QDB: From Quantum Algorithms Towards Correct
Quantum Programs

Yipeng Huang'

Princeton University, USA

yipeng@cs.princeton.edu
https://orcid.org/0000-0003-3171-6901

Margaret Martonosi
Princeton University, USA
mrm@princeton.edu

—— Abstract

With the advent of small-scale prototype quantum computers, researchers can now code and run
quantum algorithms that were previously proposed but not fully implemented. In support of
this growing interest in quantum computing experimentation, programmers need new tools and
techniques to write and debug QC code. In this work, we implement a range of QC algorithms

and programs in order to discover what types of bugs occur and what defenses against those
bugs are possible in QC programs. We conduct our study by running small-sized QC programs
in QC simulators in order to replicate published results in QC implementations. Where possible,
we cross-validate results from programs written in different QC languages for the same problems
and inputs. Drawing on this experience, we provide a taxonomy for QC bugs, and we propose
QC language features that would aid in writing correct code.

2012 ACM Subject Classification Computer systems organization — Quantum computing
Keywords and phrases correctness, debugging

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.4

1 Introduction

Quantum computing is reaching an inflection point. After years of work on both QC
algorithms and low-level QC devices, small but viable QC prototypes are now available to
run programs. These QC prototypes are increasing in size, with much research attention
being placed on improving their reliability and increasing the counts of qubits (quantum
bits), the fundamental building block for QC [11, 19, 31].

With small-scale machines available to run real code, a natural challenge lies in creating
correct and useful programs to run on them [3, 12]. Until recently, QC algorithms were
rarely programmed for actual execution, and therefore relatively little QC debugging has ever
occurred. Furthermore, QC debugging faces challenges beyond that of classical computing.
In particular, typical debugging approaches based on printing out variable values during
program execution do not easily apply to QC programs, because program states in QC
“collapse” to classical values when observed. Second, QC’s “no cloning rule” precludes us
from making a spare copy of variables to observe them elsewhere. Third, while we have
more freedom to observe states in QC simulations on classical computers, the massive state
spaces of QC executions limits this approach to small programs. Finally, even when limited
simulations are tractable, it can be difficult to interpret the simulation results.

1 This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730082

© Yipeng Huang and Margaret Martonosi;

oY licensed under Creative Commons License CC-BY
9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 4; pp.4:1-4:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yipeng@cs.princeton.edu
https://orcid.org/0000-0003-3171-6901
mailto:mrm@princeton.edu
https://doi.org/10.4230/OASIcs.PLATEAU.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2

QDB: From Quantum Algorithms Towards Correct Quantum Programs

This paper surveys a range of QC algorithms and programs and offers a set of empirical
and experiential insights on today’s state-of-the-art in QC debugging. For three benchmarks
representing different application areas, we perform detailed debugging based on small-scale
simulations. For each, we give case studies of the types of bugs we found. Most importantly,
we use these experiences to assemble a set of “design patterns for QC programming” and
related best practices in QC debugging.

In particular, the contributions of this paper are as follows:

We specifically explore three major areas: quantum chemistry, integer factorization, and

database search. This is a broad spectrum of QC algorithms across not just application

domains, but also problem size and algorithm strategies. This allows us to point out
particular domain-specific challenges or opportunities.

Where available, we study the same algorithm implemented in different languages or

infrastructures. From this, we draw comparative insights regarding how programming

language or environment support can be useful in QC programming and debugging.

From these insights and experiences, we lay out a plan for debugging support in QC pro-

gramming environments to aid users in creating quantum code. These include assertions,

unit testing, code reuse, polymorphism, and QC-specific language types and syntax.

Overall, while QC programming has received significant prior attention and QC debugging
has received some as well, our work offers steps forward in its detailed and comparative
assessment across problem types and languages. We see our work offering useful insights for
QC programmers themselves, as well as language and system designers interested in building
next-generation compilers and debuggers.

2 Background on QC programming

First, we review the principles of quantum computing [14, 22, 23, 26], in order to understand
how writing correct quantum programs is different from classical programming.

2.1 Qubits, superpositions, and entanglement

The basic unit of information in QC is the qubit, which can take on values of |0) and |1) like
bits in classical computing, but can also be viewed as a probabilistic “superposition” between
the two values. Quantum computers can also “measure” the value of a qubit, forcing it to
collapse out of superposition into a classical value such as ‘0’ or ‘1. Measurement disturbs
the values of variables in a quantum computer, so we cannot easily pause execution and
observe the values of qubits as a quantum program runs.

The state of individual qubits can be “entangled” together. For this reason, as more
qubits come into play in a quantum computer, the number of states that data can be in grows
exponentially. For example, a two-qubit system can take on the values |00), |01}, |10),]11),
along with superpositions among these values; furthermore, the two qubits can even be in a
state of entanglement where the two cannot be treated as independent pieces of information.
A three qubit system has potential superpositions of eight states, and so on. This exponential
growth of possible values underlies the power of QC.

