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Abstract
In this paper, we study multi-budgeted variants of the classic minimum cut problem and graph
separation problems that turned out to be important in parameterized complexity: Skew Mul-
ticut and Directed Feedback Arc Set. In our generalization, we assign colors 1, 2, ..., ` to
some edges and give separate budgets k1, k2, ..., k` for colors 1, 2, ..., `. For every color i ∈ {1, ..., `},
let Ei be the set of edges of color i. The solution C for the multi-budgeted variant of a graph sep-
aration problem not only needs to satisfy the usual separation requirements (i.e., be a cut, a skew
multicut, or a directed feedback arc set, respectively), but also needs to satisfy that |C ∩Ei| ≤ ki
for every i ∈ {1, ..., `}.

Contrary to the classic minimum cut problem, the multi-budgeted variant turns out to be
NP-hard even for ` = 2. We propose FPT algorithms parameterized by k = k1 + ... + k` for all
three problems. To this end, we develop a branching procedure for the multi-budgeted minimum
cut problem that measures the progress of the algorithm not by reducing k as usual, by but
elevating the capacity of some edges and thus increasing the size of maximum source-to-sink
flow. Using the fact that a similar strategy is used to enumerate all important separators of a
given size, we merge this process with the flow-guided branching and show an FPT bound on
the number of (appropriately defined) important multi-budgeted separators. This allows us to
extend our algorithm to the Skew Multicut and Directed Feedback Arc Set problems.

Furthermore, we show connections of the multi-budgeted variants with weighted variants
of the directed cut problems and the Chain `-SAT problem, whose parameterized complexity
remains an open problem. We show that these problems admit a bounded-in-parameter number of
“maximally pushed” solutions (in a similar spirit as important separators are maximally pushed),
giving somewhat weak evidence towards their tractability.
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1 Introduction

Graph separation problems are important topics in both theoretical area and applications.
Although the famous minimum cut problem is known to be polynomial-time solvable, many
well-known variants are NP-hard, which are intensively studied from the point of view of
approximation [1, 2, 11, 13, 14, 18] and, what is more relevant for this work, parameterized
complexity.

The notion of important separators, introduced by Marx [22], turned out to be funda-
mental for a number of graph separation problems such as Multiway Cut [22], Directed
Feedback Vertex Set [4], or Almost 2-CNF SAT [27]. Further work, concerning mostly
undirected graphs, resulted in a wide range of involved algorithmic techniques: applications of
matroid techniques [19, 20], shadow removal [8, 25], randomized contractions [5], LP-guided
branching [10, 15, 16, 17], and treewidth reduction [24], among others.

From the above techniques, only the notion of important separators and the related
technique of shadow removal generalizes to directed graphs, giving FPT algorithms for
Directed Feedback Arc Set [4], Directed Multiway Cut [8], and Directed Subset
Feedback Vertex Set [7]. As a result, the parameterized complexity of a number of
important graph separation problems in directed graphs remains open, and the quest to
investigate them has been put on by the third author in a survey from 2012 [23]. Since the
publication of this survey, two negative answers have been obtained. Two authors of this
work showed that Directed Multicut is W[1]-hard even for four terminal pairs (leaving
the case of three terminal pairs open) [26], while Lokshtanov et al. [21] showed intractability
of Directed Odd Cycle Transversal.

During an open problem session at Recent Advancements in Parameterized Complexity
school (December 2017) [12], Saurabh posed the question of parameterized complexity of a
weighted variant of Directed Feedback Arc Set, where given a directed edge-weighted
graph G, an integer k, and a target weight w, the goal is to find a set X ⊆ E(G) such that
G−X is acyclic and X is of cardinality at most k and weight at most w. Consider a similar
problem Weighted st-cut: given a directed graph G with positive edge weights and two
distinguished vertices s, t ∈ V (G), an integer k, and a target weight w, decide if G admits
an st-cut of cardinality at most k and weight at most w. The parameterized complexity of
this problem parameterized by k is open even if G is restricted to be acyclic, while with this
restriction the problem can easily be reduced to Directed Feedback Arc Set (add an
arc (t, s) of prohibitively large weight).

The Weighted st-cut problem becomes similar to another directed graph cut problem,
identified in [6], namely Chain `-SAT. While this problem is originally formulated in CSP
language, the graph formulation is as follows: given a directed graph G with a partition of
edge set E(G) = P1 ] P2 ] . . . ] Pm such that each Pi is an edge set of a simple path of
length at most ` (the input paths could have common nodes), an integer k, and two vertices
s, t ∈ V (G), find an st-cut C ⊆ E(G) such that |{i|C ∩Pi 6= ∅}| ≤ k. This problem can easily
be seen to be equivalent to minimum st-cut problem (and thus polynomial-time solvable) for
` ≤ 2, but is NP-hard for ` ≥ 3 and its parameterized complexity (with k as a parameter)
remains an open problem.

https://arxiv.org/abs/1810.06848
https://arxiv.org/abs/1810.06848
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In this paper we make progress towards resolving the question of parameterized complexity
of the two aforementioned problems: weighted st-cut problem (in general digraphs, not
necessary acyclic ones) and Chain `-SAT. Our contribution is twofold.

Multi-budgeted variant

We define a multi-budgeted variant of a number of cut problems (including the minimum
cut problem) and show its fixed-parameter tractability. In this variant, the edges of the
graph are colored with ` colors, and the input specifies separate budgets for each color. More
formally, we primarily consider the following problem.

