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—— Abstract

The maximum modularity of a graph is a parameter widely used to describe the level of clustering
or community structure in a network. Determining the maximum modularity of a graph is
known to be NP-complete in general, and in practice a range of heuristics are used to construct
partitions of the vertex-set which give lower bounds on the maximum modularity but without
any guarantee on how close these bounds are to the true maximum. In this paper we investigate
the parameterised complexity of determining the maximum modularity with respect to various
standard structural parameterisations of the input graph G. We show that the problem belongs
to FPT when parameterised by the size of a minimum vertex cover for GG, and is solvable in
polynomial time whenever the treewidth or max leaf number of G is bounded by some fixed
constant; we also obtain an FPT algorithm, parameterised by treewidth, to compute any constant-
factor approximation to the maximum modularity. On the other hand we show that the problem
is W[1]-hard (and hence unlikely to admit an FPT algorithm) when parameterised simultaneously
by pathwidth and the size of a minimum feedback vertex set.
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1 Introduction

The increasing availability of large network datasets has led to great interest in techniques to
discover network structure. An important and frequently observed structure in networks is
the existence of groups of vertices with many connections between them, often referred to as
‘communities’.

Newman and Girvan introduced the modularity function in 2004 [22]. Modularity gives
a measure of how well a graph can be divided into communities and is used in the most
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popular algorithms to cluster large networks. For example, the Louvain method, an iterative
clustering technique, uses the modularity function to choose which parts from the previous
step to fuse into larger parts at each step [2, 15]. The widespread use of modularity and
empirical success in finding communities makes modularity an important function to study
from an algorithmic point of view.

In this paper we are concerned with the computational complexity of computing the
maximum modularity of a given input graph, and specifically in the following decision
problem.

MODULARITY
Input: A graph G and a constant ¢ € [0, 1].
Question: Is the maximum modularity of G at least ¢?

This problem was shown to be NP-complete in general by Brandes et. al. [3], using a
construction that relies on the fact that all vertices of a sufficiently large clique must be
assigned to the same part of an optimal partition. They also showed that a variation of
the problem in which we wish to find the optimal partition into exactly two sets is hard;
their proof for this relied again on the use of large cliques, but DasGupta and Desai [5]
later showed that this 2-clustering problem remains NP-complete on d-regular graphs for
any fixed d > 9. It has also been shown that it is NP-hard to approximate the maximum
modularity within any constant factor [7], although there is a polynomial-time constant-factor
approximation algorithm for certain families of scale-free networks [9]. The hardness of
computing constant-factor multiplicative approximations in general has motivated research
into approximation algorithms with an additive error [7, 16]: the best known result is an
approximation algorithm with additive error roughly 0.42084 [16].

In this paper we initiate the study of the parameterised complexity of MODULARITY,
considering its complexity with respect to several standard structural parameterisations. On
the positive side, we show that the problem is in FPT when parameterised by the cardinality of
a minimum vertex cover for the input graph G, and that it belongs to XP when parameterised
by either the treewidth or max leaf number of G. The XP algorithm parameterised by
treewidth can easily be adapted to give an FPT algorithm, parameterised by treewidth, to
compute any constant-factor approximation maximum modularity. On the other hand, we
demonstrate that MODULARITY, parameterised by treewidth, is unlikely to belong to FPT:
we prove that the problem is W[1]-hard even when parameterised simultaneously by the
pathwidth of G and the size of a minimum feedback vertex set for G. For background on
parameterised complexity, and the complexity classes discussed here, we refer the reader to
[4, 10].

