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—— Abstract

For many modern applications like e.g., contactless payment, and keyless systems, ensuring
physical proximity is a security goal of paramount importance. Formal methods have proved
their usefulness when analysing standard security protocols. However, existing results and tools
do not apply to e.g., distance bounding protocols that aims to ensure physical proximity between
two entities. This is due in particular to the fact that existing models do not represent in a
faithful way the locations of the participants, and the fact that transmission of messages takes
time.

In this paper, we propose several reduction results: when looking for an attack, it is actually
sufficient to consider a simple scenario involving at most four participants located at some specific
locations. These reduction results allow one to use verification tools (e.g. ProVerif, Tamarin)
developed for analysing more classical security properties. As an application, we analyse several
distance bounding protocols, as well as a contactless payment protocol.
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1 Introduction

The shrinking size of microprocessors and the ubiquity of wireless communication have led to
the proliferation of portable computing devices with novel security requirements. Whereas
traditional security protocols achieve their security goals relying solely on cryptographic
primitives like encryptions and hash functions, this is not the case anymore for many modern
applications like e.g., contactless payment. Actually, a typical attack against these devices is
the so-called relay attack, as demonstrated for EMV in [14]. Such an attack allows a malicious
participant to relay communications between a victim’s card (possibly inside a wallet) and a
genuine terminal so that the victim’s card, even if it is far away from the terminal, will pay the
transaction. Due to the contactless nature of most of our communications, obtaining reliable
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information regarding physical proximity is of paramount importance and specific protocols,
namely distance bounding protocols, were proposed to achieve this specific goal [11, 26]. They
typically take into account the round trip time of messages and the transmission velocity to
infer an upper bound of the distance between two participants.

In the context of standard security protocols, such as key establishment protocols, formal
methods have proved their usefulness for providing security guarantees or detecting attacks.
The purpose of formal verification is to provide rigorous frameworks and techniques to analyse
protocols and find their flaws. For example, a flaw has been discovered in the Single-Sign-On
protocol used e.g., by Google Apps [2]. This flaw has been found when analysing the protocol
using formal symbolic methods, abstracting messages by a term algebra and using the
Avantssar validation platform [3]. The techniques used in symbolic models have become
mature and several verification tools are nowadays available, e.g., ProVerif [8], Tamarin [29].

However, protocols whose security relies on constraints from the physical world fall outside
the scope of traditional symbolic models that are based on the omniscient attacker who
controls the entire network, and who can for instance relay messages without introducing
any delay. Following [7, 24], and more recently [27], our aim is to bridge the gap between
informal approaches currently used to analyse these protocols and the formal approaches
already used for analysing traditional security protocols.

Our contributions. To model timed protocols as well as the notion of physical proximity,
we first propose a calculus in which communications are subject to physical restrictions.
These constraints apply to honest agents and attackers. An attacker can only intercept
messages at his location, and attackers can not instantaneously exchange their knowledge:
transmitting messages takes time. Moreover each agent has clocks to be able to perform
time measurements. Then, our main contribution is to provide reduction results in the spirit
of the one obtained in [15] for traditional protocols: if there is an attack, then there is one
considering only few participants at some specific locations. As it is usually done in distance
bounding protocols, we consider different types of attacks : mafia fraud and hijacking attack.
A mafia fraud is an attack in which an attacker tries to convince the verifier that an honest
prover is close to him whereas he is far away. The notion of distance hijacking attack has
been introduced more recently [17]. In such a scenario, a dishonest prover located far away
succeeds in convincing a verifier that they are actually close, and he may only exploit the
presence of honest participants in the neighboorhood to achieve his goal. Our results slightly
differ depending on the type of attacks we consider and allow one to reduce the number of
topologies to be considered from infinitely many to only one (involving at most 4 participants
including the malicious ones). They hold in a rather general setting: we consider arbitrary
cryptographic primitives as soon as they can be expressed using rewriting rules modulo an
equational theory.

An interesting consequence of our reduction results is that it allows one to use techniques
and tools developed so far for traditional security protocols. As an application, we analyse
several distance bounding protocols (relying on the automatic ProVerif tool), and a contactless
payment protocol [14]. We confirmed some known vulnerabilities in a number of protocols,
and discovered an unreported attack on the SPADE protocol [12]. All files related to our
case studies as well as a full version of this paper are available [18, 19].

Related work. Recent efforts have been made on proving security of distance bounding
protocols. For instance, in 2011, Avoine et al. [5] proposed a framework in which many
protocols have been analysed and compared in a unified manner [4]. A rather general model
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has been proposed by Boureanu et al. in [10]. This computational model captures all the
classical types of attacks and generalises them enabling attackers to interact with many
provers and verifiers. These models are very different from ours. Indeed, we consider here a
formal symbolic model in which messages are no longer bitstrings but are abstracted away
by terms. Some recent attempts have been made to design formal symbolic model suitable
to analyse distance bounding protocols: e.g., a model based on multiset rewriting rules has
been proposed in [7] and [27], another one based on strand spaces is available in [31]. Even
if our model shares some similarities with those mentioned above, we design a new one based
on the applied pi calculus [1] in order to connect our theoretical results with the ProVerif
verification tool that we ultimately use to analyse protocols.

Our main reduction result follows the spirit of [16] where it is shown that it is sufficient
to consider five specific topologies when analysing routing protocols. To our knowledge,
the only work proposing a reduction result suitable for distance bounding protocols is [31]:
they show that n attackers are sufficient when analysing a configuration involving at most n
honest participants. However, an arbitrary number of participants is still needed when
looking for an attack. Moreover, due to the way attackers are located (close to each honest
participant), such a result can not be applied to analyse distance hijacking scenarios for
which the presence of an attacker in the neighbourhood of the verifier is disallowed. In
contrast, our result reduces to only one topology, even when considering an arbitrary number
of honest participants, and it applies to the scenario mentioned above. In particular, this
allows us to leverage existing verification tools such as ProVerif and Tamarin. To do that we
get some inspiration from [14]. Our contributions improve upon their work by providing a
strong theoretical foundation to their idea.