Multi-budgeted cut
Input: A directed graph G, two disjoint sets of vertices X,Y ⊆ V (G), an integer `,
and for every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an integer ki ≥ 1.
Question: Is there a set of arcs C ⊆

⋃`
i=1 Ei such that there is no directed X − Y

path in G \ C and for every i ∈ [`], |C ∩ Ei| ≤ ki.

Similarly we can define multi-budgeted variants of Directed Feedback Arc Set and
Skew Multicut.

We observe that Multi-budgeted cut for ` = 2 reduces to Weighted st-cut as
follows. Let (G,X, Y,E1, E2, k1, k2) be a Multi-budgeted cut instance for ` = 2. First,
observe that we may assume that E1∩E2 = ∅, as we can replace every edge e ∈ E1∩E2 with
two copies e1 ∈ E1 \E2 and e2 ∈ E2 \E1. Second, construct an equivalent Weighted st-cut
instance (G′, s, t, k, w) as follows. To construct G′, first add two vertices s, t to G and edges
{(s, x)|x ∈ X} and {(y, t)|y ∈ Y } of prohibitively large weight. Assign also prohibitively
large weight to every edge e ∈ E(G) \ (E1 ∪E2). Assign weight (k1 + 1)k2 + 1 to every edge
e ∈ E1. For every edge e ∈ E2, add k1 + 1 copies of e to G′ of weight 1 each. Finally, set
k := (k1 + 1) · k2 + k1 as the cardinality bound and w := k1((k1 + 1)k2 + 1) + (k1 + 1)k2 as
the target weight. The equivalence of the instances follows from the fact that the cardinality
bound allows to pick in the solution at most k2 bundles of k1 + 1 copies of an edge of E2,
while the weight bound allows to pick only k1 edges of E1.

Thus, Multi-budgeted cut for ` = 2 corresponds to the case of Weighted st-cut
where the weights are integral and both target cardinality and weight are bounded in
parameter.2 This connection was our primary motivation to study the multi-budgeted
variants of the cut problems.

Contrary to the classic minimum cut problem, we note that Multi-budgeted Cut
becomes NP-hard for ` ≥ 2 by a simple reduction from constrained minimum vertex cover
problem on bipartite graphs [3].3 We show that Multi-budgeted Cut is FPT when
parameterized by k = k1 + ...+ k`. For this problem, our branching strategy is as follows.
First, note that in the problem definition we assume that each ki is positive, and thus ` ≤ k.
A standard application of the Ford-Fulkerson algorithm gives a minimum XY -cut C of size
λ and λ edge-disjoint X − Y paths P1, P2, . . . , Pλ. If C is a solution, then we are done.
Similarly, if λ > k, then there is no solution. Otherwise, we branch which colors of the sought

2 For a reduction in the other direction, replace every arc e of weight ω(e) with one copy of color 1 and
ω(e) copies of color 2, and set budgets k1 = k and k2 = w.

3 We believe this problem must have been formulated already before and proven to be NP-hard. However,
we were not able to find it in the literature. Our own reduction will be available in the full version of
the paper.
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solution should appear on each paths Pj ; that is, for every i ∈ [`] and j ∈ [λ], we guess if
Pj ∩Ei contains an edge of the sought solution, and in each guess assign infinite capacities
to the edges of wrong color. If this change increased the size of a maximum flow from X

to Y , then we can charge the branching step to this increase, as the size of the flow cannot
exceed k. The critical insight is that if the size of the minimum flow does not increase (i.e.,
P1, . . . , Pλ remains a maximum flow), then a corresponding minimum cut is necessarily a
solution. As a result, we obtain the following.

I Theorem 1. Multi-budgeted Cut admits an FPT algorithm with running time bound
O(2k2` · k · (|V (G)|+ |E(G)|)) where k =

∑`
i=1 ki.

The charging of the branching step to a flow increase appears also in the classic argument
for bound of the number of important separators [4] (see also [9, Chapter 8]). We observe
that our branching algorithm can be merged with this procedure, yielding a bound (as a
function of k) and enumeration procedure of naturally defined multi-budgeted important
separators. This in turn allows us to generalize our FPT algorithm to Multi-budgeted
Skew Multicut and Multi-budgeted Directed Feedback Arc Set.

I Theorem 2. Multi-budgeted Skew Multicut and Multi-budgeted Directed
Feedback Arc Set admit FPT algorithms with running time bound 2O(k3 log k)(|V (G)|+
|E(G)|) where k =

∑`
i=1 ki.

Bound on the number of pushed solutions

While we are not able to establish fixed-parameter tractability of the weighted variant of the
minimum cut problem (even in acyclic graphs) nor of Chain `-SAT, we show the following
graph-theoretic statement. Consider a directed graph G with two distinguished vertices
s, t ∈ V (G). For two (inclusion-wise) minimal st-cuts C1, C2 we say that C1 is closer to
t than C2 if every vertex reachable from s in G − C2 is also reachable from s in G − C1.
A classic submodularity argument implies that there is exactly one closest to t minimum
st-cut, while the essence of the notion of important separators is the observation that there
is bounded-in-k number of minimal separators of cardinality at most k that are closest to t.
In Section 5 we show a similar existential statement for the two discussed problems.

