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Abstract
Strategy extraction is of paramount importance for quantified Boolean formulas (QBF), both in
solving and proof complexity. It extracts (counter)models for a QBF from a run of the solver resp.
the proof of the QBF, thereby allowing to certify the solver’s answer resp. establish soundness of the
system. So far in the QBF literature, strategy extraction has been algorithmically performed from
proofs. Here we devise the first QBF system where (partial) strategies are built into the proof and
are piecewise constructed by simple operations along with the derivation.

This has several advantages: (1) lines of our calculus have a clear semantic meaning as they are
accompanied by semantic objects; (2) partial strategies are represented succinctly (in contrast to
some previous approaches); (3) our calculus has strategy extraction by design; and (4) the partial
strategies allow new sound inference steps which are disallowed in previous central QBF calculi such
as Q-Resolution and long-distance Q-Resolution.

The last item (4) allows us to show an exponential separation between our new system and
the previously studied reductionless long-distance resolution calculus, introduced to model QCDCL
solving.

Our approach also naturally lifts to dependency QBFs (DQBF), where it yields the first sound
and complete CDCL-type calculus for DQBF, thus opening future avenues into DQBF CDCL solving.
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1 Introduction

Proof complexity investigates the resources for proving logical theorems, focussing foremost
on the minimal size of proofs needed in a particular calculus. Since its inception the field
has enjoyed strong connections to computational complexity (cf. [14,17]) and to first-order
logic [16,25]).

During the past decade, proof complexity has emerged as a key tool to model and
analyse advances in the algorithmic handling of hard problems such as SAT and beyond.
While traditionally perceived as a computationally hard problem, SAT solvers have been
enormously successful in tackling huge industrial instances [28,38] and hard combinatorial
problems [21]. As each run of a solver on an unsatisfiable formula can be understood as a
proof of unsatisfiability, each solver implicitly defines a proof system. This connection turns
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14:2 Building Strategies into QBF Proofs

proof complexity into the main theoretical approach towards understanding the power and
limitations of solving, with bounds on proof size directly corresponding to bounds on solver
running time [14,29].

The algorithmic success story of solving has not stopped at SAT, but is currently extending
to even more computationally complex problems such as quantified Boolean formulas (QBF),
which is PSPACE complete, and dependency QBFs (DQBF), which is even NEXP complete.
While quantification does not increase expressivity, (D)QBFs can encode many problems
far more succinctly, including application domains such as automated planning [15, 18],
verification [5, 27], synthesis [20,26] and ontologies [24].

The past 15 years have seen huge advances in QBF solving, which currently reaches
the point of industrial applicability. While some of the main innovations in SAT solving,
including the development of conflict-driven clause learning (CDCL), revolutionised SAT in
the late 1990s [36], this development in QBF is happening now. Consequently, QBF proof
complexity has received considerable attention in recent years. Compared with QBF, solving
in DQBF is at its very beginnings, both in implementations (2018 was the first year that
saw a DQBF track in the QBF competition [1]) as well as in its accompanying theory [35].

Strategy extraction is one of the distinctive features of QBF and DQBF, manifest in both
solving and proof complexity. For solving it guarantees that together with the true/false
answer the (D)QBF solver can produce a model (resp. countermodel) of the (D)QBF, thus
certifying the correctness of the answer. On the proof complexity side, this implies that
proof calculi modelling QBF solving should allow strategy extraction in the sense that
from a refutation of false QBF, a countermodel of the QBF can be efficiently constructed.
This feature – without analogue in the propositional domain – enables strong lower bound
techniques in QBF proof complexity [8, 9, 11], exploiting the fact that formulas requiring
hard strategies cannot have short proofs in calculi with efficient strategy extraction.

As in SAT versus propositional proof complexity, one of the prime challenges in QBF
and DQBF is to create compelling proof-theoretic models that capture central features of
(D)QBF solving and at the same time remain amenable to a proof-theoretic analysis. While
there exist several orthogonal approaches in QBF solving with quite different associated
proof calculi, we will focus here on the paradigm of conflict-driven clause learning in QBF
(QCDCL) [39]. Proof-theoretically its most basic model is Q-Resolution [22], which as in
propositional resolution operates on clauses (of prenex QBFs).

Q-Resolution (Q-Res) uses the resolution rule of propositional resolution and augments
this with a universal reduction rule that allows to eliminate universal variables from clauses.
Combining these two rules requires some technical care: without any side-conditions the two
rules result in an unsound system. Typically this is circumvented by prohibiting the derivation
of universal tautologies. It was noted early on that in solving this is needlessly prohibitive [39],
and universal tautologies can be permitted under certain side-conditions. Later formalised as
the proof system long-distance Q-Resolution (LD-Q-Res) [3], it was even shown that LD-Q-Res
exponentially shortens proofs in comparison to Q-Res [19], thus demonstrating the appeal
of the approach for solving. In fact, when enabling long-distance steps in QBF solving,
universal reduction is not strictly needed and this reductionless approach was adopted in the
QBF solver GhostQ [23]. To model this solving paradigm, Bjørner, Janota, and Klieber [13]
introduced the calculus of reductionless LD-Q-Res.

The interplay between long-distance resolution and universal reduction steps becomes
even more intriguing in DQBF. In [2] it was shown that lifting Q-Res (using the rules of
resolution and universal reduction) to DQBF results in an incomplete proof system, whereas
lifting LD-Q-Res (using long-distance resolution steps together with universal reduction)
becomes unsound [12].
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Naturally, the intriguing question of why and how deriving “universal tautologies” in
long-distance steps might help solving has attracted attention among theoreticians and
practitioners alike. Instead of a universal tautology u ∨ ū, most formalisations of long-
distance resolution actually use the concept of a “merged” literal u∗. While it is clear (and
implicit in the literature) that merged literals u∗ correspond to partial strategies for u rather
than universal tautologies, a formal semantic account of long-distance steps (and stronger
calculi using merging [10]) was only recently given by Suda and Gleiss [37], where partial
strategies are constructed for each individual proof inference. However, as already noted
in [37], the models considered in [37] fail to have efficient strategy extraction in the sense
that the constructed (partial) strategies may need exponential-size representations.