Recently, a methodology to analyse distance bounding protocols within Tamarin has been
proposed [27]. They do not try to define the different class of attacks as usually considered
in distance bounding protocols. Instead, they provide a generic definition of secure distance
bounding: when an honest verifier successfully ends a session with a prover P, then he has
correctly computed an upper bound on his distance to either P (if P is honest) or to some
other dishonest participant P’ (if P is dishonest). The security analysis is then performed
w.r.t. such a generic security property. This prevents them to draw meaningful conclusions
on protocols such as Paysafe which is not supposed to resist to some particular classes of
attacks.

2 Modelling timed security protocols

As usual in symbolic models, we rely on a term algebra for modelling messages exchanged by
the participants, and on a process algebra to represent the protocols themselves.

2.1 Messages as terms

We consider two infinite and disjoint sets of names: a set N of basic names used to represent
keys, nonces, and a set A of agent names used to represent agents identities. We consider
an infinite set X of constant symbols that are used e.g., to represent nonces drawn by the

attacker. We also consider two infinite and disjoint sets of wvariables, denoted X and W.

Variables in X refer to unknown parts of messages expected by participants while those in W,
namely handles, are used to store messages learnt by the attacker.

We assume a signature ¥, i.e. a set of function symbols together with their arity. The
elements of ¥ are split into constructor and destructor symbols, i.e. ¥ = 3 WX, We denote
Yt =3 WX, and XF = X, W3, Given a signature F, and a set of atomic data A, we
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denote by T (F,A) the set of terms built from atomic data A by applying function symbols
in F. A constructor term is a term in T (X1, N W AW X). We denote vars(u) the set of
variables that occur in a term u. A message is a constructor term u that is ground, i.e. such
that vars(u) = 0. The application of a substitution o to a term w is written uo. We denote
dom(c) its domain, and img(c) its émage. The positions of a term are defined as usual.

» Example 1. We consider the following signature Yo, = 3. W Xg4:
Y. = {commit, sign, sk, vk, ok, (), &, 0}, Y4 = {open, getmsg, check, proj, , proj,, eq}.

The symbols open and commit (arity 2) represent a commitment scheme, whereas the
symbols sign, check (arity 2), getmsg, sk, and vk (arity 1) are used to model signature. Pairing
and projections are modelled using ( ) (arity 2), and proj; with ¢ € {1,2} (arity 1). The
symbols @ (arity 2) and the constant 0 model the exclusive-or operator. We consider the
symbol eq to model equality test and ok a specific constant.

Following the approach developed in [9], constructor terms are subject to an equational
theory. This allows one to model the algebraic properties of the primitives. It consists of a
finite set of equations of the form u = v where u,v € T (2., X), and induces an equivalence
relation =g over constructor terms. Formally, =g is the smallest congruence on constructor
terms, which contains v = v in E, and that is closed under substitutions of terms for variables.

» Example 2. To reflect the algebraic properties of the exclusive-or operator, we consider
the equational theory E,o generated by the following equations:

(zhy) Bz=2(yd2) rOYy=ydx r®0==2x @z =0.

We also give a meaning to destructor symbols through a set of rewriting rules of the form
g(t1,...,tn) — t where g € X4, and ¢,ty,...,t, € T (B¢, X). A term u can be rewritten in v if
there is a position p in u, and a rewriting rule g(¢1, ..., t,) — t such that u|, = g(t1,...,t,)0
for some substitution 6. Moreover, we assume that t16,...,t,0 as well as tf are messages.
We only consider sets of rewriting rules that yield a convergent rewriting system, and we
denote u| the normal form of a term u. For modelling purposes, we split the signature
into two parts, Yoy and Yy, and we denote Z;‘ub = Ypub U Xo. An attacker builds messages
by applying public symbols to terms he knows and that are available through handles in W.
Formally, a computation done by the attacker is a recipe, i.e. a term in T(E;“ub, W).

» Example 3. Among symbols in ¥, only sk is in ¥,. The properties of the symbols
in X4 are reflected through the following rewriting rules:

check(sign(z, sk(y)),vk(y)) — ok getmsg(sign(x,sk(y))) — x  proj; ((z1,x2)) — 1
eq(z,x) — ok  open(commit(z,y),y) = = proj,({z1,z2)) — xa.

2.2 Protocols as processes

Protocols are modelled through processes using the following grammar:
PQ:= 0 | in(z).P | in<'(z).P | letz=wvinP
| newn.P |  out(u).P | reset.P
wherez € X, ne N, u e T(EF, XUNWA),veT(EH,YUNWA) and t € R,.
Most of these constructions are rather standard. As usual, 0 denotes the empty process
that does nothing, and the new instruction is used to model fresh name generation. Then,
we have standard constructions to model inputs and outputs. We may note the special
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construction in<*(z) that combines an input with a constraint on the local clock of the
process executing this action. This construction is in contrast with the approach proposed
in [27] where input actions are not subject to any timing constraint, and are therefore
always possible provided that enough time has elapsed. From this point of view, our model
represents the reality more faithfully since an agent will not proceed an input arriving later
than expected. The reset instruction will reset the local clock of the process. Finally, the
process let x = v in P tries to evaluate v, the process P is executed in case of success, and
the process is blocked otherwise. Note that the usual conditional operator can be modelled
as follows: let x = eq(u,v) in P.

We write fu(P) (resp. fn(P)) for the set of free variables (resp. names) occurring in P, i.e.

the set of variables (resp. names) that are not in the scope of an in or a let (resp. a new).

