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Abstract
In the classic polyline simplification problem we want to replace a given polygonal curve P , consisting
of n vertices, by a subsequence P ′ of k vertices from P such that the polygonal curves P and P ′

are “close”. Closeness is usually measured using the Hausdorff or Fréchet distance. These distance
measures can be applied globally, i.e., to the whole curves P and P ′, or locally, i.e., to each simplified
subcurve and the line segment that it was replaced with separately (and then taking the maximum).
We provide an O(n3) time algorithm for simplification under Global-Fréchet distance, improving the
previous best algorithm by a factor of Ω(kn2). We also provide evidence that in high dimensions cubic
time is essentially optimal for all three problems (Local-Hausdorff, Local-Fréchet, and Global-Fréchet).
Specifically, improving the cubic time to O(n3−εpoly(d)) for polyline simplification over (Rd, Lp) for
p = 1 would violate plausible conjectures. We obtain similar results for all p ∈ [1,∞), p 6= 2. In total,
in high dimensions and over general Lp-norms we resolve the complexity of polyline simplification
with respect to Local-Hausdorff, Local-Fréchet, and Global-Fréchet, by providing new algorithms
and conditional lower bounds.
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1 Introduction

We revisit the classic problem of polygonal line simplification, which is fundamental to
computational geometry. The most frequently implemented algorithms for curve simplification
go back to the 70s (Douglas and Peucker [11]) and 80s (Imai and Iri [18]). A polyline is given
by a sequence P = 〈v0, v1, . . . , vn〉 of points vi ∈ Rd, and represents the continuous curve
walking along the line segments vivi+1 in order. Given such a polyline P and a number
δ > 0, we want to compute P ′ = 〈vi0 , . . . , vik−1〉, with 0 = i0 < . . . < ik−1 = n, of minimal
length k such that P and P ′ have “distance” at most δ.

Several distance measures have been used for the curve simplification problem. The most
generic distance measure on point sets A,B is the Hausdorff distance. However, the most
popular distance measure for curves in computational geometry is the Fréchet distance δF .
In comparison to Hausdorff distance, it takes the ordering of the vertices along the curves
into account, and thus better captures an intuitive notion of distance among curves.

For both of these distance measures δ∗ ∈ {δH , δF }, we can apply them locally or globally
to measure the distance between the original curve P and its simplification P ′. In the global
variant, we consider the distance δ∗(P, P ′), i.e., we use the Hausdorff or Fréchet distance of
P and P ′. In the local variant, we consider the distance max1≤`<k δ∗(P [i`−1 . . . i`], vi`−1vi`),

© Karl Bringmann and Bhaskar Ray Chaudhury;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbringma@mpi-inf.mpg.de
mailto:braycha@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.18
https://arxiv.org/abs/1810.00621
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Polyline Simplification has Cubic Complexity

i.e., for each simplified subcurve P [i`−1 . . . i`] of P we compute the distance to the line
segment vi`−1vi` that we simplified the subcurve to, and we take the maximum over these
distances. This gives rise to four problem variants, depending on the distance measure:
Local-Hausdorff, Local-Fréchet, Global-Hausdorff, and Global-Fréchet.

Among the variants, Global-Hausdorff is unreasonable as it does not take the ordering of
vertices of the curve into account and it was recently shown that curve simplification under
Global-Hausdorff is NP-hard [20]. Hence, we do not consider this measure in this paper.

The classic Ô(n3)1 time algorithm by Imai and Iri [18] was designed for Local-Hausdorff
simplification. By changing the distance computation in this algorithm for the Fréchet
distance, one can obtain an Ô(n3)-time algorithm for Local-Fréchet [15]. There are improve-
ments for Local-Hausdorff simplification in small dimension d [19, 8, 6]; the fastest running
times are 2O(d)n2 for L1-norm, Ô(n2) for L∞-norm, and Ô(n3−Ω(1/d)) for L2-norm [6].

The remaining variant, Global-Fréchet, has only been studied very recently [20], although
it is a reasonable measure: The Local constraints (i.e., matching each vi` to itself) are
not necessary to enforce ordering along the curve, since Fréchet distance already takes the
ordering of the vertices into account – in contrast to Hausdorff distance. Van Kreveld et
al. [20] presented an Ô(k∗ · n5) time algorithm for Global-Fréchet simplification where k∗ is
the size of the optimal simplification.

1.1 Contribution 1: Algorithm for Global-Fréchet simplification
One could get the impression that Global-Fréchet simplification is a well-motivated, but
computationally expensive curve simplification problem, in comparison to the local variants.
We show that the latter intuition is wrong, by designing an Ô(n3)-time algorithm for
Global-Fréchet simplification improving the previously best Ô(k∗ · n5)-time algorithm [20].

I Theorem 1 (Section 3). Global-Fréchet simplification can be solved in time Ô(n3).

This shows that all three problem variants (Local-Hausdorff, Local-Fréchet, and Global-
Fréchet) can be solved in time Ô(n3), and thus the choice of which problem variant to apply
should not be made for computational reasons, at least in high dimensions.

1.2 Contribution 2: Conditional lower bound
Since all three variants can be solved in time Ô(n3), the question arises whether any of them
can be solved in time Ô(n3−ε). Tools to (conditionally) rule out such algorithms have been
developed in recent years in the area of fine-grained complexity, see, e.g., the survey [21].
One of the most widely used fine-grained hypotheses is the following.

k-OV Hypothesis. Problem: Given sets A1, . . . , Ak ⊆ {0, 1}d of size n, determine whether
there exist vectors a1 ∈ A1, . . . , ak ∈ Ak that are orthogonal, i.e., for each dimension j ∈ [d]
there is an i ∈ [k] with ai[j] = 0.
Hypothesis: For any k ≥ 2 and ε > 0 the problem is not in time Ô(nk−ε).