Our contributions
A. The new calculus of Merge Resolution. Starting from the reductionless LD-Q-Res
system of [13] and its role of modelling QCDCL solving, we develop a new calculus that we
call Merge Resolution (M-Res). Like reductionless LD-Q-Res, the system M-Res only uses
a resolution rule and does not permit universal reduction steps. Reductionless LD-Q-Res
and M-Res are therefore both refutational calculi that finish as soon as they derive a purely
universal clause.

As the prime novel feature of M-Res we build partial strategies into proofs. We achieve this
by computing explicit representations of strategies in a variant of binary decision diagrams
(called merge maps here), which are updated and refined at each proof step by simple
operations. These merge maps are part of the proof. As a consequence, M-Res has efficient
strategy extraction by design.

This is in contrast to all previous existing QBF calculi in the literature, where strategies
are algorithmically constructed from proofs. In particular, this also applies to the approaches
taken in [19, 37] for LD-Q-Res and in [13] for reductionless LD-Q-Res. But also the choice of
our representation as merge maps matters: as [13,37] both represent (partial) strategies as
trees, the constructed strategies may grow exponentially in the proof size, thus losing the
desirable property of efficient strategy extraction. In contrast, in our model merge maps are
always linear in the size of the clause derivations.

B. Exponential separation of M-Res from reductionless LD-Q-Res. Including merge maps
explicitly into proofs also has another far-reaching advantage: it allows resolution steps not
only forbidden in Q-Res, but even disallowed in LD-Q-Res. In a nutshell, LD-Q-Res allows
resolution steps only when universal variables quantified left of the pivot have constant
and equal strategies in both parent clauses. In M-Res we have explicit representations of
strategies and thus can allow resolution steps as long as the strategies in both parent clauses
are isomorphic to each other, a property that we can check efficiently for merge maps.

This manifests in shorter proofs. We show this by explicitly giving an example of a family
of QBFs that admit linear-size proofs in M-Res (Theorem 21), but require exponential size in
reductionless LD-Q-Res (Theorem 20). The separating formulas are a variant of the equality
formulas introduced in [8]. While the original formulas from [8] are hard for Q-Res, but easy
in LD-Q-Res, we here consider a “squared” version, for which we naturally use resolution
steps for clauses with associated non-constant winning strategies, allowed in M-Res, but
forbidden in LD-Q-Res.

This shows that M-Res is exponentially stronger than reductionless LD-Q-Res, thus also
pointing towards potential improvements in QCDCL solving. While the simulation of
reductionless LD-Q-Res by M-Res is almost immediate and also the upper bound in M-Res is
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14:4 Building Strategies into QBF Proofs

comparatively straightforward, the lower bound is a technically involved argument specifically
tailored towards the squared equality formulas.

C. A sound and complete CDCL calculus for DQBF. As our final contribution we show
that the new QBF system of M-Res naturally lifts to a sound and complete calculus for
DQBF. As shown in [2], the lifting of Q-Res to DQBF is incomplete, whereas the combination
of universal reduction and long-distance steps presents soundness issues, both in DQBF [12]
as well as in the related framework of dependency schemes [6, 7].

Here we show that M-Res overcomes both these soundness and completeness issues and
therefore has exactly the right strength for a natural DQBF resolution calculus. In fact, it is
the first DQBF CDCL-type system in the literature1 and as such paves the way towards
CDCL solving in DQBF. Again, by design our DQBF system has efficient strategy extraction.

2 Preliminaries

Propositional logic. Let Z be a countable set of Boolean variables. A literal is a Boolean
variable z ∈ Z or its negation z̄, a clause is a set of literals, and a CNF is a set of
clauses. For a literal l, we define var(l) := z if l = z or l = z̄; for a clause C, we define
vars(C) := {var(l) : l ∈ C}; for a CNF φ we define vars(φ) := ∪C∈φvars(C). An assignment
to a set Z ⊆ Z of Boolean variables is a function ρ : Z → {0, 1}, conventionally represented
as a set of literals in which z (resp. z̄) represents the assignment z 7→ 1 (resp. z 7→ 0). The
set of all assignments to Z is denoted 〈Z〉. Given a subset Z ′ ⊆ Z, ρ�Z′ is the restriction
of ρ to Z ′. The CNF φ[ρ] is obtained from φ by removing any clause containing a literal
in ρ, and removing the negated literals {l̄ : l ∈ ρ} from the remaining clauses. We say that
ρ falsifies φ if φ[ρ] contains the empty clause, and that φ is unsatisfiable if it is falsified by
each ρ ∈ 〈Z〉.

Given two clauses R1 and R2 and a literal l such that l ∈ R1 and l̄ ∈ R2, we define the
resolvent res(R1, R2, l) := (R1 \ {l}) ∪ (R2 \ {l̄}). (Note that res(R1, R2, l) = res(R2, R1, l̄).)
A resolution refutation of a CNF φ is a sequence C1, . . . , Ck of clauses in which Ck is the
empty clause and, for each i ∈ [k], either (a) Ci ∈ φ or (b) Ci = res(Ca, Cb, z) for some
a, b < i and z ∈ vars(φ).

Quantified Boolean formulas. A quantified Boolean formula (QBF) in prenex conjunctive
normal form (PCNF) is denoted Φ := Q · φ, where (a) Q := Q1Z1 · · · QnZn is the quantifier
prefix, in which the Zi ⊂ Z are pairwise disjoint finite sets of Boolean variables, Qi ∈ {∃,∀}
for each i ∈ [n], and Qi 6= Qi+1 for each i ∈ [n − 1], and (b) the matrix φ is a CNF over
vars(Φ) :=

⋃n
i=1 Zi.

The existential (resp. universal) variables of Φ, typically denoted X (resp. U), is the
set obtained as the union of the Zi for which Qi = ∃ (resp. Qi = ∀). The prefix Q defines
a binary relation <Q on vars(Φ), such that z <Q z′ holds iff z ∈ Zi, z′ ∈ Zj , and i < j,
in which case we say that z′ is right of z and z is left of z′. For each u ∈ U , we define
LQ(u) := {x ∈ X : x <Q u}, i.e. the existential variables left of u.