I Theorem 3. For every integer k there exists an integer g such that the following holds. Let
G be a directed graph with positive edge weights and two distinguished vertices s, t ∈ V (G).
Let F be a family of all st-cuts that are of minimum weight among all (inclusion-wise)
minimal st-cuts of cardinality at most k. Let G ⊆ F be the family of those cuts C such that
no other cut of F is closer to t. Then |G| ≤ g.

I Theorem 4. For every integers k, ` there exists an integer g′ such that the following
holds. Let I := (G, s, t, (Pi)mi=1, k) be a Chain `-SAT instance that is a yes-instance but
(G, s, t, (Pi)mi=1, k − 1) is a no-instance. Let F be a family of all (inclusion-wise) minimal
solutions to I and let G ⊆ F be the family of those cuts C such that no other cut of F is
closer to t. Then |G| ≤ g′.

Unfortunately, our proof is purely existential, and does not yield an enumeration procedure
of the “closest to t” solutions.

Organization

In this extended abstract, we prove Theorem 1 in Section 3, present the multi-budgeted
extension of the notion of important separators (needed for Theorem 2) in Section 4, and
sketch the proofs of Theorems 3 and 4 in Section 5.
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2 Preliminaries

For an integer n, we denote [n] = {1, 2, . . . , n}. For a directed graph G, we use V (G) to
represent the set of vertices of G and E(G) to represent the set of directed edges of G. In
all multi-budgeted problems, the directed graph G comes with sets Ei ⊆ E(G) for i ∈ [`]
which we refer as colors. That is, an edge e is of color i if e ∈ Ei, and of no color if
e ∈ E(G) \

⋃`
i=1 Ei. Note that an edge may have many colors, as we do not insist on the

sets Ei being pairwise disjoint.
Let X and Y be two disjoint vertex sets in a directed graph G, an XY -cut of G is a set

of edges C such that every directed path from a vertex in X to a vertex in Y contains an
edge of C. A cut C is minimal if no proper subset of C is an XY -cut, and minimum if C
is of minimum possible cardinality. Let C be an XY -cut and let R be the set of vertices
reachable from X in G \ C. We define δ+(R) = {(u, v) ∈ E(G)|u ∈ R and v /∈ R} and note
that if C is minimal, then δ+(R) = C.

Let (G,X, Y, `, (Ei, ki)`i=1) be a Multi-budgeted cut instance and let C be an XY -cut.
We say that C is budget-respecting if C ⊆

⋃`
i=1 Ei and |C ∩ Ei| ≤ ki for every i ∈ [`]. For a

set Z ⊆ E(G) we say that C is Z-respecting if C ⊆ Z. In such contexts, we often call Z the
set of deletable edges. An XY -cut C is a minimum Z-respecting cut if it is a Z-respecting
XY -cut of minimum possible cardinality among all Z-respecting XY -cuts.

Our FPT algorithms start with Z =
⋃`
i=1 Ei and in branching steps shrink the set Z to

reduce the search space. We encapsulate our use of the classic Ford-Fulkerson algorithm in
the following statement.

I Theorem 5. Given a directed graph G, two disjoint sets X,Y ⊆ V (G), a set Z ⊆ E(G),
and an integer k, one can in O(k(|V (G)|+ |E(G)|)) time either find the following objects:

λ paths P1, P2, . . . , Pλ such that every Pi starts in X and ends in Y , and every edge
e ∈ Z appears on at most one path Pi;
a set B ⊆ Z consisting of all edges of G that participate in some minimum Z-respecting
XY -cut;
a minimum Z-respecting XY -cut C of size λ that is closest to Y among all minimum
Z-respecting XY -cuts;

or correctly conclude that there is no Z-respecting XY -cut of cardinality at most k.

3 Multi-budgeted cut

We now give an FPT algorithm parameterized by k = Σ`i=1ki for the Multi-budgeted cut
problem. We follow a branching strategy that recursively reduces a set Z of deletable edges.
That is, we start with Z =

⋃`
i=1 Ei (so that every solution is initially Z-respecting) and in

each recursive step, we look for a Z-respecting solution and reduce the set Z in a branching
step.

Consider a recursive call where we look for a Z-respecting solution to the input Multi-
budgeted cut instance (G,X, Y, `, (Ei, ki)`i=1). That is, we look for a Z-respecting budget-
respecting cut. We apply Theorem 5 to it. If it returns that there is no Z-respecting XY -cut
of size at most k, we terminate the current branch, as there is no solution. Otherwise, we
obtain the paths P1, P2, . . . , Pλ, the set B (which we will not use in this section), and the
cut C.

If C is budget-respecting, then it is a solution and we can return it. Otherwise, we
perform the following branching step. We iterate over all tuples (A1, ..., A`) such that for
every i ∈ [`], Ai ⊆ [λ] and |Ai| ≤ ki. Ai represents the subset of paths P1, ..., Pλ on which at

IPEC 2018



18:6 Multi-Budgeted Directed Cuts

MultiBudgetedCut(G,X, Y, `, (Ei, ki)`i=1)
Input: A directed graph G, two disjoint set of vertices X,Y ⊆ V (G), an integer `, for every i ∈ [`]
a set Ei ⊆ E(G) and an integer k.
Output: an XY cut C ⊆

⋃`

i=1 Ei such that for every i ∈ [`], |C ∩ Ei| ≤ ki if it exists, otherwise
return NO.

