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Abstract
The Vapnik-Chervonenkis dimension provides a notion of complexity for systems of sets. If the VC
dimension is small, then knowing this can drastically simplify fundamental computational tasks
such as classification, range counting, and density estimation through the use of sampling bounds.
We analyze set systems where the ground set X is a set of polygonal curves in Rd and the sets R
are metric balls defined by curve similarity metrics, such as the Fréchet distance and the Hausdorff
distance, as well as their discrete counterparts. We derive upper and lower bounds on the VC
dimension that imply useful sampling bounds in the setting that the number of curves is large, but
the complexity of the individual curves is small. Our upper bounds are either near-quadratic or
near-linear in the complexity of the curves that define the ranges and they are logarithmic in the
complexity of the curves that define the ground set.
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1 Introduction

A range space (X,R) (also called set system) is defined by a ground set X and a set of ranges
R, where each r ∈ R is a subset of X. A data structure for range searching answers queries
for the subset of the input data that lies inside the query range. In range counting, we are
interested only in the size of this subset. In our setting, a range is a metric ball defined by a
curve and a radius. The ball contains all curves that lie within this radius from the center
under a specific distance function (e.g., Fréchet or Hausdorff distance).

A crucial descriptor of any range space is its VC-dimension [33, 31, 30] and related
shattering dimension, which we define formally below. These notions quantify how complex
a range space is, and have played fundamental roles in machine learning [34, 6], data
structures [12], and geometry [24, 10]. For instance, specific bounds on these complexity
parameters are critical for tasks as diverse as neural networks [6, 27], art-gallery problems [32,
21, 28], and kernel density estimation [26]. The Fréchet distance is a popular distance
measure for curves. The Fréchet distance is very similar to the Hausdorff distance for sets,
which is defined as the minimal maximum distance of a pair of points, one from each set,
under all possible mappings between the two sets. The difference between the two distance
measures is that the Fréchet distance requires the mapping to adhere to the ordering of the
points along the curve. Both distance measures allow flexible associations between parts of
the input elements which sets them apart from classical `p distances and makes them so
suitable for trajectory data under varying speeds. In particular, the last five years have seen
a surge of interest into data structures for trajectory processing under the Fréchet distance,
manifested in a series of publications [14, 23, 15, 2, 35, 8, 19, 11, 18, 7, 20].

Our contribution in this paper is a comprehensive analysis of the Vapnik-Chervonenkis
dimension of the corresponding range spaces. The resulting VC dimension bounds, while
being interesting in their own right, have a plethora of applications through the implied
sampling bounds. We detail a range of implications of our bounds in Section 10.

2 Definitions

In this section, we formally define the distances between curves as well as VC-dimension and
range spaces, so we can state our main results. This basic set up will be enough to prove the
main results for discrete distance. Then in Section 6 we provide more advanced geometric
definitions and properties about VC dimension with our proofs for the continuous distances.

2.1 Distance measures
In the following, we define the Hausdorff distance, the discrete and the continuous Fréchet
distance, and the Weak Fréchet distance. We denote by ‖ · ‖ the Euclidean norm ‖ · ‖2.

I Definition 1 (Directed Hausdorff distance.). Let X, Y be two subsets of some metric space
(M,d). The directed Hausdorff distance from X to Y is:

d−→
H

(X,Y ) = sup
u∈X

inf
v∈Y

d(u, v).

I Definition 2 (Hausdorff distance.). Let X, Y be two subsets of some metric space (M,d).
The Hausdorff distance between X and Y is:

dH(X,Y ) = max{d−→
H

(X,Y ), d−→
H

(Y,X)}.
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I Definition 3. Given polygonal curves V and U with vertices v1, . . . , vm1 and u1, . . . , um2

respectively, a traversal T = (i1, j1), . . . , (it, jt) is a sequence of pairs of indices referring to a
pairing of vertices from the two curves such that:
1. i1, j1 = 1, it = m1, jt = m2.
2. ∀(ik, jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1}.
3. ∀(ik, jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.