As a result of this large number of possible states, running a quantum program in
simulation on a classical computer is costly. Naive simulation of a 20-qubit quantum

220 or roughly one million floating point numbers just to store

computer, for example, needs
the program state at any instant. For this reason, testing and debugging quantum programs

in simulation is only possible for toy-sized programs.

Y. Huang and M. Martonosi

Qo —t— o D -

B AR

D
N
Jan)
N

@ U~ 9q-C

Figure 1 Decomposition of a simple QC program. Time flows left to right, showing sequences of
operations applied to qubits go and ¢gi. The left program is a “controlled” arbitrary operation U,
which means whether the operation U works on ¢; is dependent on the value of go. The left sequence
decomposes into the equivalent right sequence of more basic operations. The basic operations include
single-qubit “rotations” A through D that alter the probability distribution of qubit values. The
operations also include two two-qubit “CNOT” operations that flip a qubit (denoted @) contingent
on the value of another qubit (denoted o) [26].

2.2 Quantum computer operations, programs, and a taxonomy for bugs

The process of quantum computing involves applying operations on qubits. We use diagrams
such as Figure 1 to represent sequences of quantum operations. Looking at Figure 1 we see
that quantum programs consist of three conceptual parts [8]:

1. Inputs to quantum algorithms include classical input parameters such as coefficients for
rotations A through D, and quantum initial values for qubits such as qo and ¢;.

2. Operations, such as the specification of how a complex operation such as controlled
arbitrary operation U (Figure 1, left) decomposes into basic operations A through D and
CNOTs (Figure 1, right). Additionally, both basic and complex operations can be further
composed according to patterns such as iteration, recursion, and mirroring.

3. Outputs of quantum algorithms are the final classical measurement values of qubits such
as go and ¢;. Furthermore, any temporary variables used in the course of a program have
to be safely disentangled from the rest of the quantum state and discarded.

Bugs in quantum programs can crop up due to mistakes made in any of these three parts
of a QC program. We will give examples of each kind of bug along with how to prevent them,
using detailed case studies in the rest of this paper.

2.3 QC algorithm primitives, benchmarks, and open source frameworks

Given the rapid growth of QC infrastructure, we now have a chance to test a variety of
quantum algorithms written in many languages [18]. Many different quantum algorithms rely
on a handful of QC algorithm primitives to get speedups relative to classical algorithms [4, 24,
25]. Table 1 classifies canonical quantum algorithms according to their algorithm primitives,
and cites example implementations in different QC languages and tool chains.

This paper specifically focuses on program bugs and defenses in three areas: a quantum
chemistry problem that uses quantum phase estimation, integer factorization using Shor’s
order finding algorithm, and Grover’s database search algorithm.

Using programs written in the Scaffold language as a starting point [13], we compile
Scaffold code to OpenQASM, a QC assembly language [5]. Then, we simulate the programs
operation-by-operation in the QX simulator [15], in order to see their intermediate states and
outputs. We cross reference the programs’ results against implementations in other languages,
such as LIQUi|> [32], ProjectQ [10, 36] and Q# [37]. From this debugging experience we
identify possible bugs and defenses. Furthermore, we review the codes across languages to
understand the relative merits of different QC language features.

4:3

PLATEAU 2018

4:4

QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 1 Quantum algorithm primitives and open source benchmarks in open source tool chains.

’ Primitives ‘ Quantum algorithms ‘ Benchmark implementations ‘
Entanglement | superdense coding / Q# teleportation [37]
protocols quantum teleportation pyQuil teleportation [35]
Quantum tree traversal Scaffold / Quipper binary welded tree [6, 13, 39]
(random) graph traversal Scaffold / Quipper triangle finding problem [6, 13, 39]
walks satisfiability Scaffold / Quipper Boolean formula [6, 13, 39]
Ising spin model Scaffold / Q# adiabatic Ising model [13, 37]
Adiabatic quantum approximate QISKit Aqua QAOA
optimization algorithm pyQuil QAOA ansatz [35]
Variational QISKit Aqua quantum chemistry
Quantum Hamiltonian simulation | Q# Hs simulation [37]
Eigensolver Rigetti Grove VQE [35]
phase estimation Scaffold / Quipper ground state estimation [6, 13, 39]
?;i?;lm period finding Scaffold class number [13]
Transform order finding Scaffold / ProjectQ / Q# Shor’s factoring [13, 36, 37]
(QFT) hidden subgroup problem | Quipper unique shortest vector [6, 39]
linear algebra Quipper quantum linear systems [6, 39]
Amplitude Scaffold square root [13]
. . database search .
amplification ProjectQ / Q# Grover’s database search [36, 37]

3 Case study: Quantum chemistry

First, we discuss our experience building up and debugging a simple quantum chemistry
program. Quantum chemistry problems entail finding properties of molecules from theoretical
first principles [20, 27]. Researchers anticipate these will be the first applications for QC due
to the relatively few number of qubits they need to surpass classical computer algorithms.
Debugging these problems is distinctively challenging, due to the importance of getting a
large number of classical input parameters all correct, and because of the dearth of physically
meaningful intermediate states we can check in the course of algorithm execution.

