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—— Abstract

There is a need for better empirical methods in programming language design. This paper
addresses that need by demonstrating how, by observing publicly available Java source code, we
can infer usage and usability issues with the Java language. In this study, 1,746 GitHub projects
were analyzed and some basic usage facts are reported.
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1 Introduction

What makes a good programming language? While nearly every programmer has an opinion
on what makes a programming language good, finding objective answers to this question is
hard. While theoretical studies, like those in type theory, are important for the future of
programming, theoretical properties like type safety and powerful constructs like dependent
types have made little impact on mainstream software engineering. Theory may be necessary
for “good” programming languages, but it is clearly not sufficient.

Another approach to measuring the “goodness” of languages comes from user studies.
These studies generally take real people and have them perform some specific task using
the language technology in question. While this approach has significantly improved some
aspects of the mainstream programming experience[2], and hinted at interesting ways to
develop a language[16] the scope of user studies is necessarily limited.

This paper proposes another way to measure the quality of programming languages: by
analyzing publicly available source code artifacts such as those available on GitHub!. This
approach alleviates many of the problems with user studies: very large samples are possible,
the contributors are more likely to be experienced developers and projects are frequently
large and realistic?. However, the data mining approach brings about new issues. We cannot
directly ask users about their experiences, so there must be additional interpretation. Are
programmers avoiding some features they find confusing and error prone? Or are they using
an inconvenient feature frequently because the language is forcing them to? Aside from

! https://github.com/, GitHub is popular site for open source projects based on the git version control
system

2 This study includes popular libraries like spring-boot, guava, selenium, jenkins, junit and projects from
organizations such as Netflix, Oracle, Paypal, Facebook and Google.
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this, the programming language features we are interested in analyzing maybe underutilized
for reasons other than their inherent usability: there might be a lack of education or
features might be used indirectly through libraries. For instance, when observing the looping
constructs of Java we see that the do while loop is very unpopular. This may be because of a
lack of awareness of the future, rather then its inherent awkwardness. While conducting this
research I found obscure Java features I was unaware of. Underlying language paradigms can
also drastically change the usability of a feature. For instance, Haskell has no inherent notion
of state, so a primitive “while” construct would not make sense. Hopefully data mining
can provide a vastly different perspective from usability studies and theory that can help
independently inform programming language design.

In this paper I mined the 1,746 most popular Java projects from GitHub. From this
sample we can conclude a number of basic but novel facts about Java language usage. These
facts will then be used to draw conclusions about the usability of different Java features,
and suggest pain points that future languages should address. Additionally this paper

demonstrates a simple method for analyzing Java files through the Eclipse IDE’s parser3.

2 Methodology

Java is one of the most popular programming languages and it has a large ecosystem of
projects that can be analyzed. This makes Java a good candidate for data mining*. In
addition, the Eclipse IDE’s Java parser allows very precise information to be drawn from
even very malformed files. Java is a relatively conservative language and invests heavily in
backwards compatibility, so projects using very old versions of Java can be analyzed with
little ambiguity.

In this study, the top Java GitHub repositories determined by star count® were selected
by the GitHub search API and downloaded using an archive link. The most popular projects
where chosen to avoid the many forks and copies of projects, and because it is likely that
popular projects are more widely used and maintained by experienced developers. Some
projects were randomly skipped over because of pagination issues with the search APIS. Every
repository that was available had each of its Java files parsed by the Eclipse IDE’s parser
into a traversable AST with the parser’s best guess at partial type information. Because the
Eclipse parser is designed to work with malformed files, it avoids several the issues other data
mining projects have suffered from. This includes needing to know how to build the project,
needing to resolve the correct version of library dependencies, and needing to find the correct
version of the Java run time and Java language version (which is often not disclosed by build
tools). Feature usages were then queried and aggregated.

3 Results

1,746 projects containing a total of 614,816 .java files and 97,758,514 lines of code was
analyzed. The average Java file is 159 lines long.

3 https://www.eclipse.org/jdt/core/

4 1 spent several years as a Java developer so I was experienced in the nuances of the language and the
ecosystem.

At the time of the download the most popular project had 37432 stars. The least popular project had
52 Stars.

Fewer than 2% of projects were skipped. More careful scripts could avoid most of this error, but there
will always be potential issues pulling data that is changing in real time while also respecting GitHub’s
rate limit.
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Table 1 Control flow constructs.

Construct Count/File® Count
Return 6.2 3,825,353
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Throw 0.74 455,898 sl m |
Try 0.72 442,698
Catch Clause 0.64 396475  °| | | il
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Figure 1 Control flow constructs, by Count /-

3.1 The Java Language

3.1.1 Control flow constructs

Java allows for several control flow constructs such as for loops, switch statements, throw
and catch statements, and return statements. Table 1 shows the count of each construct
from every .java file in the sample.

return is essentially required for writing Java functions, unsurprisingly it sees the heaviest
usage.

for loops are by far the most popular looping construct. while loops are much less
popular; though still used. Language authors should consider not including do while loops,
since they seem to be avoided in practice. The obscure loop labeling construct that allows
specific breaking of nested loops should be avoided in future languages.