I Definition 4 (Discrete Fréchet distance). Given polygonal curves V and U with vertices
v1, . . . , vm1 and u1, . . . , um2 respectively, we define the Discrete Fréchet Distance between V
and U as the following function:

ddF (V,U) = min
T∈T

max
(ik,jk)∈T

‖vik − ujk
‖,

where T denotes the set of all possible traversals for V and U .

Any polygonal curve V with vertices v1, . . . , vm1 and edges v1v2, . . . , vm1−1vm1 has a
uniform parametrization that allows us to view it as a parametrized curve v : [0, 1] 7→ R2.

I Definition 5 (Fréchet distance). Given two parametrized curves u, v : [0, 1] 7→ R2, their
Weak Fréchet distance is defined as follows:

dF (u, v) = min
f :[0,1] 7→[0,1]
g:[0,1]7→[0,1]

max
α∈[0,1]

‖v(f(α))− u(g(α))‖,

where f ranges over all continuous and monotone bijections with f(0) = 0 and f(1) = 1. The
Weak Fréchet distance dwF is defined as above, except that f and g range over all continuous
functions (not exclusively bijections) with f(0) = 0 and f(1) = 1 and g(0) = 0 and g(1) = 1.

2.2 Range spaces
Each range space can be defined as a pair of sets (X,R), where X is the ground set and R
is the range set. Let (X,R) be a range space. For Y ⊆ X, we denote:

R|Y = {R ∩ Y | R ∈ R}.

If R|Y contains all subsets of Y , then Y is shattered by R.

I Definition 6 (Vapnik-Chernovenkis dimension). The Vapnik-Chernovenkis dimension [30,
31, 33] (VC dimension) of (X,R) is the maximum cardinality of a shattered subset of X.

I Definition 7 (Shattering dimension). The shattering dimension of (X,R) is the smallest δ
such that, for all m,

max
B⊂X
|B|=m

|R|B | = O(mδ).

It is well-known [6, 24] that for a range space (X,R) with VC-dimension ν and shattering
dimension δ that ν ≤ O(δ log δ) and δ = O(ν). So bounding the shattering dimension and
bounding the VC-dimension are asymptotically equivalent within a log factor.

I Definition 8 (Dual range space). Given a range space (X,R), for any p ∈ X, we define

Rp = {R | R ∈ R, p ∈ R}.

The dual range space of (X,R) is the range space (R, {Rp | p ∈ X}).

SoCG 2019



28:4 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

It is a well-known fact that if a range space has VC dimension ν, then the dual range space
has VC dimension ≤ 2ν+1 (see e.g. [24]).

Many ways are known to bound the VC dimension of geometric range spaces. For
instance when the ground set is Rd and the ranges are defined by inclusion in halfspaces,
then the range space and its dual range space are isomorphic and both have VC-dimension
and shattering dimension d. When the ranges are defined by inclusion in balls, then the
VC-dimension and shattering dimension is d + 1, and the dual range spaces have bounds
of d [24]. It is also for instance known [9] that the composition ranges formed as the k-fold
union or intersection of ranges from a range space with bounded VC-dimension ν induces a
range space with VC-dimension O(νk log k), and this was recently shown that this is tight
for even some simple range spaces such as those defined by halfspaces [13]. More such results
are deferred to Section 6.

2.3 Range spaces induced by distance measures
Let (M,d) be a pseudometric space. We define the ball of radius r and center p, under the
distance measure d, as the following set:

bd(p, r) = {x ∈M | d(x, p) ≤ r},

where p ∈M . The doubling dimension of a metric space (M, d), denoted as ddim(M,d), is
the smallest integer t such that any ball can be covered by at most 2t balls of half the radius.

In this paper, we study the VC dimension of range spaces (X,R) induced by pseudometric
spaces1 (M,d) by setting X = M and

R = {bd(p, r) | r ∈ R, r > 0, p ∈M}.

It is a reasonable question to ask whether the doubling dimension of a metric space influences
the VC dimension of the induced range space. In general, a bounded doubling dimension
does not imply a bounded VC dimension of the induced range space and vice versa. Recently,
Huang et al. [25] showed that if we allow a small (1 + ε)-distortion of the distance function d,
the shattering dimension can be upper bounded by O(ε−O(ddim(M,d))). It is conceivable that
the doubling dimension of the metric space of the Discrete Fréchet distance and Hausdorff
distance is bounded, as long as the underlying metric has bounded doubling dimension.
However, for the continuous Fréchet distance, the doubling dimension is known to be
unbounded [16]. Moreover, we will see that much better bounds can be obtained by a careful
study of the specific distance measure.

