
Finite Sequentiality of Unambiguous Max-Plus
Tree Automata
Erik Paul
Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
epaul@informatik.uni-leipzig.de

Abstract
We show the decidability of the finite sequentiality problem for unambiguous max-plus tree automata.
A max-plus tree automaton is called unambiguous if there is at most one accepting run on every
tree. The finite sequentiality problem asks whether for a given max-plus tree automaton, there exist
finitely many deterministic max-plus tree automata whose pointwise maximum is equivalent to the
given automaton.

2012 ACM Subject Classification Theory of computation → Quantitative automata; Theory of
computation → Tree languages

Keywords and phrases Weighted Tree Automata, Max-Plus Tree Automata, Finite Sequentiality,
Decidability, Ambiguity

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.55

Funding This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg
1763 (QuantLA).

1 Introduction

A max-plus automaton is a finite automaton which assigns real numbers to words over a
given alphabet. The transitions of a max-plus automaton each carry a weight from the real
numbers. To every run of the automaton, a weight is associated by summing over the weights
of the transitions which constitute the run. The weight of a word is given by the maximum
over the weights of all runs on this word.

More generally, max-plus automata and their min-plus counterparts are weighted automata
[31, 30, 22, 5, 11] over the max-plus or min-plus semiring. Min-plus automata were originally
introduced by Imre Simon as a means to show the decidability of the finite power property
[34, 35]. Since their introduction, max-plus and min-plus automata enjoy a continuing
interest [21, 14, 18, 10, 12, 6] and they have been employed in many different contexts. To
only name some examples, they can be used to determine the star height of a language [13],
to prove the termination of some string rewriting systems [36], and to model certain discrete
event systems [19]. Additionally, they appear in the context of natural language processing
[24], where for reasons of numerical stability, probabilities are often computed in the min-plus
semiring as negative log-likelihoods.

A very prominent open question about max-plus automata is the sequentiality problem, the
problem of deciding whether for an arbitrary max-plus automaton there exists a deterministic
equivalent. A max-plus automaton is called deterministic or sequential if for each pair of a
state and an input symbol, there is at most one valid transition into a next state. Although
the decidability of this problem is unknown for max-plus automata in general, it is known
to be decidable for the subclasses of unambiguous [24], finitely ambiguous [18], and even
polynomially ambiguous [17] automata. A max-plus automaton is called unambiguous if
there exists at most one accepting run on every word. It is called finitely ambiguous if the
number of runs on each word is bounded by a global constant. If on every word the number
of accepting runs is bounded polynomially in the length of the word, the automaton is said to

© Erik Paul;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 55; pp. 55:1–55:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:epaul@informatik.uni-leipzig.de
https://doi.org/10.4230/LIPIcs.STACS.2019.55
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

be polynomially ambiguous. Note that the ambiguity of a max-plus automaton is a decidable
property, as it is easily reduced to deciding the ambiguity of a finite automaton. Deciding
the sequentiality of a finite automaton is trivial, polynomial time algorithms for deciding
the unambiguity, the finite ambiguity, and the polynomial ambiguity of a finite automaton
can be found in [7, 37, 33]. Furthermore, the classes of functions definable by deterministic,
unambiguous, finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata
form a strictly ascending hierarchy [18, 15, 23].

A decidability problem which is closely related to the sequentiality problem is the finite
sequentiality problem. The finite sequentiality problem asks whether a given max-plus
automaton can be represented as a pointwise maximum of deterministic max-plus automata.
In [14], it was left as an open question to determine the decidability of the finite sequentiality
problem for finitely ambiguous max-plus automata. It was shown only recently that for the
classes of unambiguous as well as finitely ambiguous automata, the finite sequentiality problem
is decidable [3, 2]. The class of functions which allow a finitely sequential representation by
max-plus automata lies strictly between the classes of functions definable by deterministic
and by finitely ambiguous max-plus automata, and it is incomparable to the class of functions
definable by unambiguous max-plus automata [18].

In this paper, we show that the finite sequentiality problem is decidable for unambiguous
max-plus tree automata. Max-plus tree automata are a generalization of max-plus automata
and operate on trees instead of words. Applications for max-plus tree automata include
proving the termination of certain term rewriting systems [20], and they are also commonly
employed in natural language processing [27] in the form of probabilistic context-free grammars.
Our approach to show the decidability of the finite sequentiality problem employs ideas
from [3]. In [3], the fork property is shown to be a decidable criterion to determine the
existence of a finitely sequential equivalent. More precisely, a max-plus word automaton is
shown to possess a finitely sequential representation if and only if it does not satisfy the fork
property. It is shown elementarily that an automaton satisfying the fork property cannot
possess a finitely sequential equivalent. The proof for the existence of a finitely sequential
representation in case that the fork property is not satisfied, on the other hand, relies on the
construction of finitely many unambiguous max-plus automata whose pointwise maximum is
equivalent to the original automaton, and which all satisfy the twins property. It was shown
by Mohri [24] that an unambiguous max-plus automaton which satisfies the twins property
is determinizable. A finitely sequential representation is thus found by determinizing the
unambiguous automata.

For tree automata, we generalize the fork property to the tree fork property by adding
a condition which accounts for the nonlinear structure of trees. We then prove that an
unambiguous max-plus tree automaton possesses a finitely sequential representation if and
only if it does not satisfy the tree fork property. As in the word case, the most challenging
part of the proof is to show the existence of a finitely sequential representation whenever
the tree fork property is not satisfied. Like in the proof for word automata, we construct
finitely many unambiguous max-plus tree automata which possess a deterministic equivalent.
However, we need to take a different approach in order to obtain these automata. In [3], a
modified Schützenberger covering [32, 29] is first constructed from the unambiguous max-plus
automaton, from which in turn an automaton is constructed which monitors the occurrence
of certain states of the modified Schützenberger covering. This latter automaton is then
decomposed into the finitely many unambiguous automata. This approach, however, is not
applicable to trees, as the monitoring of states requires all relevant states to occur linearly.
This happens trivially for word automata due to the inherent linear structure of words, but for

E. Paul 55:3

tree automata examples can be found where relevant states occur nonlinearly. The approach
we use here relies on constructing a max-plus automaton which tracks certain pairs of states
of the original automaton. When applied to word automata, this immediately yields an
automaton which can be decomposed into the desired unambiguous automata. Unfortunately,
for tree automata this tracking of pairs of states again fails due to states occurring nonlinearly.
Surprisingly however, our construction can be applied to the Schützenberger covering of
the original tree automaton, as the states relevant for tracking all occur pairwise linearly
in the Schützenberger covering. The most difficult part of our proof is to show that the
Schützenberger covering indeed has the property we just indicated.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|. For
two sets X and Y and a mapping f : X → Y , we call X the domain of f , denoted by
dom(f), and Y the range of f , denoted by range(f). For a subset X ′ ⊆ X, we call the set
f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the image or range of X ′ under f . For an element
y ∈ Y , we call the set f−1(y) = {x ∈ X | f(x) = y} the preimage of y under f . For a second
mapping g : X → Y , we write f = g if for all x ∈ X we have f(x) = g(x).