These results follow the same pattern as those obtained for the problem EQUITABLE
CONNECTED PARTITION [11], and indeed our hardness result involves a reduction from a
specialisation of this problem. There are clear similarities between the two problems: in a
partition that maximises the modularity, every part will induce a connected subgraph and,
in certain circumstances, we achieve the maximum modularity with a partition into parts
that are as equal as possible. However, the crucial difference between the two problems
is that the input to EQUITABLE CONNECTED PARTITION includes the required number of
parts, whereas MODULARITY requires us to maximise over all possible partition sizes; in
fact, if we restrict to partitions with a specified parts, it is no longer necessarily true that
a partition maximising the modularity must induce connected subgraphs. This difference
makes reductions between the two problems non-trivial.
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1.1 The modularity function

The definition of modularity was first introduced by Newman and Girvan in [22]. Many or
indeed most popular algorithms used to search for clusterings on large datasets are based on
finding partitions with high modularity [17, 14], and the heuristics within them sometimes
also use local modularity optimisation, for example in the Louvain method [2]. See [23, 13]
for surveys on community detection including modularity based methods.

Knowledge on the maximum modularity for classes of graphs helps to understand the
behaviour of the modularity function. There is a growing literature on this which began
with cycles and complete graphs in [3]. Bagrow [1] and Montgolfier et al. [6] showed some
classes of trees have high maximum modularity which was extended in [19] to all trees with
maximum degree o(n), and furthermore to all graphs where the product of treewidth and
maximum degree grows more slowly than the number of edges. Many random graph models
also have high modularity, see [20, 21] for a treatment of Erdds-Renyi random graphs, [19] for
random regular graphs and also [24] which includes the preferential attachment model.

Given a set A of vertices, let e(A) denote the number of edges within A, and let vol(A)
(sometimes called the volume of A) denote the sum of the degree d,, (in the whole graph G)
over the vertices v in A. For a graph G with m > 1 edges and a vertex partition A of G, set
the modularity of A on G to be

@ =53 % (1E - C;j) Ly - Y
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the maximum modularity of G is ¢*(G) = max 4(G), where the maximum is over all partitions

A of the vertices of G. Graphs with no edges are defined conventially to have modularity 0.

The modularity function is designed to score partitions highly when most edges fall within
the parts and penalise partitions with very few or very big parts. These two objectives
are encoded as the edge contribution or coverage ¢5(G) = L3, ,e(A), and degree tax
q3(G) = 13 > ac.4 Vol(A)?, in the modularity of a vertex partition A of G.

Note that for any graph with m > 1 edges 0 < ¢*(G) < 1. To see the lower bound, notice
that the trivial partition which places all vertices in the same part has modularity zero. For
example, complete graphs and stars have modularity 0 as noted in [3]. A graph consisting of
¢ disjoint cliques of the same size has modularity 1 — 1/c with the optimal partition taking
each clique to be a part.

As modularity is at most 1 it is sometimes useful to consider the modularity defect
Ga(G) =1 — qa(G). Denote by 9(A) the number of edges between A and the rest of the
graph. Then

1

(@) = 5 3 (o) + 250
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and we may equivalently minimise the modularity defect as maximise the modularity. In
particular

q(G) = gﬂeigtiA(G) =1-¢"(G).

We will make use of several facts about the maximum modularity of a graph.

» Fact 1.1 (Lemma 3.3 of [3]). If A is a partition of V(G) such that ga(G) = ¢*(G) then
no part A consists of a single vertex of degree 1.
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» Fact 1.2 (Lemma 3.4 of [3]). Suppose that G is a graph that contains no isolated vertices.
If A is a partition of V(G) such that ga(G) = ¢*(G) then, for every A € A, G[A] is a
connected subgraph of G.

» Fact 1.3 (Corollary 1 of [3]). Let G = (V, E) and suppose that Vo C 'V is a set of isolated
vertices. Then q(G) = q(G \ Vo). Moreover, if partitions A and A" agree on all vertices of
VA Vo, then qa(G) = qu (G).