It is interesting how much more popular the if statement is then the switch statement.

Though, since if statements can be chained together to have switch like behavior, a direct
comparison is questionable. This turns out not to be an issue, 82% of if statements have
no else block, another 16% of if’s only have an else (with no directly nested if). switch

statements eventually become more popular than if else chains, but usages of either is rare.

This may mean that language authors should consider not including a switch construct, or
instead include a more powerful pattern matching construct like those in functional languages
like Haskell or Scala.
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Table 2 Literal Usage.
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Figure 2 Literal Usage, by Count/File.

3.1.2 Literals

Literals are special syntactic constructs that a programmer may put in their code (for instance
"hello world", ’c’ , and 7). Table 2 shows the count of each literal.

Developers rarely specify character literals. In fact, strings of length 1, occur 3 times as
often as character literals. Language designers should consider not having special syntax for
characters, instead relying on string syntax (as Python does).

The popular usage of null is interesting, and we will revisit this later.

3.1.3 Operators

Java does not allow operator overloading, so the 19 infix operators provided by the language
are the only infix operators available. Were they well chosen? Table 3 shows the count of
each operator.

Arithmetic and logic operators are very popular, but the bitwise operators are relatively
unpopular. This is weak evidence that x = y might have been better used as the math power
operator (instead of the rarely used XOR operator), though calls to java.lang.Math: :pow
occur less frequently.

3.1.4 Nulls

It turns out that the popularity of the null literal and the == operator are related.

In fact, over half of all equality checks are really null checks. This explains 59% of the
null literals that occur in practice. Further inspection of null literals shows that 13% are
used in method invocations, 13% are directly assigned or used in a declaration, and 7% are
used in return statements. This weakly supports the popular idea that null references are a
broken programming feature [8] and justifies special syntax for null checks in Kotlin, and
the Maybe monad in Haskell.

3.2 The Java Standard Library
3.2.1 Most common method calls

Table 5 shows the most popular method call by name followed by the type that was most often
resolved at the call site (methods with different signatures but the same name were counted
the same for the sake of simplicity). The table shows that the collections libraries and string
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Table 3 Infix operator usage.

Operator  Count/File Count

X ==y 1.98 1,216,367
x+y 1.89 1,164,466
xl=y 1.39 855,485
x <y 0.70 430,412
x && y 0.68 415,305
x*y 0.58 355,789
X-y 0.56 342,409
x|y 0.38 231,446
X>y 0.31 189,792
x/y 0.24 149,703
x&y 0.15 92,747
X>=y 0.15 90,951
x <=y 0.12 74,888
x "y 0.08 46,641
x <<y 0.06 35,205
x|y 0.04 26,638
x %y 0.04 23,412
X>>y 0.03 18,899
X>>>y 0.02 11,860

Table 4 null checks.

Operator” Count/File  Count

x 1= null 1.03 634,786
x == null 0.99 609,510
X==y 0.99 606,857
xl=y 0.36 220,699

% x == null and null == x where

counted the same.
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Figure 3 Infix operator usage, by Count/File.
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Figure 4 null checks, by Count/File.
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Table 5 standard library calls.

Method Count/File Count Most Common Example Count/File Count
append 0.67 412,426 java.lang.StringBuilder::append 0.57 347,825
get 0.52 320,393 java.util.List::get 0.17 105,124
add 0.48 294,697 java.util.List::add 0.28 173,803
put 0.34 208,357 java.util.Map::put 0.26 160,172
equals 0.3 187,119 java.lang.String::equals 0.21 130,928
size 0.27 163,659 java.util.List::size 0.16 100,976
toString 0.21 131,916 java.lang.StringBuilder::toString 0.08 48,729
println 0.18 110,867 java.io.PrintStream::println 0.15 90,464
length 0.11 70,160 java.lang.String::length 0.09 55,591
getName 0.11 68,646 java.lang.Class::getName 0.08 47,940
valueOf 0.1 64,421  java.lang.String::valueOf 0.03 21,129
hashCode 0.09 57,261 java.lang.String::hashCode 0.05 32,212
format 0.09 56,865  java.lang.String::format 0.08 46,710
isEmpty 0.08 51,011 java.util.List::isEmpty 0.03 19,546
contains 0.08 50,778  java.lang.String::contains 0.03 19,271
asList 0.08 47,444  java.util.Arrays::asList 0.08 47,432
getMessage 0.07 46,099 java.lang.Exception::getMessage 0.04 22,045
substring 0.06 38,717  java.lang.String::substring 0.06 38,071
next 0.06 36,884  java.util.Iterator::next 0.05 30,500
remove 0.06 35,878  java.util.Map::remove 0.01 7,849

operations make up a large fraction of method calls, and should be considered important
for languages and standard libraries. Efficient string composition should be prioritized in
future languages: optimizing string concatenation (with the + operator) would have made
Java programs that use the appending function more readable. Almost every listed standard
library call was more popular than >>>, the least popular infix operation.