Specifically, we study an unbalanced version of the above range space, in that we distinguish
between the complexity of objects of the ground set and the complexity of objects defining
the ranges. To this end, we define, for any integers d and m, Xdm :=

(
Rd
)m and we treat

the elements of this set as ordered sets of points in Rd of size m. Formally, we study range
spaces with ground set Xdm and range set defined as

Rd,k =
{
bd(p, r) ∩ Xdm | r ∈ R, r > 0, p ∈ Xdk

}
under different variants of the Fréchet and the Hausdorff distance. We emphasize that the
range space consists of ranges of all radii.

1 While we may use the term metric or pseudometric to define the range, our methods do not assume any
metric properties of the inducing distance measure.
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3 Our Results

Table 1 shows an overview of our bounds. For metric balls defined on point sets (resp. point
sequences) in Rd we show that the VC dimension is at most near-linear in dk, the complexity
of the ball centers that define the ranges, and at most logarithmic in dm, the complexity of
point sets of the ground set. Our lower bounds show that these bounds are almost tight in
all parameters k, d, and m. For the Fréchet distance, where the ground set X are continuous
polygonal curves in Rd we show an upper bound that is quadratic in k, quadratic in d, and
logarithmic in m. The same bounds in k and m hold for the Hausdorff distance, where the
ground set are sets of line segments in R2. We obtain slightly better bounds in k for the
Weak Fréchet distance. Our lower bounds extend to the continuous case, but are only tight
in the dependence on m – the complexity of the ground set.

Table 1 Our bounds on the VC dimension of range spaces of the form (Xd
m,Rd,k), for d being

the distance measures in the table. In the first column we distinguish between Xd
m consisting of

discrete point sequences vs. Xd
m consisting of continuous polygonal curves. The lower bounds hold

for all distance measures in this table.

discrete
Hausdorff

O(dk log(dkm)) (Theorems 9,10) Ω(max(dk log k, log dm))
(d ≥ 4, Theorem 23)

Ω(max(k, logm))
(d ≥ 2, Theorem 22)

Fréchet

continuous

weak Fréchet O(d2k log(dkm)) (Theorem 16)

Fréchet O(d2k2 log(dkm)) (Theorem 18)

Hausdorff O(k2 log(km)) (d = 2, Theorem 21)

While the VC dimension bounds for the discrete Hausdorff and Fréchet metric balls may
seem like an easy implication of composition theorems for VC dimension [9, 13], we still find
three things about these results remarkable:
1. First, for Fréchet variants, there are Θ(2k2m) valid alignment paths in the free space

diagram. And one may expect that these may materialize in the size of the composition
theorem. Yet by a simple analysis of the shattering dimension, we show that they do not.

2. Second, the VC dimension only has logarithmic dependence on the size m of the curves
in the ground set, rather than a polynomial dependence one would hope to obtain by
simple application of composition theorems. This difference has important implications
in analyzing real data sets where we can query with simple curves (small k), but may not
have a small bound on the size of the curves in the data set (large m).

3. Third, for the continuous variants, the range spaces can indeed be decomposed into
problems with ground sets defined on line segments. However, we do not know of a
general d-dimensional bound on the VC-dimension of range space with a ground set of
segments, and ranges defined by segments within a radius r of another segment. We are
able to circumvent this challenge with circuit-based methods to bound the VC-dimension
and careful predicate design for the Fréchet distance, but for Hausdorff distance are only
able to prove a bound in R2.