Let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty word
is denoted by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered
by the prefix relation ≤p and totally ordered with respect to the lexicographic ordering ≤l.
Two words from N∗ are called prefix-dependent if they are in prefix relation, and otherwise
they are called prefix-independent.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set
and rkΓ : Γ → N a mapping which assigns a rank to every symbol. For every m ≥ 0 we
define Γ(m) = rk−1

Γ (m) as the set of all symbols of rank m. The rank of Γ is defined as
rk(Γ) = max{rkΓ(a) | a ∈ Γ}. The set of (finite, labeled, and ordered) Γ-trees, denoted
by TΓ, is the set of all pairs t = (pos(t), labelt), where pos(t) ⊂ N∗ is a finite non-empty
prefix-closed set of positions, labelt : pos(t) → Γ is a mapping, and for every w ∈ pos(t)
we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w) and |t| for
|pos(t)|. We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to
prefix-maximal nodes as leaves. The height of t is defined as height(t) = maxw∈pos(t) |w|. For
a leaf w ∈ pos(t), the set {v ∈ pos(t) | v ≤p w} is called a branch of t.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree
defined as follows. We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), we let
labelt�w

(v) = t(wv). The substitution of s into w of t, denoted by t〈s → w〉, is a Γ-tree
defined as follows. We let pos(t〈s → w〉) = {v ∈ pos(t) | w 6≤p v} ∪ {wv | v ∈ pos(s)}.
For v ∈ pos(t〈s → w〉), we let labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s), and
otherwise labelt〈s→w〉(v) = t(v).

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t
with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and labelt(iw) = ti(w).

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}) is called
a Γ-context. Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a lexicographically
ordered enumeration of all leaves of t labeled �. Then we call t an n-Γ-context and define
♦i(t) = wi for i ∈ {1, . . . , n}. For an n-Γ-context t and contexts t1, . . . , tn ∈ TΓ� , we define
t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 . . . 〈tn → ♦n(t)〉 by substitution of t1, . . . , tn into the �-leaves of
t. A 1-Γ-context is also called a Γ-word. For a Γ-word s, we define s1 = s and sn+1 = s(sn)
for n ≥ 1.

STACS 2019

55:4 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum
⊕ and product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative
monoids, multiplication distributes over addition, and κ� 0 = 0� κ = 0 for every κ ∈ K. In
this paper, we only consider the max-plus semiring Rmax = (R∪{−∞},max,+,−∞, 0) where
the sum and the product operations are max and +, respectively, extended to R ∪ {−∞} in
the usual way.

A max-plus weighted bottom-up finite state tree automaton (short: max-plus-WTA) over
Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of states), Γ is a ranked alphabet (of
input symbols), µ :

⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q→ Rmax (the function of transition weights), and
ν : Q→ Rmax (the function of final weights). We define ∆A = dom(µ). A tuple (p̄, a, q) ∈ ∆A
is called a transition and (p̄, a, q) is called valid if µ(p̄, a, q) 6= −∞. A state q ∈ Q is called
final if ν(q) 6= −∞.

For a tree t ∈ TΓ, a mapping r : pos(t) → Q is called a quasi-run of A on t. For a
quasi-run r on t and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple t(t, r, w) =
(r(w1), . . . , r(wm), a, r(w)) is called the transition at w. The quasi-run r is called a (valid)
run if for every w ∈ pos(t) the transition t(t, r, w) is valid with respect to A. We call a
run r accepting if r(ε) is final. By RunA(t) and AccA(t) we denote the sets of all runs
and all accepting runs of A on t, respectively. Similar to trees, we define restrictions of
runs as follows. Let t ∈ TΓ, r ∈ RunA(t), and w ∈ pos(t). We define r�w ∈ RunA(t�w) by
r�w(v) = r(wv) for v ∈ pos(t�w).

For r ∈ RunA(t), the weight of r is defined by wtA(t, r) =
∑

w∈pos(t) µ(t(t, r, w)). The
behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by JAK(t) =
maxr∈AccA(t)(wtA(t, r) + ν(r(ε))), where the maximum over the empty set is −∞ by con-
vention.

For a max-plus-WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the
max-plus-WTA A′ = (Q,Γ�, µ′, ν) on t, where µ′(�, q) = 0 for all q ∈ Q and µ′(d) = µ(d) for
d ∈ ∆A. We denote Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r).
For a Γ-word s, we write p s|x−−→ q if there exists a run r ∈ Run�A(s) with r(♦1(s)) = p,
r(ε) = q, and wt�A(s, r) = x. In this case, r is said to realize p s|x−−→ q. Note that r ∈ Run�A(s)
implies x 6= −∞.

For a max-plus-WTA A, we define a relation ≤ on Q by q ≤ p iff p s|x−−→ q for some Γ-word
s ∈ TΓ� . We call A trim if for every p ∈ Q there exists t ∈ TΓ, r ∈ Acc(t), and w ∈ pos(t)
with r(w) = p. The trim part of A is the automaton obtained by removing all states p ∈ Q
for which no such t, r, and w exist. This process obviously has no influence on JAK.

A max-plus-WTA A is called deterministic or sequential if for every m ≥ 0, a ∈ Γ(m),
and p̄ ∈ Qm, there exists at most one q ∈ Q with µ(p̄, a, q) 6= −∞. We call A unambiguous
if |AccA(t)| ≤ 1 for every t ∈ TΓ. We call the behavior JAK of A finitely sequential if there
exist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxn

i=1JAiK, where the
maximum is taken pointwise.

3 Main Result

We will show that for an unambiguous max-plus-WTA A, it is decidable whether its behavior
JAK is finitely sequential. Moreover, if it is finitely sequential, we will obtain that the
deterministic max-plus-WTA A1, . . . ,An can be effectively constructed. For this, we follow
ideas from [3], where the decidability of the finite sequentiality problem was proved for
unambiguous max-plus word automata. The general outline of our proof is similar to that
of [3] and presents itself as follows. We introduce the tree fork property and show that it

E. Paul 55:5

is decidable whether an unambiguous max-plus-WTA A satisfies this property. Then we
show that the behavior of an unambiguous max-plus-WTA is finitely sequential if and only if
it does not satisfy the tree fork property. In conclusion, we obtain the decidability of the
finite sequentiality problem for unambiguous max-plus-WTA. Elementary proof methods
can be used to show that JAK is not finitely sequential if A satisfies the tree fork property.
On the other hand, if A does not satisfy the tree fork property, we show how to construct
finitely many unambiguous max-plus-WTA whose pointwise maximum is JAK, and which all
satisfy the twins property [24]. Every unambiguous max-plus-WTA which satisfies the twins
property possesses an effectively constructable deterministic equivalent [9]. Thus, we obtain
finitely many deterministic max-plus-WTA whose pointwise maximum is JAK, which is hence
finitely sequential.

In the following, we recall the twins property and introduce the tree fork property. Let Γ
be a ranked alphabet. We begin with the concepts of siblings and twins. Intuitively, two
states are called siblings if they can be “reached” by the same tree. Two siblings are called
twins if for every Γ-word which can “loop” in both states, the maximal weight for the loop is
the same in both states.

I Definition 1. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are called
siblings if there exists a tree u ∈ TΓ and runs rp, rq ∈ RunA(u) with rp(ε) = p and rq(ε) = q.
We recall that RunA(u) contains only valid runs.

Two siblings p, q are called twins if for every Γ-word s and weights

x = max
r∈Run�A(s)

r(ε)=r(♦1(s))=p

wt�A(s, r) y = max
r∈Run�A(s)

r(ε)=r(♦1(s))=q

wt�A(s, r),

we have x = y whenever x 6= −∞ and y 6= −∞ holds.