1. Z :=
⋃`

i=1 Ei;
2. return Solve(Z);

Solve(Z)
a. apply Theorem 5 to (G,X, Y, k, Z) where k =

∑`

i=1 ki, obtaining objects (Pi)λi=1, B, and C,
or an answer NO;
b. if the answer NO is obtained, then return NO;
c. if C is budget-respecting, then return C;
d. for each (A1, ..., A`) such that for every i in [`], Ai ⊆ [λ] and |Ai| ≤ ki do
d.1 Ẑ := Z;
d.2 for each i ∈ [`] do

for each j ∈ [λ] \Ai do
Ẑ := Ẑ \ (Ei ∩ E(Pj));

d.3 D = Solve(Ẑ);
d.4 if D 6=NO then return D;
e. return NO;

Figure 1 FPT algorithm for Multi-budgeted cut.

least one edge of color i is in the solution for each i ∈ [`]. For those edges of color i which
are on the paths not indicated by Ai, they are not in the solution. Thus we can safely delete
them from Z. More formally, for every i ∈ [`] and j ∈ [λ] \Ai, we remove from Z all edges
of E(Pj) ∩ Ei. We recurse on the reduced set Z. A pseudocode is available in Figure 1.

I Theorem 6. The algorithm in Figure 1 for Multi-budgeted cut is correct and runs in
time O(2`k2 · k · (|V (G)|+ |E(G)|)) where k = Σ`i=1ki.

Proof. We prove the correctness of the algorithm by showing that it returns a solution if
and only if the input instance is a yes-instance. The "only if" direction is obvious, as the
algorithm returns only Z-respecting budget-respecting XY -cuts and Z ⊆

⋃`
i=1 Ei in each

recursive call.
We prove the correctness for the "if" direction. Let C0 be a solution, that is, a budget-

respecting XY -cut. In the initial call to Solve, C0 is Z-respecting. It suffices to inductively
show that in each call to Solve such that C0 is Z-respecting, either the call returns a
solution, or C0 is Ẑ-respecting for at least one of the subcalls. Since C0 is Z-respecting, the
application of Theorem 5 returns objects (Pi)λi=1, B, and C. If C is budget-respecting, then
the algorithm returns it and we are done. Otherwise, consider the branch (A1, A2, . . . , A`)
where Ai = {j|E(Pj) ∩ C0 6= ∅}. Since C0 is budget-respecting, C0 ⊆ Z, and no edge of Z
appears on more than one path Pj , we have |Ai| ≤ ki for every i ∈ [`]. Thus, (A1, A2, . . . , A`)
is a branch considered by the algorithm. In this branch, the algorithm refines the set Z to
Ẑ. By the definition of Ai, for every i ∈ [`] and j ∈ [λ] \ Ai, we have C0 ∩ Ei ∩ E(Pj) = ∅.
Consequently, C0 is Ẑ-respecting and we are done.

For the time bound, the following observation is crucial.

I Claim 7. Consider one recursive call Solve(Z) where the application of Theorem 5 in
line (a) returned objects (Pi)λi=1, B and C. Assume that in some recursive subcall Solve(Ẑ)
invoked in line (d.3) (Figure 1), the subsequent application of Theorem 5 in line (a) of the
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subcall returned a cut of the same size, that is, the algorithm of Theorem 5 returned a cut Ĉ
of size λ̂ = λ. Then the cut Ĉ is budget-respecting and, consequently, is returned in line (c)
of the subcall.

Proof. Since |Ĉ| = λ is a Ẑ-respecting XY -cut, Ẑ ⊆ Z, and every edge e ∈ Z appears on at
most one path Pi, we have that Ĉ consists of exactly one edge of Ẑ on every path Pi, that is,
Ĉ = {e1, e2, . . . , eλ} and ej ∈ E(Pj) ∩ Ẑ for every j ∈ [λ]. In other words, the paths (Pj)λj=1

still correspond to a maximum flow from X to Y with edges of Ẑ being of unit capacity and
edges outside Ẑ of infinite capacity because (Pj)λj=1 are paths satisfying that any two of
them are disjoint on Ẑ ⊆ Z and λ is still equal to the size of the maximum flow. If ej ∈ Ei
for some j ∈ [λ] and i ∈ [`], then by the construction of set Ẑ, we have j ∈ Ai. Consequently,
|{j|ej ∈ Ei}| ≤ |Ai| ≤ ki for every i ∈ [`], and thus Ĉ is budget-respecting. y

Claim 7 implies that the depth of the search tree is bounded by k, as the algorithm terminates
when λ exceeds k. At every step, there are at most (2λ)` ≤ (2k)` different tuples (A1, ..., A`)
to consider. Consequently, there are O(2(k−1)k`) nodes of the search tree that enter the
loop in line (d) and O(2k2`) nodes that invoke the algorithm of Theorem 5. As a result, the
running time of the algorithm is O(2`k2 · k · (|V (G)|+ |E(G)|)). J

4 Multi-budgeted important separators with applications

Similar to the concept of important separators proposed by Marx [22] (see also [9, Chapter
8]), we define multi-budgeted important separators as follows.