Naively, k-OV can be solved in time Ô(nk), and the hypothesis asserts that no polynomial
improvement is possible, at least not with polynomial dependence on d. Buchin et al. [7]
used the 2-OV hypothesis to rule out Ô(n2−ε)-time algorithms for Local-Hausdorff2 in the

1 In Ô-notation we hide any polynomial factors in d, but we make exponential factors in d explicit.
2 Their proof can be adapted to also work for Local-Fréchet and Global-Fréchet.
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L1, L2, and L∞ norm. This yields a tight bound (in Ô sense) for L∞, since an Ô(n2)-time
algorithm is known [6]. However, for all other Lp-norms (p ∈ [1,∞)), the question remained
open whether Ô(n3−ε)-time algorithms exist. To answer this question, one could try to
generalize the conditional lower bound by Buchin et al. [7] to start from 3-OV. However, curve
simplification problems seem to have the wrong “quantifier structure” for such a reduction
(we will make this clearer when we give a brief overview of the reduction.) For similar reasons,
Abboud et al. [2] introduced the Hitting Set Hypothesis, in which they essentially consider
a variant of 2-OV where we have a universal quantifier over the first set of vectors and an
existential quantifier over the second one (∀∃-OV). From their hypothesis, however, it is not
known how to prove higher lower bounds than quadratic. We therefore consider the following
natural extension of their hypothesis. This problem was studied in a more general context
by Gao et al. [14].

∀∀∃-OV Hypothesis. Problem: Given sets A,B,C ⊆ {0, 1}d of size n, determine whether
for all a ∈ A, b ∈ B there is c ∈ C such that a, b, c, are orthogonal, i.e.,

∑
`∈[d]

a[`]b[`]c[`] = 0.

Hypothesis: For any ε > 0 the problem is not in time Ô(n3−ε).

No algorithm violating this hypothesis is known, and even for much stronger hypotheses
on variants of k-OV and Satisfiability no such algorithms are known, see Section 5 in the
full version for details. This shows that the hypothesis is plausible, in addition to being a
natural generalization of the hypothesis of Abboud et al. [2].

We now give an brief overview of an ∀∀∃-OV-based lower bound for curve simplification.
Given a ∀∀∃-OV instance on vectors A,B,C ⊆ {0, 1}d, we construct corresponding point
sets Ã, B̃ ⊂ Rd′ (for some d′ = O(d)), forming two clusters that are very far apart from each
other. We add a start- and an endpoint, which can be chosen far away from these clusters (in
a new direction). Near the midpoint between Ã and B̃, another set of points C̃ is constructed.
The final curve then starts in the startpoint, walks through all points in Ã, then through
all points in C̃, then through all points in B̃, and ends in the endpoint. Choosing a size-4
simplification implements an existential quantifier over a ∈ A, b ∈ B. The constraints that
all c̃ ∈ C̃ are close to the line segment from ã to b̃ implements a universal quantifier over
c ∈ C. Naturally, we want the distance from c̃ to the line segment ãb̃ to be large if a, b, c are
orthogonal, and to be small otherwise. This simulates the negation of ∀∀∃-OV, so any curve
simplification algorithm can be turned into an algorithm for ∀∀∃-OV.

I Theorem 2 (Section 4). Over (Rd, Lp) for any p ∈ [1,∞) with p 6= 2, Local-Hausdorff,
Local-Fréchet, and Global-Fréchet simplification have no Ô(n3−ε)-time algorithm for any
ε > 0, unless the ∀∀∃-OV Hypothesis fails. This holds even for the problem of deciding
whether the optimal simplification has size ≤ 4 or ≥ 5.

In particular, this rules out improving the 2O(d)n2-time algorithm for Local-Hausdorff
over L1 [6] to a polynomial dependence on d. Note that the theorem statement excludes two
interesting values for p, namely ∞ and 2. For p =∞, an Ô(n2)-time algorithm is known for
Local-Hausdorff [6], so proving the above theorem also for p =∞ would immediately yield
an algorithm breaking the ∀∀∃-OV Hypothesis.

For p = 2, we do not have such a strong reason why it is excluded, however, we now
argue that at least a significantly different proof would be necessary in this case. We want
the points C̃ to lie in the middle between Ã and B̃, which essentially means that we want to
consider the distance from (ã+ b̃)/2 to c̃. Now consider just a single dimension of ∀∀∃-OV.
Then our task boils down to constructing points a0, a1 and b0, b1 and c0, c1, corresponding

SoCG 2019
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to the bits in this dimension, such that ‖(ai + bj)/2 − ck‖p = β1 if i = j = k = 1 and β0
otherwise, with β1 < β0. Writing a′i = ai/2 and b′j = bj/2 for simplicity, in the case p = 2 we
can simplify

‖a′i + b′j − ck‖22 =
d′∑
`=1

(a′i[`] + b′j [`]− ck[`])2

=
d′∑
`=1

(
(a′i[`] + b′j [`])2 + (a′i[`]− ck[`])2 + (b′j [`]− ck[`])2 − a′i[`]2 − b′j [`]2 − ck[`]2

)
= ‖a′i + b′j‖22 + ‖a′i − ck‖22 + ‖b′j − ck‖22 − ‖a′i‖22 − ‖b′j‖22 − ‖ck‖22
= f1(i, j) + f2(j, k) + f3(i, k),

for some functionsf1, f2, f3 : {0, 1} × {0, 1} → R. Note that by assumption this is equal
to β2

1 if i = j = k = 1 and β2
0 otherwise, with β1 < β0. However, it can be checked that such

functions do not exist3. Therefore, for p = 2 our outlined reduction cannot work - provably!
We nevertheless make this reduction work for p ∈ [1,∞), p 6= 2. The above argument shows
that the construction is necessarily subtle. Indeed, constructing the right points requires some
technical effort, see Section 4. This leaves open the possibility of a faster curve simplification
algorithm for L2, but such a result would need to exploit the Euclidean norm very heavily.

1.3 Further related work
Curve simplification has been studied in a variety of different formulations and settings. To
list some examples, it was shown that the algorithm by Douglas and Peucker [11] can be
implemented in time O(n logn) [17], and that the classic O(n3)-time algorithm for Local-
Hausdorff simplification by Imai and Iri [18] can be implemented in time O(n2) in two
dimensions [8, 19]. More topics include curve simplification without self-intersections [10],
Local-Hausdorff simplification with angular constraints between consecutive line segments [9],
approximation algorithms [3], streaming algorithms [1], and the use of curve simplification in
subdivision algorithms [16, 12, 13].

1.4 Organization
In Section 2 we formally define the problems studied in this paper. In Section 3 we present
our new algorithm for Global-Fréchet, and in Section 4 we show our conditional lower bounds.