A max-plus-WTA is said to satisfy the twins property if all of its siblings are twins. For
unambiguous max-plus-WTA, the twins property is a criterion to decide the sequentiality
problem. An unambiguous max-plus-WTA possesses a deterministic equivalent if and only if
it satisfies the twins property. For words, this result is due to [24, Theorem 12], for trees, we
cite the following theorem.

I Theorem 2 ([9, Lemma 5.10], [26, Lemma 17]). Let A be a trim unambiguous max-plus-
WTA. There exists a deterministic max-plus-WTA A′ with JAK = JA′K if and only if A
satisfies the twins property. If it exists, it can be effectively constructed.

It is intuitive that the twins property is a necessary condition if we consider the following
Lipschitz property which every deterministic max-plus word automaton A satisfies [18, End
of Section 2.4][24, Section 3.2]. If A is deterministic and L is the largest weight, in terms of
absolute value, occurring in A (excluding −∞), then for two words w1 = uv1 and w2 = uv2
which have an accepting run in A, the difference between JAK(w1) and JAK(w2) can be at
most |L|(|v1| + |v2| + 2). This is clear since the unique runs of A on w1 and w2 will be
identical on the prefix u, and then with every remaining letter of each word the difference
between both runs cannot grow more than |L|.

If an unambiguous max-plus word automaton A does not satisfy the twins property, we can
find states p and q which are siblings and not twins. We assume that our witnesses for this are
u and s as above. We consider words of the form w1 = usNvp and w2 = usNvq, where vp and
vq are two fixed words which lead from p and q, respectively, to some final state. For every fixed
L, we can choose N sufficiently large to ensure that |JAK(w1)− JAK(w2)| > |L|(|vp|+ |vq|+ 2).
It is thus not possible to determinize A if it does not satisfy the twins property.

STACS 2019

55:6 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

The twins property is decidable for both max-plus word automata [1, 4, 24, 25, 16] and
max-plus tree automata [8, Section 3]. Deciding whether a max-plus word automaton satisfies
the twins property is PSPACE-complete [16]. For max-plus tree automata, the problem is
thus PSPACE-hard, but no upper complexity bound is stated in [8]. Note that in general,
it is undecidable whether two given siblings are twins [16], but for unambiguous max-plus
automata, it was shown to be decidable on both words [1, Section 4] and trees [8, Section 3].

There exist unambiguous max-plus automata which cannot be determinized, but whose
behavior is finitely sequential [18, Section 3.1], see also Figure 1. Thus, for the finite

p0 0 q0

00

a | 0

a | 0

a | 1

a | 1

Figure 1 A max-plus word automaton A over the alphabet {a} which is unambiguous, whose
behavior is finitely sequential, but which does not satisfy the twins property as p and q are siblings
but not twins. The behavior JAK of A assigns 0 to all words of odd length and |w| to all words w of
even length.

sequentiality problem we inevitably have to deal with unambiguous automata in which not
all siblings are twins. In the following, we will call two such states rivals. For unambiguous
automata, which are the only type of max-plus-WTA we consider in this paper, the following
definition is equivalent to being siblings and not twins.

I Definition 3. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are called
rivals if there exists a tree u ∈ TΓ, runs rp, rq ∈ RunA(u) with rp(ε) = p and rq(ε) = q, and
a Γ-word s such that p s|x−−→ p and q s|y−−→ q with x 6= y.

We do not have to consider a maximum over runs here since A is unambiguous. Also note
that by our definition of Run�A(s), we have x 6= −∞ and y 6= −∞ above.

We now come to the tree fork property which, as we will show, is satisfied by an
unambiguous max-plus-WTA if and only if its behavior is not finitely sequential. The
property consists of two separate conditions. The first condition intuitively states that
there exist two rivals p and q and a Γ-word t which can loop in p, and which can also lead
from p to q. The second condition states that there exist two rivals which can occur at
prefix-independent positions.

I Definition 4. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. We say that A satisfies the tree
fork property if at least one of the following two conditions is satisfied.
(i) There exist rivals p, q ∈ Q and a Γ-word t with p t|zp−−→ p and p t|zq−−→ q for some weights

zp, zq ∈ R. In this case, t is also called a p-q-fork.
(ii) There exist rivals p, q ∈ Q, a 2-Γ-context t ∈ TΓ� , and a run r ∈ Run�A(t) with

r(♦1(t)) = p and r(♦2(t)) = q.
The tree fork property can be regarded as an extension of the fork property which was
introduced in [3] and which for max-plus word automata plays the same role as the tree
fork property does for max-plus tree automata. Condition (i) is essentially a tree version
of the fork property. Casually put, if we take only condition (i) and replace “Γ-word” by
“word”, we obtain the fork property. The automaton depicted in Figure 2 is unambiguous
and satisfies the fork property. Condition (ii) is new and possesses no counterpart in the
fork property. We have the following theorem which relates the tree fork property to the
finite sequentiality problem.

E. Paul 55:7

p0 q 0
a | 0

b | 1, a | 0 b | −1

Figure 2 An unambiguous max-plus word automaton A over the alphabet {a, b} which satisfies
the fork property. With u = a and s = b, we see that p and q are rivals, and a is a p-q-fork. All
b’s after the last a in a word are treated differently from the b’s before the last a. A deterministic
automaton cannot “guess” which a is the last in the word, and since there may be arbitrarily many
a’s in a word, even finitely many deterministic automata cannot compensate this inability to guess.

I Theorem 5. Let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA over Γ. Then
there exist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxn

i=1JAiK if and
only if A does not satisfy the tree fork property. In particular, the finite sequentiality problem
is decidable for unambiguous max-plus-WTA.

Proof. Here, we only show that it is decidable whether A satisfies the tree fork property.
The rest of the proof is deferred to Sections 4 and 5, where we show that the behavior of A
is finitely sequential if and only if A does not satisfy the tree fork property.

To decide whether A satisfies condition (i), we first show that if there exists a p-q-fork t
for two rivals p and q, then there exists a p-q-fork t′ of height at most |Q|2. If t is a p-q-fork
with height(t) > |Q|2 and rp and rq are runs that realize p t|zp−−→ p and p t|zq−−→ q for some
weights zp, zq ∈ R, then by pigeon hole principle there are positions w1 <p w2 in s with
rp(w1) = rp(w2) and rq(w1) = rq(w2). Thus, by removing the part of t between w1 and w2,
we obtain that t′ = t〈t�w2 → w1〉 is a p-q-fork as well. Iterating this process, we obtain a
p-q-fork of height at most |Q|2.

Next, we identify all pairs of rivals, which is possible since for unambiguous max-plus
tree automata, we can decide for every pair of states whether they are siblings and not twins
[8, Section 3]. Then, for every pair of rivals p, q and all Γ-words t of height at most |Q|2, we
check whether t is a p-q-fork. If this yields no p-q-fork, A does not satisfy condition (i).

In order to decide whether A satisfies condition (ii), we first compute the relation ≤ on Q.
This is possible since Q is a finite set and ≤ is the smallest transitive and reflexive relation
satisfying µ(q1, . . . , qm, a, q0) 6= −∞ → q0 ≤ qi for all transitions (q1, . . . , qm, a, q0) ∈ ∆A
and i ∈ {1, . . . ,m}. Then, by the trimness of A, condition (ii) is satisfied if and only if there
exist two rivals p and q, a transition (q1, . . . , qm, a, q0) ∈ ∆A with µ(q1, . . . , qm, a, q0) 6= −∞,
and indices i, j ∈ {1, . . . ,m} with i 6= j, qi ≤ p, and qj ≤ q. J

The following two sections are dedicated to completing the proof of Theorem 5.

