∗,Π→ f
cut

Γ, e,Σ,Π→ f
cut

Γ,∆,Σ,Π→ f

If the reduced cut (with conclusion at v) occurs in the head of π then the heads of the two
proofs only differ by the following subsequences, inside some evaluation context:

v[~M, ~N, ~O, ~P]
 cute∗ v1[~M, v0[~N, ~O], ~P]
 v1[~M, v00[~N] :: v01[~O], ~P]
 n v1[~M,N ′ :: v01[~O], ~P]
 o v1[~M,N ′ :: O′, ~P]
 v11[~M,N ′, O′, ~P]

v[~M, ~N, ~O, ~P]
 cute v1[~M, v0[~N], ~O, ~P]
 n v1[~M,N ′, ~O, ~P]
 cute∗ v11[~M,N ′, v10[~O], ~P]
 o v11[~M,N ′, O′, ~P]

(Note that the programs ~M, ~N, ~O, ~P are irreducible due to the innermost strategy, and
that v00 in the starting proof and v0 in the resulting one both point to the same subproof:
πv00 = π′v0.) The new head is shorter by one step, and the initial cut on e∗ is replaced by
two cuts which are closer to the end of the head.

Commutative cases do not always shorten the head, but either they move the cut closer
to its end, or the head no longer visits it. For instance, when the left premiss of the reduced
cut ends with a ·-l step, the rule is:

∆, e, f,Σ→ g
·-l

∆, ef,Σ→ g Γ, g,Π→ h
cut

Γ,∆, ef,Σ,Π→ h

7→
∆, e, f,Σ→ g Γ, g,Π→ h

cut
Γ,∆, e, f,Σ,Π→ h

·-l
Γ,∆, ef,Σ,Π→ h

If the head of π goes through the step v[~M, ~N,O, ~P , ~Q] cutef
v1[~M, v0[~N,O, ~P], ~Q], then

there are two cases to consider:
either O = 〈O1, O2〉 and the sequence continues with v1[~M, v00[~N,O1, O2, ~P], ~Q]; then in
π′ we get v[~M, ~N,O, ~P , ~Q] v0[~M, ~N,O1, O2, ~P , ~Q] cutef

v01[~M, v00[~N,O1, O2, ~P], ~Q];
the length is preserved and the cut has been pushed towards the end;
or not, and the head of π′ stops earlier, without visiting the cut on ef anymore, thus
decreasing the weight.

For (iii), the assumption that the cut-reduction took place on the last cut of the head is used
in some of the cases to ensure that the weights of the other cuts in the head do not increase
(e.g., in some of the right ·-r and ∗-r2 cases). J

I Proposition 31 (Productive cut-reduction). For a proof π, there exists a proof π′ obtained
from π by a sequence of cut-reductions, which does not start with a cut.

Proof. By induction on the weight, reduce the last cut visited by the head until the head no
longer contains any cut. The resulting proof cannot start with a cut, by definition. J

A. Das and D. Pous 19:13

We can finally prove cut-elimination.

Proof of Thm. 15. Focus on a lowest cut, at node v, and apply Prop. 31 to the corresponding
subproof πv. By iterating this process, we obtain in the limit a cut-free preproof π′ with the
same conclusion as the starting one. Moreover, thanks to Lem. 30.(i), all heads of subproofs
of π′ are finite, so that π′ is valid by Prop. 9: an infinite branch of ∗-r2 steps would give rise
to a subproof with an infinite head. J

5 Action algebras, Kleene lattices, and action lattices

We now consider extensions of Kleene algebra by residuals and meets, as axiomatised in [31]
and [25]. We first extend the system LKA with the following rules, which are standard from
substructural logic [28, 16]. We write LAL for the corresponding system.