4  Threats to Validity

There are some reasons to be concerned with this analysis

= Most software development is proprietary, and the open source projects on GitHub may
be unrepresentative of non-open source projects.

= The most popular open source Java projects may not be representative of open source
projects in general. For instance there was at least one satirical project in the sample”.

" https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition
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Though it is frowned upon to check in generated code, it is still likely to happen in
practice. Generated code could cause a bias in favor of constructs produced by the
generation procedure.

Projects that themselves try to parse Java (like the IntelliJ IDE®) will often include
pathological test cases that contain extreme examples of Java syntax.

It is also possible that some unknown bias was introduced though the Eclipse parser.

Results should be compared against future versions of the parser.

5 Prior Work

There has been a large amount of work in mining software repositories[4]. While most of this
work has focused on answering questions unrelated to language usability, there have been
some studies worth mentioning.

5.1 Notable Java data mining projects

In [11], Java projects from the open source repository SourceForge were mined to analyze
3rd party library usage and migration. This paper improves on their methodology by
using the Eclipse parser, so projects can be analyzed in a reliable way without needing
build information.

[9] analyzed 22,730 artifacts in the maven package repository, to understand the landscape
of the Java library ecosystem. Since projects in the maven system are expected to be
used as libraries and require some basic level of quality to be accepted, this may not be a
representative sample of Java projects in general.

The Boa infrastructure[6] has the most similar methodology to this paper. It uses the
Eclipse parser to analyze a snapshot of all Java projects with full git histories and uses
Hadoop? to quickly mine large numbers of projects. The Boa infrastructure also includes
the Boa programming language designed for non-expert computer users as in interface
to the data mining infrastructure and Eclipse parser. The language and snapshots are
made publicly available online!®. In [7] the Boa infrastructure was used to analyze the
adoption of Java features before Java 8. While Boa has some clear improvements over
the methodology in this paper in terms of speed and sample size, only [7] dealt with
Java usability directly. This paper does improve on a few details: Boa’s latest publicly
available snapshots are from 2015 at the time of this writing, while the projects in this
paper were pulled in August 2018.

5.2 Other studies that address usability through data mining

There are several papers that have looked into usability of specific language features. There

has been extensive research into usage of Java’s exception handling mechanism[10, 13, 1, 15, 3].

Dikstra’s skepticism of the goto construct[5] has been empirically tested with 384 C files from
GitHub[12]. The usage of Scala’s implicit parameter feature was analyzed in 120 GitHub
projects to inform how to extend the feature[14].

8 https://github.com/JetBrains/intellij-community
9 https://hadoop.apache.org/
Oyttp://boa.cs.iastate.edu/boa
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5.3 Unpublished work from 2015

In unpublished work from 2015, I used a similar methodology to scan 1,970 GitHub repositories
to understand adoption of Java 8. At the time only 14% of the projects had observably
adopted Java 8 (by using one of Java 8 features). Of those projects, there was a noticeable
decrease in single method anonymous classes, the Java 7 feature that most closely resembled
the lambdas that appeared in Java 8. Lambdas were by far the most popular syntactic
construct introduced by Java 8.

6  Future Work

There are a number of interesting directions to take this research

Compare language usage across project types. There are many different uses for Java
in practice: Java is heavily used in web development, Java was the primarily supported
language for phone development under Android, and Java is used extensively for analytics
with projects like Hadoop. It is now much easier to categorize project types since GitHub
added “topics” in 2017''. Topics are tags that are generated automatically via machine
learning'? to project repositories and then curated by the project owner. This would
offer a straightforward way to see how different kinds of projects use a language and its
standard library differently.

Reproduce the results of this paper under the Boa infrastructure. This would help increase

confidence in this study as well as making the methodology more reproducible.

Extend the analysis to different languages and paradigms. It would be interesting to see

how Java usage compares to Python. It would be very interesting to see if a functional

language like Haskell has similar usage.

Run a similar analysis on popular libraries. Popular libraries like the Apache Commons!3
might give insight into features that should be incorporated into future standard libraries
out of the box. An analysis like this could be very helpful for the library authors as well.
Observe changes in usage over time. Since git keeps a record of a repositories history
it would be interesting to see if some features become more or less popular over time.
Do users upgrade to newer versions of the language and libraries? How quickly are new
features adopted?

Analyze the “real” types of literals such as strings. In Java strings are often used to
to represent specific languages like regular expressions, SQL, or English. Analyzing the
string literal usage would allow language designers to know when or if these languages
should be made into separate first class languages, or should be handled in the standard
library with string interpolation.

More analysis should be done into the usage of null in practice. Does it very by project
type? and has it become less popular over time? It would also be interesting to see how
frequently the notNull annotation is used.

7 Conclusion

Data mining has the potential to inform many aspects of future language and library design;
this paper barely scratches the surface. Hopefully, these techniques will suggest how future
languages should be designed to make programming a more productive, safe, and enjoyable
experience.

Hyttps://help.github. com/articles/about-topics/
2nttps://githubengineering. com/topics/
Bhttps://commons.apache.org/
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