4 Necessity

In this section, we show that if an unambiguous max-plus-WTA A satisfies either condition (i)
or condition (ii) of the tree fork property, then its behavior JAK is not finitely sequential. For
condition (i), we adapt the corresponding proof from the word case [3, Theorem 2]. The proof
relies on the Lipschitz property of deterministic max-plus automata and its approach is similar
to the above outline that the twins property is a necessary condition for determinizability.
We omit the proof here as it is a straightforward generalization of the proof from [3].

I Theorem 6. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies con-
dition (i) of the tree fork property, then there do not exist deterministic max-plus-WTA
A1, . . . ,An over Γ with JAK = maxn

i=1JAiK.

STACS 2019

55:8 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

We consider condition (ii) of the tree fork property. On words, states cannot occur in
prefix-independent positions. Thus, this condition is new for the tree case. Intuitively, the
reason that the behavior of an unambiguous max-plus-WTA A cannot be finitely sequential
if it satisfies condition (ii) is as follows. Assume we have a 2-Γ-context t and two rivals p and
q as in condition (ii) and let u and s be as in the definition of rivals. Then we can construct
trees of the form t(sn(u), sn(u)) such that, by increasing n, the difference between the weights
on the two subtrees sn(u) is arbitrarily large. However, a deterministic automaton necessarily
assigns the same weight to both subtrees.

I Theorem 7. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies con-
dition (ii) of the tree fork property, then there do not exist deterministic max-plus-WTA
A1, . . . ,An over Γ with JAK = maxn

i=1JAiK.

Proof (Sketch). For contradiction, we assume that A satisfies condition (ii) of the tree
fork property and that there exist deterministic max-plus-WTA A1, . . . ,An over Γ with
JAK = maxn

i=1JAiK. We write Ai = (Qi,Γ, µi, νi) and let N = maxn
i=1 |Qi|. Let p, q, t be as

in condition (ii) of the tree fork property and for the rivals p and q, let u and s be as in the
definition of rivals.

By assumption, u can reach both p and q, and s can loop both in p and in q. In particular,
the tree sN (u) can reach p by looping s in p and q by looping s in q. Due to our assumption
on t, there hence exists a run on the tree t′ = t(sN (u), sN (u)) which loops s in p on the left
branch and in q on the right branch. Since A is trim, we may even assume that this run is
accepting, as on top of t we can always add a Γ-word which leads to a final state.

We assume that JAK(t′) = maxn
i=1JAiK(t′), so there must be some j with JAK(t′) =

JAjK(t′). As Aj is deterministic, the unique accepting run of Aj on t′ is identical on both
sN (u)-subtrees. Furthermore, since N ≥ |Qj |, we find that by pigeon hole principle some
sub-Γ-word sm of sN loops in a state of Aj in the subtrees sN (u), say with weight z.

We let x and y be the weights such that A loops sm in p with weight x and in q with
weight y. By choice of s, we have x 6= y. We may assume that x < y. We consider two cases.
First, if z ≥ x+y

2 , then for the tree t+ = t(sN+m(u), sN (u)) we obtain

nmax
i=1

JAiK(t+) ≥ JAjK(t+) = JAjK(t′) + z ≥ JAjK(t′) + x+ y

2 > JAjK(t′) + x = JAK(t+).

Note that this follows because A and Aj are both unambiguous, i.e., if we construct an
accepting run on a given tree, we know that the weight of this run must be the weight
assigned to the tree by the automaton. For the other case, namely that z ≤ x+y

2 , we see that
for the tree t− = t(sN (u), sN−m(u)) we obtain

nmax
i=1

JAiK(t−) ≥ JAjK(t−) = JAjK(t′)− z ≥ JAjK(t′)−
x+ y

2 > JAjK(t′)− y = JAK(t−).

In both cases, we see that JAK = maxn
i=1JAiK does not hold, which is a contradiction. J

Together, Theorems 6 and 7 show that if a trim unambiguous max-plus-WTA satisfies
the tree fork property, then its behavior is not finitely sequential.

5 Sufficiency

In this section, we show that the behavior of an unambiguous max-plus-WTA A which
does not satisfy the tree fork property is finitely sequential. For simplicity, we begin with a
description of our method of proof on max-plus word automata and compare it to the proof
method of Bala and Koniński [3].

E. Paul 55:9

Both proofs work by distributing the runs of A across a finite set of unambiguous max-plus
word automata such that all of these automata satisfy the twins property. This distribution
essentially has the aim of separating the rivals of A. By Theorem 2, these unambiguous
automata can then be determinized. The major difference between our approach and that of
[3] lies in way we obtain these unambiguous automata. To understand our approach, let p
and q be two rivals of A. Furthermore, let u = u1 · · ·un be a word for which there exist valid
runs rp = p0 u1−→ p1 u2−→ . . . un−1−−−→ pn−1 un−−→ p and rq = q0 u1−→ q1 u2−→ . . . un−1−−−→ qn−1 un−−→ q of
A on u.

We now show that the first occurrence of either p or q in the runs rp and rq serves as a
“distinguisher” between the two runs. We let i be the smallest index with the property that
pi ∈ {p, q}. Similarly, we let j be the smallest index with the property that qj ∈ {p, q}. We
obtain valid runs pi

ui+1···un−−−−−−→ p and qj
uj+1···un−−−−−−→ q.

Now assume it would hold that i = j and pi = qj , i.e., the first occurrence is at the same
position in the word, and also the state at this position is the same in both runs. Then with
t = ui+1 · · ·un, we see that we have valid runs pi t−→ p and pi t−→ q, where pi ∈ {p, q}. Thus,
A would satisfy the fork property. Since our assumption is that A does not satisfy the fork
property, we have either i 6= j or pi 6= qj .

This fundamental property is also used in the corresponding proof of [3], but our way
of exploiting it differs from [3]. In their proof for word automata, Bala and Koniński use
this property implicitly to show that certain states of a modified Schützenberger covering
of A occur at most once in every run [3, Lemma 6]. They can therefore construct a new
max-plus automaton which for each run keeps a record of all occurrences of these states.
The above mentioned unambiguous automata are then obtained by separating runs with
differing records into different automata. For tree automata, the number of these occurrences
is unfortunately not bounded, for reasons which we will also indicate below.

For now, we continue outlining our new approach, which is to construct an automaton
which adds a distinguishing marker to every run when first encountering one of the rivals p
or q. This marker consists of a number, which is used to distinguish occurrences at different
positions, and the state from {p, q} which was visited first. Whenever reading a letter which
causes some valid run to visit p or q for the first time, the automaton selects the smallest
marker which was not used by any valid run on the prefix read so far, and annotates it to
the run. For example, assume that neither p nor q occur in any valid run the word u, but
that our run r on ua leads to p. Then r obtains the marker 1p. Now assume there is a valid
run on uaa which leads to p and which visited neither p nor q before that. Then this run
obtains the marker 2p, since 1p is already assigned to r. Next, assume that after reading
uaaa another marker for p has to be assigned, and that r cannot be extended to a valid
run on uaa. Then we assign the marker 1p, as now no valid run on uaa exists to which the
marker 1p is assigned. See Figure 3 for an example of this annotation process on the word
aaa for the automaton depicted there.