» Fact 1.4 (Lemma 1 of [8],Lemma 2.1 of [5]). For any integer ¢ > 0 and any graph G,

max g4(G) > ¢*(G) (1 - 1)

lAj<e c

1.2 Notation and definitions

Given a graph G = (V, E), and a set U C V of vertices, we write G[U] for the subgraph of G
induced by U and G \ U for G[V \ U]. Given two disjoint subsets of vertices A, B C V', we
write e(A, B) for the number of edges with one endpoint in A and the other in B. We shall
often want to denote the number of edges between a set of vertices and the remainder of the
graph so set 9(A) = e(A, A). If P is a partition of a set X, and Y C X, we write P[Y] for
the restriction of P to Y.

A wvertex cover of a graph G = (V, E) is a set U C V such that every edge has at least
one endpoint in U; equivalently, G \ U is an independent set (i.e. contains no edges). The
vertex cover number of G is the smallest cardinality of any vertex cover of G. A feedback
vertex set for G is a set U C V such that G \ U contains no cycles. Notice that the vertex
cover number of G gives an upper bound on the size of the smallest feedback vertex set for
G, written fvs(G). The max leaf number of G is the maximum number of leaves (degree one
vertices) in any spanning tree of G.

A tree decomposition of a graph G is a pair (T, D) where T is a tree and D = {D(t) : t €
V(T)} is a collection of non-empty subsets of V(G) (or bags), indexed by the nodes of T,
satisfying:

1. V(@) = Upey(r) D).
2. for every e = wv € E(G), there exists t € V(T') such that u,v € D(t),
3. for every v € V(G), if T'(v) is defined to be the subgraph of T" induced by nodes ¢ with

v € D(t), then T'(v) is connected.

If T is in fact a path, we say that (T, D) is a path decomposition of G. The width of the tree
decomposition (7', D) is defined to be max;cy (r) [D(t)| — 1, and the treewidth of G, written
tw(G), is the minimum width over all tree decompositions of G. The pathwidth of G, pw(G),
is the minimum width over all path decompositions of G.

2 Positive results

In this section we identify a number of structural restrictions on the input graph that allow
us to compute the maximum modularity of a graph, or a good approximation to this quantity,
efficiently.

2.1 Parameterisation by vertex cover number

In this section we demonstrate that MODULARITY is in FPT when parameterised by the
vertex cover number of the input graph.
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» Theorem 2.1. MODULARITY, parameterised by cardinality of a minimum vertex cover for
the input graph G, is in FPT.

To prove this result, we make use of recent work of Lokshtanov [18] which gives an FPT
algorithm for the following problem.

INTEGER QUADRATIC PROGRAMMING
Input: An n X n integer matrix @, an m X n integer matrix A, and an m-dimensional
vector b.
Parameter: n + «, where « is the maximum absolute value of any entry in A or Q.
Problem: Find a vector x € Z" which minimises x” @Qx, subject to Ax < b.

Before proving Theorem 2.1, we introduce some notation. Suppose that the graph G =
(V,E) has |E| = m, and that U = {uy,...,ux} is a vertex cover for G. Let P = {Py,..., P}
be a partition of U, and set W =V \ U (so W is an independent set).

We can partition the vertices of W into 2¥ sets based on their type: the type 7y (w) €
{0, 1}* of a vertex w € W describes which of the vertices in U are neighbours of w. Formally
(w); =1 if ujw € E(G) and ¢ (w); = 0 otherwise. For each o € {0,1}*, we set S, to be
the set of all vertices in W with type exactly o, that is, So = {w € W : 7(w) = o}.

Now let A= {A4,...,A,} be a partltlon of V. We write J;A for the number of vertices
of type o which are asugned to A;, that is, x4 |S N Al Flnally, we introduce 0-1 vectors
to encode the sets P; € P: for 1 <i < ¢, we let 7t € {0,1}* be given by 71']- =1if u; € B,
and 7; = 0 otherwise.

We now argue that, if the partition A extends P, we can compute the modularity of
A using only the values ac ;» together with information about P. This shows that the
modularity depends only on the number of vertices of each type assigned to a given partition,
and not the assignment of individual vertices. The proof is omitted due to space constraints.