We consider parametrised processes, denoted P(zo, ..., 2,), where z,...,z, are variables
from a special set Z (disjoint from X and W). Intuitively, these variables will be instantiated
by agent names, and zy corresponds to the name of the agent that executes the process. A
role R = P(z,...,2,) is a parametrised process that does not contain any agent name, and
such that fu(R) C {z0,...,2n}. A protocol is a set of roles.

» Example 4. As a running example, we consider the signature-based Brands and Chaum
distance bounding protocol [11] that is informally described below.

1.P =V : commit(m,k)

22.V—-P: n
3. P>V: n®dm
4. P—-V: k

5. P =V : sign((n,n®m),sk(P)).

The prover P generates a nonce m and a key k, and sends a commitment to the verifier V.

The verifier V' generates his own nonce n and initiates the time measurement phase, also
called the rapid phase. P has to provide an answer as quickly as possible since V' will reject
any answer arriving too late (a long response time does not give him any guarantee regarding
its proximity with the prover). After this phase, P sends a means to open the commitment,
as well as a signature on the values exchanged during the rapid phase. When a verifier
ends the protocol, the prover with whom he is communicating should be located in his
neighbourhood. In our setting, this 2-party protocol is modelled through the two following
parametrised processes: V(zy, zp) represents the role of the verifier played by agent zy with
agent zp whereas P(zp) represents the role of the prover played by agent z/p.

V(zv,zp) := P(zp) ==
in(y.).new n. new m.new k.
reset.out(n).in<?*%(y,). out(commit(m, k)).
in(yk)'in(ysign)~ in(zy,).
let Yy, = open(ye, yx) in out(z, ®m).
let Ycheck = check(Ysign, vk(zp)) in out (k).
let Yeq = €q((n, N B Ym ), getmsg(Ysign)) in 0. out(sign({zn, z, & m),sk(zp))).0

2.3 Semantics

The operational semantics is defined using a relation over configurations, and is parametrised
by a topology reflecting the fact that interactions between agents depend on their location.

» Definition 5. A topology is a tuple 7o = (Ao, Mo, Locg, vg, po) where:
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Ay C A is the finite set of agents composing the system;

My C Ap is the subset of agents that are dishonest;

Locy : Ao — R3 is a mapping defining the position of each agent in space.

po and vy are two agents in Ag that represent respectively the prover and the verifier for
which we analyse the security of the protocol.

In our model, the distance between two agents is expressed by the time it takes for a
message to travel from one to another, Disty, : Ag x Ag — R, defined as follows:

|[Loco(a) — Loco(b) |
Co

Distr, (a,b) = for any a,b € Ag

with ||| : R®> — R the euclidian norm and ¢y the transmission speed. We suppose, from
now on, that cg is a constant for all agents, and thus an agent a can recover, at time ¢, any
message emitted by any other agent b before t — Distr; (a, b).

Note that our model is not restricted to a single dishonest node. In particular, our results
apply to the case of several compromised nodes that communicate (and therefore share their
knowledge). However, communication is subject to physical constraints. This results in a
distributed attacker with restricted, but more realistic, communication capabilities than
those of the traditional omniscient Dolev-Yao attacker [21].

Our semantics is given by a transition system over configurations that manipulates
extended processes, i.e. expressions of the form | P, ]| Z" with a € A, P, a process such that
fu(P,) = 0, and t, € Ry. Intuitively, P, describes the actions of agent a, and ¢, his local
clock. Messages that have been outputted so far are stored into a frame (introduced in [1])

extended to keep track of the time at which the message has been outputted and by whom.

» Definition 6. Given a topology To = (Ao, Mo, Locy, vg, po), a configuration K over Ty is
a tuple (P; ®;t), where:

P is a multiset of extended process | P)'* with a € Ao;
D = {w LESEN ULy, Wp Gnstn, un} is an extended frame, i.e. a substitution such that

w; EW,u; € T(EFNWA), a; € Ag and t; € Ry for 1 < i < n;
t € R, is the global time of the system.
We write |®] Z for the restriction of ® to the agent a at time ¢, i.e. :

a;,t; aq,t;

L@JZ:{wi—>ui|(wi—>ui)6¢andai:aandti§t}.

» Example 7. Continuing Example 4, we may consider the topology 7o = (Ag, Mo, Locg, vy,
po) depicted below where Ay = {po, vo,p}, and My = {po}. The precise location of each
agent is not relevant, only the distance between them matters. Here Distr, (p, vo) < to whereas
Dist7, (po, vo) > to-

“
/

A typical initial configuration is:

Ko = ([P(1)]°® [V(vo,p0)] %, s {wr 2% sk(po)};0)
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TIM (P; @;t) — 7, (Shift(P,d); ®;t + 0) with 6 >0

OUT  (lout(u).P|')wP;d;t) L= (1P]" wP;dw {w 25 ust)

with w € W fresh
LET (|let # =w in P|' e wP;&;t) 25p (| P{a — ul}|l* wP; d;t)
when u) € T(ZF, N @A)
NEW  (|new n.P|l* W P;®;t) “Dog (| P{n— n'}]l* WwP;®;t) with n’ € A fresh
RST (|reset.P|l* wP;d;t) “Dop ([P0 P;d;t)

a,in* (u)

IN (Lin*(@).P| 1 W P; ®51) 7 ([P{a o u} ) w6 P; 1)

when there exist b € Ag and ¢, € Ry such that t, < ¢ — Distr, (b, a) and:
if b € Ag ~ Mg then u € img(|®|*);
if b € Mg then u = R®| for some recipe R such that for all w € vars(R) there exists
¢ € Ay such that w € dom( |[® |~ Pst7(eP)y

Moreover, in case x is < t,4 for some t,, we assume in addition that ¢, < ¢,.