With this procedure, runs like rp and rq above receive different markers since either one
run obtains a marker later than the other, and therefore a different marker, or at least the
states they visit first are different, which also leads to a different marker. To separate the
rivals of A, we can thus make a copy of A for every marker, and only allow runs which carry
the respective automaton’s marker. Whenever a different marker would be assigned, the
execution of the run is blocked.

Note here that the number of markers we need for this annotation process is bounded.
Since the automaton A is unambiguous, the number of valid runs on every given word is
bounded by the number of states in A. If this were not the case, there would exist two distinct

STACS 2019

55:10 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

q0

00

p

00

q 0

00

a | 0

a | 0

a | 0

b | 1 b | −1
q0 q0 q0 q0

p, 1p p, 2p p, 3p p, 1p

q, 1q q, 1p q, 2p q, 3p

a a a

Figure 3 On the left, an unambiguous max-plus word automaton over the alphabet {a, b} which
does not satisfy the twins property but whose behavior is finitely sequential. On the right, an
illustration of the runs of the automaton on the words ε, a, aa, and aaa together with appropriate
markers. Arrows indicate a transition. The states p and q are rivals with witnesses u = ε and s = b.

valid runs on the same word which lead to the same state, from which a counterexample to
the unambiguity of A could be constructed. In particular, the number of markers assigned
at any given “time” is bounded by the number of states of A.

All of this can easily be generalized to the situation where there is more than one pair of
rivals. Then, runs simply obtain a marker for each pair of rivals of the automaton, and the
copies of A allow a distinguished marker for each of these pairs.

Unfortunately, these ideas do not translate to trees as easily. For example, consider the
runs in Figure 4. Intuitively, both runs should obtain the marker 1p. However, since p and q
are rivals, this marker does not serve the purpose of distinguishing runs as it does in the word
case. The first p occurs in different subtrees of both runs, thus the annotation of distinct
markers is not possible. Also, it is easy to construct an automaton where a rival p can
occur at arbitrarily many pairwise prefix-independent positions, thus a simple lexicographic
distinction is not possible. This is also the reason why the approach from [3] does not work
for tree automata.

ν(q) = 0
µ(p, a, q) = 0

µ(p, b, p) = 1
µ(q, b, q) = −1

µ(p, q0, c, p) = µ(q0, p, c, q) = 0
µ(d, p) = µ(d, q0) = 0

a

b

c

d d

b

b

c

d d

q

p

p

p q0

q

q

q

q0 p

Figure 4 Two accepting runs of the max-plus tree automaton A = ({q0, p, q},Γ, µ, ν) over the
ranked alphabet Γ = {a, b, c, d} where c ∈ Γ(2), a, b ∈ Γ(1), d ∈ Γ(0). All unspecified weights are
assumed to be −∞. The states p and q are rivals.

Our solution is to distribute not the runs of the automaton A, but the runs of its
Schützenberger covering. The Schützenberger covering of a max-plus automaton A is a
max-plus automaton which possesses the same behavior as A. It has already been employed
in a number of decidability results for max-plus automata [18, 3, 2, 26]. Its construction is
inspired by a paper of Schützenberger [32] and was made explicit by Sakarovitch in [29].

To better explain the idea behind its construction, we first point out a certain aspect
of the classical powerset construction for finite automata [28]. Assume that D is the result
of applying the powerset construction to an NFA B. Then we might say that for a word

E. Paul 55:11

w = w1w2, the state which D is in after reading the prefix w1 is the set of all states which B
could be in after reading w1. Similarly, the Schützenberger covering of a max-plus automaton
A annotates to every state of a run of A on a word w the set of all states which “A could be
in” at this point, i.e., which can be reached by some valid run on the considered prefix of w.
Like the powerset construction, these ideas easily carry over to trees.

The reason we consider the Schützenberger covering of A is that each pair p,q of its rivals
satisfies the following property. For every tree t, either (1) p and q do not occur together
in any run on t or (2) p and q occur only linearly, i.e., there is a distinguished branch of t
such that for every run on t, all occurrences of p and q lie on this branch. In particular, the
situation of Figure 4 is not possible. All pairs which satisfy the first condition can simply
be separated into different automata, all pairs which satisfy the second condition can be
handled like in the word case. The proof of this is non-trivial and needs some preparation.
We begin with the formal definition of the Schützenberger covering.

For the rest of this section, let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA
which does not satisfy the tree fork property.

I Definition 8 (Schützenberger covering, [29]). The Schützenberger covering S = (QS ,Γ, µS ,
νS) of A is the trim part of the max-plus-WTA (Q× P(Q),Γ, µ′, ν′) defined for a ∈ Γ with
rkΓ(a) = m and (p0, P0), . . . , (pm, Pm) ∈ Q× P(Q) by

µ′((p1, P1), . . . , (pm, Pm), a, (p0, P0)) =
µ(p1, . . . , pm, a, p0) if P0 = {q0 ∈ Q | ∃(q1, . . . , qm) ∈ P1 × . . .× Pm with

µ(q1, . . . , qm, a, q0) 6= −∞}
−∞ otherwise

ν′(p0, P0) = ν(p0).

We let π1 : Q × P(Q) → Q, (p, P) 7→ p and π2 : Q × P(Q) → P(Q), (p, P) 7→ P be the
projections.

It is elementary to show that for a run of S on a tree t, the second entry of the state at
a position w consists of all states of A which can be reached by a valid run of A on t�w.
In particular, two runs on the same tree coincide on their second entries. Furthermore,
projecting all states of a run of S to their first coordinate yields a run of A, and the weights
of these runs coincide. It follows that S is unambiguous and satisfies JSK = JAK. Also, S is
trim by definition.

We can make the following observation about the rivals of S. Let p and q be rivals of
S and let u and s be as in the definition of rivals. Since all runs of S on u coincide on the
second entry of the state at the root, p and q also coincide on their second entry. Moreover,
as projecting the runs of S on u and s to their first entries yields runs of A on u and s,
respectively, we additionally see that the first entries of p and q are rivals in A. Thus, if two
states p,q ∈ QS are rivals in S, then p = (p, P) and q = (q, P) for some set P ⊆ Q and two
states p, q ∈ Q which are rivals in A.

In order to prove some deeper results about the rivals of S, we need two preparatory
lemmata. As a first simplification, we show that we may assume that two rivals p and q of A
are always comparable with respect to the relation ≤. To see this, note that by condition (ii)
of the tree fork property, p and q may not occur in prefix-independent positions in a run. If
in addition, p and q can also not appear in prefix-dependent positions in a run, they never
appear in the same run of A. Thus, we can create two copies of A, one in which we remove
p and one in which we remove q, and the pointwise maximum of these two automata will be
equivalent to the behavior of A.

STACS 2019

55:12 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

I Lemma 9. For all rivals p, q ∈ Q, we may assume that either p ≤ q or q ≤ p, or both.