3.1 Bug type 1: Incorrect classical input parameters

)

A key part of quantum chemistry programs is in correctly building up a “Hamiltonian’
subroutine that simulates inter-electron forces. The procedure for doing this was laid out in
detail by Whitfield [41]. We followed this procedure to create a subroutine for simulating
the hydrogen molecule, but we needed additional validation from several other sources to
get a bug-free subroutine [40]. These resources include raw chemistry data found in open
source repositories for the LIQUi|> framework?. The final parameters for actual operations
on qubits were validated against a follow-up paper [33] and an implementation in the
QISKit framework®. Because the procedure for preparing these quantum chemistry models
involves many steps and needs domain expertise, software packages such as OpenFermion
now automate this process [21]. Nonetheless, there is room for improvement in standardizing
input data formats to eliminate bugs in this process.

2 https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
3 https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

Y. Huang and M. Martonosi

Table 2 QC calculated energy for Ha (bond length = 73.48 pm) for different electron assignments.

Elec?ron ass1gnment§ QC calculated
Bonding Antibonding energy (relative)
S R I S I 5
3™ excited state (E3) || 0 0 1 1 -0.164
274 excited state (E2) 0 1 1 0 0.217
excited state 1 0 0 1 -0.
ot . 0 1 0 1
1%% excited state (E1) 1 0 1 0 -0.244
Ground state (G) || 1 1 0 0 -0.295

Once the Hamiltonian subroutine is built, we can use the model in a variety of quantum
algorithms spanning different primitives in Table 1. These include phase estimation (an
application of quantum Fourier transforms) [28], variational quantum eigensolvers [30], and
adiabatic algorithms [1]. In this paper, we use iterative phase estimation to find the ground
state energy of our Hy model, validating results published by Lanyon [17].

3.2 Bug type 2: Incorrect quantum initial values

The correct preparation of qubit initial values is important. Incorrect initial values would
cause the program to find solutions to different problems altogether. In this quantum
chemistry problem, the initial values control the locations of the two electrons in Hy. As
shown in Table 2, we need the qubit assignment for finding the ground energy of Hy, while
other assignments lead to results for other energy levels.

The symmetry of Hy allows us to perform a sanity check, to make sure the Hamiltonian
and the iterative phase estimation subroutines are working correctly. Though there are six
ways to assign two electrons to four locations, there are in fact only four distinct energy
levels, as shown in the experimental data. Checking that the two different ways to obtain E1

(and E2) give the same energy levels validates that the model correctly preserves symmetry.

3.3 Defense type 1: Assertions on algorithm preconditions

Given how important correct initial values are for all quantum algorithms, it is worthwhile
to explicitly check for these algorithm preconditions before continuing with execution or
simulation. What the preconditions should be depends on the type of algorithm. For example,
the phase estimation subroutine in this case study (along with other algorithms relying on
quantum Fourier transforms), expect inputs that are maximally in superposition among all
possible values. Likewise, “ancillary qubits” such as the inputs to the Hamiltonian subroutine
take on completely classical (integer) initial values. Lastly, quantum protocols often need to
start with entangled states. These required input states are among the few places in quantum
algorithms where we can check states for specific values. We can check these preconditions
by running or simulating programs up to the entry point of subroutines, and performing a
premature measurement to check for these anticipated states, finally restarting the program
knowing that execution is correct up to that point. Thus far, the Q# framework has the
most extensive support for precondition checking [37].

4:5

PLATEAU 2018

4:6

QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 3 Shor’s factorization algorithm subroutines [23, p. 25].

Program subroutine code ‘ Shared library code
Shor’s routine for factoring 15; quantum Fourier transform
calculating powers of a number controlled controlled rotation

controlled modular multiplication .
controlled rotation

controlled modular addition
controlled swap

controlled addition

swap

3.4 Defense type 2: Assertions on algorithm progress

Unlike the other two case studies later in this paper, the debugging process for the quantum
chemistry benchmark is coarse-grained. That is because the Hamiltonian subroutine is a
monolithic block of code whose components do not have obvious expected outputs—its
components represent pair-wise electron interactions, and do not have inherent physical
meaning. So how do we debug this program? The preconditions in the last section make sure
the inputs to the algorithm are correct; the other observable state we have for debugging is
to check the behavior of the algorithm as a whole.

In this quantum chemistry program, we can check for two types of overall algorithm
behavior. One is the solution should converge to a steady value as finer Trotter time steps (a
kind of numerical approximation) are chosen; a lack of this type of convergence indicates
a bug in the Hamiltonian subroutine. The other algorithm behavior is when we vary the
precision of the phase estimation algorithm, the most significant bits of the measurement
output sequences should be the same—in other words, rounding the output of a high-precision
experiment should yield the same output as a lower-precision experiment. a lack of this
convergence indicates a bug in the iterative phase estimation subroutine. These checks for
expected algorithm progress also apply to other algorithms.