» Lemma 2.2. Let U = {uy,...,ux} be a vertex cover for G = (V, E), where |[E| = m, and
let P be a partition of U. If A is any partition of V which extends P and has the property
that every A € A has non-empty intersection with U, then

1 o 1 4 .
Eze szo’,i(a'ﬂ-l)v

i=1 (0,0)

and

4qu,_4Z —&-423601 -(1+7ri))
(0,i)
+ Y wlad (o (L) (14 7)).

(0:3)(0",5)

Proof of Theorem 2.1. We will assume that the input to our instance of MODULARITY is a
graph G = (V, E), where |E| = m. We may assume without loss of generality that we are
also given as input a vertex cover U = {uy,...,ux} for G (as if not we can easily compute
one in the allowed time). We may further assume that G does not contain any isolated
vertices, as we can delete any such vertices (in polynomial time) without changing the value
of the maximum modularity (by Fact 1.3).

9:5
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Note that the total number of possible partitions of U into non-empty parts is equal to
the k" Bell number, By (and hence is certainly less than k*). It therefore suffices to describe
an fpt-algorithm which determines, given some partition P of U,

¢"(G) = max{qa(G) : A[U] = P}.
The maximum modularity of G can then be calculated by taking
max{q” (G) : P is a partition of U}.

From now on, we consider a fixed partition P = {Py,..., P;} of U, and describe how to
compute ¢” (G).

It follows from Facts 1.1 and 1.2, together with the fact that W is an independent set
that, if A = {A1,...,A,} is a partition of V' which achieves the maximum modularity, then
every part A; has non-empty intersection with U. We will call a partition with this properties
a U-partition of G. It then suffices to maximise the modularity over all U-partitions in order
to determine the value of ¢” (G).

Now, by Lemma 2.2, we know that we can express the modularity of a U-partition A as

1< 1 4 L1 )
qA(G):EZe(Pl)—i_EZxUz(U ﬂ-)_ig e(Pl)
i=1 (0,7) 4
~ LS AP0 (14 )
(1)
S Y et o (A ) 1)

(o:0)(0”,)

As we have fixed the partition P, all values e(P;) can be regarded as fixed constants. In
order to determine the maximum modularity we can obtain with a U-partition, we therefore
need to find the values of 5534,1' which maximise this expression.

We can rewrite (1) as the sum of a constant term, two linear functions ¢ and ¢ of the

xﬁi and a quadratic function v of the xf,i (up to scaling by constants):
G) = ! P, 1 P;)?
qa( )—gze( z)—ﬁ e(F;)
i=1 i
constant

1 A i 1 A i
o 2o ) =5 Y wgie(P)(o - (L4 )
(0,%) (0,)
0(A) #(A)

1 , )
S O wad o () ().
(i,0) (5,0

¥(A)

To find the maximum value of g4(G) over all U-partitions it therefore suffices to determine,
for all possible values of 0(A) and ¢(A), the minimum possible value of ¥(A). Before
describing how to do this, we observe that the number of combinations of possible values
for 8(A) and ¢(A) and is not too large. Note that 0 < Zg’ixéi(a -m') < nk, and 0 <
Ypiaie(P)(o- (1+7") < n(5)2k < nk®, so the number of possible pairs (6(A), ¢(A))



K. Meeks and F. Skerman

is at most n?k*. Thus, if we know the minimum possible value of 1)(A) corresponding to
each possible pair (6(A), ¢(A)), we can compute the maximum modularity achieved by any
U-partition A such that (6(A), ¢(A)) = (v, z), and maximising over the polynomial number
of possible pairs (y, z) will give ¢% (G).

Now, given a possible pair of values (y, z) for (6(A), #(A)), we describe how to compute

min{¢(A) : A is a U-partition with 6(A) = y and ¢(A) = z}.

Our strategy is to express this minimisation problem as an instance of INTEGER QUADRATIC
PROGRAMMING and then apply the FPT algorithm of [18].