A strategy h for a QBF Φ is a set {hu : u ∈ U} of functions hu : 〈LQ(u)〉 → {u, ū}.
Additionally h is winning if, for each α ∈ 〈X〉, the restriction of φ by α∪{hu(α�LQ(u)) : u ∈ U}
contains the empty clause. We use the terms “winning strategy” and “countermodel”
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.

1 Previous DQBF resolution systems either use expansion [12] or extension variables [33].
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QBF proof systems. We deal with line-based refutational QBF systems that typically
employ axioms and inference rules to prove the falsity of QBFs. We say that P is complete if
there exists a P refutation of every false QBF, sound if there exists no P refutation of any
true QBF. We call P a proof system if it is sound, complete, and polynomial-time checkable.
Given two QBF proof systems P1 and P2, P1 p-simulates P2 if there exists a polynomial-time
procedure that takes a P2-refutation and outputs a P1-refutation of the same QBF [17].

3 Reductionless long-distance Q-Resolution

In this section we recall the definition of reductionless LD-Q-Res, prove that it is refutationally
complete, and demonstrate that it does not have polynomial-time strategy extraction in
either of the computational models of [13, 37]. The system appeared first in [13, Fig. 1],
where it was referred to as Qw-resolution.

I Definition 1 (reductionless LD-Q-Res [13]). A reductionless LD-Q-Res derivation from a
QBF Φ := Q · φ is a sequence π := C1, . . . , Ck of clauses in which at least one of (a) or (b)
holds for each i ∈ [k]:

(a) Axiom. Ci is a clause from the matrix φ;

(b) Long-distance resolution. There exist integers a, b < i and an existential pivot x ∈ X
such that Ci = res(Ca, Cb, x) and, for each u ∈ vars∀(Ca) ∩ vars∀(Cb), if u <Q x, then
{u, ū} * Ci.

The final clause Ck is the conclusion of π, and π is a refutation of Φ iff Ck contains no
existential variables.

A pair of complementary universal literals {u, ū} appearing in a clause is referred to
singly as a merged literal. It is clear from a wealth of literature2 that merged literals are
“placeholders” for partial strategies, the exact representation left implicit in the structure of
the derivation.

We illustrate the rules of the calculus by showing that the equality formulas [8] have
linear-size refutations.

I Definition 2 (equality formulas [8]). The equality family is the QBF family whose nth

instance has prefix ∃{x1, . . . , xn}∀{u1, . . . , un}∃{t1, . . . , tn} and matrix consisting of the
clauses {xi, ui, ti}, {x̄i, ūi, ti} for i ∈ [n], and {t̄1, . . . , t̄n}.

I Example 3. We construct linear-size reductionless LD-Q-Res refutations in two stages. First,
resolve each pair {xi, ui, ti}, {x̄i, ūi, ti} of clauses over pivot xi to obtain Ci := {ui, ūi, ti}.
Note that it is allowed to introduce the merged literal {ui, ūi} since variable ui is right of the
pivot xi. Second, resolve the Ci successively against the long clause {t̄1, . . . , t̄n} over pivot
ti, to obtain a full set of merged literals C := {ui, ūi : i ∈ [n]}. Here, even though ui is left
of the pivot ti, the appearance of the merged literal {ui, ūi} in the resolvent is allowed, since
variable ui is absent from one of the antecedents. The derivation is a refutation since the
conclusion C contains no existential literals.

Given a false QBF Φ with a countermodel h, we construct a canonical reductionless
LD-Q-Res refutation based on the “full binary tree” representation of a countermodel [34].

2 The notion is evident to a greater or lesser degree in all of the papers [4, 7, 19,30,32,37].
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For each α ∈ 〈X〉, there exists some Cα in the matrix falsified by α ∪ h(α). The set of all
such Cα may be successively resolved over existential pivots in reverse prefix order, finally
producing a clause containing no existentials. Merged literals never block resolution steps in
this construction, as they only ever appear to the right of the pivot variable.

I Lemma 4. Every false QBF has a reductionless LD-Q-Res refutation.

Soundness and polynomial-time checkability of reductionless LD-Q-Res are immediate,
as the system uses a subset of the rules of the classical long-distance Q-resolution proof
system [3].

The computational model of Bjørner et al. [13]. In tandem with reductionless LD-Q-Res,
the authors of [13] introduced a computational model based on tree-like branching programs.
The model is used to explicitly construct the partial strategies represented implicitly by
merged literals. It can be demonstrated that tree-like branching programs constructed in this
way cannot represent strategies efficiently; that is, the system does not have polynomial-time
strategy extraction in the associated model.

The computational model of Suda and Gleiss [37]. The authors of [37] proposed a model
of partial strategies based on so-called policies. They noted that the equality formulas have
linear-size refutations in the strong QBF system IRM-calc [10], whereas policies witnessing
their falsity must be exponentially large, therefore IRM-calc does not admit polynomial-time
strategy in policies. The same is true for reductionless LD-Q-Res, since Example 3 shows
that the equality formulas also have linear-size refutations there.

That neither model is suitable for efficient strategy extraction shows that using either
inside the derivation would result in an artificial, exponential size blow-up. The root of the
issue is tree-like models versus DAG-like proofs. The DAG-like computational model that we
introduce in the following section is tightly knitted to the refutation, yielding linear-time
strategy extraction for free.

4 Merge Resolution

In this section we introduce Merge Resolution (M-Res, Subsection 4.2), and prove that it is
sound and complete for QBF (Subsection 4.3). The salient feature of M-Res is the built-in
partial strategies, represented as merge maps. Given the problems with the computational
models of [13, 37], the principal technical challenge is to find a suitable way to define and
combine partial strategies devoid of an artifical proof-size inflation.

4.1 Merge maps
Our computational model. A merge map is a branching program that queries a set of
existential variables and outputs an assignment to some universal variable, i.e. a literal in
{u, ū, ∗}, where ∗ stands for “no assignment”. As we intend to tie the DAG structure of
the merge maps to the DAG structure of the proof, we will label query nodes with natural
numbers based on the proof line indexing (we elaborate on this later). Hence, from a technical
standpoint it makes sense to define a merge map as a function from the index set of its nodes.