Figure 1 Semantics of our calculus.

where p is playing the prover’s role, and vy the verifier’s role with a dishonest agent py. The
signature key of this dishonest participant is given to the attacker through w;. A more
realistic configuration would include other instances of these two roles and will give more
knowledge to the attacker. This simple configuration is sufficient to present an attack.

Given a topology To = (Ao, Mo, Locg, vg,pp), the semantics of processes is formally
defined by the rules given in Figure 1.

The TIM rule allows time to elapse, meaning that the global clock as well as the local
clocks will be shifted by §:

Shift(P,d) = |4  Shift(|P]i*,d) and Shift(|P],8) = [P] it
LP)ineP

The RST rule allows an agent to reset the local clock of the process. The other rules are
rather standard. The IN rule allows an agent a to evolve when receiving a message: the
received message has necessarily been forged and sent at time ¢, by some agent b who was in
possession of all the necessary information at that time.

We sometimes simply write —; instead of ﬂ)%- The relation —7% is the reflexive and

transitive closure of —7;, and we often write t—r>7—0 to emphasise the sequence of labels tr
that has been used during this execution.

» Example 8. Continuing Example 7, we may consider the following execution:

p,T p,T p,out(commit(m’,k")) vg,in(commit(m’, k")) v0,T

vo,T
Ko —7—1 To 7o To To 7o K1

where K1 = (| Py ff WA 20 ;i {wq P00, sk(po), wa LN commit(m/, k") }; dp). The two first
arrows correspond to applications of the rule NEW to generate m’ and &/, the one without
label is an instance of the TIM rule, and the two last arrows correspond respectively to the
rule NEW and the rule RST. We have that:

Py = in(z,).out(z, & m’).out(k').out(sign((x,, z, & m'),sk(p))); and

Vi = out(n').in<?*% (yg).in(yx).in(Ysign)-1et y:m = open(commit(m’, k'), yx) in...

29:7
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This models the beginning of a normal execution between p and vy. The message outputted
at location p is received at location vg. The instance of the rule TIM in between (here with
dp = Distr; (p, vg)) allows the message to reach location vg.

3 Modelling physical proximity

A distance bounding protocol is a protocol in which a party (the verifier) is assured of the
identity of another party (the prover), as well as the fact that this prover is located in his
neighbourhood. Before to consider the type of frauds we are interested in, we first introduce
the notion of valid initial configuration that aims to represent the scenarios that have to be
analysed once the topology is fixed.

3.1 Valid initial configurations

We consider a topology To = (Ag, Mo, Locy, v, po), & protocol Pyrox i.€. a set of roles), and
we assume that the initial knowledge of dishonest participants is given through a template
Ty, i.e. a set of terms in T (X}, Z). Using this template Zy, and considering a set of agents
Ag, we derive the initial knowledge of agent a € Ag as follows:

Knows(Zo, a, Ag) = {(Uo{zo — a})o ground | "0 € Zo and }

o a substitution such that img(c) C Ay

For the sake of simplicity, we extend our calculus with a special action of the form
end(zp, z1) and we assume that configurations representing instances of distance bounding
protocols contain a process (typically a session of the verifier) that ends with it. When
analysing physical proximity, we consider any valid initial configuration as defined below:

» Definition 9. Let Pyox be a protocol, Vy(zo,21) be a parametrised role containing the

special action end(zo, 21), Zp be a template, and Ty = (Ao, My, Loco, vo,po) be a topology.

A configuration K = (P; ®;t) is a valid initial configuration for the protocol Pyox and Vo

w.r.t. To and Zg if:

1. P = |Vo(vo,po)] f:o WP’ for some ¢’ and for each |P’]%s’ € P’ there exists P(z0,.. ., 2;) €
Poroxs and az, ..., ar € Ag such that P/ = P(d/,aq,...,ak).

2. img(|®]") = Knows(Zy, a, Ag) when a € My, and img( ||’

.) = 0 otherwise.

The first condition says that we consider initial configurations made up of instances of
the roles of the protocols, and we only consider roles executed by agents located at the right
place, i.e. the agent a’ who executes the role must be the first argument of the parametrised
process. The second condition allows one to give some initial knowledge to each malicious
node. We may note that we do not give any constraint regarding time. It is indeed important
that all the possible initial configurations are analysed before declaring a protocol secure.

» Example 10. Going back to Example 7 and considering the template Zy = {sk(zg)}, we
have that Ky is a valid initial configuration.

3.2 Mafia fraud and distance hijacking

A mafia fraud [20] is an attack in which generally three agents are involved: a verifier,
an honest prover located outside the neighbourhood of the verifier, and an attacker. We
consider here its general version which may involve an arbitrary number of participants. The



A. Debant, S. Delaune, and C. Wiedling

Vo Po

p
(neighbourhood of vg) (far away)

H / !/
commit(m’, k') new m’, k'

Figure 2 Distance hijacking attack on the Brands and Chaum’s protocol.

aim of the attacker is to convince the verifier that the honest prover is actually close to it.

We denote by Cye the set of all the mafia fraud topologies, i.e. any topology 7 such that
T = (./4()7./\/107 LOCo,’U(hpO) with vg, pg € Ag ~ M.

A distance hijacking fraud [17] is an attack in which a dishonest prover located far
away succeeds in convincing a verifier that he is actually close to him. The dishonest
prover may exploit honest entities located in the neighbourhood of the verifier. We denote
by Cpy the set of all the distance hijacking topologies, i.e. any topology 7 such that
T = (Ag, Mo, Locg, vo,po) with pg € Mg, vg € Ag ~ My, and Distr, (vg,a) >ty for any
a € M.