In this instance, we have n = £2¥ < k2%, and our vector of variables x = (x1,...,2,)7 is

given by
A
€Tr; = I(Ui o 2k>7"i/2k“ }
where 01, .., 04 is a fixed enumeration of all vectors in {0, 1}*. The matrix @ expresses
the value of 1(A) in terms of x: if we set @ = {¢; ;} where

Qi = (U(i mod 2*) * (1 +7T[i/2k]>) (J(j mod 2k) ° (1 +7T[j/2q)) ,

then it is easy to see that 1)(A) = x7 Qx. Note also that the maximum absolute value of any
entry in Q is at most 4k2.
We now use the linear constraints to express the conditions that
1. 6(A4) =y,
2. ¢(A) =z, and
3. the values z; , correspond to a valid U-partition 4.
The first of these conditions can be expressed as a single linear constraint:

Z ‘Tﬁ,i(o— : ’/Ti) =Y,
(0,%)

or equivalently a;x = y where a; is the 1 x n row vector with i** entry equal to

[i/2*]

0@ mod 2k) T .

We can similarly express the second condition as a single linear constraint:

> ate(P)o- (1+7) =2
(%)

or equivalently asx = z, where as is the 1 x n row vector with i*" entry equal to

e (Prijan) (U(i mod 2¢) ° (1 +7r[i/2k])) .

Note that every entry in the vectors a; and a, has absolute value no more than 2k3. For
the third condition, note that the values x; , correspond to a valid U-partition if and only if
every ;. is non-negative, and for each o we have Ele x;‘}g = |S,|.

We can therefore express all three conditions in the form Ax = b, where A is a
(4+ (€+1)2¥) x n and b is a (4 + (¢ + 1)2")-dimensional vector (notice that we use two
inequalities to express each of the linear equality constraints).

Altogether, this means that a solution to this instance of INTEGER QUADRATIC PRO-
GRAMMING will determine the values of x;‘}a which minimize (out of all values corresponding to

9:7
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some U-partition A) the value of 1(A), subject to the additional requirement that 6(A4) =y
and ¢(A) = z. Note that the number of variables n is at most k2* and the largest absolute
value of any entry in A or Q is at most 2k3, so the parameter in the instance of INTEGER
QUADRATIC PROGRAMMING is bounded by a function of k. This completes the proof. <

We note the algorithm described can easily be modified to output an optimal partition.

2.2 Parameterisation by treewidth

In this section we demonstrate that MODULARITY, parameterised by the treewidth of the
input graph G, belongs to XP and so is solvable in polynomial time on graph classes whose
treewidth is bounded by some fixed constant. We further show that for any fixed £ > 0
there is an FPT-algorithm, parameterised by treewidth, which computes a factor (1 — ¢)-
approximation; i.e. returning a value between (1 — ¢)¢* and ¢* where ¢* is the maximum
modularity of the graph.

» Theorem 2.3. MODULARITY parameterised by the treecwidth of the input graph G is in XP.

This result makes use of standard dynamic programming techniques, and details are
omitted due to space constraints. The key property of modularity we use is that each part
in a partition that maximises modularity must induce a connected subgraph, so it suffices to
keep track of feasible statistics for each part that intersects the bag of the tree decomposition
under consideration, together with the contribution to modularity from parts that are entirely
“below” the current bag.

To obtain our FPT approximation result, we use a very similar approach; the key is to
restrict our attention to partitions with only a constant number of parts. For any constant
¢ € N, we write ¢%.(G) for the maximum modularity for G achievable with a partition into
at most c parts, that is

=.(G) = max q4(G).

We refer to the problem of deciding whether ¢% .(G) > ¢ for a given input graph G and
constant ¢ € [0,1] as ¢-MODULARITY. We now argue that ¢-MODULARITY is in FPT
parameterised by the treewidth of the input graph.

» Lemma 2.4. ¢c-MODULARITY is in FPT when parameterised by the trecwidth of the input
graph.