4 Our Approach

Our methods use the fact that both the Fréchet distance and the Hausdorff distance are
determined by one of a discrete set of events, where each event involves a constant number of
simple geometric objects. For example, it is well known that the Hausdorff distance between

SoCG 2019
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two discrete sets of points is equal to the distance between two points from the two sets.
The corresponding event happens as we consider a value δ > 0 increasing from 0 and we
record which points of one set are contained in which balls of radius δ centered at points
from the other set. The same phenomenon is true for the discrete Fréchet distance between
two point sequences. In particular, the so-called free-space matrix which can be used to
decide whether the discrete Fréchet distance is smaller than a given value δ encodes exactly
the information about which pairs of points have distance at most δ. The basic phenomenon
remains true for the continuous versions of the two distance measures if we extend the set of
simple geometric objects to include line segments and if we also consider triple intersections.
Each type of event can be translated into a range space of which we can analyze the VC
dimension. Together, the product of the range spaces encodes the information, which curves
lie inside which metric balls, in the form of a set system. This representation allows us to
prove bounds on the VC dimension of metric balls under these distance measures.

5 Basic Idea: Discrete Fréchet and Hausdorff

In this section we prove our upper bounds in the discrete setting. Let Xdm =
(
Rd
)m; we treat

the elements of this set as ordered sets of points in Rd of size m. The range spaces that we
consider in this section are defined over the ground set Xdm and the range set of balls under
either the Hausdorff or the Discrete Fréchet distance. The proofs in the proceeding sections
all follow the basic idea of the proof in the discrete setting.

I Theorem 9. Let (Xdm,RdH,k) be the range space with RdH,k the set of all balls under the
Hausdorff distance centered at point sets in Xdk. The VC dimension is O (dk log(dkm)).

Proof. Let {S1, . . . , St} ⊆ Xdm and S =
⋃
i Si; we define S so that it ignores the ordering with

each Si and is a single set of size tm. Any intersection of a Hausdorff ball with {S1, . . . , St}
is uniquely defined by a set {B1 ∩ S, . . . , Bk ∩ S}, where B1, . . . , Bk are balls in Rd. To
see that, notice that the discrete Hausdorff distance between two sets of points is uniquely
defined by the distances between points of the two sets.

Consider the range space (Rd,B), where B is the set of balls in Rd. We know that the
shattering dimension is d+ 1 [24]. Hence,

max
S⊆Rd,|S|=tm

|B|S | = O((tm)d+1).

This implies that |{{B1 ∩S, . . . , Bk ∩S} | B1, . . . , Bk are balls in Rd}| ≤ O((tm)(d+1)k), and
hence2,

2t ≤ O
(

(tm)(d+1)k
)

=⇒ t = O (dk log(dkm)) . J

I Theorem 10. Let (Xdm,RdF,k) be the range space with RdF,k the set of all balls under
the Discrete Fréchet distance centered at polygonal curves in Xdk. The VC dimension is
O (dk log(dkm)).

Proof. Let {S1, . . . , St} ⊆ Xdm and S =
⋃
i Si. Any intersection of a Discrete Fréchet ball

with {S1, . . . , St} is uniquely defined by a sequence B1 ∩ S, . . . , Bk ∩ S, where B1, . . . , Bk
are balls in Rd. The number of such sequences can be bounded by O((tm)(d+1)k) as in the

2 for u >
√
e if x/ ln(x) ≤ u then x ≤ 2u lnu. Hence, if tm/ log(tm) ≤ dkm, then tm = O(dkm log(dkm)).
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proof of Theorem 9. Enforcing that a sequence contains a valid alignment path only reduces
the number of possible distinct sets formed by t curves, and it can be determined using these
intersections and the two orderings of B1, . . . , Bk and of vertices within some Sj ∈ Xdm. J

6 Preliminaries

In this section, we provide a more advanced set of geometric primitives and other technical
known results about VC-dimension. We also derive some simple corollaries. We also provide
some basic results about the distances which will couple with the geometric primitives in our
proofs for continuous distance measures.

We again consider a ground set Xdm =
(
Rd
)m which we treat as a set of polygonal curves

with points in Rd of size m. Given such a curve s ∈ Xdm, let V (s) be its ordered set of vertices
and E(s) its ordered set of edges.

6.1 A simple model of computation
We consider a model of computation that will be useful for modeling primitive geometric
sets, and in turn bounding the VC-dimension of an associated range space. These will be
useful in that they allow the invocation of powerful and general tools to describe range spaces
defined by distances between curves. We allow the following operations, which we call simple
operations:

the arithmetic operations +,−,×, and / on real numbers,
jumps conditioned on >,≥, <,≤,=, and 6= comparisons of real numbers, and
output 0 or 1.