∆→ e Γ, f,Σ→ g
\-l

Γ,∆, e\f,Σ→ g

∆→ e Γ, f,Σ→ g
/-l

Γ, f/e,∆,Σ→ g

Γ, ei,∆→ f
∩-li i ∈ {1, 2}

Γ, e1 ∩ e2,∆→ f

e,Γ→ f
\-r

Γ→ e\f
Γ, e→ f

/-r
Γ→ f/e

Γ→ e Γ→ f
∩-r

Γ→ e ∩ f

We define judgements as previously. Except for Thm. 33, the results below also hold for action
algebras and Kleene lattices using the appropriate fragment of LAL. We prove soundness
w.r.t. star-continuous models exactly like for Kleene algebra (Thm. 11).

I Theorem 32 (Soundness). If LAL− `∞ e1, . . . , en → e, then AL∗ � e1 · · · · · en ≤ e.

As announced in the introduction, regular proofs are sound for all (non-necessarily star-
continuous) action lattices. We prove it using proof-theoretical arguments to translate every
regular proof into an inductive proof from the axioms of action lattices.

I Theorem 33 (Regular soundness). If LAL `ω e1, · · · , en → f then AL � e1 · · · · · en ≤ f .

Proof. We prove the statement for all regular proofs in *-normal form, where every back-
pointer points to a ‘validating’ ∗-l-step: every infinite branch of the starting proof has a valid
thread; since the proof is regular, this thread must be infinitely often principal for ∗-l-step of
some sequent of the branch; cut the infinite branch by using a backpointer the second time
this sequent appears in the branch.

We proceed by induction on the number of simple cycles in such a proof π. The interesting
case is when π ends with a ∗-l step that is the target of a backpointer. Colour red all ancestors
of its principal formula that are the same expression, say e∗. Let {Γi, e

∗,∆i → fi}i∈I be the
set of all sequents in π with e∗ principal and let {πl

i : Γi,∆i → fi}i∈I and {πr
i : Γi, e, e

∗,∆i →
fi}i∈I be the corresponding subproofs rooted at their left and right premisses, respectively.

Define expressions gi =
∏

Γi, di =
∏

∆i, hi = (gi\fi)/di, and h =
⋂

i∈I hi. For i ∈ I,
construct proofs πr

i
′ from πr

i by replacing each e∗ by h, modifying critical steps as follows:

Γj ,∆j → fj Γj , e, e∗,∆j → fj
∗-l

Γj , e∗,∆j → fj
7→

·-r
∆j → dj

·-r
Γj → gj fj → fj

\-l
Γj , gj\fj → fj

/-l
Γj , hj ,∆j → fj

∩-l
Γj , h,∆j → fj

ρj

CSL 2018

19:14 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

Note that the proofs πl
i and πr

i
′ have fewer simple cycles than π, so that by the induction

hypothesis we have that gidi ≤ fi and giehdi ≤ fi hold universally in action lattices, for all
i ∈ I. From here we deduce 1 ≤ h and eh ≤ h using the laws about residuals and conjunction.
Thus we have e∗ ≤ h by star induction (1). Finally note that following the above proof ρj

we have in action lattices that gjhdj ≤ fj and thus gje
∗dj ≤ fj . We conclude by choosing

the appropriate j such that (Γj ,∆j , fj) is (Γ,∆, f). J

Note that we crucially rely on the presence of both residuals and meet to compute invariants
for Kleene stars in the above proof, so that it does not immediately carry over to action
algebras and Kleene lattices.

Conversely, the regular fragment of LAL (with cut) is complete for action lattices.

I Theorem 34 (Regular completeness). If AL � e ≤ f then LAL `ω e→ f .

Proof. The axioms defining meet and residual immediately translate to finite derivations in
LAL, so we may simply extend the proof of Thm. 14. J

Note that the regular fragment cannot be complete for star continuous models: a regular
proof is a finite verifiable object and the equational theory of star-continuous action lattices
is Π0

1-hard [7]. The full, non-regular system is however complete for star-continuous models:

I Theorem 35 (Star-continuous completeness). If AL∗ � e ≤ f then LAL `∞ e→ f .