The crucial difference from our XP algorithm above is the fact that, when we fix the
number of parts in the partition, we can no longer assume that every part is connected.
However, if the maximum number of parts c is a constant, we can keep track of the necessary
statistics for every possible part, not just those that intersect the bag under consideration.

Recall (Fact 1.4) that ¢*(G) > ¢%.(G)) > ¢*(G) (1 - %), thus, for any constant e > 0,
we obtain a multiplicative approximation with relative error at most € by solving [%]—
MODULARITY. This immediately gives the following result.

» Corollary 2.5. Given any constant € > 0, there is an FPT-algorithm, parameterised by the
treewidth of the input graph G, that that returns a partition A with q4(G) > (1 —€)q*(G).

We conclude this section by noting that sparse graphs, in particular graphs G with low
tree width, tw(G), and maximum degree, A(G), can have high maximum modularity. In
particular Theorem 1.11 of [19] shows ¢*(G) > 1 — 2((tw(G) + 1) A(G)/|E(G)|)'/2.
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2.3 Parameterisation by max leaf number

In this section we demonstrate that MODULARITY can be solved in time linear in the number
of connected subgraphs of the input graph G; as a consequence of this result, we deduce that
the problem belongs to XP when parameterised by the max leaf number of G.

» Theorem 2.6. Let G be a graph on n vertices with m edges and at most h connected
subgraphs. Then MODULARITY can be solved in time O(h?n).

This is achieved by means of a dynamic programming strategy, in which we compute
the maximum value of a modularity-like function for each connected subgraph in turn,
considering the subgraphs in nondecreasing order of their number of vertices. Full details of
the proof are omitted due to space constraints.

It is known that, if the max leaf number of G is ¢, then G is a subdivision of some graph
H on at most 4c vertices [12]; a graph on n vertices that is a subdivision of such a graph
H has at most 24°n(4)” connected subgraphs (once we have decided which branch vertices
belong to a subgraph, it remains only to decide where to cut each path from one of the
chosen branch vertices to one we have not chosen). Thus, if the max leaf number of G is
bounded by a constant it follows that G has at most a polynomial number of connected
subgraphs, and the following result is an immediate consequence of Theorem 2.6.

» Corollary 2.7. MODULARITY is in XP when parameterised by the mazx leaf number of the
input graph G.

We conjecture that this result is not optimal, and that MODULARITY is in fact in FPT
with respect to this parameterisation.
3 Hardness results

In this section we complement our positive result about the FPT approximability of the
problem parameterised by treewidth by demonstrating that computing the exact value of
the maximum modularity is hard even in a more restricted setting.

» Theorem 3.1. MODULARITY, parameterised simultaneously by the pathwidth and the size
of a minimum feedback vertex set for the input graph, is W[1]-hard.

Our proof of this result relies on the hardness of the following problem.

EQUITABLE CONNECTED PARTITION (ECP)

Input: A graph G = (V, E) and r € N.

Question: Is there a partition of V into r classes V1,...,V, such that |V;| — |V;| <1 for
all 1 <i < j <r, and the induced subgraph G[V;] is connected for each i € 1,...,r?

The parameterised complexity of ECP was investigated thoroughly in [11]. Among other
results, the problem is shown to be W[1]-hard even when parameterised simultaneously by
r, pw(G) and fvs(G). In proving this hardness result, the authors implicitly consider the
following variation of ECP.

9:9
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ANCHORED EQUITABLE CONNECTED PARTITION (AECP)
Input: A graph H = (Vi, Egr), and a set of distinguished anchor vertices a1, ...,a, € V.

Question: Is there a partition of Vg into r classes Vi,...,V, such that a; € V; for all 7,
|Vil = [V;]] <1 forall 1 <i<j<r, and the induced subgraph G[V;] is connected for
eachiel,...,r?

From the proof of [11, Theorem 1] we can extract the following statement about the
hardness of AECP.