I Definition 8. Let (G,X, Y, `, (Ei, ki)`i=1) be a Multi-budgeted cut instance and let
Z ⊆

⋃`
i=1 Ei be a set of deletable edges. Let C1, C2 be two minimal Z-respecting budget-

respecting XY -cuts. We say that C1 dominates C2 if
1. every vertex reachable from X in G− C2 is also reachable from X in G− C1;
2. for every i ∈ [`], |C1 ∩ Ei| ≤ |C2 ∩ Ei|.
We say that Ĉ is an important Z-respecting budget-respecting XY -cut if Ĉ is a minimal
Z-respecting budget-respecting XY -cut and no other minimal Z-respecting budget-respecting
XY -cut dominates Ĉ. Ĉ is an important budget-respecting XY -cut if it is an important
Z-respecting budget-respecting XY -cut for Z =

⋃`
i=1 Ei.

Chen et al. [4] showed an enumeration procedure for (classic) important separators using
similar charging scheme as the one of the previous section. Our main result in this section
is a merge of the arguments from the previous section with the arguments of Chen et al.
Theorem 2 follows from Theorem 9 via an analogous arguments as in [4].

I Theorem 9. Let (G,X, Y, `, (Ei, ki)`i=1) be a Multi-budgeted cut instance, let Z ⊆⋃`
i=1 Ei be a set of deletable edges, and denote k =

∑`
i=1 ki. Then one can in

2O(k2 log k)(|V (G)|+|E(G)|) time enumerate a family of minimal Z-respecting budget-respecting
XY -cuts of size 2O(k2 log k) that contains all important ones.

Proof. Consider the recursive algorithm presented in Figure 2. The recursive procedure Im-
portantCut takes as an input a Multi-budgeted Cut instance I = (G,X, Y, `, (Ei, ki)`i=1)
and a set Z ⊆

⋃`
i=1 Ei, with the goal to enumerate all important Z-respecting budget-

respecting XY -cuts. Note that the procedure may output some more Z-respecting budget-
respecting XY -cuts; we need only to ensure that
1. it outputs all important ones,
2. it outputs 2O(k2` log k) cuts, and
3. it runs within the desired time.

IPEC 2018



18:8 Multi-Budgeted Directed Cuts

The procedure first invokes the algorithm of Theorem 5 on (G,X, Y, k, Z), where k =
∑`
i=1 ki.

If the call returned that there is no Z-respecting XY -cut of size at most k, we can return
an empty set. Otherwise, let (Pj)λj=1, B, and C be the computed objects. We perform a
branching step, with each branch labeled with a tuple (A1, A2, . . . , A`) where Ai ⊆ [λ] and
|Ai| ≤ ki for every i ∈ [`]. A branch (A1, A2, . . . , A`) is supposed to capture important cuts
C0 with {j|C0 ∩ B ∩ E(Pj) ∩ Ei 6= ∅} ⊆ Ai for every i ∈ [`]; that is, for every i ∈ [`] and
j ∈ [λ] we guess if C0 contains a bottleneck edge of color i on path Pj . All this information
(i.e., paths Pj , the set B, the cut C, and the sets Ai) are passed to an auxiliary procedure
Enum.

The procedure Enum shrinks the set Z according to sets Ai. More formally, for every
i ∈ [`] and j ∈ [λ] \ Ai we delete from Z all edges from B ∩ Ei ∩ E(Pj), obtaining a set
Ẑ ⊆ Z. At this point, we check if the reduction of the set Z to Ẑ increased the size of
minimum Z-respecting XY -cut by invoking Theorem 5 on (G,X, Y, k, Ẑ) and obtaining
objects (P̂j)λ̂j=1, B̂, Ĉ or a negative answer. If the size of the minimum cut increased, that
is, λ̂ > λ, we recurse with the original procedure ImportantCut. Otherwise, we add one
cut to S, namely Ĉ. Furthermore, we try to shrink one of the sets Ai by one and recurse;
that is, for every i ∈ [`] and every j ∈ Ai, we recurse with the procedure Enum on sets A′i′
where A′i = Ai \ {j} and A′i′ = Ai′ for every i′ ∈ [`] \ {i}.

Let us first analyze the size of the search tree. A call to ImportantCut invokes at most(
λ`
≤k
)
≤ (k` + 1)k calls to Enum. Each call to Enum either falls back to ImportantCut

if λ̂ > λ or branches into
∑`
i=1 |Ai| ≤ k` recursive calls to itself. In each recursive call, the

sum
∑`
i=1 |Ai| decreases by one. Consequently, the initial call to Enum results in at most

(k`)k recursive calls, each potentially falling back to ImportantCut. Since each recursive
call to ImportantCut uses strictly larger value of λ, which cannot grow larger than k, and
` ≤ k, the total size of the recursion tree is 2O(k2 log k). Each recursive call to Enum adds
at most one set to S, while each recursive call to ImportantCut and Enum runs in time
O(2k` · k · (|V (G)| + |E(G)|)). The promised size of the family S and the running time
bound follows. It remains to show correctness, that is, that every important Z-respecting
budget-respecting XY -cut is contained in S returned by a call to ImportantCut(I, Z).

We prove by induction on the size of the recursion tree that (1) every call to Im-
portantCut(I, Z) enumerates all important Z-respecting budget-respecting XY -cuts, and
(2) every call to Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1) enumerates all important Z-respecting
budget-respecting XY -cuts C0 with the property that {j|Ei ∩E(Pj)∩B ∩C0 6= ∅} ⊆ Ai for
every i ∈ [`].