4 Case study: Shor’s algorithm for integer factorization

While our debugging strategy for quantum chemistry had to be coarse-grained, the debugging
process for Shor’s algorithm in this section allows us to look inside the program one subroutine
at a time, where we can compare the intermediate results against known expected values.

Shor’s factorization algorithm uses a quantum computer to factor a composite number
in polynomial time complexity, providing exponential speedup relative to the best known
classical algorithms [34]. We follow an example for an implementation that minimizes the
qubit cost [2], and replicate results for factoring 15, the simplest example [16] [26, p. 235].

4.1 Bug type 3: Incorrect operations and transformations

In order to correctly implement Shor’s algorithm we first have to build up the quantum
subroutines shown in Table 3. These basic subroutines can be tricky to get right. Take the
controlled rotation in Figure 1 as an example: Table 4 shows multiple ways to code the
decomposition of the controlled rotation, and small mistakes can lead to incorrect behavior.

Y. Huang and M. Martonosi

Table 4 Correct and incorrect code for rotation decomposition. Using the Scaffold language [13]
as an example, we code out the controlled operation U in Figure 1 where U is a rotation in just one
axis. Because only one axis is needed, we can drop either operation A or C, paying attention to the
sign on the angles. Reordering the lines of code or signs results in a rotation in the wrong direction.

Correct, operation A unneeded

Correct, operation C unneeded

Incorrect, angles flipped

Rz(ql,+angle/2); // C
CNOT(q0,q1) ;
Rz(ql,-angle/2); // B
CNOT(q0,q1) ;
Rz(q0,+angle/2); // D

CNOT(q0,q1);
Rz(ql,-angle/2); // B
CNOT(q0,q1) ;
Rz(ql,+angle/2); // A
Rz(q0,+angle/2); // D

Rz(ql,-angle/2);
CNOT(q0,q1) ;
Rz(ql,+angle/2);
CNOT(q0,q1) ;
Rz(q0,+angle/2); // D

Listing 1 Controlled adder subroutine using Fourier transform in the Scaffold language [13].

// outputs a + b, ‘width’
// b is an integer encoded on ‘width’
module cADD (
const unsigned int c_width, // number of control qubits
gbit ctrl0, gbit ctrll, // control qubits
const unsigned int width, const unsigned int a,
) {
for (int b_indx=width-1; b_indx>=0; b_indx--) {
for (int a_indx=b_indx; a_indx>=0; a_indx--) {
if ((a >> a_indx) & 1) { // shift out bits in constant a

where a s a bit comstant integer

qubits in Fourier space

gbit b[]

double angle = M_PI/pow(2,b_indx-a_indx); // rotation angle
switch (c_width) {

case 0: Rz (b[b_indx], angle); break;

case 1: cRz (ctrl0, b[b_indx], angle); break;

case 2: ccRz (ctrlO, ctrll, b[b_indx], angle); break;

3333}

4.2 Defense type 3: Language support for subroutines / unit tests

An obvious defense against coding mistakes in basic subroutines is to use a library of shared
code. Doing so helps ensure program correctness by allowing programmers to exhaustively
validate small subroutines, in order to bootstrap larger subroutines. Unit testing is especially
important in QC as running or simulating large quantum programs is impossible for now.

An additional benefit is logically structured code allows compilers to select the best con-
crete implementation for the abstract functionality the programmer needs, based on hardware
constraints and input parameters [8]. For example, the most cost-efficient implementation for
modular exponentiation in Shor’s factorization algorithm depends on how many qubits are
available: the compiler can choose from minimum-qubit [2, 9, 38] or minimum-operation [29]
implementations for the arithmetic subroutines.

4.3 Bug type 4: Incorrect composition of operations using iteration

Once we have built our basic subroutines, a common pattern in quantum programs is to use
iterations to compose subroutines. Listing 1 shows the iteration code for a constant-value
adder, showing tricky places in lines 8 through 11 for bugs to crop up, including indexing
errors, bit shifting errors, endian confusion, and mistakes in rotation angles. In general this
type of iteration code is commonplace in programs that rely on quantum Fourier transforms.

4:7

© 00~ D U= W N

— =
= o

— == = e
DD T W N

PLATEAU 2018

4:8

QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 5 Correct classical input @ and a™! to Shor’s algorithm for factoring 15, using 7 as a guess.

k, the algorithm iteration || 0 1 2 3
a=7" mod15 | 7 4 1 1
aliaxa =1 mod15 || 13 4 1 1

4.4 Defense type 4: Language support for numerical data types

One way to defend against bugs in iteration code is to introduce QC data types for numbers,
providing greater abstraction than working with raw qubits. For example, ProjectQ has
quantum integer data types [36], while Q# [37] and Quipper [6, 39] offer both big endian
and little endian versions of subroutines involving iterations. These QC data types permit
useful operators (e.g., checking for equality) that help with debugging and writing assertions.