» Lemma 3.2 ([11], implicit in proof of Theorem 1). AECP is W[1]-hard, parameterised

simultaneously by pw(H) and fvs(H), even if the following conditions hold simultaneously:

1. H is connected;

2. the graph H' obtained from H by deleting all vertices of degree one is a subdivision of a
S-regular graph H ;

3. the branch vertices of H' (i.e. vertices of f[) are precisely the anchor vertices aq, ..., a.;

o

r >4 is even and divides |Vg|;
5. H\{a1,...,a,} is a disjoint union of isolated vertices and paths with pendant edges.

In the proof of Theorem 3.1, it is useful to analyse the ‘per unit modularity defect’ f,,(B)
of vertex subsets B. Intuitively, the following lemma (proof omitted due to space constraints)
says that, if you are restricted to parts B with §(B) = 4, the modularity maximising volume
is vol(B) = 2v/2m. Moreover, while it would usually be better to take parts with §(B) < 4
these parts are actually worse (i.e. higher f,,(B) value) if their volumes are too big or too
small. The function f,,(B) plays a similar role to the n-cost in Proposition 1 of [19].

» Lemma 3.3. Assume that m > 1, vol(B) > 1 and define

_9(B) | vol(B)
~ vol(B) T

Then the following properties hold:

0: if d(B) = 0 and vol(B) > 4v/2m then fm(B) > 2/2/m.

1: if 9(B) = 1 and vol(B) > 3.7321v/2m or vol(B) < 0.2679v/2m then f,,(B) > 2+/2/m.
2: if )(B) = 2 and vol(B) > 3.4143v/2m or vol(B) < 0.5857v/2m then f,,(B ) > 2./2/m.
3: if 9(B) = 3 and vol(B) > 3v/2m or vol(B) < \/% then fm(B) > 24/2/m

4: if 9(B) = 4 and vol(B) = 2v/2m then fm(B) = 2/2/m

5: if 9(B) > 5 then fim(B) > 24/2/m.

Proof of Theorem 3.1. We give a reduction from AECP. Let (H, {ay,...,a,}) be the input
to an instance of AECP; we will describe how to construct a graph G, where pw(G) and
fvs(G) are both bounded by a function of r, together with an explicit ¢o € (0,1) such that
(G, qo) is a yes-instance for MODULARITY if and only if (H, {a1,...,a.}) is a yes-instance for
AECP.

We may assume without loss of generality that our instance of AECP satisfies all of the
conditions of Lemma 3.2.

We define a new graph G, obtained from H by adding the following (see Figure 1):

«a new leaves adjacent to each anchor vertex aq,...,a,,

[ isolated edges disjoint from G, and

an arbitrary perfect matching on the anchor vertices aq,...,a,,
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ai

as

a4

*—
pa—

Figure 1 Possible input graph H with anchors a1, a2, as, as and the graph G constructed from it
by adding « new leaves adjacent to each anchor, § isolated edges and a perfect matching between
the anchors.

where the values of o and § will be determined later. Notice that, even with these modifica-

tions, G \ {a1,...,a,} is still a disjoint union of isolated vertices and paths with pendant

edges; hence pw(G) < r+1 and fvs(G) < r. Weset m = |E(G)| som = |E(H)|4+ar+8+r/2.
We now define our instance of MODULARITY to be (G, qo), where

We now argue that (G, qo) is a yes-instance if and only if (H, {ay, ..
for AECP. Recall that
0(A)
( 2m +

and that the partition A which achieves the minimum in the expression above is exactly
the modularity maximal A. In any modularity optimal partition, A, each isolated edge will
form its own part: this follows from Facts 1.1 and 1.2. Write V' for vertices of G without
the vertices supporting the /3 isolated edges, and let the minimisation be over A’ which are
vertex partitions of V'. We then have

.,a,}) is a yes-instance

vol(A)Q).

4m?