The inductive step for a call ImportantCut(I, Z) is straightforward. Let us fix an ar-
bitrary important Z-respecting budget-respecting XY -cut C0. Since C0 is budget-respecting,
C0 is a Z-respecting cut of size at most k, and thus the initial call to Theorem 5 cannot return
NO. Consider the tuple (A1, A2, . . . , A`) where for every i ∈ [`], {j|E(Pj)∩Ei∩B∩C0} = Ai.
Since C0 is budget-respecting and the paths Pj do not share an edge of Z, we have that
|Ai| ≤ ki for every i ∈ [`] and the algorithm considers this tuple in one of the branches. Then,
from the inductive hypothesis, the corresponding call to Enum returns a set containing C0.

Consider now a call to Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1) and an important Z-respecting
budget-respecting XY -cuts C0 with the property that {j|Ei ∩ E(Pj) ∩ B ∩ C0 6= ∅} ⊆ Ai
for every i ∈ [`]. By the construction of Ẑ and the above assumption, C0 is Ẑ-respecting.
In particular, the call to the algorithm of Theorem 5 cannot return NO. Hence, in the case
when λ̂ > λ, C0 is enumerated by the recursive call to ImportantCut and we are done.
Assume then λ̂ = λ.
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ImportantCut(I, Z)
Input: A Multi-budgeted cut instance I = (G,X, Y, `, (Ei, ki)`i=1) and a set Z ⊆

⋃`

i=1 Ei.
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that contains all important
ones.
1. S := ∅;
2. apply the algorithm of Theorem 5 to (G,X, Y, k, Z) with k =

∑`

i=1 ki, obtaining either objects
(Pi)λi=1, B, and C, or an answer NO;
3. if an answer NO is obtained, then return S;
4. for each (A1, ..., A`) such that for every i in [`], Ai ⊆ [λ] and |Ai| ≤ ki do
4.1 S := S ∪Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1)
5. return S

Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1)
Input: A Multi-budgeted cut instance I = (G,X, Y, `, (Ei, ki)`i=1), a set Z ⊆

⋃`

i=1 Ei, a family
(Pj)λj=1 of paths from X to Y such that every edge of Z appears on at most one path Pj , a set
B consisting of all edges that participate in some minimum Z-respecting XY -cut, a minimum
Z-respecting XY -cut C closest to Y , and sets Ai ⊆ [λ] of size at most ki for every i ∈ [`]
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that contains all cuts C0
that are important Z-respecting budget respecting XY -cuts and satisfy {j|E(Pj)∩B ∩C0 ∩Ei 6=
∅} ⊆ Ai for every i ∈ [`].
a. Ẑ := Z;
b. for each i ∈ [`] do

for each j ∈ [λ] \Ai do
Ẑ := Ẑ \ (B ∩ Ei ∩ E(Pj));

c. apply the algorithm of Theorem 5 to (G,X, Y, k, Ẑ), obtaining either objects (P̂i )̂λi=1, B̂, and Ĉ
or an answer NO;
d. if λ̂ exists and λ̂ > λ, then
d.1 S := S∪ ImportantCut(I, Ẑ);
e. else if λ̂ exists and equals λ, then
e.1 S := S ∪ {Ĉ};
e.2 for each i ∈ [`] do

for each j ∈ Ai do
A′
i := Ai \ {j} and A′

i′ := Ai′ for every i′ ∈ [`] \ {i}
S := S ∪Enum(I, Ẑ, (Pj)λj=1, B̂, Ĉ, (A′

i)`i=1).
f. return S

Figure 2 FPT algorithm for enumerating important multi-budgeted Z-respecting XY -cuts.

For i ∈ [`], let Âi = {j|Ei ∩E(Pj)∩ B̂ ∩C0 6= ∅}. Since Ẑ ⊆ Z but the sizes of minimum
Z-respecting and Ẑ-respecting XY -cuts are the same, we have B̂ ⊆ B. Consequently,
Âi ⊆ Ai for every i ∈ [`].

Assume there exists i ∈ [`] such that Âi ( Ai and let j ∈ Ai \ Âi. Consider then the
branch (i, j) of the Enum procedure, that is, the recursive call with A′i = Ai \ {j} and
A′i′ = Ai′ for i′ ∈ [`] \ {i}. Observe that we have {j|Ei′ ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅} ⊆ A′i′ for
every i′ ∈ [`] and, by the inductive hypothesis, the corresponding call to Enum enumerates
C0. Hence, we are left only with the case Âi = Ai, that is, Ai = {j|Ei ∩E(Pj)∩ B̂ ∩C0 6= ∅}
for every i ∈ [`].

We claim that in this case C0 = Ĉ. Assume otherwise. Since |Ĉ| = λ̂ = λ and Ẑ ⊆ Z,
Ĉ contains exactly one edge on every path Pj . Also, Ĉ ⊆ B̂ by the definition of the set
B̂. Since Ĉ is the minimum Ẑ-respecting XY -cut that is closest to Y , Ĉ = {e1, e2, . . . , eλ}
where ej is the last (closest to Y ) edge of B̂ on the path Pj for every j ∈ [λ].

Let R0 and R̂ be the set of vertices reachable from X in G−C0 and G− Ĉ, respectively.
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s t

C1 C2 C3 C4

A1 A2 A3 A4

B4 B3 B2 B1

Figure 3 A schematic picture of a 4-bowtie.