Next, we note an elementary statement about self-maps f : X → X. Namely, if X is a
finite set and f : X → X a mapping, then for every a ∈ X there exists some element b ∈ X
and an integer n ≥ 1 such that after n iterations of f , both a and b are mapped to b. To
see this, consider the elements a, f(a), f2(a), . . . , f |X|(a). By pigeon hole principle, there
are numbers 0 ≤ m1 < m2 ≤ |X| with fm1(a) = fm2(a). Then if we choose n ≥ m1 as a
multiple of m2 −m1 and b = fn(a), we see that fn(a) = b = fn(b).

I Lemma 10. Let X be a finite set and f : X → X a mapping. Then for every a ∈ X, there
exists an element b ∈ X and an integer n ≥ 1 with fn(a) = b = fn(b). Here, fn is the n-th
iterate of f , i.e., f0 = idX and fm+1 = f ◦ fm.

We come to the first important property which all rivals of S satisfy. Namely, if P ⊆ Q is
the second entry of some rival, then it cannot occur in the form of a “triangle” in any valid
run of S. More precisely, if we have a run r and positions w, wv1, and wv2 such that the
second entry of r(w), r(wv1), and r(wv2) is P , then wv1 and wv2 are prefix-dependent.

I Lemma 11. Let (p, P), (q, P) ∈ QS be rivals in S. Furthermore, let t′ ∈ TΓ be a tree,
r′ ∈ RunS(t′) a run of S on t′, and w1, w2 ∈ pos(t′) be positions in t′. If π2 ◦ r′(ε) =
π2 ◦ r′(w1) = π2 ◦ r′(w2) = P , then w1 and w2 are prefix-dependent.

Proof (Sketch). We proceed by contradiction and assume that t′, r′, w1, w2 as in the state-
ment of the lemma exist such that w1 and w2 are prefix-independent. We show that then, A
satisfies condition (i) of the tree fork property. For the rivals (p, P) and (q, P), let u and s
be as in the definition of rivals and let v = ♦1(s).

By assumption, u can reach (p, P) and s can loop in (p, P), thus the trees s|P |(u) and
s|P |

|P |(u) can reach (p, P). Due to the construction of S, this means both of these trees can
also reach the states of r′ at w1 and w2. In particular, there exists a run of S on the tree
t = t′〈s|P |(u) → w1〉〈s|P |

|P |(u) → w2〉 and for this run, the second entry of every state at
the beginning or end of an s-loop is P . In addition, t leads to a state with second entry P ,
so there in fact exist |P | runs of S on t, one for each state in P . We let r1, . . . , r|P | be the
projections of these runs to their first entry and obtain |P | runs of A on t where the state at
the root and all states at the beginning or end of an s-loop are from P .

By pigeonhole principle, there is some subloop sn below w2 which loops in all runs at the
same time, i.e., where for some n1 we have ri(w2v

n1) = ri(w2v
n1+n) for all runs ri. For each

ri, we let qi = ri(w2v
n1) ∈ P be the state which ri loops in and let xi be the weight of this

loop.
If xi 6= xj for some i and j, the states qi and qj are rivals in A with witnesses u and sn.

By Lemma 9, we may therefore assume qi ≤ qj . Again by pigeon hole principle, the run
ri loops below w1 in sm for some m ≥ 1 with some state pi ∈ P , say with weight yi. Due
to xi 6= xj , we have mxi 6= nyi or mxj 6= nyi. Since u can reach every state from P , the
state pi is thus a rival of qi or qj with witnesses u and snm. From the existence of ri and
the assumption that qi ≤ qj , we see that pi can occur prefix-independently both from qi

and from qj . This is a contradiction to the assumption that A does not satisfy the tree fork
property. It must therefore hold that x1 = . . . = x|P |.

We let x and y be the weights such that A loops s in p with weight x and in q with
weight y. Then from x 6= y it follows that nx 6= x1 or ny 6= x1, so the states qi are either
all rivals of p or all rivals of q with witnesses u and sn. We assume all qi to be rivals of p
and apply Lemma 10 to the mapping f : P → {q1, . . . , q|P |}, ri(ε) 7→ qi with a = p to obtain
qj ∈ P and m ≥ 1 such that fm(p) = qj = fm(qj). Then with s̃ = t〈� → w2v

n1〉, we see
that the Γ-word s̃m is a qj-p-fork, i.e., A satisfies condition (i) of the tree fork property. J

E. Paul 55:13

The previous lemma showed that if P is the second entry of some rival from S, states
with second entry P do not occur in the form of a triangle. The next lemma shows that even
prefix-independent occurrences are restricted to a certain degree. Namely, if we have two
rivals (p, P) and (q, P) with p ≤ q, then all occurrences of P are prefix-dependent on (p, P).

I Lemma 12. Let (p, P), (q, P) ∈ QS be rivals in S with p ≤ q. Furthermore, let t′ ∈ TΓ be
a tree, r′ ∈ RunS(t′) a run of S on t′, and w1 ∈ pos(t′) a position in t′ with r′(w1) = (p, P).
Then all positions w2 ∈ pos(t′) with π2 ◦ r′(w2) = P are prefix-dependent on w1.

Proof (Sketch). We proceed by contradiction and take (p, P), (q, P), t′, r′, w1 as in the
statement of the lemma and assume that there exists a position w2 ∈ pos(t′) which is
prefix-independent from w1 and for which π2 ◦ r′(w2) = P . We show that under these
assumptions, A satisfies condition (ii) of the tree fork property. For the rivals (p, P) and
(q, P), let u and s be as in the definition of rivals.

As we have seen in the proof of Lemma 11, the tree s|P |(u) can reach (p, P), so due to
the construction of S, it can also reach the state of r′ at w2. Thus, there exists a run of S
on the tree t = t′〈s|P |(u)→ w2〉 for which the state at w1 is (p, P) and for which the second
entry of every state at the beginning or end of an s-loop is P . We let r be the projection of
this run to the first entries of the states.

By pigeonhole principle, we find some subloop sn below w2 in r which loops in a state
p′ ∈ P . Let z be the weight of this loop and let x and y be the weights such that A loops
s in p with weight x and in q with weight y. Due to x 6= y, we have nx 6= z or ny 6= z.
Since u can reach every state from P , the state p′ is a rival of p or q with witnesses u and
sn. From the fact that r(w1) = p and the assumption that p ≤ q, we see that p′ can occur
prefix-independently both from p and from q. This is a contradiction to the assumption that
A does not satisfy the tree fork property. J

We can now prove that every run of S satisfies at least one of the following two conditions.
If (p, P) and (q, P) are rivals with p ≤ q, then for every run r on a tree t either (i) (p, P)
does not occur in r or (ii) all states with second entry P occur along a distinguished branch
of t. This property enables us to apply the idea from the word case of using markers to
indicate the first visit of a rival in a run. If u is a witness for (p, P) and (q, P) to be siblings,
there is in particular a run on u which leads to (p, P). This run then satisfies condition (ii)
and since the second entries of runs on the same tree coincide, all states with second entry
P occur along a distinguished branch of u in every run of S on u. This is true in particular
for the two rivals (p, P) and (q, P).

I Theorem 13. Let (p, P), (q, P) ∈ QS be rivals in S with p ≤ q. Then for every tree t ∈ TΓ
and every run r ∈ RunS(t) of S on t, at least one of the following two conditions holds.
(i) The state (p, P) does not occur in r, i.e., r(w) 6= (p, P) for all w ∈ pos(t).
(ii) All states with second entry P occur linearly in r, i.e., for all w1, w2 ∈ pos(t) with

π2 ◦ r(w1) = π2 ◦ r(w2) = P we have w1 ≤p w2 or w2 ≤p w1.