I Definition 5 (merge map). A merge map M for a Boolean variable u over a finite set X
of Boolean variables is a function from a finite set N of natural numbers satisfying, for each
i ∈ N , either M(i) ∈ {u, ū, ∗} or M(i) ∈ X ×N<i ×N<i, where N<i := {i′ ∈ N : i′ < i}.
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A triple of the form (x, a, b) ∈ X ×N<i ×N<i represents the instruction “if x = 0 then
goto a else goto b”, whereas the literals {u, ū, ∗} represent output values.

We depict merge maps pictorially as DAGs. The nodes are the domain elements, and the
leaf nodes as well as the directed edges are labelled by literals. In a merge map M , if M(i)
is a literal l, then node i is labeled l. If M(i) = (x, a, b), then the DAG has the edge i→ a

labeled x̄ and the edge i→ b labeled x. As shown in Figure 1, the DAG naturally describes
a deterministic branching program computing a Boolean function.

M : 1 7→ u

2 7→ ū

3 7→ (w, 1, 2)
4 7→ ∗
5 7→ (w, 4, 2)
6 7→ (v, 5, 3) 6

5 3

4 2 1
∗ ū u

v̄ v

w̄ w w w̄

Figure 1 Function and branching program representations of a merge map M .

Relations. Merge Resolution uses two relations to determine preconditions for the binary
operations. Firstly, we give M-Res the power to identify merge maps with equivalent
representations, up to indexing. We term equivalent representations “isomorphic”.

I Definition 6 (isomorphism). Two merge maps M1 and M2 for u over X with domains N1
and N2 are isomorphic (written M1 'M2) iff there exists a bijection f : N1 → N2 such that
the following hold for each i ∈ N1:
(a) if M1(i) is a literal in {u, ū, ∗} then M2(f(i)) = M1(i);
(b) if M1(i) is the triple (x, a, b) then M2(f(i)) = (x, f(a), f(b)).
Our second relation, consistency, simply identifies whether or not two merge maps agree on
the intersection of their domains.

I Definition 7 (consistency). Two merge maps M1 and M2 for u over X with domains N1
and N2 are consistent (written M1 ./ M2) iff M1(i) = M2(i) for each i ∈ N1 ∩N2.

Operations. M-Res uses two binary operations to build merge maps for the resolvent based
on those of the antecedents. The select operation identifies equivalent merge maps by means
of the isomorphism relation. It also allows a trivial merge map to be discarded; we call a
merge map trivial iff it is isomorphic to 1 7→ ∗. (The operation is undefined if the merge
maps are neither isomorphic nor do they contain a trivial map.)

I Definition 8 (select). Let M1 and M2 be merge maps for which M1 ' M2 or one of
M1,M2 is trivial. Then select(M1,M2) := M2 if M1 is trivial, and select(M1,M2) := M1
otherwise.

The merge operation allows two consistent merge maps to be combined as the children of
a fresh query node. Antecedent maps are only ever merged for universal variables right of
the pivot x. The inclusion of a natural number n allows the new query node to be identified
with the resolvent, via its index in the proof sequence. In this way, query nodes are shared
between later merge maps, rather than being duplicated; the result is a DAG-like structure
which faithfully follows that of the derivation.
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14:8 Building Strategies into QBF Proofs

I Definition 9 (merge). Let M1 and M2 be consistent merge maps for u over X with
domains N1 and N2, let n > max(N1 ∪ N2) be a natural number, and let x ∈ X. Then
merge(M1,M2, n, x) is the function from N1 ∪N2 ∪ {n} defined by

merge(M1,M2, n, x)(i) :=


(x,max(N1),max(N2)) if i = n,
M1(i) if i ∈ N1,
M2(i) if i ∈ N2 \N1.

I Example 10. For the merge maps depicted in Figure 2, isomorphism and consistency
(or lack thereof) are as given in the table below. Furthermore, note that select(A,B) =
select(A,C) = A and merge(D,B, 6, v) gives the merge map from Figure 1.

relation isomorphic not isomorphic
consistent A ./ C; A ' C B ./ D; B 6' D

not consistent A 6./ B; A ' B C 6./ D; C 6' D

4

1 3
ūu

w̄ w

(a) Merge map A

3

1 2
ūu

w̄ w

(b) Merge map B

5

1 2
ūu

w̄ w

(c) Merge map C

5

4 2
ū∗

w̄ w

(d) Merge map D

Figure 2 Relations and operations on merge maps.

4.2 Definition of M-Res
We are now ready to put down the rules of Merge Resolution. Given a non-tautological
clause C and a Boolean variable u, the falsifying u-literal for C is l̄ if there is a literal l ∈ C
with var(l) = u, and ∗ otherwise.

I Definition 11 (merge resolution). Let Φ := Q·φ be a QBF with existential variables X and
universal variables U . A merge resolution (M-Res) derivation of Lk from Φ is a sequence
π := L1, . . . , Lk of lines Li := (Ci, {Mu

i : u ∈ U}) in which at least one of the following holds
for each i ∈ [k]:
(a) Axiom. There exists a clause in C ∈ φ such that Ci is the existential subclause of C,

and, for each u ∈ U , Mu
i is the merge map for u over LQ(u) with domain {i} mapping i

to the falsifying u-literal for C;
(b) Resolution. There exist integers a, b < i and an existential pivot x ∈ X such that

Ci = res(Ca, Cb, x) and, for each u ∈ U , either (i) Mu
i = select(Mu

a ,M
u
b ), or (ii) x <Q u

and Mu
i = merge(Mu

a ,M
u
b , i, x).

The final line Lk is the conclusion of π, and π is a refutation of Φ iff Ck = ∅. The size of π
is |π| = k.

I Example 12. Consider the following M-Res refutation of the QBF with prefix ∃x∀u∃t and
matrix consisting of the clauses {x, u, t}, {x̄, ū, t}, {x, u, t̄} and {x̄, ū, t̄}.
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Line Rule Ci Mi Query
L1 axiom {x, t} 1 7→ ū

L2 axiom {x̄, t} 2 7→ u

L3 res(L1, L2, x) {t} merge(M1, M2, 3, x) 3 7→ (x, 1, 2)
L4 axiom {x, t̄} 4 7→ ū

L5 axiom {x̄, t̄} 5 7→ u

L6 res(L4, L5, x) {t} merge(M4, M5, 6, x) 6 7→ (x, 4, 5)
L7 res(L3, L6, t) {} select(M3, M6) = M3

As shown in Figure 3, M3 and M6 are isomorphic, so select(M3,M6) is defined and equal
to M3. For this reason, the resolution of antecedents L3 and L6 into L7 is allowed, and the
final merge map M7 is simply a copy of M3. The analogous resolution would be disallowed in
reductionless LD-Q-Res because the pivot t is right of u, and the non-constant merge maps
M3 and M6 would appear as merged literals {u, ū} in the antecedent clauses.