4.5 Bug type 5: Incorrect deallocation of qubits

Variable scoping is an important language feature in classical computing that ensures proper
data encapsulation. In QC, scoping is similarly important for temporary variables known
as “ancillary qubits.” Anything that happens to a subroutine’s ancillary qubits—such as
measurement, reinitialization, or lapsing into decoherence—may have unintended effects on
the subroutine’s outputs*. Because improper ancillary qubit deallocation can lead to wrong
results, it is important for subroutines to reverse their operations on their ancillary qubits,
so that they properly undo any entanglement between the ancillary and output qubits.

We can demonstrate a bug involving incorrect qubit deallocation, by deliberately making
a mistake while reversing operations in a subroutine. For example, Shor’s algorithm relies on
correct pairs modular inverse numbers as input parameters, such as those in Table 5. By
feeding an incorrect pair of inputs (e.g., replacing 13 with a 12), the algorithm proceeds to
possibly give us wrong output values, as shown in Table 6. At the same time, the mistake
prevents the modular multiplication operation from being properly reversed, which has the
effect of preventing the ancillary qubits from properly disentangling with other qubits, so
they fail to return to their initial values at the end of the algorithm.

4.6 Defense type 5: Assertions on algorithm postconditions

We can use postconditions at the end of algorithms to detect bugs that lead to incorrect
deallocation of ancillary qubits. Continuing with our example in Table 6, we see that the
cases where ancillary qubits collapse to anything other than zero correspond to cases where
the outputs are wrong. That is because the ancillary qubits remain improperly entangled
with the output qubits at the end of the algorithm. We can detect these buggy outputs by
asserting that ancillary qubits should always return to their initial values. The significance
of these observations is that when algorithms work correctly, we typically do not care to
measure the value of ancillary qubits as they do not contain information. But in buggy QC
algorithm implementations, they are useful side channels for debugging.

4 As an analogy in classical computing, it is as if accessing an out-of-scope variable can still affect program
state; while such behavior is unintuitive, it is a result of how entanglement works in QC.

Y. Huang and M. Martonosi

Table 6 Probability of measuring values of outputs and ancillary qubits of Shor’s algorithm, with
incorrect inputs (a~! = 12 instead of 13 on first iteration). If the ancillary qubits collapse to zero

on measurement, the algorithm still succeeds, returning correct outputs of 0, 2, 4, 6 [26, p. 235].

However, the possibility of measuring non-zero for the ancillary qubits indicates a bug.

Probability Output measurement
0 1 2 3 4 5 6 7
01| 1/8 0 1/8 0 1/8 0 1/8 0
Ancillary 211/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
qubit 7|11/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
measurement 8 | 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
13| 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

Table 7 Grover’s amplitude amplification subroutine in two languages, showcasing QC-specific
language syntax for reversible computation (rows 2 & 6) and controlled operations (rows 3 & 5).

’ ‘ Scaffold (C syntax) [13]
int j;
1 | gbit ancilla[n-1]; // scratch register

‘ ProjectQ (Python syntax) [36] ‘

reflection across

for(j=0; j<n-1; j++) PrepZ(ancilla[j],0);

uniform superposition

// Hadamard on q

for(j=0; j<mn; j++) H(q[jl);

// Phase flip on q = 0...0 so invert q
for(j=0; j<n; j++) X(ql[jl);

with Compute(eng) :
A11(H) | q
A11(X) | q

// Compute x[n-2] = q[0] and ...

CCNOT(q[1], q[0], ancillal[0]);

for(j=1; j<n-1; j++)
CCNOT(ancillalj-11, ql[j+11, ancillal[jl);

and q[n-1]

with Control(eng, q[0:-1]):

// Phase flip Z if g=00...0
cZ(ancilla[n-2], gq[n-1]);

Z | ql[-1]

// Undo the local registers
for(j=n-2; j>0; j-)
CCNOT(ancillalj-11, q[j+1], ancilla[jl);

ProjectQ automatically
uncomputes control

CCNOT(q[1]1, ql[0], ancillal0]);
// Restore q

6 | for(j=0; j<m; j++) X(qljl);
for(j=0; j<m; j++) H(q[jl);

Uncompute (eng)

5 Case study: Grover’s algorithm for database search

So far, we have presented defenses against bugs following two general strategies. One is
to use assertions to detect when and where the program has a bug. The other is to use
quantum-specific programming language features to prevent bugs altogether: these features
include support for subroutines and numerical types for quantum data. Here in this section,
we use the Grover’s benchmark to showcase two more language features for common QC
program patterns: reversible computation and controlled operations.

Grover’s search algorithm finds an entry that matches search criteria, among an input
data set of size N, with a time cost on the order of v/N. That represents a polynomial
speedup relative to the linear time cost in a classical computer [7].

The Grover’s algorithm comprises three parts. First, the input qubits representing the
indices of the matching entries are put in a state of superposition, akin to querying all entries

at once. Second, the queries are put through a subroutine that checks for the search criteria.