Proof. As for Thms. 14 and 34, consider the relation ≡′ defined by e ≡′ f if LAL `∞ e→ f

and LAL `∞ f → e. Expressions quotiented by this slightly larger relation also form an
action lattice, which we prove star-continuous using the natural simulation of an ω-rule for
Kleene star: combine proofs (πi)i∈N of the sequents (Γ, ei,∆→ f)i∈N as follows:

π0

Γ, e,∆→ f

π1

Γ, e, e,∆→ f

π2

Γ, e, e,∆→ f . .
.

∗-l
Γ, e, e, e∗,∆→ f

∗-l
Γ, e, e∗,∆→ f

∗-l
Γ, e∗,∆→ f

J

The remaining property to establish is cut-elimination: combined with Thm. 32 it gives
soundness of proofs with cut w.r.t. star-continuous models, and combined with Thm. 35 it
gives completeness of LAL− w.r.t. these models.

6 Cut-elimination in LAL

The main alteration to the proof for LKA is that we need a more sophisticated notion of
programs. We associate linear functions to residuals, and additive pairs to meets: a program
for e ∩ f waits to see whether the environment wants a value for e or a value for f – but not
both, and reacts accordingly. We thus extend the syntax of programs (Dfn. 16) to include
λ-abstractions, which will be used for residuals, and a new kind of pairs for meets.

M,N ::= x | ? | 〈M,N〉 | iniM | [] |M :: N | π[~M] | λx.M | 〈〈M,N〉〉

The type system (Fig. 3) is extended by the following rules, where in the final rule, E1 and
E2 are extensions of E (cf. Dfn. 23).

x : e, E `M : f
E ` λx.M : e\f

E, x : e `M : f
E ` λx.M : f/e

E1 `M : e E2 ` N : f
E ` 〈〈M,N〉〉 : e ∩ f

A. Das and D. Pous 19:15

I Lemma 36 (Substitution lemma). If E ` N : e and F, x : e, F ′ ` M : f with F,E, F ′

defined, then F,E, F ′ `M{N/x} : f , where M{N/x} is M with x substituted by N .1

The following reductions are added, using the same conventions as in Dfn. 21:

∩-li : v[~M, 〈〈N1, N2〉〉, ~P] v0[~M,Ni, ~P] ∩-r : v[~M] 〈〈v0[~M], v1[~M]〉〉

\-l : v[~M, ~N, λx.F, ~P] v1[~M,F{v0[~N]/x}, ~P] \-r : v[~M] λx.v0[x, ~M]

/-l : v[~M, λx.F, ~N, ~P] v1[~M,F{v0[~N]/x}, ~P] /-r : v[~M] λx.v0[~M, x]

One has to be careful about what we deem to be evaluation contexts: lambda abstractions
and additive pairs are not considered evaluation contexts. This is crucial to obtain subject-
reduction: otherwise some redexes duplicated by the ∩-r rule can be active at the same
time, thus breaking the property of Lem. 26 used in our termination proof that a given node
appears at most once in the run of a program.

Despite this subtlety, Prop. 24 (subject reduction) and Prop. 27 (termination) are proved
for this extended system exactly as in the Kleene algebra case – see [11, App. C]. It thus
remains to show that the new cut reductions do not increase the length of heads, and strictly
decrease the weight (Lem. 30). The key cases are easy: they strictly decrease the length and
replace the cut by smaller ones. Amongst the commutative cases, some care is required when
a right introduction rule appears on the right of the cut. For instance, for meet:

∆→ f

Γ, f,Σ→ e1 Γ, f,Σ→ e2
∩-r

Γ, f,Σ→ e1 ∩ e2
cut

Γ,∆,Σ→ e1 ∩ e2

7→
∆→ f Γ, f,Σ→ e1

cut
Γ,∆,Σ→ e1

∆→ f Γ, f,Σ→ e2
cut

Γ,∆,Σ→ e1
∩-r

Γ,∆,Σ→ e1 ∩ e2

If the head of π contains the sequence,

v[~M, ~N, ~O] v1[~M, v0[~N], ~O] n v1[~M,N ′, ~O] 〈〈v10[~M,N ′, ~O], v11[~M,N ′, ~O]〉〉

where v is the reduced cut-node, then in the head of π′ we just get:

v[~M, ~N, ~O] 〈〈v0[~M, ~N, ~O], v1[~M, ~N, ~O]〉〉

Here we see the need for 〈〈−,−〉〉 not being an evaluation context: the computations involving
~N would otherwise be duplicated, thus potentially increasing the length of the run. If the
head of π never touches the produced additive pair, then the head of π′ is strictly shorter,
and the cut on e1 ∩ e2 is not visited anymore. Otherwise, this pair can only be destroyed by
a ∩-li rule: 〈〈v10[~M,N ′, ~O], v11[~M,N ′, ~O]〉〉 v1i[~M,N ′, ~O], and the head of π′ can ‘catch
up’ by doing:

〈〈v0[~M, ~N, ~O], v1[~M, ~N, ~O]〉〉 vi[~M, ~N, ~O] vi1[~M, vi0[~N], ~O] n vi1[~M,N ′, ~O]

The size of the head has not changed, but the cut is closer to the end. The analogous case for
residuals is similar since the creation of a λ-abstraction temporarily blocks reductions; other
cases can be found in [11, App. D]. Finally, by the same argument as for Thm. 15 we obtain:

I Theorem 37 (Cut elimination). If LAL `∞ Γ→ e then LAL− `∞ Γ→ e.

One useful application of this cut-elimination result is the following alternative proof of the
upper bound result of Palka for star-continuous action lattices:

1 More precisely, the occurrences of x selected by the typing derivation of M .

CSL 2018

19:16 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

I Corollary 38 (Palka [29]). AL∗ is in Π0
1.

Proof. We say that a sequent Γ → e has a d-derivation, for d ∈ N, if there is a LAL−

derivation ending in Γ→ e for which each branch has length d, or otherwise terminates at a
correct initial sequent in length < d. To avoid validity issues, we assume that the left premiss
of every ∗-r2 step has nonempty antecedent, so that all preproofs become valid without
sacrificing provability (cf. Prop. 9). We define a Π0

1 predicate Prov(Γ→ e) as ∀d ∈ N.“there
is a d-derivation of Γ → e”. Notice that this is indeed Π0

1 since the size of a d-derivation
is exponentially bounded. Furthermore, if Prov(Γ → e) then, by the infinite pigeonhole
principle, we may recover an infinite proof of Γ → e, by inductively choosing premisses
resulting in larger derivations that nonetheless prefix infinitely many d-derivations. J

7 Conclusions

We presented a simple sequent system LKA that admits non-wellfounded proofs and showed
it to be sound and complete for Kleene algebra, KA, by consideration of the free model of
rational languages. We showed that its regular fragment is already complete, in the presence
of cut, by a direct simulation of KA. We also gave a cut-elimination result for LKA, obtaining
an alternative proof of completeness of its cut-free fragment.

We were able to generalise these arguments to an extended system LAL of Kleene algebras
with residuals and meets, resulting in a sound and complete cut-free system for the equational
theory of star-continuous action lattices, AL∗. Thanks to the subformula property for cut-free
proofs, this also gives us proof-theoretical characterisations of star-continuous action algebras
and Kleene lattices. This yields alternative proofs of several results of Palka [29], namely
conservativity of AL∗ over its fragments, as well as their membership in Π0

1.
Finally, we characterised the theory of all action lattices by just the regular proofs of

LAL. Whether the equational theory of action lattices is decidable remains open. It would be
interesting to see if techniques such as interpolants for our system LAL, or a characterisation
of the image of cut-elimination on cut-free proofs, might yield decidability.