M3

1 7→ ū

2 7→ u

3 7→ (x, 1, 2)

M6

4 7→ ū

5 7→ u

6 7→ (x, 4, 5)

1 2

3

4 5

6

ū u ū u

x̄ x x̄ x

Figure 3 Functions and branching programs for merge maps M3 and M6 from Example 12.

Regarding M-Res proof size, observe that the domain of the merge map at line i is a
subset of [i]. This means that merge maps grow linearly in the size of the derivation, and the
size blow-up associated with the previous models [13,37] is sidestepped. Moreover, number
of lines is justifiably the correct size measure for M-Res.

4.3 Soundness and completeness of M-Res
The soundness of M-Res comes down to the fact that the merge maps at a given line form a
partial strategy for the input QBF, in the technical sense of [37]. This means that any total
existential assignment that falsifies the clause Ci will falsify the matrix when extended by
the output of the merge maps Mu

i . Soundness is proved by induction on the proof structure
with exactly this invariant. At the conclusion, all existential assignments falsify the empty
clause Ck, and hence the Mu

k compute a countermodel.

I Lemma 13. Let (∅, {Mu : u ∈ U}) be the conclusion of an M-Res refutation of a QBF Φ.
Then the functions computed by {Mu : u ∈ U} are a countermodel for Φ.

Completeness of M-Res is shown via the p-simulation of reductionless LD-Q-Res. The
simulation copies precisely the structure of the reductionless LD-Q-Res refutation, while
replacing merged literals by merge maps in the natural way.

I Theorem 14. M-Res p-simulates reductionless LD-Q-Res.

It is easy to see that M-Res refutations can be checked in polynomial time, since the
isomorphism and consistency relations are computable in linear time.

I Theorem 15. M-Res is a QBF proof system.
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5 Proof complexity: Merge Resolution vs Reductionless LD-Q-Res

In this section we exponentially separate M-Res from reductionless LD-Q-Res. The separating
formulas are a kind of “squaring” of the equality formulas from Definition 2.

I Definition 16 (squared equality formulas). The squared equality family is the QBF family
whose nth instance EQ2(n) := Q(n) · eq2(n) has prefix

Q(n) := ∃{x1, y1, . . . , xn, yn}∀{u1, v1, . . . , un, vn}∃{ti,j : i, j ∈ [n]},

and CNF matrix eq2(n) consisting of the clauses

{xi, yj , ui, vj , ti,j}, {xi, ȳj , ui, v̄j , ti,j}, for i, j ∈ [n],

{x̄i, yj , ūi, vj , ti,j}, {x̄i, ȳj , ūi, v̄j , ti,j}, for i, j ∈ [n],

{t̄i,j : i, j ∈ [n]}.

The only winning strategy for the universal player is to set ui = xi and vj = yj for each
i, j ∈ [n]. At the final block, the existential player is faced with the full set of {ti,j} unit
clauses, and to satisfy all of them is to falsify the square clause {t̄i,j : i, j ∈ [n]}. No other
strategy can be winning, as it would fail to produce all n2 unit clauses.

5.1 EQ2(n) lower bound for reductionless LD-Q-Res
We first give a formal definition of a refutation path; that is, a sequence of consecutive
resolvents beginning with an axiom and ending at the conclusion.

I Definition 17 (path). Let π be a reductionless LD-Q-Res refutation. A path from a clause
C in π is a subsequence C1, . . . , Ck of π in which:

C = C1 is an axiom of π;
Ck is the conclusion of π;
for each i ∈ [k − 1], there exists a literal pi and a clause Ri occurring before Ci+1 in π
such that Ci+1 = res(Ci, Ri, pi).

The lower-bound proof is based upon two facts: (1) every total existential assignment
corresponds to a path, all of whose clauses are consistent with the assignment (Lemma 18);
(2) every path from the square clause contains a “wide” clause containing either all the xi or
all the yj variables (Lemma 19). It is then possible to deduce the existence of exponentially
many wide clauses, i.e. by considering the set of assignments for which each xi = yi and each
ti,j = 0, all of whose corresponding paths begin at the square clause (proof of Theorem 20).

I Lemma 18. Let π be a reductionless LD-Q-Res refutation of a QBF Φ, and let A be a
clause with vars(A) = vars∃(Φ). Then there exists a path in π in which no existential literal
outside of A occurs.

Proof. We describe a procedure that constructs a sequence P := Ck, . . . , C1 of clauses in
reverse order as follows: To begin with, let the “current clause” C1 be the conclusion of π. As
soon as the current clause Ci is in an axiom, the procedure terminates. Whenever necessary,
obtain Ci+1 as follows: find clauses R1 and R2 occurring before Ci in π and a literal p ∈ A
such that Ci is res(R1, R2, p), and set Ci+1 := R1 as the current clause. P is clearly a path
in π by construction. By induction one shows that the existential subclause of Ci is a subset
of A, for each i ∈ [n]: The base case i = 1 holds trivially since there are no existential literals
in the conclusion C1 of π. For the inductive step, observe that Ci+1 = C ′ ∪ {p}, for some
subset C ′ ⊆ Ci and literal p ∈ A. J
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The second lemma is more technical, and its proof more involved. The proof works
directly on the definition of path, the rules of reductionless LD-Q-Res, and the syntax of the
squared equality formulas, to show the existence of the wide clause.

I Lemma 19. Let n ≥ 2, and let π be a reductionless LD-Q-Res refutation of EQ2(n). On
each path from {t̄i,j : i, j ∈ [n]} in π, there occurs a clause C for which either {x1, . . . , xn} ⊆
vars(C) or {y1, . . . , yn} ⊆ vars(C).

Proof. Put X := {x1, . . . , xn} and Y := {y1, . . . , yn}. Call a clause R in π a p-resolvent if
there exist earlier clauses R1 and R2 such that R = res(R1, R2, p).