Let D be a minimal XY -cut contained in δ+(R0 ∪ R̂). (Note that δ+(R0 ∪ R̂) is an XY -cut
because X ⊆ R0 ∪ R̂ and Y ∩ (R0 ∪ R̂) = ∅.) Then since D ⊆ C0 ∪ Ĉ ⊆ Z, D is Z-respecting.
By definition, every vertex reachable from X in G−R0 is also reachable from X in G−D.

We claim that D is budget-respecting and, furthermore, dominates C0. Fix a color i ∈ [`];
our goal is to prove that |D ∩Ei| ≤ |C0 ∩Ei|. To this end, we charge every edge of color i in
D \ C0 to a distinct edge of color i in C0 \D. Since D ⊆ C0 ∪ Ĉ, we have that D \ C0 ⊆ Ĉ,
that is, an edge of D\C0 of color i is an edge ej for some j ∈ [λ] with ej ∈ Ei and ej ∈ D\C0.

Recall that we are working in the case Ai = {j|Ei∩E(Pj)∩B̂∩C0 6= ∅}. Since ej ∈ Ĉ ⊆ Ẑ,
we have that j ∈ Ai. Hence, there exists e′j ∈ Ei ∩E(Pj)∩ B̂ ∩C0. By the definition of Ĉ, ej
is the last (closest to Y ) edge of B̂ on Pj . Since ej /∈ C0, e′j 6= ej and e′j lies on the subpath
of Pj between X and the tail of ej . This entire subpath is contained in R̂ and, hence, e′j /∈ D.

We charge ej to e′j . Since e′j ∈ E(Pj) ∩Ei ∩ B̂ ∩ (C0 \D), for distinct j, the edges e′j are
distinct as the paths Pj do not share an edge belonging to Z and B̂ ⊆ Ẑ ⊆ Z. Consequently,
|D ∩ Ei| ≤ |C0 ∩ Ei|. This finishes the proof that D dominates C0.

Since C0 is important, we have D = C0. In particular, R̂ ⊆ R0. On the other hand, for
every j ∈ [λ] we have that ej ∈ Ĉ ⊆ Ẑ ⊆ Z ⊆

⋃`
i=1 Ei. In particular, there exists i ∈ [`]

such that ej ∈ Ei and j ∈ Ai. Hence, we also have Ei ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅. But the entire
subpath of Pj from X to the tail of ej lies in R̂ ⊆ R0, while ej is the last edge of B̂ on Pj .
Hence, ej ∈ C0. Since the choice of j is arbitrary, Ĉ ⊆ C0. Since Ĉ is an XY -cut and C0 is
minimal, Ĉ = C0 as claimed.

This finishes the proof of Theorem 9. J

5 Bound on the number of solutions closest to t

In this section we sketch the proofs of Theorems 3 and 4. The central definition of this
section is the following (see also Figure 3).

I Definition 10. Let G be a directed graph with distinguished vertices s and t and let k
be an integer. An a-bowtie is a sequence C1, C2, . . . , Ca of pairwise disjoint minimal st-cuts
of size k each such that each cut Ci can be partitioned Ci = Ai ] Bi such that for every
1 ≤ i < j ≤ a, the set Ai is exactly the set of edges of Ci reachable from s in G−Cj and Bj
is exactly the set of edges of Cj reachable from s in G− Ci.

Our main graph-theoretic result is the following. The proof is deferred to the full version
of the paper.
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I Theorem 11. For every integers a, k ≥ 1 there exists an integer g such that for every
directed graph G with distinguished s, t ∈ V (G), and a family U of pairwise disjoint minimal
st-cuts of size k each, if |U| ≥ g, then U contains an a-bowtie.

The next two lemmata are key observations to prove Theorems 3 and 4, respectively,
with the help of Theorem 11.

I Lemma 12. Let k, g, G, s, t, F , and G be as in the statement of Theorem 3. Then G
does not contain an a-bowtie for a >

(
k+2

2
)
.

Proof. Assume the contrary, let (Ci, Ai, Bi)ai=1 be such a bowtie. Since a >
(
k+2

2
)
, there

exists i < j with |Ai| = |Aj | and |Bi| = |Bj | (there are
(
k+2

2
)
choices for (|Ai|, |Bi|)). However,

then Ai ∪Bj and Aj ∪Bi have also cardinality k, are st-cuts, and have together twice the
minimum weight. Furthermore, the set of vertices reachable from s in G − (Aj ∪ Bi) is a
strict superset of the set of vertices reachable from s in G−Ci and G−Cj . This contradicts
the fact that Ci, Cj ∈ G. J

I Lemma 13. Let k, `, I = (G, s, t, (Pi)mi=1, k), F , and G be as in the statement of Theorem 4.
Then G does not contain a 4-bowtie (Ci, Ai, Bi)4

i=1 in which the edge set of every path Pj
intersects at most one cut Ci.

Proof. Assume the contrary Let (Ci, Ai, Bi)4
i=1 be such a 4-bowtie. Consider i ∈ {2, 3}

and two edges e ∈ Ai and f ∈ Bi. In G − C4, the edge e is reachable from s while f is
not; consequently, e and f cannot appear on the same input path with e being earlier (by
assumption, C4 is disjoint from the input path in question). A similar reasoning for G− C1
shows that e and f cannot appear on the same input path with f being earlier than e.