It would be natural to consider systems which are commutative and/or contain arbitrary
fixed points, bringing the subject matter closer to that of [13]. We would however not be able
to arrive at a similar subformula property once fixed point formulae are allowed to contain
meets and residuals, since this property is essentially thanks to the presence of only ‘positive’
connectives in KA, from the point of view of focusing [2].

References

1 C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.
NetKAT: semantic foundations for networks. In Proc. POPL, pages 113–126. ACM, 2014.
doi:10.1145/2535838.2535862.

2 J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):297–347, 1992.

3 A. Angus and D. Kozen. Kleene algebra with tests and program schematology. Technical
Report TR2001-1844, CS Dpt., Cornell University, July 2001. URL: http://hdl.handle.
net/1813/5831.

4 Maurice Boffa. Une condition impliquant toutes les identités rationnelles. Informatique
Théorique et Applications, 29(6):515–518, 1995. URL: http://www.numdam.org/article/
ITA_1995__29_6_515_0.pdf.

http://dx.doi.org/10.1145/2535838.2535862
http://hdl.handle.net/1813/5831
http://hdl.handle.net/1813/5831
http://www.numdam.org/article/ITA_1995__29_6_515_0.pdf
http://www.numdam.org/article/ITA_1995__29_6_515_0.pdf

A. Das and D. Pous 19:17

5 Thomas Braibant and Damien Pous. An efficient Coq tactic for deciding Kleene algebras. In
Proc. 1st ITP, volume 6172 of Lecture Notes in Computer Science, pages 163–178. Springer
Verlag, 2010. doi:10.1007/978-3-642-14052-5_13.

6 Samuel R. Buss. An introduction to proof theory. Handbook of proof theory, 137:1–78,
1998.

7 Wojciech Buszkowski. On action logic: Equational theories of action algebras. J. Log.
Comput., 17(1):199–217, 2007. doi:10.1093/logcom/exl036.

8 Pierre Clairambault. Least and greatest fixpoints in game semantics. In Proc. FoSSaCS,
pages 16–31, 2009. doi:10.1007/978-3-642-00596-1_3.

9 J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
10 Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra. In Proc.

TABLEAUX, volume 10501 of Lecture Notes in Computer Science, pages 261–277. Springer
Verlag, 2017. doi:10.1007/978-3-319-66902-1_16.

11 Anupam Das and Damien Pous. Non-Wellfounded Proof Theory For
(Kleene+Action)(Algebras+Lattices). Full version of this extended abstract, 2018.
URL: https://hal.archives-ouvertes.fr/hal-01703942.

12 H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to math-
ematical induction. Theoretical Computer Science, 179(1-2):103–135, 1997. doi:10.1016/
S0304-3975(96)00154-5.

13 Amina Doumane, David Baelde, and Alexis Saurin. Infinitary proof theory: the mul-
tiplicative additive case. In CSL, volume 62 of LIPIcs, pages 42:1–42:17, 2016. doi:
10.4230/LIPIcs.CSL.2016.42.

14 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-
elimination. In Proc. CSL, volume 23 of LIPIcs, pages 248–262, 2013. doi:10.4230/
LIPIcs.CSL.2013.248.

15 Alain Frisch and Luca Cardelli. Greedy regular expression matching. In Proc. ICALP,
volume 3142 of Lecture Notes in Computer Science, pages 618–629. Springer Verlag, 2004.
doi:10.1007/978-3-540-27836-8_53.

16 N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse
at Substructural Logics. Elsevier, 2007.

17 J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
18 Fritz Henglein and Lasse Nielsen. Regular expression containment: coinductive axiomatiz-

ation and computational interpretation. In Proc. POPL 2011, pages 385–398. ACM, 2011.
doi:10.1145/1926385.1926429.

19 C. A. R. Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene
Algebra. In Proc. CONCUR, volume 5710 of Lecture Notes in Computer Science, pages
399–414. Springer Verlag, 2009. doi:10.1007/978-3-642-04081-8_27.

20 P. Jipsen. From semirings to residuated Kleene lattices. Studia Logica, 76(2):291–303, 2004.
doi:10.1023/B:STUD.0000032089.54776.63.