Let P := C1, . . . , Ck be a path from {t̄i,j : i, j ∈ [n]} in π. With each Cl we associate an
n× n matrix Ml in which Ml[i, j] := 1 if t̄i,j ∈ Ci and Ml[i, j] := 0 otherwise. Let l be the
least integer such that Ml has either a 0 in each row or a 0 in each column. Note that l ≥ 2
since M1 has no zeros.

We prove the lemma by showing that either X ⊆ vars(Cl) or Y ⊆ vars(Cl) must hold.
We make use of the following claims, which hold for all i, j ∈ [n]:
(1) for each clause C on P , if t̄i,j ∈ C then {ui, ūi} * C;
(2) each xi-resolvent in π contains {ui, ūi} as a subset;
(3) for each ti,j-resolvent R in π, if xi /∈ vars(R) then {ui, ūi} ⊆ R.

Now, suppose that Ml has a 0 in each row. We proceed to show that every row in Ml

also has at least one 1. To see this, suppose on the contrary that Ml contains a full 0 row r

(this implies that l ≥ 2, and hence that Ml−1 exists). Note that by definition of resolution
there can be at most one element that changes from 1 in Ml−1 to 0 in Ml. Since Ml−1 does
not have a 0 in every column, it does not contain a full zero row. Hence it must be the case
that the unique element that went from 1 in Ml−1 to 0 in Ml is in row r. Since n ≥ 2, we
deduce that Ml−1 has a 0 in each row, contradicting the minimality of l.

Let i ∈ [n]. Since the ith row in Ml contains a 1, there is some j ∈ [n] for which t̄i,j ∈ Cl.
From claim (1) it follows that {ui, ūi} * Cl. Moreover, as universal literals accumulate along
the path, this means that {ui, ūi} * Cm for each m ≤ l. Since the ith row in Ml contains
a 0, there exists j′ ∈ [n] such that t̄i,j′ /∈ Cl. As t̄i,j′ ∈ C1, there must be a ti,j′-resolvent
Cl′ on P with l′ ≤ l. Then we have xi ∈ vars(Cl′) by claim (3). Also, for each m ≤ l, Cm
is not an xi-resolvent by claim (2). It follows that xi ∈ vars(Cl). Since i ∈ [n] was chosen
arbitrarily, we have X ⊆ vars(Cl).

Suppose on the other hand that Ml does not contain a 0 in each row. Then Ml contains
a 0 in each column. A symmetrical argument then shows that Y ⊆ vars(Cl).

It remains to prove the three claims.

(1) Observe that each clause in π containing the positive literal ti,j also contains the variable
ui (this holds for every axiom and universal literals are never removed). Let C be a
clause on the path P for which t̄i,j ∈ C, and, for the sake of contradiction, suppose that
{ui, ūi} ⊆ C. Since ui <Q(n) ti,j , there cannot be ti,j-resolvent on P following C, as
such a resolution step is explicitly forbidden in the rules of reductionless LD-Q-Res. This
means that t̄i,j occurs in Ck, the final clause of P . This is a contradiction, since Ck is
the conclusion of π, which contains no existential literals. Therefore {ui, ūi} * C.

(2) Observe that each clause in π containing xi (resp. x̄i) also contains ui (resp. ūi) (again,
this holds for every axiom and universal literals are never removed). Let R be an
xi-resolvent of R1 and R2 in π. Since xi ∈ R1 and x̄i ∈ R2, we must have ui ∈ R1 and
ūi ∈ R2. It follows immediately that {ui, ūi} ⊆ R.
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(3) Observe that each axiom in π containing the positive literal ti,j contains variable xi.
Hence, any clause in π that contains literal ti,j but not variable xi must appear after an xi-
resolvent on some path, and therefore contains {ui, ūi} by Claim (2). Now, let R be a ti,j-
resolvent of R1 and R2 in π. Suppose that xi /∈ vars(R), which implies that xi /∈ vars(R1).
Since ti,j ∈ R1, we have {ui, ūi} ⊆ R1, and it follows that {ui, ūi} ⊆ R. J

It remains to prove the lower bound formally from the preceding lemmata.

I Theorem 20. The squared equality family requires exponential-size reductionless LD-Q-Res
refutations.

Proof. Let n ∈ N, and let π be a reductionless LD-Q-Res refutation of EQ2(n). We show
that |π| ≥ 2n−1. The size bound is trivially true for n = 1, so we assume n ≥ 2. Put
X := {x1, . . . , xn} and Y := {y1, . . . , yn}, and let L := {t̄i,j : i, j ∈ [n]} be the long clause
from eq2(n). We call a non-tautological clause S symmetrical iff vars(S) = X ∪ Y and
xi ∈ S ⇔ yi ∈ S for each i ∈ [n]. (A symmetrical clause represents a total assignment to
X ∪ Y ). Note that there are 2n distinct symmetrical clauses.

By Lemma 18, for each symmetrical clause S, there exists a path PS in π in which all
existential literals are contained in S ∪ L. Moreover, each PS begins at clause L, since every
other clause in eq2(n) contains some positive ti,j literal that does not occur in S ∪ L. By
Lemma 19, on each path P from L in π there exists a clause C for which either X ⊆ vars(C)
or Y ⊆ vars(C). It follows that we can define a function f that maps each symmetrical
assignment S to a clause f(S) in π for which either proj(S,X) ⊆ f(S) or proj(S, Y ) ⊆ f(S).
Moreover, since distinct symmetrical clauses S1 and S2 satisfy proj(S1, X) 6= proj(S2, X)
and proj(S1, Y ) 6= proj(S2, Y ), each f(S) is the image of at most two distinct symmetrical
clauses. Hence, π contains at least 2n−1 clauses. J

Close inspection of the lower-bound proof reveals that particular resolution steps are
blocked due to the appearance of merged literals in the antecedents (see the proof of claim (1)
of Lemma 19). As we noted in Example 12, such steps remain blocked even if both merged
literals implicitly represent the same (non-constant) function, in which case the resolution
step is actually perfectly sound. As we will see, the M-Res upper-bound construction makes
crucial use of the isomorphism of non-constant merge maps.