» Definition 11. Let Pyox be a protocol, Vy(zo, 21) be a parametrised role containing the
special event end(zp, z1), and Zy be a template. We say that Ppox admits a mafia fraud
attack (resp. distance hijacking attack) w.r.t. to-proximity if there exist 7 € Cuvr (resp. Cpn),
a valid initial configuration K for Pyox and Vy w.r.t. 7 and Zy such that:

K —% (lend(a1,as)| " & P; ®;t) with Distr(a1,as) > to.
We also say that K admits an attack w.r.t. tp-proximity in 7.

In other words, there is an attack if starting from an initial valid configuration, the verifier
a1 successfully ends a session with an agent as who is far away.

» Example 12. As reported in [17], the Brands and Chaum protocol is actually vulnerable
to a distance hijacking attack. This attack is informally depicted in Figure 2. A honest
prover who is in the neightbouhood of a legitimate verifier vy starts a session. At the end of
the session, the dishonest prover py who is far away hijacks the honest prover by sending
a signature of the transcript of the rapid phase with his own signature key, namley sk(po).
Upon reception of this signature, the verifier vy will believe that he played the session with py,
and will wrongly conclude that pg is in his neighbourhood. Note that, the rapid phase (plain
lines) can only be done by a prover who is in the neighbourhood of vy due to the guarded
input that occurs in the verifer’s role played by vy.

We explain below how this attack is captured in our model. Continuing Example 7, we
consider the configuration K below:

Ky = (|P(0)] 0w [V'(vo,p0)] %, s fwn 222 sk(po)}; 0)

where V/(zy, zp) is V(zv, zp) in which the null process has been replaced by end(zy, zp).
The configuration K|, can still follow the execution of Example 8:

K =( LPljf;’ W V)5 {w 200, sk(po), wa 2% commit(m’, k') }; 6o)

29:9
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(O malicious node (v0) o (o) to @
(O honest node @ @ @
Figure 3 Topologies T2 (mafia fraud), and 733 (distance hijacking fraud).

where V{ is V; in which the occurrence of the null process has been replaced by end(vg, po).
Now, we can pursue this execution as follows:

vg,out(n’) p,in(n’)
K{ — T T T,
pyout(n’®m’) p,out(k’) 00,in<2Xt0 (n'@m’) vg,in(k")
To To ™ To 7o 7o
vo,in(sign({n’,n'®&m’) sk(po))) 380+20 280+25;
—T 7o ([P2]," 70 W end(vo, po)] 4, " s @5 360 + 26).-

The two first lines correspond to a normal execution of the protocol between vy and p. Note
that, on each line, we need an instance of the TIM rule with §y = Distr, (vo, p) = Distr, (p, vo)
to allow the sent message to reach its destination and the guarded input passes because
p is close to vg. The last transition does not follow the normal execution of the protocol.
Actually, the dishonest agent pg is responsible of this input. He built this message from
the messages n’ and n’ @ m’ that have been sent on the network, and the key sk(pg) that
is part of his initial knowledge. Note that he has to wait the necessary amount of time to
allow these messages to reach him (e.g. ), = Distr; (vo, po)), and some time is needed for the
forged message to reach vy (actually &) = Distr, (vo, po)). Therefore, the first rule of the last
line is an instance of the TIM rule during which a delay of 24} has elapsed.

4 Reducing the topology

Our reduction results allow one to analyse the security of a protocol (w.r.t. tp-proximity)
considering only a specific and rather simple topology (see Figure 3) without missing any
attacks.

4.1 Mafia fraud

A simple idea to reduce towards the topology m"F would be to move each node n in the
neighbourhood of vy at the same location as vy, and to keep the other ones at distance (i.e.
location of pp). However, such a reduction will lengthen the distance between n and py,
and the resulting execution could not be feasible anymore. Since dishonest participants are
allowed in the neighbourhood of vy, getting inspiration from [31], we consider a dishonest
participant right next to each honest participant. Such a dishonest participant is ideally
located to forge and send messages that will be received by honest agents close to him.

However, contrary to the result provided in [31], our goal is not only to reduce the
number of dishonest agents but also the number of honest agents that are involved in an
attack trace. In order to ensure that moving (and reducing) the honest agents will lead to a
feasible execution, we need an extra assumption. We require that each role of the protocol is
executable. This is a reasonable assumption that only put weird protocols aside. This allows
us to discard any role executed by a malicious participant. Intuitively, all these operations
will be done directly by the attacker.

» Definition 13. Given a template Zo = {uy,...,u;}, we say that a parametrised role
P(zy, ..., zn) is Iy-executable if fo(P) C {zo, ..., 2n}, n(P) = 0 and for any term u (resp. v)
occurring in an out or a let construction, there exists a recipe R € T(E;‘ub, {wi,...,wg} &

N W X) such that u = Rol (resp. vl = Rol) where o = {wy — uy,...,wg — ug}.
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A protocol P is Zp-executable if each role of P is Zy-executable.

» Example 14. Going back to our running example given in Example 4. We have that
V (2o, 21) is {21 }-executable, and P(zg) is {sk(zg)}-executable. Thus, the protocol made of
these two roles is {sk(zp), z1 }-executable.

We are now able to state our main reduction result regarding mafia fraud.

» Theorem 15. Let Ty be a template, Poyox be a protocol Ly-executable, and Vo(zo, z1) be a
parametrised role containing the special event end(zp, z1). We have that Pyox admits a mafia
fraud attack w.r.t. to-proximity, if and only if, there is an attack against to-proximity in the

topology Tyr-

Proof. Since moF € Cmr, we have that the existence of an attack in m‘]F is a mafia fraud.
Regarding the other direction, we present the main steps of the proof below. A detailed
proof is available in [19].