Proof. Let (p, P), (q, P), t, r be as in the statement of the theorem. Assume that (i) does
not hold, i.e., there is a position w ∈ pos(t) with r(w) = (p, P). Let w1, w2 ∈ pos(t) be two
positions with π2 ◦ r(w1) = π2 ◦ r(w2) = P . By Lemma 12, we see that then w1 and w2
are prefix-dependent on w. From the definition of the prefix relation, we see that if either
w1 ≤p w or w2 ≤p w, then all three positions are in prefix relation. We thus consider the
case that w ≤p w1 and w ≤p w2. In this case, we see from Lemma 11 that w1 and w2 are
prefix-dependent. J

STACS 2019

55:14 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

We now construct the automaton which tracks the first occurrences of rivals, and whose
runs we distribute across multiple automata in order to separate all rivals.

I Construction 14. Let R1, . . . , Rn ⊆ QS be an enumeration of all (unordered) pairs of rivals
of S, i.e., for all i ∈ {1, . . . , n} we have Ri = {(pi, Pi), (qi, Pi)} such that (pi, Pi) and (qi, Pi)
are rivals in S and for every two rivals (p, P), (q, P) ∈ QS , we have Ri = {(p, P), (q, P)} for
some i ∈ {1, . . . , n}. Since by Lemma 9, we may assume that all rivals in A are in ≤-relation,
we assume in the following that pi and qi are named such that pi ≤ qi for all i ∈ {1, . . . , n}.

For each pair of rivals Ri, we define a set of markers by Ii = {0, |Q|+1}∪({1, . . . , |Q|}×Ri).
The set of all combined records of markers is defined by I = I1 × . . . × In. For ā ∈ I, we
denote by ā[i] the i-th entry of ā.

Intuitively, the states of our new automaton will consist of a state from S together
with a record of markers from I. However, in order to properly update markers, we need
to know in each step the records of all other runs as well. Thus, our states will be from
QS × I × P(QS × I). In order to define the transition function of our new automaton, we
first define how markers are updated. Assume we transition into the state q ∈ QS , we have
m subtrees below our current position in the tree, the runs we consider on these subtrees
have obtained markers ā1, . . . , ām ∈ I, and the sets of states we could be in on these trees,
together with their markers, are given by A1, . . . , Am ⊆ QS × I.

Every pair (p, ā) ∈ Ak corresponds to exactly one run of S on the k-th subtree together
with its markers. Since S is unambiguous, we can therefore assume that |Ak| ≤ |Q|. Also,
since āk is the marker of a run on the k-th subtree, we may assume that (QS×{āk})∩Ak 6= ∅.

For k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, we define the sets of unassigned counters Bk[i] ⊆
{1, . . . , |Q|} by Bk[i] = {1, . . . , |Q|} \ {j | ∃(p, ā) ∈ Ak with ā[i] ∈ {j} × Ri}. Then if for
all k ∈ {1, . . . ,m} we have |Ak| ≤ |Q| and (QS × {āk}) ∩ Ak 6= ∅, we define the record of
markers b̄ for our current position by (explanations below)

b̄[i] =

0 if m = 0 and q /∈ Ri

(1,q) if m = 0 and q ∈ Ri

āk[i] if k ∈ {1, . . . ,m} satisfies: āl[i] = 0 for all l 6= k and
either āk[i] 6= 0 or q /∈ Ri

(minBk[i],q) if q ∈ Ri and k ∈ {1, . . . ,m} satisfies:
āk[i] = 0 and for all l 6= k and all (p, ā) ∈ Al : ā[i] = 0

|Q|+ 1 otherwise

for i ∈ {1, . . . , n}. If |Ak| > |Q| or QS × {āk} ∩ Ak = ∅ for some k, we let b̄[1] = . . . =
b̄[n] = |Q| + 1. Note that minBk[i] in above case distinction always exists since |Ak| ≤
|Q|, (QS × {āk}) ∩ Ak 6= ∅, and in the case in question we have āk[i] = 0. We define
I(q, ā1, . . . , ām, A1, . . . , Am) = b̄.

Case 1 of the definition above means our current position is a leaf and q is not from Ri,
so we assign the dummy marker 0. Case 2 means our current position is a leaf and q is from
Ri, so we assign the marker (1,q). Case 3 means that either (1) there is exactly one subtree
below our current position which already obtained a marker different from 0 and we keep
this marker for our current position, or (2) the markers of all subtrees are 0 and q is also not
from Ri, so we continue with the dummy marker 0.

Case 4 means the markers of all subtrees below our current position are 0, the state q is
from Ri, and there is at most one subtree on which runs exist that obtained a marker for Ri.
Then, we take the smallest number which is not already used in a marker for Ri in any run
on this subtree, and use this number together with q as the marker for our current position.

E. Paul 55:15

Case 5, the “otherwise-case”, applies in two situations. This case means that either (1)
two distinct subtrees below our current position have already obtained a marker, or that (2)
all markers below our current position are 0 and q is from Ri, but we cannot apply case 4
as there are two distinct subtrees on which runs exist which obtained markers for Ri. In
other words, markers were assigned nonlinearly, and our run satisfies only condition (i) of
Theorem 13. In this case, we assign the dummy marker |Q|+ 1.

The extra case covers the situation where in case 4, the set Bk[i] would be empty. This
case is necessary to ensure our definition is formally complete, but in our applications of the
operator I it will not actually occur.

We define our “run-marking” max-plus-WTA B = (Q̃,Γ, µ̃, ν̃) as follows. We let Q̃′ =
QS × I ×P(QS × I) and let B be the trim part of the automaton B′ = (Q̃′,Γ, µ̃′, ν̃′) defined
for a ∈ Γ with rkΓ(a) = m and (p0, ā0, A0), . . . , (pm, ām, Am) ∈ QS × I × P(QS × I) by

µ̃′((p1, ā1, A1), . . . , (pm, ām, Am), a, (p0, ā0, A0)) =

µS(p1, . . . ,pm, a,p0) if ā0 = I(p0, ā1, . . . , ām, A1, . . . , Am) and
A0 = {(q0, b̄0) ∈ QS × I | ∃((q1, b̄1), . . . , (qm, b̄m)) ∈
A1 × . . .×Am with µS(q1, . . . ,qm, a,q0) 6= −∞ and
b̄0 = I(q0, b̄1, . . . , b̄m, A1, . . . , Am)}

−∞ otherwise

ν̃′(p0, ā0, A0) = νS(p0).

The automaton B is trim, unambiguous, and satisfies JBK = JAK. Furthermore, if (p, ā, A)
and (q, b̄, B) are rivals in B, we have ā[i] 6= b̄[i] for some i ∈ {1, . . . , n}.

We come to our final construction where we distribute the runs of B across multiple
automata. For every record of markers c̄ ∈ I, we construct one automaton Bc̄ which for
each pair of rivals Ri admits only runs using the markers 0 and c̄[i]. All runs in which rivals
occur nonlinearly are covered by admitting the marker |Q|+ 1. All other runs are covered by
admitting an appropriate marker from {1, . . . , |Q|} ×Ri.