5.2 Short M-Res refutations of EQ2(n)

Here we construct short M-Res refutations of the squared equality formulas. The approach
is as follows. First, for each i, j ∈ [n], obtain a line ({ti,j},Mi,j) by resolving the axioms
for the four clauses in eq(n)2 that contain {ti,j}. By the natural application of the merge
and select operations, one obtains merge maps Mi,j in which the merge map for ui outputs
xi with a single query, the merge map for vj outputs yj with a single query, and all other
maps are trivial. Notice that all the non-trivial merge maps for a given universal variable are
isomorphic, so these n2 unit clauses can all be resolved against the square clause, utilising
the select operation. It is precisely this final step which is blocked in reductionless LD-Q-Res.

I Theorem 21. The squared equality family has O(n2)-size M-Res refutations.

The separation follows immediately from Theorems 20 and 21.

I Theorem 22. LD-Q-Res does not p-simulate M-Res on QBF.
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6 Extending Merge Resolution to DQBF

In this section, we show that M-Res extends naturally to a DQBF proof system with the
addition of a single weakening rule.

An H-form dependency quantified Boolean formula (DQBF) is denoted Φ := Q·φ. Similarly
to QBF, the matrix φ is a CNF, but the quantifier prefix Q has a more general specification
that allows variable dependencies to be written explicitly. Formally, Q := (X,U,LQ), in
which X ⊂ Z and U ⊂ Z are finite sets called the existential and universal variables of Φ,
and LQ : U → ℘(X) is the support set function.

This is not the conventional notation for DQBF (cf. [2]), but it coincides conveniently
with our QBF notation. In particular, our definition of “countermodel” need not change,
and we call a DQBF false if it has a countermodel, and true if it does not. We redefine <Q
as a binary relation on X × U such that x <Q u holds iff x ∈ X, u ∈ U and x ∈ LQ(u).

To lift M-Res to DQBF, we take Φ to be a DQBF in Definition 11 and add an extra case:
(c) Weakening. There exists an integer a < i such that Ci is an existential superclause of

Ca and, for each u ∈ U , either (i) Mu
i = Mu

a , or (ii) Mu
a is trivial and Mu

i := i 7→ l for
some literal l ∈ {u, ū}.

By “existential superclause” it is meant that vars(Ci) ⊆ X and Ca ⊆ Ci.
Weakening is, in a clear sense, the simplest rule with which one extends M-Res to DQBF.

Its function is merely to represent exactly the paths of the countermodel on which the
canonical completeness construction is based. In general, the countermodel needs to be
represented in full since merge maps must be isomorphic in order to apply the select operation.

Soundness and Completeness
Soundness of M-Res for DQBF is proved in the same way as for QBF, i.e. by showing that the
concluding merge maps compute a countermodel. Lemma 13 lifts straightforwardly to DQBF,
so we need only show that weakening preserves the induction invariant (see the paragraph
preceding Lemma 13). This turns out to be rather straightforward, since a weakened clause
is falsified by fewer existential assignments, and the weakening of a merge map always
instantiates an undetermined assignment.

I Lemma 23. Let (∅, {Mu : u ∈ U}) be the conclusion of an M-Res refutation of a DQBF Φ.
Then the functions computed by {Mu : u ∈ U} form a countermodel for Φ.

Completeness, on the other hand, cannot be established with an analogue of Theorem 14;
DQBF is strictly larger than QBF, and hence simulation of reductionless LD-Q-Res does not
guarantee completeness. Our proof rather extends the method by which completeness of
reductionless LD-Q-Res was proved in Lemma 4; namely, the construction of a “full binary
tree” of resolution steps based on the countermodel, following the prefix order of existential
variables.

We give an overview of the construction. Let Φ := (X,U,LQ) · φ be a false DQBF with
a countermodel h. For each α ∈ 〈X〉, the assignment α ∪ h(α) falsifies some clause Cα ∈ φ
by definition of countermodel. Now, consider the M-Res line whose clause is the largest
existential clause falsified by α and whose merge maps are constant functions computing h(α).
Each such line can be derived in two M-Res steps, by weakening the axiom corresponding to
Cα. Moreover, the clauses {Cα : α ∈ 〈X〉} form the leaves of a full binary tree resolution
refutation which can be completed using an arbitrary order of the existential pivots X. The
merge maps are constructed by merging over the pivot x iff x ∈ LQ(u); otherwise the select
operation takes the merge map from either antecedent, since the full binary tree structure
guarantees that they are isomorphic.
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As merge maps essentially represent the structure of resolution steps in the subderivation,
it is no surprise that the merge maps in our construction also have a full binary tree structure.
This structure is captured by the following definition.

I Definition 24 (binary tree merge map). A binary tree merge map for a variable u over a
sequence of variables x1, . . . , xn is a function M with domain [2n+1 − 1] and rule

M(i) :=
{

(xblog ic+1, 2i, 2i+ 1) if 1 ≤ i < 2n ,
li if 2n ≤ i < 2n+1 ,

where each li ∈ {u, ū}.

At the technical level, we must define existential restrictions for DQBFs and DQBF
countermodels. Let Φ := (X,U,LQ) · φ be a DQBF with a countermodel h and let l be a
literal with var(l) = x ∈ X. The restriction of Φ by l is Φ[l] := (X \ {x}, U, L′Q) · φ[l], where
L′Q maps each u ∈ U to LQ(u) \ {x}. The restriction of h by l is h[l] := {hu[l] : u ∈ U},
where the functions hu[l] : 〈L′Q(u)〉 → {u, ū} are defined by hu[l](α) := hu((α ∪ {l})�LQ(u)).

The construction itself is defined recursively in the completeness proof, combining full
binary tree refutations for Φ[x] and Φ[x̄] for some x ∈ X with a single resolution step. We
use the fact that restrictions preserve countermodels in the following sense.

I Proposition 25. Let h be a countermodel for a DQBF Φ := (X,U,LQ) · φ and let l be a
literal with var(l) ∈ X. Then h[l] is a countermodel for Φ[l].

As the final precursor to the completeness proof, we show that a derivation of the negated
literal l̄ and the restricted countermodel h[l] can be obtained easily from a refutation of the
restricted DQBF Φ[l].