We consider an attack trace in 7 = (Ag, Mo, Locy, vo, po) € Cme.
K() —)f;- ( Lend(vo,po)j ];1:) ] 7), (I); t) Wlth DiStT(’Uo,po) Z t().

We proceed in three main steps:

1. We reduce the number of active agents (those that are actually executing a process) - we
do this for honest and malicious agents. We transform honest agent (but vy and pg) into
malicious ones. This intuitively gives more power to the attacker, and malicious agents
in the neighborhood of vy are allowed in a mafia fraud scenario. Then, relying on our
executability condition, we discard processes executed by malicious agents. These actions
can actually be mimicked by an attacker located at the same place.

2. In the spirit of [31], we reduce the number of attackers by placing them ideally (one close
to each honest agent). Since we have removed all honest agents but two, we obtain a
topology with only two dishonest agents.

3. To conclude, we reduce the knowledge showing that we can project all the dishonest
agents that are located in py on p; and all the dishonest agents that are located in vy
on v;. |

4.2 Distance hijacking attack

First, we may note that the reduction we did in case of mafia fraud is not possible any-
more. There is no hope to reduce the number of attackers by placing them close to each
honest participant since the addition of a malicious node in the neighbourhood of vq is not
authorised when considering distance hijacking. Actually, adding such a dishonest node in
the neighbourhood of vy will always introduce a false attack since in our model dishonest
participants share their knowledge. Therefore, this dishonest participant would be able to
impersonate the dishonest prover py (who is actually far away).

Given a process P, we denote P the process obtained from P by removing reset
instructions, and replacing all the occurrences of in<*(x) by in(z). This transformation will
be applied on the protocol but not on the role Vj for which these instructions play a crucial
role. Our reduction result ensures that no distance hijacking attack will be missed if we just
analyse the transformed protocol in topology 7Tpp.
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» Theorem 16. Let Zy be a template, Poox be a protocol, to € Ry, and Vy(z0,21) be a
parametrised role obtained using the following grammar:

P,Q := end(z,21) | in(z).P | letz=wvin P
| newn.P | out(u).P | reset.out(v').in<(z).P

where x € X, n € N, u,u’ € T(ZFH, X UN U{20,21}), v € T(ET, X UN U {20,21}) and
t <2 xty. If Porox admits a distance hijacking attack w.r.t. to-prozimity, then Pprox admils
an attack against to-proximity in the topology Tpp-

In order to establish this result, we will first transform the initial attack trace into an
"attack” trace in an untimed model. This model (with no timing constraints to fullfill) is
more suitable to reorder some actions in the trace. We will show in a second step how to
come back in the original timed model. We consider the untimed configuration associated to
a configuration K = (P; ®;t). Formally, we have untimed(K) = (P’; ') with:

P ={|P],||P)t P}, and & = {w % ujw 25 u € ®}.

Then, we consider a relazed semantics over untimed configurations: K %T K’ if there exist
Ky and K}, such that Ky —% K (for some rule other than the TIM rule), and for which
K = untimed(Kj) (resp. K’ = untimed(K})).

Under the same hypotheses as those stated in Theorem 16, we establish a result that
allows one to “clean” an attack trace by pushing instructions (before or after) outside the
rapid phase delimited by a reset and its following guarded input in. In the resulting trace,
the only remaining actions in the rapid phase are those performed by agents who are close
to vg.

» Proposition 17. Let Ky be a valid initial configuration for Puox and Vo w.r.t. a topology

T = (Ao, Mo, Loc,vg,po) and Zy. If Ky t—r>7— K, then there exists an execution K X K]
such that K| = untimed(K;) fori € {0,1}.

. tr’
Moreover, for any sub-execution of K}~ K/ of the form

vo,T vo,in<*(u)

(|reset.P|, WP;Preser) > (| P],, WP; Preser) A K, K,

where tr{, only contains actions (a, ) with a € {7, out(u),in(u)}, we have that:
2 x Disty(vg,a) < t for any (a, ) € trg;
for any (a,in*(v)) occurring in try.(vo,in<*(u)), the agent b responsible of the output
and the recipe R (as defined in Figure 1) are such that either 2 x Disty(vg,b) < t, or
vars(R) C dom(Preset)-

Relying on Proposition 17, we are then able to provide a sketch of proof for Theorem 16
(the full and detailed proof is available in [19]).

1. We start by removing reset instructions and by transforming any guarded input in<
(but those in V) into simple inputs. The resulting trace is still an attack trace w.r.t.
Pprox-

2. Then, we apply Proposition 17 in order to obtain an attack trace in the relaxed semantics.
We will exploit the extra conditions given by Proposition 17 in order to lift the trace in
the timed model at step 4.




A. Debant, S. Delaune, and C. Wiedling

(v)  to  (pun)
O honest node ‘t—o’

(O malicious node

Figure 4 Reduced topologies for mafia fraud and distance hijacking when agents are not allowed
to execute both roles.

3. We now consider another topology 7" with two locations (as 75%) and such that agents
close to vy are now located with vy, and those that are far away from vy in 7 are now
located with pg. This execution is still a valid trace in 7’ since we consider the relaxed
semantics.

4. Then, to lift this execution trace into our timed model, the basic idea is to wait enough
time before a reset instruction to allow messages to be received by all the participants
before starting the rapid phase.

5. To conclude, as in the previous attack scenarios, we reduce the initial knowledge and the
number of agents by applying a renaming on agent names.

» Example 18. The hijacking attack briefly described in Example 12 on the topology
To € Cpn can be retrieved on the topology 75}, starting with the valid initial configuration:

Kinie = (|P(v0)] %, |V (v0,p0)] 2, 5 {w1 2% sk(po)};0)

We may note that in the reduced topology the role of the prover has to be played by vg
who is the only agent in the neighbourhood of himself. Such a configuration is indeed a
valid initial configuration according to our definition. Actually, our reduction results still
apply considering a model in which a same agent is not allowed to execute both roles. The
resulting reduced topologies are depicted in Figure 4. Basically, we have to duplicate agents
to ensure that both kinds of roles (verifier and prover) are available at each location.