¢ (G)=1- mjn Z

AeA

* _ B . O(A)  vol(A)?
CO=1=0a = 2 S T
Rearranging, we see that
p wipy . M= . vol(A) [ 9(A)  vol(A)
L=z (@) = — =i A;A’Q( —B) (vol(A) om )
m — ) vol(A)
= @ —_—— m A 2
m HEPA;,%m— )f() (2)
> mT—B i, fn(A). (3)

The last inequality holds because ) , vol(A) = 2(m — ) and so (2) is a weighted sum of the
fm(A) with total weight one. This, together with the fact that no A has zero volume, also
implies that (2)>(3) with equality if and only if f,,,(A) = mingcy: fi(B) for every A € A'.
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Note that, since A’ is the restriction of some modularity optimal partition A to a connected
component of G, we may assume that, for all A € A, G[A] is connected. Moreover, if v is a
pendant vertex adjacent to w then u and v are in the same part in A’; we call a partition
with this last property (or, abusing notation, a set that would not violate this condition in a
partition) ‘pendant-consistent’.

We make the following claim, whose proof is omitted due to space constraints; we write
s = |H|/r for the desired part size in our instance of AECP.

» Claim 3.4. Suppose that o > 32|E(H)|? and that we have /2m = s+ a + 1. Then:

(a) for any connected, pendant-consistent set B C V' we have f,,(B) > 24/2/m, and if
fm(B) = 2./2/m then B contains exactly one anchor and vol(B) = 2v/2m;

(b) if (H,{a1,-..,a+}) is a yes-instance, then there is a vertex partition A" of V' so that
fm(A) =2/2/m for all A€ A';

(c) if there is a vertex partition A’ = {Ay,..., A} of V' so that for all A; € A, fn(4;) =
24/2/m, A is pendant-consistent and G[A] is connected for all A € A, then

(H,{a1,...,a,}) is a yes-instance.

Note that, by Claim 3.4(a) and line (3), we always have

Hence in particular (G, qo) is a yes-instance if and only if there is a partition A’ of V’ such
that VA € A" f,(A) =2/2/m.

Claim 3.4(b) , together with line (2), implies that, if (H,{a1,...,a,}) is a yes-instance,
then so is (G, qo). Converesly, if (G, qo) is a yes-instance, it follows from Claim 3.4(c), that
(H,{a1,...,a,}) is a yes-instance.

It remains only to show that we can choose suitable values of o and 5. Set a to be the
least integer such that

a>320E(H)? (a+s+1)>>2|E(H)|+2ar+r and a=s+1 (mod 2). (4)

Recall that r is even. This, along with our parity constraint between « and s, implies that
(a4 s+ 1)2 — 7 is even. Thus we can choose 3 to be

1
f=5 ((ats+17—r) ~ |B(H) ~ar: (5)
note J is positive because we set v so that (o +s+1)? > 2|E(H)| 4 2ar +r. Finally, observe
that we do have v2m = s + a + 1 because, by the chosen value of 3,

m=|EH)|+ar+p+7r/2=(s+a+1)?*/2. <

4 Conclusions and Open Problems

We have shown that MODULARITY belongs to FPT when parameterised by the vertex cover
number of the input graph, and that the problem is solvable in polynomial time on input
graphs whose treewidth or max leaf number is bounded by some fixed constant; we also
showed that there is an FPT algorithm, parameterised by treewidth, which computes any
constant-factor approximation to the maximum modularity. In contrast with the positive
approximation result, we demonstrated that the problem is unlikely to admit an exact FPT
when the treewidth is taken to be the parameter, as it is W[1]-hard even when parameterised
simultaneously by the treewidth and size of a minimum feedback vertex set for the input
graph.
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We conjecture that our XP algorithm parameterised by max leaf number is not optimal,

and that MODULARITY in fact belongs to FPT with respect to this parameterisation. Another
natural open question arising from our work is whether our approximation result can be
extended to larger classes of graphs, for example those of bounded cliquewidth or bounded

expansion.
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