2 Preliminaries

Our ambient space is the metric space (Rd, Lp), where the distance between points x, y ∈ Rd

is the Lp-norm of their difference, i.e., ‖x− y‖p =
(∑d

i=1(x[i]− y[i])p
)1/p. A polyline P of

size n+ 1, given by a sequence of points 〈v0, v1, . . . , vn〉 is the continuous curve that starts in
v0, walks along the line segments vivi+1 for i = 0, . . . , n− 1 in order, and ends in vn. We also
interpret P as a function P : [0, n]→ Rd where P [i+ λ] = (1− λ)vi + λvi+1 for any λ ∈ [0, 1]
and i ∈ {0, . . . , n − 1}. We use the notation P [t1 . . . t2] to represent the sub-polyline of P
between P [t1] and P [t2]. Formally for integers 0 ≤ i ≤ j ≤ n and reals λ1, λ2 ∈ [0, 1) ,

P [i+ λ1 . . . j + λ2] = 〈(1− λ1)vi + λ1vi+1, vi+1, . . . , vj , (1− λ2)vj + λ2vj+1〉

3 We can express this situation by a linear system of equations in 12 variables (4 image values for each
function fi) and 8 equations (for the values of f on i, j, k ∈ {0, 1}) and verify that it has no solution.
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A simplification of P is a curve Q = 〈vi0 , vi1 . . . , vim〉 with 0 = i0 < i1 < . . . < im = n. The
size of the simplification Q is m+ 1. Our goal is to determine a simplification of minimal size
that “very closely” represents P . To this end we define two popular measures of similarity
between the curves, namely the Fréchet and Hausdorff distances.

I Definition 3 (Fréchet distance). The (continuous) Fréchet distance δF (P1, P2) between two
curves P1 and P2 of size n and m respectively is

δF (P1, P2) = inf
f

max
t∈[0,n]

‖P1[t]− P2[f(t)]‖p

where f : [0, n]→ [0,m] is monotone with f(0) = 0 and f(n) = m.

Alt and Godau [5] characterize the Fréchet distance in terms of the “free-space diagram”.

IDefinition 4 (Free-Space). Given two curves P1, P2 and δ ≥ 0, the free-space FSδ(P1, P2) ⊆
R2 is the set {(x, y) ∈ ([0, n]× [0,m]) | ‖P1[x]− P2[y]‖p ≤ δ}.

Consider the following decision problem. Given two curves P1, P2 of size n and m,
respectively, and given δ ≥ 0, decide whether δF (P1, P2) ≤ δ. The answer to this question is
yes if and only if (n,m) is reachable from (0, 0) by a monotone path through FSδ(P1, P2).
This “reachability” problem is known to be solvable by a dynamic programming algorithm
in time O(nm). In particular, if either P1 or P2 is a line segment, then the decision problem
can be solved in linear time.

The Hausdorff distance between curves ignores the ordering of the points along the curve.
Intuitively, if we remove the monotonicity condition from function f in Definition 3 we obtain
the directed Hausdorff distance between the curves. Formally, it is defined as follows.

I Definition 5 (Hausdorff distance). The (directed) Hausdorff distance δH(P1, P2) between
curves P1 and P2 of size n and m, respectively, is

δH(P1, P2) = max
t1∈[0,n]

min
t2∈[0,m]

‖P1[t1]− P2[t2]‖p

In order to measure the “closeness” between a curve and its simplification, these above
similarity measures can be applied either globally to the whole curve and its simplification,
or locally to each simplified subcurve P [i` . . . i`+1] and the segment vi` , vi`+1 to which it was
simplified (taking the maximum over all `). This gives rise to the following measures for
curve simplification.

I Definition 6 (Similarity for Curve Simplification). Given a curve P = 〈v0, v1, . . . , vn〉 and
a simplification Q = 〈vi0 , vi1 . . . , vim〉 of P , we define their Global-Hausdorff distance as
δH(P,Q) and their Local-Hausdorff distance4 as max

0≤`≤m−1
δH(P [i` . . . i`+1], vi`vi`+1). Their

Global-Fréchet and Local-Fréchet distance are defined similarly, with δH replaced by δF .

3 Algorithms for Global-Fréchet simplification

In this section we present an O(n3) time algorithm for curve simplification under Global-
Fréchet distance, i.e., we prove Theorem 1.

4 It can be checked that in this expression directed and undirected Hausdorff distance have the same
value, and so for Local-Hausdorff we can without loss of generality use the directed Hausdorff distance.
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si,j

t

ti,j

t′

DP (k − 1, ik−1, j
′)

vik−1
vik

si,j

t

ti,j

t′

DP (k − 1, ik−1, j
′)

vik−1
vik

Figure 1 There is a monotone path from (0, t′) to (1, t) in FSδ(P, vik−1vik ) (left). Since DP(k −
1, ik−1, j

′) ≤ t′ ≤ t, there is a monotone path in from (0,DP(k − 1, ik−1, j
′)) (right) to (1, t) by

moving from (0,DP(k − 1, ik−1, j
′)) to (0, t′) and then following the previous monotone path.

3.1 An O(kn5) algorithm for Global Fréchet simplification
We start by describing the previously best algorithm by [20]. Let P be the polyline
〈v0, v1, . . . vn〉. Let DP(k, i, j) represent the earliest reachable point on vjvj+1 with a length
k simplification of the polyline P [0 . . . i], i.e, DP(k, i, j) represents the smallest t such that
P [t] lies on the line-segment vjvj+1 (i.e. j ≤ t ≤ j + 1) and there is a simplification Q̃ of
the polyline P [0 . . . i] of size at most k such that δF (Q̃, P [0 . . . t]) ≤ δ. If such a point does
not exist then we set DP(k, i, j) = ∞. To solve Global-Fréchet simplification, we need to
return the minimum k such that DP(k, n, n − 1) 6= ∞. Let P [ti,j ] and P [si,j ] be the first
point and the last point respectively on the line segment vjvj+1 such that ‖vi −P [ti,j ]‖p ≤ δ
and ‖vi − P [si,j ]‖p ≤ δ. Observe that if DP(k, i, j) 6=∞ then ti,j ≤ DP(k, i, j) ≤ si,j for all
k. We will crucially make use of the following characterization of the DP table entries.

I Lemma 7. DP(k, i, j) is the minimal t ∈ [ti,j , si,j ], such that for some i′ < i and j′ ≤ j,
we have DP(k − 1, i′, j′) 6=∞ and δF (P [DP(k − 1, i′, j′) . . . t], vi′vi) ≤ δ. If no such t exists
then DP(k, i, j) =∞.