5 Case studies using ProVerif

We have reduced the topology but we still have to take it into account when analysing
the protocol preventing us from using automatic verification tools dedicated to traditional
security protocols. In this section, we will explain how to get rid of the resulting topology
and obtain interesting results on timed protocols relying on the ProVerif verification tool.

5.1 ProVerif in a nutshell

We consider a subset of the ProVerif calculus defined as follows:
P:=0| in(z).P | let 2 =v in P | new n.P | out(u).P | i: P ||P

wherez e X, ne N, u e TEHXUNWA),ve T(ET, XYWNWA) and i € N.

The semantics is similar to the one introduced earlier, and formally defined through a
relation, denoted =, over configurations (only partially described below) . A configuration is
a tuple (P;¢;i) where P is a multiset of processes (as given by the grammar), ¢ is a frame
as usual (with no decoration on the arrow), and 7 € N is an integer that indicates the current
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phase. Intuitively, the process |P executes P an arbitrary number of times (in parallel), and
only processes in the current phase are allowed to evolve. We often write P instead of 0 : P.

(i :in(x).P W P; ;1) M (¢ : P{x — Rpl} WP;¢;i) for some recipe R
(i:'PWP;p;i) = (i:PW(i:!P)WP;¢;i)

phase i’

(P; ;i) —— (P;¢;4) with i > 4.

5.2 Our transformation

Given a topology T (typically one in Figure 3), a protocol Py, a role Vj, and a template
7o, we build a configuration (P;¢;0) on which the security analysis could be done using
ProVerif. In such a configuration, P is a multiset of (non-extended) processes with phases,
and ¢ is a (non extended) frame. From now on, we assume that Vj(vg, po) only contains one
block of the form reset.out(n).in<!(x), i.e. it is of the form:

block; . reset . out(n) . in<'(x) . blocky . end(vg, po)

where block; is a sequence of actions (only simple inputs, outputs, let, and new instructions
are allowed). The main idea is to use phase 1 to represent the rapid phase. Such a phase
starts when Vjy performs its reset instruction, and ends when V, performs its in<!(z)
instruction. During this rapid phase, only participants that are close enough to V; can
manipulate messages outputted in this rapid phase. The other ones are intuitively too far.
Therefore, we mainly consider two transformations, namely F< and F2, whose purposes are
to transform a parametrised role of our process algebra given in Section 2.2 (with no reset
instruction and no guarded input) into a process in the ProVerif calculus.

Transformation F<: this transformation introduces the phase instructions with ¢ = 0, 1

and 2 considering all the possible ways of splitting the role into three phases (0, 1, and 2).

Each phase instruction is placed before an in instruction. Such a slicing is actually

sufficient for our purposes.

Transformation FZ: this transformation does the same but we forbid the use of the

instruction phase 1, jumping directly from phase 0 to phase 2.

The configuration, denoted F (T, Pproxs Vo, Zo, to), is the tuple (P;¢;0) where ¢ is such
that img(¢) = U, rq, Knows(Zo, a, Ag), and P contains:
blocky . 1:out(m) . in(z) . 2 : blocky . end(vg, po);

'R(ao, -, an) when R(zo, .., 2n) € F<(Pprox)s G0, --, an € Ao, Distr(vg, ag) < to;
IR(ag, ., an) when R(zo, .., 2n) € F=(Pprox), Q0s - an € Ao, Distr(vo,ag) > to.

We then establish the following result that justifies the transformation presented above.

» Proposition 19. Let T = (Ao, Mo, Locy, vo, po) be a topology, Puox @ protocol, to € Ry,
Ty a template, and Vo(z0, 21) a parametrised process of the form:

block; . reset . out(n) . in<*(x) . blocky . end(zq, 21) with t < 2 X tg

Let Ky be a valid initial configuration for the protocol Poox and Vo w.r.t. T and Iy. If Ko
admits an attack w.r.t. to-proximity in T, then we have that:

F(To, Poroxs Vo, o, to) = ({2 : end(vo, po)} © P; ¢; 2).

Moreover, in case there is no a € My such that Disty, (a,vy) < to, we have that for any
in(u) occurring in tr during phase 1, the underlying recipe R is either of the form w, or only
uses handles ouputted in phase 0.

This result allows us to turn any mafia attack attack or distance hijacking attack into an
attack trace regarding the reachability of the event end.
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Table 1 Results on our case studies (x: attack found, v': proved secure, n.a.: not applicable).

Protocols MF DH || Protocols MF DH
Brands and Chaum [11] v X || Munilla et al. [30] v v

Meadows et al. (ny ®np, P) [28] | V v || CRCS [32] v X

Meadows et al. (ny,np®P) [28] | V X Hancke and Kuhn * [23] | V v

TREAD-Asymmetric [6] X X Eff-pkDB [25] v v

TREAD-Symmetric [6] v X

SPADE [12] X x || PaySafe [14] v na
MAD (One-Way) [13] v X PaySafe-v2 [14] X n.a.
Swiss-Knife [26] v v || PaySafe-v3 [14] X n.a.

* the protocols Tree-based, Poulidor, and Uniform are actully equivalent to this one.

5.3 Case studies

Regardless of the type of the considered attack, we only need to consider a single topology
(depicted in Figure 3). Once down to this single topology, we can apply Proposition 19,
and analyse the configuration (P;¢;0) = F(Tx%, Perox, Vo: Lo, to) with XX € {MF,DH} in
ProVerif. If the protocol is proved secure, then Py is resistant to the class of attacks we
have considered. Otherwise, we have to check whether the trace returned by ProVerif can
be turned into a real attack in our timed model. In principle, it may happen that ProVerif
returns an attack trace that is only suitable in the untimed model.