4:9

PLATEAU 2018

4:10

QDB: From Quantum Algorithms Towards Correct Quantum Programs

In this case study, our criteria is to find the square root of a number in a Galois field of
two elements, a simple abstract algebra setting. Finally in the critical step, the amplitude
amplification algorithm primitive amplifies the index that matches the criteria while damping
out those that do not. The operations in this final step are prime examples of two QC
program patterns, reversible computation and controlled operations. We show in Table 7
how these code patterns are written in two languages, Scaffold [13] and ProjectQ [36].

5.1 Bug type 6: Incorrect composition of operations using mirroring

Section 4.5 discussed how bugs in deallocating ancillary qubits can happen due to bad
parameters. Here we see how bugs in deallocating ancillary qubits can happen due to
incorrect composition of operations following a mirroring pattern. For example, in Table 7,
the operations in rows 2 and 3 are respectively mirrored and undone in rows 6 and 5. These
lines of code need careful reversal of every loop and every operation.

5.2 Defense type 6: Language support for reversible computation

Syntax support for reversible computation, such as that in ProjectQ [36], automatically
mirrors and inverts sequences of operations, shortening code and reducing mistakes.

5.3 Bug type 7: Incorrect composition of operations using recursion

A common pattern in quantum programs involves performing operations (e.g., add), contingent
on a set of qubits known as control qubits. Without language support, this pattern needs
many lines of code and manual allocation of ancillary qubits. In the Scaffold code example
in Table 7, rows 3 and 5 are just computing the intersection of qubits q, with the help of
ancillary qubits initialized in row 1, in order to realize the controlled rotation operation in
row 4. Furthermore, quantum algorithms often need varying numbers of control qubits in
different parts of the algorithm, leading to replicated code from multiple versions of the same
subroutine differing only by the number of control qubits®.

5.4 Defense type 7: Language support for controlled operations

Language support for controlled operations (e.g, ProjectQ) shortens code, preventing mistakes.

6 Conclusion

For the first time, we have access to comprehensive and representative program benchmarks
for all major areas of quantum algorithms, implemented in multiple languages, along with
input datasets and outputs that are detailed enough to permit cross-validation. Using
our experience running and debugging these programs, we presented in this paper defense
strategies that facilitate writing bug-free QC code, summarized in Table 8. Successful
transplantation of these ideas from classical languages to QC languages can pave the way
towards correct and useful quantum programs.

5 An example appeared in the Shor’s case study Listing 1. The addition operation was contingent on
control qubits taken as parameters in lines 4 and 5. Depending on how many control qubits were needed,
the switch statement in lines 12 through 15 applied the correct operation.

Y. Huang and M. Martonosi

Table 8 Applicability of defense strategies (down) against location of QC program bugs (across).

input operations output
classical | qubit . . . qubit
lloc basic | iterate | mirror | recurse dealloc
barams. | a0t ey 1 | 43 | §5.1 §5.3 '
§3.1 §3.2 §4.5
QC unit testing §4.2 v v v v v v
specific data types §4.4 v
lang. reverse comp. §5.2 v v v
features | controlled ops. §5.4 v v v
Asserti preconditions §3.3 v
Chsescelzslon algo progress §3.4 v v v v v v v
postconds. §4.6 v v v v v v v
—— References
1 R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush,

A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey,
E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’'Malley, C. Quin-
tana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven,
and John M. Martinis. Digitized adiabatic quantum computing with a superconducting
circuit. Nature, 534:222 EP—, June 2016. doi:10.1038/naturel7658.

Stephane Beauregard. Circuit for Shor’s Algorithm Using 2N+3 Qubits. Quantum
Info. Comput., 3(2):175-185, March 2003. URL: http://dl.acm.org/citation.cfm?id=
2011517.2011525.

Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Programming languages and
compiler design for realistic quantum hardware. Nature, 549:180 EP—, September 2017.
doi:10.1038/nature23459.

Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Am-
brosiano, Petr M. Anisimov, William Casper, Gopinath Chennupati, Carleton Coffrin,
Hristo Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Y.
Lokhov, Alexander Malyzhenkov, David Mascarenas, Susan M. Mniszewski, Balu Nadiga,
Dan O’Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Philip Romero, Nandak-
ishore Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram
Yoon, Richard J. Zamora, and Wei Zhu. Quantum Algorithm Implementations for Begin-
ners. CoRR, abs/1804.03719, 2018. arXiv:1804.03719.

A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum Assembly
Language. ArXiv e-prints, July 2017. arXiv:1707.03429.

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit
Valiron. Quipper: A Scalable Quantum Programming Language. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’13, pages 333-342, New York, NY, USA, 2013. ACM. doi:10.1145/2491956.2462177.
Lov K Grover. From Schrodinger’s equation to the quantum search algorithm. Pramana,
56(2-3):333-348, 2001.

T. Héner, T. Hoefler, and M. Troyer. Using Hoare logic for quantum circuit optimization.
ArXiv e-prints, September 2018. arXiv:1810.00375.

Thomas Héaner, Martin Roetteler, and Krysta M. Svore. Factoring Using 2N + 2 Qubits
with Toffoli Based Modular Multiplication. Quantum Info. Comput., 17(7-8):673-684, June
2017. URL: http://dl.acm.org/citation.cfm?id=3179553.3179560.