I Proposition 26. Let Φ := (X,U,LQ) ·φ be a false DQBF, let l be a literal with var(l) ∈ X,
and let (∅, {Mu : u ∈ U}) be the conclusion of be an M-Res refutation of Φ[l]. Then there
exists an M-Res derivation of ({l̄}, {Mu : u ∈ U}) from Φ.

Proof. Let π be the refutation with the given conclusion. The desired derivation may be
obtained from π simply by adding the literal {l̄} to each clause, applying weakening where
necessary, and adjusting the indexing of the merge maps to account for the extra weakening
steps. J

I Lemma 27. Every false H-form DQBF has an M-Res refutation.

Proof. Let Φ := (X,U,LQ) · φ be a false DQBF, and let X := {x1, . . . , xn} where the xi
are pairwise distinct. For any M-Res refutation π with conclusion (Ck, {Mu

k : u ∈ U}), let
{hu : u ∈ U} be the concluding countermodel for π, where the hu are the functions computed
by the concluding merge maps Mu

k . A merge map for u ∈ U over LQ(u) is said to be complete
if it is isomorphic to a binary tree merge map for u over the sequence

xσ(1), . . . xσ(|LQ(u)|) ,

which enumerates LQ(u) in increasing index order; that is, σ : [|LQ(u)|]→ [n] is the unique
function satisfying {xσ(i) : i ∈ [|LQ(u)|]} = LQ(u) and i < j ⇔ σ(i) < σ(j) for each
i, j ∈ [|LQ(u)|]. By induction on the number n of existential variables, we show that, for
each countermodel h for Φ, there exists an M-Res refutation whose concluding countermodel
is h and whose concluding merge maps are complete. To that end, let h := {hu : u ∈ U} be
an arbitrary countermodel for Φ.
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For the base case |X| = 0, observe that each hu is a constant function with some
singleton codomain {lu}. By definition of countermodel, there exists a clause C ∈ φ such
that C = {l̄u : u ∈ vars(C)}. Applying the axiom rule to C, one obtains a derivation of the
line (∅, {Mu : u ∈ U}) in which Mu computes the constant function hu if u ∈ vars(C), and
is trivial otherwise. With a single weakening step, each trivial Mu can be swapped for a
merge map isomorphic to 1 7→ lu. Then each Mu is trivially complete and computes the
constant function hu.

For the inductive step, let n ∈ N. Combining Propositions 25 and 26 with the inductive
hypothesis, we deduce that there exist M-Res derivations π and π′ of the lines ({x̄n}, {Mu :
u ∈ U}) and ({xn}, {M ′u : u ∈ U}) from Φ in which the Mu and M ′u are complete merge
maps computing hu[xn] and hu[x̄n]. Assume that the lines of π are indexed from 1 to |π| and
that those of π′ are indexed from |π|+ 1 to |π|+ |π′|. For each u ∈ U , the domains of Mu

and M ′u are disjoint, so Mu ./ M
′
u. If xn /∈ LQ(u), then hu[xn] = hu[x̄n], and we must have

Mu 'M ′u since complete merge maps computing the same function must be isomorphic. It
follows that the line (∅, {M ′′u : u ∈ U}) can be derived from Φ, where

M ′′u :=
{
merge(Mu,M

′
u, |π|+ |π′|+ 1, xi) if xi ∈ LQ(u),

Mu if xi /∈ LQ(u).

It is easy to see that the M ′′u are complete merge maps computing the hu. J

The weakening rule is clearly polynomial-time checkable. Thus the following is immediate
from Lemmata 23 and 27.

I Theorem 28. M-Res is a proof system for H-form DQBF.

It is natural to consider whether the weakening rule is necessary for completeness. This is
indeed the case; there exist false DQBFs that cannot be refuted by M-Res without weakening.

For example, consider the DQBF Φ := (X,U,LQ)·φ in whichX := {x1, x2}, U := {u1, u2},
the support set function is given by LQ(u1) = {x1}, LQ(u2) = {x2}, and the matrix φ consists
of the clauses

{x̄1, x̄2, ū1, ū2}, {x̄1, x2, ū1, u2}, {x1, x̄2, u1, ū2}, {x1, x2, u1} .

It is readily verified that the only countermodel for this DQBF sets u1 = x1 and u2 = x2.
However, the absence of variable u2 in the clause {x1, x2, u1} means that the corresponding
M-Res axiom has a merge map for u2 isomorphic to 1 7→ ∗. Since an M-Res refutation of Φ
needs a full binary tree of resolution steps, this particular merge map must be instantiated
at some point with a concrete literal ū2 or u2. To see this, observe that a resolution over x1
must take place in which, among the antecedents, at least one merge map for u2 (descended
from axioms containing the negative literal x̄1) does not contain ∗ in its range; and since x1
is not in LQ(u2), the antecedents’ merge maps for u2 must be isomorphic.

7 Conclusions

We argue that building strategies into proofs is the natural way to deal with incompleteness
for DQBF CDCL-systems [2]. The other approach, known as Fork Resolution [33], uses
extension variables, and is not known to correspond to an existing implementation [35].

We also suggest that H-form (rather than S-form) DQBFs may be more suitable for CDCL-
style solving, since associated proof systems “prove the existence of Herbrand functions”.
In the QBF realm, this is of course equivalent to proving the non-existence of Skolem
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functions, but that does not carry over to DQBF (in a precise technical sense [2]). From
this standpoint, it is natural to refute H-form DQBFs by finding the Herbrand functions
that certify falsity. Moreover, it is unnatural to refute S-form DQBFs – which amounts to
proving the non-existence of Skolem functions – by looking for Herbrand functions that may
exist even if the formula is true. We suggest that this notion is the source of the soundness
issues [12] associated with CDCL systems for DQBF.

Explicit representations may also be relevant for QBF solving. In dependency learning [31],
variable dependencies are ignored until clause learning is blocked by an illegal merge. Our
work demonstrates that many “illegal” merges are perfectly sound inferences; moreover,
Merge Resolution provides a mechanism for identifying such cases based on isomorphism.

Particular implementations may want to fine-tune the details. Isomorphism is an easy
way to determine the equivalence of two Boolean functions, but in general it seems unlikely
that two equivalent functions will have identical representations. This points towards efficient
(approximate) equivalence testing as the key to a successful implementation of M-Res.
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