Proof Sketch. DP(k, i, j) is the minimal t ∈ [ti,j , si,j ] such that for some i′ < i and
t′ ≤ t we have a simplification Q̂ of the polyline P [0 . . . i′] and δF (Q̂, P [0 . . . t′]) ≤ δ and
δF (P [t′ . . . t], vi′vi) ≤ δ, and DP(k, i, j) = ∞ if no such t exists. Let j′ ≤ t′ ≤ j′ + 1 and
i′ < i, then DP(k − 1, i′, j′) 6=∞ and by inspecting FSδ(P, vi′vi), it is clear that there also
exists a monotone path from (0,DP(k − 1, i′, j′)) to (1, t) (see Figure 1). Thus it suffices to
consider only DP(k − 1, i′, j′) as candidates for t′. J

A dynamic programming algorithm follows more or less directly from Lemma 7. Note
that for fixed i′ < i and j′ ≤ j such that DP(k− 1, i′, j′) 6=∞ we can determine the minimal
t such that (1, t) is reachable from (0,DP(k−1, i′, j′)) by a monotone path in FSδ(P, vi′vi) in
O(n) time. This follows from the standard algorithm for the decision version of the Fréchet
distance between two polygonal curves of length at most n (in particular here one of the
curves is of length 1). To determine DP(k, i, j) we enumerate over all i′ < i and j′ ≤ j such
that DP(k− 1, i′, j′) 6=∞ and determine the minimum t that is reachable. The running time
to determine DP(k, i, j) is thus O(n3). As there are O(k∗n2) DP-cells to fill, the algorithm
runs in time O(k∗n5) where k∗ is the size of the optimal simplification.
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si,j
t > si,j

ti,j

DP (k − 1, î, j)

vî vi

si,j

t

ti,j

DP (k − 1, î, j)

vî vi

si,j

ti,j, t

DP (k − 1, î, j)
vî vi

Figure 2 For î < i, t ∈ [ti,j , si,j ] is minimal such that (1, t) is reachable from (0,DP(k − 1, î, j))
by a monotone path in fboxj . If DP(k − 1, î, j) > si,j (left) then no such t exists. If ti,j ≤
DP(k − 1, î, j) ≤ si,j (middle) then t = DP(k − 1, î, j). If DP(k − 1, î, j) < ti,j (right) then t = ti,j .

3.2 An O(n3) algorithm for Global-Fréchet simplification
Now we improve the running time by a more careful understanding of the monotone paths
through FSδ(P, vi′vi) to (1,DP(k, i, j)) for fixed i, j and i′. Let fboxj denote the intersection
of the free-space FSδ(P, vi′vi) with the square with corner vertices (0, j) and (1, j + 1). The
following fact will be useful later.

I Fact 8. fboxj is convex for all j ∈ [n− 1].

Let verj be the free space on the vertical line segment with endpoints (0, j) and (0, j + 1)
and let horj be the free space on the horizontal line segment (0, j) to (1, j) in the free space
FSδ(P, vi′vi). We consider the point (0, j) to belong to verj , but not horj , to avoid certain
corner cases. We split the monotone paths from (0,DP(k − 1, i′, j′)) for i′ < i and j′ ≤ j

to (1,DP(k, i, j)) in FSδ(P, vi′vi) into two categories: the ones that intersect verj and the
ones that intersect horj . We first look at the monotone paths that intersect verj . If the
monotone path intersects verj then j′ = j. Let DP1(k, i, j) = min

i′<i
DP(k− 1, i′, j). We define

DP1(k, i, j) =
{

max(DP1(k, i, j), ti,j) if DP1(k, i, j) ≤ si,j
∞ otherwise (1)

We show a characterization of DP1 similar to the characterization of DP in Lemma 7
and thus establish that DP1 correctly handles all paths intersecting verj .

I Observation 9. DP1(k, i, j) is the minimal t ∈ [ti,j , si,j ] such that DP(k−1, i′, j) 6=∞ and
δF (P [DP(k−1, i′, j) . . . t], vi′vi) ≤ δ for some i′ < i. If no such t exists then DP1(k, i, j) =∞.

Proof Sketch. Observe that for any î < i, the minimal t ∈ [ti,j , si,j ] such that there is
a monotone path from (0,DP(k − 1, î, j)) to (1, t) in FSδ(P, vîvi) or equivalently in fboxj
is max(DP(k − 1, î, j), ti,j) if DP(k − 1, î, j) ≤ si,j (see Figure 2 middle and right) and t

does not exist when DP(k − 1, î, j) > si,j (see Figure 2 left). Therefore, if DP1(k, i, j) =
mini′<iDP(k−1, i′, j) ≤ si,j then the minimal t ∈ [ti,j , si,j ] that is reachable from (0,DP(k−
1, i′, j) for i′ < i is max(mini′<i(DP(k − 1, i′, j), ti,j) = max(DP1(k, i, j), ti,j). Otherwise (if
DP1(k, i, j) = mini′<iDP(k − 1, i′, j) > si,j) then no such t exists. J

We now look at the monotone paths that intersect horj . Observe that if the monotone
path intersects horj then j′ < j. Along this line, we define DP2(k, i, j) = 1 if there exists
some i′ < i and j′ < j, such that DP(k − 1, i′, j′) 6= ∞ and there exists a monotone path
from (0,DP(k − 1, i′, j′)) to (1, ti,j) in the free-space FSδ(P, vi′vi), and otherwise we set
DP2(k, i, j) = 0. Using this, we define

DP2(k, i, j) =
{
ti,j if DP2(k, i, j) = 1
∞ otherwise

SoCG 2019
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si,j
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DP (k − 1, i′, j′)

vi′ vi

z

si,j

t

ti,j

DP (k − 1, i′, j′)

vi′ vi

z

Figure 3 For t ≥ ti,j , there is a monotone path from (0,DP(k− 1, i′, j′)) to (1, t) in FSδ(P, vi′vi)
(left) for i′ < i and j′ < j that intersect horj at z. Then there is also a monotone path from
(0,DP(k − 1, i′, j′)) to (1, ti,j) (right) following the previous monotone path upto z and then from z

to (1, ti,j).

We show a characterization of DP2 similar our characterization of DP in Lemma 7, thus
establishing that DP2 correctly handles all paths intersecting horj .

I Observation 10. DP2(k, i, j) is the minimal t ∈ [ti,j , si,j ] such that DP(k − 1, i′, j′) 6=∞
and δF (P [DP(k− 1, i′, j′) . . . t], vi′vi) ≤ δ for some i′ < i and j′ < j. If no such t exists then
DP2(k, i, j) =∞.