4:11

PLATEAU 2018

http://dx.doi.org/10.1038/nature17658
http://dl.acm.org/citation.cfm?id=2011517.2011525
http://dl.acm.org/citation.cfm?id=2011517.2011525
http://dx.doi.org/10.1038/nature23459
http://arxiv.org/abs/1804.03719
http://arxiv.org/abs/1707.03429
http://dx.doi.org/10.1145/2491956.2462177
http://arxiv.org/abs/1810.00375
http://dl.acm.org/citation.cfm?id=3179553.3179560

4:12

QDB: From Quantum Algorithms Towards Correct Quantum Programs

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Thomas Haner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer. High Perfor-
mance Emulation of Quantum Circuits. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 16, pages 74:1-74:9,
Piscataway, NJ, USA, 2016. IEEE Press. URL: http://dl.acm.org/citation.cfm?id=
3014904.3015003.

Aram Harrow. Why Now is the Right Time to Study Quantum Computing. XRDS,
18(3):32-37, March 2012. doi:10.1145/2090276.2090288.

Thomas Héner, Damian S Steiger, Krysta Svore, and Matthias Troyer. A software method-
ology for compiling quantum programs. Quantum Science and Technology, 3(2):020501,
2018. URL: http://stacks.iop.org/2058-9565/3/1=2/a=020501.

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T.
Chong, and Margaret Martonosi. ScaffCC: A framework for compilation and analy-
sis of quantum computing programs. In Proceedings of the 11th ACM Conference on
Computing Frontiers, CF ’14, pages 1:1-1:10, New York, NY, USA, 2014. ACM. doi:
10.1145/2597917.2597939.

Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum Com-
puting. Oxford University Press, Inc., New York, NY, USA, 2007.

N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels. QX: A high-performance
quantum computer simulation platform. In Proceedings of the Conference on Design, Au-
tomation & Test in Europe, DATE ’17, pages 464-469, 3001 Leuven, Belgium, Belgium,
2017. European Design and Automation Association. URL: http://dl.acm.org/citation.
cfm?id=3130379.3130487.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist,
and A. G. White. Experimental Demonstration of a Compiled Version of Shor’s Algorithm
with Quantum Entanglement. Phys. Rev. Lett., 99:250505, December 2007. doi:10.1103/
PhysRevLett.99.250505.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal,
J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G.
White. Towards quantum chemistry on a quantum computer. Nature Chemistry, 2:106
EP-, January 2010. doi:10.1038/nchem.483.

R. LaRose. Overview and Comparison of Gate Level Quantum Software Platforms. ArXiv
e-prints, July 2018. arXiv:1807.02500.

Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt,
Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison
of two quantum computing architectures. Proceedings of the National Academy of Sciences,
114(13):3305-3310, 2017. doi:10.1073/pnas.1618020114.

S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan. Quantum computa-
tional chemistry. ArXiv e-prints, August 2018. arXiv:1808.10402.

J. R. McClean, I. D. Kivlichan, K. J. Sung, D. S. Steiger, Y. Cao, C. Dai, E. Schuyler
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Haner, T. Hardikar, V. Havlicek, C. Huang,
J. Izaac, Z. Jiang, X. Liu, M. Neeley, T. O’Brien, 1. Ozfidan, M. D. Radin, J. Romero,
N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, M. Steudtner, Q. Sun, W. Sun, F. Zhang, and
R. Babbush. OpenFermion: The Electronic Structure Package for Quantum Computers.
ArXiv e-prints, October 2017. arXiv:1710.07629.

N.D. Mermin. Quantum Computer Science: An Introduction. Cambridge University Press,
2007.

Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong. Quantum Computing for
Computer Architects, Second Edition. Synthesis Lectures on Computer Architecture, 6(1):1—
203, 2011. doi:10.2200/S00331ED1V01Y201101CACO13.

http://dl.acm.org/citation.cfm?id=3014904.3015003
http://dl.acm.org/citation.cfm?id=3014904.3015003
http://dx.doi.org/10.1145/2090276.2090288
http://stacks.iop.org/2058-9565/3/i=2/a=020501
http://dx.doi.org/10.1145/2597917.2597939
http://dx.doi.org/10.1145/2597917.2597939
http://dl.acm.org/citation.cfm?id=3130379.3130487
http://dl.acm.org/citation.cfm?id=3130379.3130487
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1038/nchem.483
http://arxiv.org/abs/1807.02500
http://dx.doi.org/10.1073/pnas.1618020114
http://arxiv.org/abs/1808.10402
http://arxiv.org/abs/1710.07629
http://dx.doi.org/10.2200/S00331ED1V01Y201101CAC013

Y. Huang and M. Martonosi

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2:15023,
2016.

Michele Mosca. Quantum algorithms. In Encyclopedia of Complexity and Systems Science,
pages 7088-7118. Springer, 2009.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition,
2011.