I Construction 15. For every tuple c̄ ∈ I, we define a max-plus-WTA Bc̄ = (Q̃c̄,Γ, µ̃, ν̃) by
removing states from B through

Q̃c̄ = {(p, ā, A) ∈ Q̃ | for all i ∈ {1, . . . , n} it holds: if c̄[i] = |Q|+ 1 then p 6= (pi, Pi),
and if c̄[i] 6= |Q|+ 1 then ā[i] ∈ {0, c̄[i]}}.

The automata Bc̄ are unambiguous, their pointwise maximum is equivalent to the behavior
of A, and they all satisfy the twins property, which means that they can be determinized.

I Theorem 16. We have JAK = maxc̄∈IJBc̄K and for every c̄ ∈ I, the automaton Bc̄ is
unambiguous and satisfies the twins property.

We now obtain a finitely sequential representation of A by applying Theorem 2 to the
automata Bc̄. In particular, we see that the behavior of a trim unambiguous max-plus-WTA
is finitely sequential if it does not satisfy the tree fork property. This concludes the proof of
Theorem 5. J

STACS 2019

55:16 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

References
1 Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the Twins Property.

Journal of Automata, Languages and Combinatorics, 8(2):117–144, 2003.
2 Sebastian Bala. Which Finitely Ambiguous Automata Recognize Finitely Sequential Func-

tions? In Krishnendu Chatterjee and Jiří Sgall, editors, 38th International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 8087 of Lecture Notes in
Computer Science, pages 86–97. Springer, 2013.

3 Sebastian Bala and Artur Koniński. Unambiguous Automata Denoting Finitely Sequential
Functions. In Adrian-Horia Dediu, Carlos Martín-Vide, and Bianca Truthe, editors, 7th
International Conference on Language and Automata Theory and Applications (LATA), volume
7810 of Lecture Notes in Computer Science, pages 104–115. Springer, 2013.

4 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theoretical
Computer Science, 292(1):45–63, 2003.

5 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. Springer,
1988.

6 Johanna Björklund, Frank Drewes, and Niklas Zechner. An Efficient Best-Trees Algorithm for
Weighted Tree Automata over the Tropical Semiring. In Adrian-Horia Dediu, Enrico Formenti,
Carlos Martín-Vide, and Bianca Truthe, editors, 9th International Conference on Language
and Automata Theory and Applications (LATA), volume 8977 of Lecture Notes in Computer
Science, pages 97–108. Springer, 2015.

7 Meera Blattner and Tom Head. Automata That Recognize Intersections of Free Submonoids.
Information and Control, 35(3):173–176, 1977.

8 Matthias Büchse and Anja Fischer. Deciding the Twins Property for Weighted Tree Automata
over Extremal Semifields. In Frank Drewes and Marco Kuhlmann, editors, Proceedings of
the Workshop on Applications of Tree Automata Techniques in Natural Language Processing
(ATANLP), pages 11–20. Association for Computational Linguistics, 2012.

9 Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization of Weighted Tree Auto-
mata Using Factorizations. Journal of Automata, Languages and Combinatorics, 15(3/4):229–
254, 2010.

10 Laure Daviaud, Pierre Guillon, and Glenn Merlet. Comparison of Max-Plus Automata and
Joint Spectral Radius of Tropical Matrices. In Kim G. Larsen, Hans L. Bodlaender, and
Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations
of Computer Science (MFCS), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

11 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, 2009.

12 Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François Raskin.
On delay and regret determinization of max-plus automata. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE Computer Society, 2017.

13 Kōsaburō Hashiguchi. Algorithms for Determining Relative Star Height and Star Height.
Information and Computation, 78(2):124–169, 1988.

14 Kōsaburō Hashiguchi, Kenichi Ishiguro, and Shūji Jimbo. Decidability of The Equivalence
Problem for Finitely Ambiguous Finance Automata. International Journal of Algebra and
Computation, 12(3):445–461, 2002.

15 Daniel Kirsten. A Burnside Approach to the Termination of Mohri’s Algorithm for Polynomially
Ambiguous Min-Plus-Automata. Informatique Théorique et Applications, 42(3):553–581, 2008.

16 Daniel Kirsten. Decidability, undecidability, and PSPACE-completeness of the twins property
in the tropical semiring. Theoretical Computer Science, 420:56–63, 2012.

E. Paul 55:17

17 Daniel Kirsten and Sylvain Lombardy. Deciding Unambiguity and Sequentiality of Polynomially
Ambiguous Min-Plus Automata. In Susanne Albers and Jean-Yves Marion, editors, 26th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 3 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 589–600. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2009.

18 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004.

19 Jan Komenda, Sébastien Lahaye, Jean-Louis Boimond, and Ton van den Boom. Max-plus
algebra in the history of discrete event systems. Annual Reviews in Control, 45:240–249, 2018.

20 Adam Koprowski and Johannes Waldmann. Max/Plus Tree Automata for Termination of
Term Rewriting. Acta Cybernetica, 19(2):357–392, 2009.

21 Daniel Krob. The Equality Problem for Rational Series with Multiplicities in the tropical
Semiring is Undecidable. International Journal of Algebra and Computation, 4(3):405–426,
1994.

22 Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer, 1986.
23 Filip Mazowiecki and Cristian Riveros. Pumping Lemmas for Weighted Automata. In Rolf

Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer
Science (STACS), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 50:1–50:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

24 Mehryar Mohri. Finite-State Transducers in Language and Speech Processing. Computational
Linguistics, 23(2):269–311, 1997.

25 Mehryar Mohri. Weighted automata algorithms. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Automata, EATCS Monographs in Theoretical
Computer Science, chapter 6, pages 213–254. Springer, 2009.

26 Erik Paul. The Equivalence, Unambiguity and Sequentiality Problems of Finitely Ambiguous
Max-Plus Tree Automata are Decidable. In Kim G. Larsen, Hans L. Bodlaender, and Jean-
François Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 53:1–53:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

27 Slav Petrov. Latent Variable Grammars for Natural Language Parsing. In Coarse-to-Fine
Natural Language Processing, chapter 2, pages 7–46. Springer, 2012.

28 Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

29 Jacques Sakarovitch. A Construction on Finite Automata that has Remained Hidden. Theor-
etical Computer Science, 204(1-2):205–231, 1998.

30 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer, 1978.

31 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4(2–3):245–270, 1961.

32 Marcel-Paul Schützenberger. Sur les Relations Rationnelles Entre Monoïdes Libres. Theoretical
Computer Science, 3(2):243–259, 1976.

33 Helmut Seidl. On the Finite Degree of Ambiguity of Finite Tree Automata. Acta Informatica,
26(6):527–542, 1989.

34 Imre Simon. Limited Subsets of a Free Monoid. In 19th Annual Symposium on Foundations
of Computer Science (FOCS), pages 143–150. IEEE Computer Society, 1978.

35 Imre Simon. Recognizable Sets with Multiplicities in the Tropical Semiring. In Michal Chytil,
Ladislav Janiga, and Václav Koubek, editors, Mathematical Foundations of Computer Science
(MFCS), volume 324 of Lecture Notes in Computer Science, pages 107–120. Springer, 1988.

36 Johannes Waldmann. Weighted Automata for Proving Termination of String Rewriting.
Journal of Automata, Languages and Combinatorics, 12(4):545–570, 2007.

37 Andreas Weber and Helmut Seidl. On the Degree of Ambiguity of Finite Automata. Theoretical
Computer Science, 88(2):325–349, 1991.

STACS 2019

	Introduction
	Preliminaries
	Main Result
	Necessity
	Sufficiency