Proof Sketch. The key idea is that if any t ∈ [ti,j , si,j ], (1, t) is reachable by a monotone
path in FSδ(P, vi′vi) from (0,DP(k− 1, i′, j′)) for i′ < i, then so is (1, tij) (see Figure 3). J

I Lemma 11. DP(k, i, j) = min(DP1(k, i, j),DP2(k, i, j)).

Proof. Follows directly from Observations 7, 9, and 10. J

In particular this yields a dynamic programming formulation for DP(k, i, j), since both
DP1(k, i, j) and DP2(k, i, j) depend on values of DP(k′, i′, j′) with k′ < k, i′ < i and j′ ≤ j.

We define κ(i, j) as the minimal k such that DP(k, i, j) 6=∞. Similarly we define κ1(i, j)
and κ2(i, j) as the minimal k such that DP1(k, i, j) 6=∞ and DP2(k, i, j) 6=∞, respectively.
Note that κ(i, j) = min(κ1(i, j), κ2(i, j)) (by Lemma 11). Also note that both κ1(i, j) and
κ2(i, j) depend only on the values of DP(k′, i′, j′) with k′ < k, i′ < i and j′ ≤ j.

With these preparations can now present our dynamic programming algorithm, except
for one subroutine κ2-subroutine(i) that we describe in Section 3.3. In particular, for any i,
κ2-subroutine(i) determines κ2(i, j) for all j ∈ [n] only using the values of κ(i′, j) for all
i′ < i and all 0 ≤ j ≤ n− 1. Now we show how to compute DP1(k, i, j). Observe that for
any i, j and k we can compute DP1(k, i, j) from DP1(k, i− 1, j) and DP(k − 1, i− 1, j) as
DP1(k, i, j) = min(DP1(k, i− 1, j),DP(k− 1, i− 1, j)). Then we can compute DP1(k, i, j) by
using equation (1) and set κ1(i, j) to the minimal k such that DP1(k, i, j) 6=∞. We compute
DP2(k, i, j) by setting DP2(k, i, j) = ti,j if k ≥ κ2(i, j) and DP2(k, i, j) = ∞ otherwise.
Also, we set κ(i, j) as min(κ1(i, j), κ2(i, j)). After that we can update DP(k, i, j) by the
formulation in Lemma 11.
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Algorithm 1 Solving curve simplification under Global-Fréchet distance.
1: Precompute all ti,j and si,j and initialize all DP1(k, 0, j), DP(k, 0, j), κ(0, j) and

DP(0, i, j).
2: for all i = 1 to n do
3: Determine κ2(i, j) for all 0 ≤ j ≤ n− 1 using κ2-subroutine(i)
4: for j = 0 to n− 1 do
5: for every k ∈ [n+ 1] set DP1(k, i, j) to min(DP1(k, i− 1, j),DP(k − 1, i− 1, j))
6: for every k ∈ [n+ 1] set DP1(k, i, j) to max(DP1(k, i, j), ti,j) if DP1(k, i, j) ≤ si,j

and to ∞ otherwise
7: set κ1(i, j) to the smallest k such that DP1(k, i, j) 6=∞
8: set κ(i, j) = min(κ1(i, j), κ2(i, j))
9: for every k ∈ [n+ 1] set DP2(k, i, j) to ti,j if k ≥ κ2(i, j) and to ∞ otherwise
10: for every k ∈ [n+ 1] set DP(k, i, j) to min(DP1(k, i, j),DP2(k, i, j))

Denote the running time of κ2-subroutine(i) by T (n). Since we fill each of O(n3) DP
cells in time O(1), the total running time of Algorithm 1 is O(n3 + n · T (n)).

3.3 Implementing the κ2-subroutine(i)
In this subsection we show how to implement the κ2-subroutine(i) in time T (n) = O(n2).
Then in total we have O(n3) for solving Global-Fréchet simplification.

3.3.1 Cell Reachability
We introduce an auxiliary problem Cell Reachability. We shall see later that an O(n) time
solution to this problem ensures that the κ2-subroutine(i) can be implemented in time O(n2).

I Definition 12. In an instance of the Cell Reachability problem, we are given:
A set of n cells. Each cell j with 1 ≤ j ≤ n is a unit square with corner points (0, j) and
(1, j + 1). We say that cells j and j + 1 are consecutive.
An integral entry-cost λj > 0 for every cell j.
A set of n− 1 passages between consecutive cells. The passage pj is the horizontal line
segment with endpoints (j, aj) and (j, bj) where bj > aj.

A cell j is reachable from a cell j′ with j′ < j if and only if there exists xj′+1 ≤ xj′+2 . . . ≤
xj such that xk ∈ [ak, bk] for every j′ < k ≤ j. Intuitively, cell j is reachable from cell j′
if and only if there is a monotone path through the passages from cell j′ to cell j. Let the
exit-cost µj of a cell j as the minimal λj′ such that j is reachable from cell j′, j′ < j. The
goal is to determine the sequence 〈µ1, µ2, . . . , µn〉. See Figure 4 for an illustration.

We make a more refined notion of reachability. For any cells j and j′ < j we define the
first reachable point frp(j, j′) on cell j from cell j′ as the minimal t such that there exist
xj′+1 ≤ xj′+2 ≤ . . . ≤ xj such that xk ∈ [ak, bk] for every j′ < k ≤ j and xj = t, and we set
frp(j, j′) =∞ if there exists no such t. Let tj(k) be the first reachable point on cell j from
any cell j′ with entry-cost at most k i.e. tj(k) = min {frp(j, j′) | j′ < j, λj′ ≤ k}. Note that
µj is the minimal k such that tj(k) 6=∞. Thus, it suffices to show how to determine tj(·)
and µj from tj(·) for all j ∈ [n] in O(n) time. To this end we generalize an algorithm by Alt
et al. [4, Lemma 2.3]; the details can be found in the full version of this paper.

I Theorem 13. Cell Reachability can be solved in O(n) time.
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Figure 4 The red horizontal line segments between the cells indicate the passages. Cell 4 is only
reachable from cells 2 and 3. Thus µ4 = min(λ2, λ3) = min(4, 8) = 4.

3.3.2 Implementing κ2-subroutine(i) using Cell Reachability
Recall the definition of κ2(·, ·) and what our goal is now: For a fixed i′ < i, let κ(i, j, i′) be
the minimal k such that for some j′ < j, we have DP(k − 1, i′, j′) 6=∞ and δF (P [DP(k −
1, i′, j′) . . . ti,j ], vi′vi) ≤ δ. Note that κ2(i, j) = min

i′<i
κ(i, j, i′). In order to show that the

κ2-subroutine(i) can be implemented in O(n2), it suffices to show that for fixed i′ < i we
can determine κ(i, j, i′) for all j ∈ [n− 1] in O(n) time.