Actually, to obtain meaningful results regarding scenarios that only involved honest
participants in the neighbourhood of vy, we have to go one step further. Indeed, the attacker
model behind ProVerif allows him to interact with any participant (even those that are far
away) with no delay. To avoid these behaviours that are not possible in the rapid phase,
we slightly modify the ProVerif code taking advantage of the extra condition stated in
Proposition 19. During phase 1, we consider an attacker who is only able to forward messages
previously sent, and forged new messages using his knowledge obtained in phase 0.

On all our case studies, ProVerif answered in less than one second (on a standard laptop)
and all the traces returned by ProVerif are actually real attack traces (no false positive).

Distance bounding protocols. We apply our methodology to a number of well-known
distance bounding protocols. In symbolic models, it is not possible to reason at the bit-level,
and therefore we replace the bit-sized exchanges by a single challenge-response exchange
using a fresh nonce (as done in Example 4). Sometimes, we also abstract the answer from
the prover relying on an uninterpreted function symbol with relevant arguments. Finally,
in order to rely on ProVerif, the xor operator has been abstracted as follows (even if our
theoretical development is generic enough to deal with such an operator):

roy)or—y (oy)ey—r 2@y 2y yo(zdy) — .

For instance, we succeed in proving resistance against mafia fraud for the first version of
the Meadows et al. protocol which could not be proved using the framework proposed in [28].
The results are consistent with the ones obtained in [27, 17]. In addition, we discovered a
new attack on the SPADE protocol [12] which has been designed to be mafia fraud resistant.

As described in Figure 5, the prover generates a nonce np, signs it and encrypts the
resulting message with the public key of the verifier. Receiving such a message, the veri-
fier answers by sending fresh nonces. Once these two messages are exchanged, the rapid
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V(k) P(k)
new {np,op}phy new
m,ny - " T T T np
m,ny
——————————— B
new b
b

with @ = hg(np,ny)
and op = Signg,, (np)

Figure 5 SPADE protocol.

Vo a Po
(neighbourhood of vg) (far away)
new np
{np,op ok, _Ampopdke - op =Signy,, (ne)
new m,ny «””;’{7;1;/ 777777
newb b '
a = ho(np,ny) r =f(a,np,m,b)

hl(b,TLP,TLV,m,T)

Figure 6 Mafia fraud on the SPADE protocol.

phase begins: the prover has to answer to the challenge b relying on some hash functions
applied on various nonces. Finally the protocol ends when the prover sends the final hash
hi(b,np,ny,m,r). The attack we discovered (see the description given in Figure 6) is similar
to the one obtained on TREAD-Asymmetric by [27]. Roughly, once a dishonest verifier a
received a message {np,op}pk,, he can use it to forge {np,op}yk, and acts as if the prover
po was in the neighboorhood of vg. The attacker model presented in [12] does not allow them
to capture this attack since they not consider dishonest verifers.

PaySafe protocol. We studied the PaySafe protocol [14] designed to be resistant against
mafia fraud attacks. More generally, contactless payment protocols need to prevent relay
attacks where malicious agents would abuse from an honest agent to perform a payment,
which corresponds to the mafia fraud scenario.

The PaySafe protocol is schematised in Figure 7 where plain arrows represents the rapid
exchange phase. During the initialisation phase, the reader and the card exchange some
identifiers, while during the authentication exchange, the reader ensures that the card is
legitimate using signatures and certificates verifications. The main idea is to send nonces
and constants during the rapid phase and to perform all the necessary checks later on. The
aim is to increase the accuracy on the proximity property needed to ensure the security of
the protocol. We also considered two other versions of PaySafe, also described in [14]: in
PaySafe-v2 we just remove the reader nonce ng and in PaySafe-v3 we remove nr and nc.

Our results confirmed those presented in [14]. Their methodology and ours, especially
when it comes down to the use of ProVerif, are quite similar but we would like to emphasise
the fact that our use of ProVerif is a consequence of our formal development. Actually
our ProVerif models differ from those given in [14]. We typically define richer scenario by
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Card Terminal

ATC, PAN amount, GPO

GPO,amount,nr peow

nRr

ATC, PAN, nc

new
nc

e __
Authentication

Figure 7 PaySafe (simplified).

giving additional knowledge to the attacker and allowing prover roles and verifier roles to
be executed in phase 1. The authors of [27] reported a distance fraud attack which is not
relevant in the context of EMV contactless payment protocols. Their result does not allow
them to isolate each class of attacks, and therefore, they can not prove whether PaySafe is
mafia fraud resistant or not.

6 Conclusion

Regarding physical proximity, we have shown two main reduction results: if there is an
attack on an arbitrary topology then there is an attack on a simple one having at most four
nodes. Relying on these reduction results, we have shown how to use ProVerif to analyse
several protocols. Our methodology is flexible enough to draw meaningful conclusions on
each class of attacks: hijacking attack, and mafia fraud. The interested reader may also find
some additional results regarding distance fraud in our companion report [19].

As future work, we would like to extend our result to consider the notion of terrorist
fraud. This would require to consider dishonest participants who only share a part of their
knowledge. Our work should also benefit from the recent advances that have been made to
integrate the exclusive-or operator in existing verification tool such as Tamarin [22]. Even if
our formal development allows us to rely on the Tamarin prover (e.g. we obtain meaningful
results on the Hancke and Kuhn protocol with Tamarin), it happens that Tamarin (automatic
mode) behaves poorly on some of our case studies (e.g. Brands and Chaum) that uses the
xor operator. This deserves further investigations.
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