21 S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata
Studies, pages 3–41. Princeton University Press, 1956. URL: http://www.rand.org/pubs/
research_memoranda/2008/RM704.pdf.

22 D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log.,
1(1):60–76, 2000. doi:10.1145/343369.343378.

23 D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra
with tests. In Proc. CL2000, volume 1861 of Lecture Notes in Artificial Intelligence, pages
568–582. Springer Verlag, 2000. doi:10.1007/3-540-44957-4_38.

24 Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. In Proc. LICS, pages 214–225. IEEE, 1991. doi:10.1109/LICS.1991.151646.

CSL 2018

http://dx.doi.org/10.1007/978-3-642-14052-5_13
http://dx.doi.org/10.1093/logcom/exl036
http://dx.doi.org/10.1007/978-3-642-00596-1_3
http://dx.doi.org/10.1007/978-3-319-66902-1_16
https://hal.archives-ouvertes.fr/hal-01703942
http://dx.doi.org/10.1016/S0304-3975(96)00154-5
http://dx.doi.org/10.1016/S0304-3975(96)00154-5
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.248
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.248
http://dx.doi.org/10.1007/978-3-540-27836-8_53
http://dx.doi.org/10.1145/1926385.1926429
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1023/B:STUD.0000032089.54776.63
http://www.rand.org/pubs/research_memoranda/2008/RM704.pdf
http://www.rand.org/pubs/research_memoranda/2008/RM704.pdf
http://dx.doi.org/10.1145/343369.343378
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1109/LICS.1991.151646

19:18 Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices)

25 Dexter Kozen. On action algebras. In J. van Eijck and A. Visser, editors, Logic and
Information Flow, pages 78–88. MIT Press, 1994.

26 A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation algebra.
Journal of Algebraic Reasoning, 49(1):95–106, 2012. doi:10.1007/s10817-011-9223-4.

27 D. Krob. Complete systems of B-rational identities. Theoretical Computer Science,
89(2):207–343, 1991. doi:10.1016/0304-3975(91)90395-I.

28 Joachim Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65:154–170, 1958.

29 Ewa Palka. An infinitary sequent system for the equational theory of *-continuous ac-
tion lattices. Fundamenta Informaticae, pages 295–309, 2007. URL: http://iospress.
metapress.com/content/r5p53611826876j0/.

30 Damien Pous. Kleene Algebra with Tests and Coq tools for while programs. In Proc. ITP,
volume 7998 of Lecture Notes in Computer Science, pages 180–196. Springer Verlag, 2013.
doi:10.1007/978-3-642-39634-2_15.

31 V. Pratt. Action logic and pure induction. In Proc. JELIA, volume 478 of Lecture Notes
in Computer Science, pages 97–120. Springer Verlag, 1990. doi:10.1007/BFb0018436.

32 Volodimir Nikiforovych Redko. On defining relations for the algebra of regular events.
Ukrainskii Matematicheskii Zhurnal, 16:120–126, 1964.

33 Kurt Schütte. Proof Theory. Grundlehren der mathematischen Wissenschaften 225.
Springer Berlin Heidelberg, 1977. Translation of Beweistheorie, 1968.

34 Christian Wurm. Kleene algebras, regular languages and substructural logics. In Proc.
GandALF, EPTCS, pages 46–59, 2014. doi:10.4204/EPTCS.161.7.

http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1016/0304-3975(91)90395-I
http://iospress.metapress.com/content/r5p53611826876j0/
http://iospress.metapress.com/content/r5p53611826876j0/
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.1007/BFb0018436
http://dx.doi.org/10.4204/EPTCS.161.7

	Introduction
	Preliminaries on Kleene algebra and extensions
	The sequent system LKA
	Cut-elimination for LKA
	Programs from proofs
	Cut reduction

	Action algebras, Kleene lattices, and action lattices
	Cut-elimination in LAL
	Conclusions