Hence, e and f cannot appear together on a single path Pj . For a set of edges D, by the
cost of D we denote |{j|D ∩ Pj 6= ∅}|. Since the choice of e and f was arbitrary, we infer
that the sum of costs of A2 ∪ B3 and of A3 ∪ B2 equals the sum of costs of C2 and of C3.
Hence, both these st-cuts have minimum cost. However, A2 ∪B3 is closer to t than C2, a
contradiction. J

Proof of Theorem 3. Assume |G| > g for some sufficiently large g to be fixed later. For
i ∈ [k], let Gi be the set of u ∈ G of cardinality i. We apply the Sunflower Lemma to the
largest set Gi: If g > k · k!gk1 for some integer g1 to be chosen later, there exists G1 ⊆ G with
|G1| > g1, every element of G1 being of the same size k′, and a set c such that u ∩ v = c for
every distinct u, v ∈ G1.

Let k̂ = k′ − |c|, û = u \ c for every u ∈ G1, Ĝ1 = {û | u ∈ G1} and Ĝ = G − c. Since
every u ∈ U is a minimal st-cut of size k′ in G, every û ∈ Ĝ1 is a minimal st-cut of size k̂
in Ĝ. Furthermore, every û ∈ Ĝ1 is a minimal st-cut of size at most k̂ in Ĝ of minimum
possible weight: if there existed an st-cut x̂ of smaller weight and cardinality at most k̂,
then x = x̂ ∪ c would be an st-cut in G of cardinality at most k and weight smaller than
every element of G1. Similarly, if there were a minimal st-cut x̂ in Ĝ of minimum weight
and cardinality at most k̂ that is closer to t than û for some û ∈ Ĝ1, then x̂ ∪ c would be
an st-cut in G of cardinality at most k and minimum weight that is closer to t than u, a
contradiction. By construction, the elements of Ĝ1 are pairwise disjoint.

Lemma 12 bounds the maximum possible size of a bowtie in Ĝ1. Hence, Theorem 11
asserts that Ĝ1 has size bounded by a function of k. This finishes the proof of the theorem. J

Proof of Theorem 4. We proceed similarly as in the proof of Theorem 3, but we need to be
a bit more careful with the paths Pj . Assume |G| > g for some sufficiently large integer g.
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As before, we partition G according to the sizes of elements: for every i ∈ [k`], let
Gi = {u ∈ G | |u| = i}. Let i ∈ [k`] be such that |Gi| > g/(k`). For u ∈ Gi, let
J(u) = {j | u ∩ Pj 6= ∅}. By the assumptions of the theorem, every set J(u) is of cardinality
exactly k. We apply the Sunflower Lemma to {J(u) | u ∈ Gi}: If g > (k`) · k! · gk1 for
some integer g1 to be fixed later, then there exists G1 ⊆ Gi of size larger than g1 and a set
I ⊆ [m] such that for every distinct u, v ∈ G1 we have J(u) ∩ J(v) = I. For every u ∈ G1, let
uI = u ∩

⋃
j∈I Pj . Since |I| ≤ k, there are at most 2k` choices for uI among elements u ∈ G1.

Consequently, there exists G2 ⊆ G1 of cardinality larger than g2 := g1/2k` such that uI = vI
for every u, v ∈ G2. Denote c = uI for any u ∈ G2.

Let û := u− c for every u ∈ G2. Let Ĝ2 = {û | u ∈ G2}.
Define now Ĝ = G− c and define a partition P̂ of E(Ĝ) into paths of length at most ` as

follows: we take all paths Pi for i /∈ I and, for every i ∈ I, each edge of Pi \ c as a length-1
path. Furthermore, denote k̂ = k − |I|. Note that (Ĝ, s, t, P̂, k̂) is a Chain `-SAT instance
for which every û ∈ Ĝ2 is a solution. Furthermore, (Ĝ, s, t, P̂, k̂ − 1) is a no-instance, as if x̂
were its solution, then x̂ ∪ c would be a solution to (G, s, t, (Pi)mi=1, k − 1), a contradiction.
Similarly, if there were a solution x̂ to (Ĝ, s, t, P̂, k̂) that is closer to t than û for some û ∈ Ĝ2,
then x̂∪ c would be a solution to (G, s, t, (Pi)mi=1, k) that is closer to t than u, a contradiction.
Furthermore, by construction, the elements of Ĝ2 are pairwise disjoint and no path of P̂
intersects more than one element of Ĝ2.

Lemma 13 bounds the maximum possible size of a bowtie in Ĝ2. Hence, Theorem 11
asserts that Ĝ2 has size bounded by a function of k and `. This finishes the proof of the
theorem. J

6 Conclusion

We would like to conclude with a discussion on future research directions. First, our upper
bound of 2O(k2 log k) on the number of multi-budgeted important separators (Theorem 9) is
far from the 4k bound for the classic important separators. As pointed out by an anonymous
reviewer at IPEC 2018, there is an easy lower bound of k! for the number of multi-budgeted
important separators: Let ` = k, ki = 1 for every i ∈ [`], and let G consist of k paths from s

to t, each path consisting of ` edges of different colors. Then there are exactly k! distinct
multi-budgeted important separators, as we can freely choose a different color i ∈ [`] to cut
on each path. We are not aware of any better lower bound, leaving a significant gap between
the lower and upper bounds.

Second, our existential statement of Theorems 3 and 4 can be treated as a weak sup-
port of tractability of Chain `-SAT and Weighted st-cut. Are they really FPT when
parameterized by the cardinality of the cut?
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