Let the line segment between (aj , j) and (bj , j) denote the free-space on horj . Due to
the convexity of every cell in the free space FSδ(P, vi′vi), it suffices to look at reachability
through the free space at the boundary of the cells (horj). Thus for any j′ < j there is
a monotone path from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in the free-space FSδ(P, vi′vi) if
and only if there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj with each xk ∈ [ak, bk] for all j′ < k ≤ j.
Similarly, it suffices to look at the reachability only from the points (0,DP(κ(i′, j′), i′, j′)).
This yields the following observation, whose proof is illustrated in Figure 5.

I Observation 14. For any i′ < i if there is a monotone path from (0,DP(k, i′, j′)) to (1, ti,j)
in the free-space FSδ(P, vi′vi) intersecting horj, then there is also a monotone path from
(0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in the free-space FSδ(P, vi′vi) intersecting horj.

Observation 14 implies that κ(i, j, i′) is the minimal value of 1 + κ(i′, j′) over all j′ < j

such that there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj with xk ∈ [ak, bk] for j′ < k ≤ j. Note that
now we are in an instance of Cell Reachability. Thus for any fixed i′ we can determine
κ(i, j, i′) in O(n) time and therefore we can implement κ2-subroutine(i) in O(n2) time.

4 Conditional lower bound for curve simplification

In this section we show that an O(n3−εpoly(d)) time algorithm for Global-Fréchet, Local-
Fréchet or Local-Hausdorff simplification over (Rd, ‖‖p) for any p ∈ [1,∞), p 6= 2, would
yield an O(n3−εpoly(d)) algorithm for ∀∀∃-OV.
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Figure 5 Illustration of the proof of Observation 14. For any i′ < i, j′ < j and any k, there
is a monotone path from (0,DP(k, i′, j′)) to (1, ti,j) in FSδ(P, vi′vi) (left) that intersects horj at
z. Then there is a monotone path from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in FSδ(P, vi′vi) (right) by
walking from (0,DP(κ(i′, j′), i′, j′) to z and then following the previous path from z to (1, ti,j).

4.1 Overview of the reduction
Consider any instance (A,B,C) of ∀∀∃-OV where A,B,C ⊆ {0, 1}d have size n. We write
A = {a1, a2, . . . an}, B = {b1, b2, . . . bn} and C = {c1, c2, . . . cn}. We will efficiently construct
3n + 1 points in RD with D ∈ O(d) namely the sets of points Ã = {ã1, ã2, . . . ãn}, B̃ ={
b̃1, b̃2, . . . b̃n

}
and C̃ = {c̃1, c̃2, . . . c̃n} and one more point s. We also determine δ ≥ 0 such

that the following properties are satisfied.

(P1) For any ã ∈ Ã, b̃ ∈ B̃, c̃ ∈ C̃, there is a point x on the line segment ãb̃ with ‖x− c̃‖p ≤ δ
if and only if ‖ ã+b̃

2 − c̃‖p ≤ δ.
(P2) For any ã ∈ Ã, b̃ ∈ B̃, c̃ ∈ C̃, we have ‖ ã+b̃

2 − c̃‖p ≤ δ if and only if
∑
`∈[d]

a[`] ·b[`] ·c[`] 6= 0.

(P3) ‖x− y‖p ≤ δ holds for all x, y ∈ Ã, and for all x, y ∈ B̃ and for all x, y ∈ C̃.
(P4) For any y1, y2 ∈ {s} ∪ B̃ ∪ C̃ and any point x on the line segment y1y2 we have
‖x− ã‖p > δ for all ã ∈ Ã.

(P5) For any y1, y2 ∈ {s} ∪ Ã ∪ C̃ and any point x on the line segment y1y2 we have
‖x− b̃‖p > δ for all b̃ ∈ B̃.

(P6) For any y ∈ B̃ ∪ Ã and any point x on the line segment sy we have ‖x− c̃‖p > δ for
all c̃ ∈ C̃.

We postpone the exact construction of these points. Our hard instance for curve simpli-
fication will be Q = 〈s, ã1, ã2, . . . , ãn, c̃1, c̃2, . . . , c̃n, b̃1, b̃2, . . . , b̃n, s〉.

I Fact 15. Let r1, r2, s1, s2 ∈ RD and ‖rk − sk‖p ≤ δ for k ∈ [2]. Then δF (r1r2, s1s2) ≤ δ.

I Lemma 16. Let Q̂ = 〈s, ãi, b̃j , s〉 for some ãi ∈ Ã and b̃j ∈ B̃. If ‖ ãi+b̃j

2 − c̃‖p ≤ δ for all
c̃ ∈ C̃ then the Local-Frechet distance between Q and Q̂ is at most δ.

Proof. Both Q and Q̂ have the same starting point s. By property P3 we have ‖ã− ãi‖p ≤ δ
for all ã ∈ Ã, and ‖b̃− b̃j‖p ≤ δ for all b̃ ∈ B̃. Thus it follows that δF (〈s, ã1, . . . , ãi〉, sãi) ≤ δ
and δF (〈b̃j , . . . , b̃n, s〉, b̃js) ≤ δ. It remains to show that δF (Qij , ãib̃j) ≤ δ where Qij =
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〈ãi, . . . , ãn, c̃1, . . . , c̃n, b̃1, . . . , b̃j〉. To this end first note that both Qij and ãib̃j have the same
endpoints. We outline monotone walks within distance δ on both Qij and ãib̃j .
(1) Walk on Qij from ãi to ãn and remain at ãi on ãib̃j . (by Property P3)
(2) Walk uniformly on both polylines, up to ãi+b̃j

2 on ãib̃j and up to c̃1 on Qij . (by Fact 15)
(3) Walk on Qij from c̃1 to c̃n and remain at ãi+b̃j

2 on ãib̃j . (by assumption)
(4) Walk uniformly on both curves up to b̃j on ãib̃j and up to b̃1 on Qij . (by Fact 15)
(5) Walk on Qij until b̃j and remain at b̃j on ã1b̃j . (by Property P3) J

Observe that property P3 implies that there is a simplification of size five namely
Q̂ = 〈s, ã, c̃, b̃, s〉 for any ã ∈ Ã, b̃ ∈ B̃, and c̃ ∈ C̃, such that the distance between Q̂ and Q
is at most δ under all three distance measures. We now show that a smaller simplification is
only possible if there exist a ∈ A, b ∈ B such that for all c ∈ C we have

∑
`∈[d]

a[`] · b[`] · c[`] 6= 0.