Jonathan Olson, Yudong Cao, Jonathan Romero, Peter Johnson, Pierre-Luc Dallaire-
Demers, Nicolas Sawaya, Prineha Narang, Ian Kivlichan, Michael Wasielewski, and Alan
Aspuru-Guzik. Quantum information and computation for chemistry. arXiv preprint
arXiv:1706.05413, 2017.

S. Patil, A. JavadiAbhari, C. Chiang, J. Heckey, M. Martonosi, and F. T. Chong. Char-
acterizing the performance effect of trials and rotations in applications that use Quantum
Phase Estimation. In 2014 IEEFE International Symposium on Workload Characterization
(IISWC), pages 181-190, October 2014. doi:10.1109/IISWC.2014.6983057.

Archimedes Pavlidis and Dimitris Gizopoulos. Fast Quantum Modular Exponentiation
Architecture for Shor’s Factoring Algorithm. Quantum Info. Comput., 14:649-682, May
2014. URL: http://dl.acm.org/citation.cfm?id=2638682.2638690.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.
Love, Aldn Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on
a photonic quantum processor. Nature Communications, 5:4213 EP—, July 2014. doi:
10.1038/ncomms5213.

John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018. doi:10.22331/9-2018-08-06-79.

M. Roetteler, K. M. Svore, D. Wecker, and N. Wiebe. Design automation for quantum
architectures. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
pages 1312-1317, March 2017. doi:10.23919/DATE.2017.7927196.

Jacob T. Seeley, Martin J. Richard, and Peter J. Love. The Bravyi-Kitaev transforma-
tion for quantum computation of electronic structure. The Journal of Chemical Physics,
137(22):224109, 2012. doi:10.1063/1.4768229.

Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. SIAM J. Comput., 26(5):1484-1509, October 1997.
doi:10.1137/S0097539795293172.

R. S. Smith, M. J. Curtis, and W. J. Zeng. A Practical Quantum Instruction Set Architec-
ture. ArXiv e-prints, August 2016. arXiv:1608.03355.

Damian S. Steiger, Thomas Héner, and Matthias Troyer. ProjectQ: an open source soft-
ware framework for quantum computing. Quantum, 2:49, January 2018. doi:10.22331/
q-2018-01-31-49.

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:
Enabling Scalable Quantum Computing and Development with a High-level DSL. In Pro-
ceedings of the Real World Domain Specific Languages Workshop 2018, RWDSL2018, pages
7:1-7:10, New York, NY, USA, 2018. ACM. doi:10.1145/3183895.3183901.

Yasuhiro Takahashi and Noboru Kunihiro. A Quantum Circuit for Shor’s Factoring Algo-
rithm Using 2N + 2 Qubits. Quantum Info. Comput., 6(2):184-192, March 2006. URL:
http://dl.acm.org/citation.cfm?id=2011665.2011669.

Benoit Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander, and Jonathan M. Smith.

Programming the Quantum Future. Commun. ACM, 58(8):52-61, July 2015. doi:10.

1145/2699415.

4:13

PLATEAU 2018

http://dx.doi.org/10.1109/IISWC.2014.6983057
http://dl.acm.org/citation.cfm?id=2638682.2638690
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.23919/DATE.2017.7927196
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/1608.03355
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.1145/3183895.3183901
http://dl.acm.org/citation.cfm?id=2011665.2011669
http://dx.doi.org/10.1145/2699415
http://dx.doi.org/10.1145/2699415

4:14

QDB: From Quantum Algorithms Towards Correct Quantum Programs

40

41

Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer.
Gate-count estimates for performing quantum chemistry on small quantum computers.
Phys. Rev. A, 90:022305, August 2014. doi:10.1103/PhysRevA.90.022305.

J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure
Hamiltonians using quantum computers. Molecular Physics, 109:735-750, March 2011.
doi:10.1080/00268976.2011.552441.

http://dx.doi.org/10.1103/PhysRevA.90.022305
http://dx.doi.org/10.1080/00268976.2011.552441

	Introduction
	Background on QC programming
	Qubits, superpositions, and entanglement
	Quantum computer operations, programs, and a taxonomy for bugs
	QC algorithm primitives, benchmarks, and open source frameworks

	Case study: Quantum chemistry
	Bug type 1: Incorrect classical input parameters
	Bug type 2: Incorrect quantum initial values
	Defense type 1: Assertions on algorithm preconditions
	Defense type 2: Assertions on algorithm progress

	Case study: Shor's algorithm for integer factorization
	Bug type 3: Incorrect operations and transformations
	Defense type 3: Language support for subroutines / unit tests
	Bug type 4: Incorrect composition of operations using iteration
	Defense type 4: Language support for numerical data types
	Bug type 5: Incorrect deallocation of qubits
	Defense type 5: Assertions on algorithm postconditions

	Case study: Grover's algorithm for database search
	Bug type 6: Incorrect composition of operations using mirroring
	Defense type 6: Language support for reversible computation
	Bug type 7: Incorrect composition of operations using recursion
	Defense type 7: Language support for controlled operations

	Conclusion