I Lemma 17. Let Q̂ be a simplification of the polyline Q of size 4. Then the following
statements are equivalent :
(1) The Global-Fréchet distance between Q and Q̂ is at most δ.
(2) The Local-Fréchet distance between Q and Q̂ is at most δ.
(3) The Local-Hausdorff distance between Q and Q̂ is at most δ.
(4) There exists ã ∈ Ã, b̃ ∈ B̃, such that Q̂ = 〈s, ã, b̃, s〉 and ‖ ã+b̃

2 − c̃‖p ≤ δ for every c̃ ∈ C̃.
(5) There exist a ∈ A, b ∈ B such that for all c ∈ C we have

∑
`∈[d]

a[`] · b[`] · c[`] 6= 0.

A detailed proof can be found in the full version of this paper. Assuming that we can
determine Q and δ in O(nd) time, the above lemma directly yields the following theorem.

I Theorem 18. For any ε > 0, there is no O(n3−εpoly(d)) algorithm for Global-Fréchet,
Local-Fréchet and Local-Hausdorff simplification over (Rd, ‖‖p) for any p ∈ [1,∞), p 6= 2,
unless ∀∀∃-OV Hypothesis fails. This holds even for the problem of deciding whether the
optimal simplification has size ≤ 4 or ≥ 5.

Proof. given an instance A,B,C of ∀∀∃-OV, we can construct the curve Q and δ in time
O(nd). By Lemma 17, the simplification problem on (Q, δ) is equivalent to ∀∀∃-OV on
A,B,C. Thus, any O(n3−εpoly(d)) time algorithm for the curve simplification problem would
yield an O(n3−εpoly(d)) time algorithm for ∀∀∃-OV. J

It remains to construct the point s, the sets Ã, B̃ and C̃ and δ. We first introduce some
notation. For vectors x and y and α ∈ [− 1

2 ,
1
2 ], we define Pxy(α) as ( 1

2 − α)x + (1
2 + α)y.

Moreover let ui ∈ Rd. We write v =
[
u1u2 . . . um

]
for the vector v ∈ Rmd with v[(j−1)d+k] =

uj [k] for any j ∈ [m] and k ∈ [d].

I Fact 19. Let u1, u2, . . . , um ∈ Rd and v =
[
u1u2 . . . um

]
. Then we have ‖v‖pp =

∑
i∈[m]
‖ui‖pp.

4.2 Cordinate gadgets
In this section, our aim is to construct points Ai, Bi, Ci for i ∈ {0, 1} such that the distance
‖Ci − PAjBk

(0)‖p only depends on whether the bits i, j, k ∈ {0, 1} seen as cordinates of
vectors are orthogonal. In other words, the points Ai, Bi, Ci form a cordinate gadget.
Formally we will prove the following lemma,
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I Lemma 20. For any p 6= 2

‖Ci − PAjBk
(0)‖pp =

{
β1 if i = 1, j = 1, k = 1
β2 otherwise

where β1 < β2.

In Section 4.3 we will use this lemma to construct the final point sets . Let θ1, θ2, θ3, θ4
and θ5 be positive constants. We construct the points A1,B1,C1 and A0,B0,C0 in R9.

A0 =
[
−θ1, 0, −θ2, 0, θ3, 2θ3, θ4, −2θ4, 0

]
A1 =

[
θ1, 2θ1, θ2, −2θ2, −θ3, 0, −θ4, 0, 0

]
B0 =

[
−θ1, 0, θ2, 2θ2, θ3, −2θ3, −θ4, 0, 0

]
B1 =

[
θ1, −2θ1, −θ2, 0, −θ3, 0, θ4, 2θ4, 0

]
C0 =

[
0, 0, 0, 0, 0, 0, 0, 0, θ5

]
C1 =

[
−θ1, 0, −θ2, 0, −θ3, 0, −θ4, 0, 0

]
From these points we can compute the points PAiBj

(0) for all i, j ∈ {0, 1}.

PA0B0(0) =
[
−θ1, 0, 0, θ2, θ3, 0, 0, −θ4, 0

]
PA1B0(0) =

[
0, θ1, θ2, 0, 0, −θ3, −θ4, 0, 0

]
PA1B1(0) =

[
θ1, 0, 0, −θ2, −θ3, 0, 0, θ4, 0

]
PA0B1(0) =

[
0, −θ1, −θ2, 0, 0, θ3, θ4, 0, 0

]
Observe that ‖C0−PAiBj (0)‖pp =

∑
r∈[5]

θpr for all i, j ∈ {0, 1}. Thus all the points PAiBj(0)

are equidistant from C0 irrespective of the exact values of θr for r ∈ [5]. Note that when
θr = θ for all r ∈ [5], then ‖C1 − PAiBj (0)‖pp = 4θp + 2pθp for all i, j ∈ {0, 1}. Thus all the
points PAiBj

(0) are equidistant from C1 when all the θr are the same. We now determine
θr for r ∈ [5] such that all but one point in

{
PAiBj (0)|i, j ∈ {0, 1}

}
are equidistant and far

from C1. More precisely,

‖C1 − PAiBj
(0)‖pp =

{
β1 if i = 1, j = 1
β2 otherwise

and β1 < β2. We first quantify the distances from {C0,C1} to each of the points in{
PAjBk

(0) | j, k ∈ {0, 1}
}
.

I Lemma 21. We have

‖Ci − PAjBk
(0)‖pp =



∑
r∈[5] θ

p
r if i = 0

2θp2 + 2pθp3 + 2θp4 if i = 1, j = 0, k = 0
2θp1 + 2pθp2 + 2θp3 if i = 1, j = 1, k = 0
2θp1 + 2θp3 + 2pθp4 if i = 1, j = 0, k = 1
2pθp1 + 2θp2 + 2θp4 if i = 1, j = 1, k = 1

We set the values of θr for r ∈ [5] depending on p. When 1 ≤ p < 2 we set

θ1 = (2p−1 − 1)
1
p , θ2 = 0, θ3 = 1, θ4 = 0, θ5 = 2

p−1
p

Substituting these values of θr for all r ∈ [5] in Lemma 21 we make the following observation.
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I Observation 22. When 1 ≤ p < 2, then

‖Ci − PAjBk
(0)‖pp =

{
2p(2p−1 − 1) if i = 1, j = 1, k = 1
2p otherwise

In case p > 2. Then we set

θ1 = 0, θ2 = (2p − 2)
1
p , θ3 = (2p − 4)

1
p , θ4 = (2p − 2)

1
p , θ5 = (22p − 3 · 2p)

1
p

Substituting these values of θr for all r ∈ [5] in Lemma 21 we make the following observation.

I Observation 23. When p > 2, then

‖Ci − PAjBk
(0)‖pp =

{
2p+2 − 8 if i = 1, j = 1, k = 1
22p − 8 otherwise

Combining Observations 22 and 23 we arrive at Lemma 20.

4.3 Vector gadgets
For every a ∈ A, b ∈ B and c ∈ C we introduce vectors a′, b′, c′ and a′′b′′, c′′ and then
concatenate the respective vectors to form ã, b̃ and c̃ respectively. Intuitively a′, b′, c′ help us
to ensure properties P1 and P2, while a′′, b′′, c′′ help us ensure the other properties.

4.3.1 The vectors a′, b′, c′, and s′

We construct the vector s′ and the vectors a′, b′ and c′ for every a ∈ A, b ∈ B and c ∈ C
respectively, in R9d as follows:

a′ =
[
Aa[1],Aa[2], . . .Aa[d]

]
b′ =

[
Bb[1],Bb[2], . . .Bb[d]

]
c′ =

[
Cc[1],Cc[2], . . .Cc[d]

]
s′ =

[
0, 0, . . . , 0

]
We also define the sets A′ = {a′ | a ∈ A}, B′ = {b′ | b ∈ B} and C ′ = {c′ | c ∈ C}. We

now make a technical observation about the vectors in A′, B′, and C ′, that will be useful
later. We set η1 = max

i∈[5]
θi.

I Observation 24. For any x, y ∈ A′ ∪B′ ∪ C ′, we have ‖x− y‖p ≤ η2 where η2 : = 36dη1.

Proof Sketch. Note that the absolute value of every cordinate of the vectors a′, b′, and c′, is
bounded by 2η1 (Since every cordinate is of the form ±θr or ±2θr or 0). Combined with the
fact that the total number of cordinates is 9d, this immediately implies the observation. J

Note that a ∈ A, b ∈ B and c ∈ C are non orthogonal if and only if #c,a,b
111 > 0 where

#c,a,b
111 = |{i | i ∈ [d], a[i] = b[i] = c[i] = 1}|. The following lemma shows a connection between

non-orthogonality and small distance ‖c′ − Pa′b′(0)‖p.

I Lemma 25. For any a ∈ A, b ∈ B and c ∈ C, ‖c′ − Pa′b′(0)‖pp = dβ2 − (β2 − β1)#c,a,b
111 .

Proof. By Observation 19 we have

‖c′ − Pa′b′(0)‖pp =
∑
`∈[d]

‖Cc[`] − PAa[`]Bb[`](0)‖pp

= β2(d−#c,a,b
111 ) + β1#c,a,b

111 (by Lemma 20)

= dβ2 − (β2 − β1)#c,a,b
111 . J
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4.3.2 The vectors a′′,b′′, c′′, and s′′

We construct the vector s′′ and the vectors a′′,b′′, and c′′ for every a ∈ A,b ∈ B, and c ∈ C,
respectively, in R3 as follows:

a′′ =
[
γ1, 0, 0

]
b′′ =

[
γ1, γ2, 0

]
c′′ =

[
0, γ2

2 , 0
]

s′′ =
[
0, γ2

2 , γ2]

where γ1, γ2 are positive constants. We are now ready to define the final points of our
construction, s and ã, b̃ and c̃ for any a ∈ A, b ∈ B and c ∈ C, respectively.

ã =
[
a′, a′′

]
b̃ =

[
b′, b′′

]
c̃ =

[
c′, c′′

]
s =

[
s′, s′′

]
We set

γ1 = η1, δ = (γp1 + dβ2 − (β2 − β1))
1
p , γ2 = max

(
4δ, η2

(
1 + (γp1 + dβ2)

1
p

(γp1 + dβ2)
1
p − δ

))

Note that we have constructed the point sets Ã, B̃, C̃, and the point s and determined
δ in total time O(nd). Therefore now it suffices to show that our point set and δ satisfy
the properties P1, P2, P3, P4, P5, and P6. To this end, we first show how the distance
‖c̃− Pãb̃(α)‖p is related with #c,a,b

111 (the non-orthogonality of the vectors a,b, and c).

I Lemma 26. For any a ∈ A, b ∈ B and c ∈ C we have,
‖c̃− Pãb̃(0)‖pp = γp1 + β2d− (β2 − β1)#c,a,b

111 .
If #c,a,b

111 = 0 then ‖c̃− Pãb̃(α)‖pp > δ for all α ∈ [− 1
2 ,

1
2 ].

Proof Sketch. Note that ‖c̃−Pãb̃(0)‖p = ‖c′−Pa′b′(0)‖p + ‖c′′−Pa′′b′′(0)‖p. Using Lemma
25 and substituting vectors a′′,b′′ and c′′ we arrive at ‖c̃−Pãb̃(0)‖pp = γp1 +β2d−(β2−β1)#c,a,b

111 .
Since we choose our γ2 to be sufficiently large the closest point on the line-segment ãb̃ to c̃ is
sufficiently near Pãb̃(0). Thus when #c,a,b

111 = 0, we have ‖c̃− Pãb̃(0)‖pp = γp1 + β2d > δ and
no point sufficiently near Pãb̃(0) has distance smaller than δ to c̃. J

We now show that the properties P1 and P2 hold. The first result of Lemma 26 implies
that for any a ∈ A, b ∈ B and c ∈ C we have ‖c̃− Pãb̃(0)‖p ≤ δ if and only if #c,a,b

111 ≥ 1, or
equivalently if

∑
`∈[d] a[`] · b[`] · c[`] 6= 0. By the second result of Lemma 26, it follows that

for any α ∈ [− 1
2 ,

1
2 ] if ‖c̃− Pãb̃(α)‖pp ≤ δ, then #c,a,b

111 = 0 which implies ‖c̃− Pãb̃(0)‖pp ≤ δ.
The remaining properties are guaranteed primarily by the component vectors a′′, b′′ and c′′
of ã, b̃ and c̃, and the detailed proof is in the full version of the paper.
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