We say a function requires t simple operations if it can be computed with a circuit of depth t
composed only of these simple operations. Notably, the lack of a square-root operator creates
some challenges when dealing with geometric objects.

6.2 Geometric primitives
For any p ∈ Rd we denote by Br(p) the ball of radius r, centered at p. For any two
points s, t ∈ Rd, we denote by st the line segment from s to t. Whenever we store such
a line segment, for technicalities within the lemma below, we store the coordinates of its
endpoints s and t. For any two points s, t ∈ Rd, we define the stadium centered at st,
Dr(st) =

{
x ∈ Rd | ∃p ∈ st ‖p− x‖ ≤ r

}
. For any two points s, t ∈ Rd, we define a cylinder

Cr(st) =
{
x ∈ Rd | ∃p ∈ `(st) ‖p− x‖ ≤ r

}
, where `(st) denotes the line supporting the

edge st. Finally, for any two points s, t ∈ Rd, we define the capped cylinder centered at st:
Rr(st) = {p+ u | p ∈ st and u ∈ Rd s.t. ‖u‖ ≤ r and 〈t− s, u〉 = 0}.

For each of these geometric sets, we can determine if a point x ∈ Rd is in the set with a
constant number of operations under a simple model of computation.

I Lemma 11. For a point x ∈ Rd, and any set of the form Br(p), Dr(st), Cr(st), or Rr(st),
we can determine if x is in that set (returns 1, otherwise 0) using O(d) simple operations.

Proof. For ball Br(p) we can compute a distance ‖x − p‖2 in O(d) time, and determine
inclusion with a comparison to r2. For cylinder Cr(st) we can compute the closest point to
x on this line as

πst(x) = t+ (s− t)〈(s− t), x〉
‖s− t‖2 .

SoCG 2019
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p
r

Br(p) s

t

s

t

r
r

s

t

r

Rr(st)Cr(st)Dr(st)

Figure 1 Illustration of basic shapes in R2, from left to right: a ball Br(p), a stadium Dr(st), a
cylinder Cr(st), and a capped cylinder Rr(st).

Then we can determine inclusion by comparing ‖πst(x) − x‖2 to r2. For capped cylinder
Rr(st) we also need to compare ‖πst(x)− t‖2 and ‖πst(x)− s‖2 to see if either of these terms
is greater than ‖s − t‖2. For stadium Dr(st) we determine inclusion if any x is in any of
Rr(st), Br(s) or Br(t). J

6.3 Bounding the VC-Dimension
For range spaces defined on continuous curves, our proofs use a powerful theorem from
Goldberg and Jerrum [22] as improved and restated by Anthony and Bartlett [6]. It allows
one to easily bound the VC-dimension of geometric range spaces under our simple model
of computation.

I Theorem 12 (Theorem 8.4 [6]). Suppose h is a function from Rd × Rn to {0, 1} and let

H = {x 7→ h(α, x) : α ∈ Rd}

be the class determined by h. Suppose that h can be computed by an algorithm that takes as
input the pair (α, x) ∈ Rd × Rn and returns h(α, x) after no more than t simple operations.
Then, the VC dimension of H is ≤ 4d(t+ 2).

An example implication can be seen for geometric sets via Lemma 11. Note that this
implies any VC dimension upper bound proved in this approach applies to both the range
space and its dual range space because the function h is unchanged and the ranges can still
be described by O(d) real coordinates.

I Corollary 13. For range spaces defined on Rd with geometric sets Br(p), Dr(st), Cr(st),
or Rr(st) as ranges, the VC dimension is O(d2). The same O(d2) VC dimension bound holds
for the corresponding dual range spaces, with ground sets as the geometric sets, and ranges
defined by stabbing using points in Rd.

Note that these bounds are not always tight. Specifically, because the VC-dimension
for ranges defined geometrically by balls Br(p) is O(d) [24]. Moreover, the VC-dimension
of range spaces defined by cylinders Cr(st) is known to be O(d) [4]. The ranges defined
by capped cylinders Rr(st) are the intersection of a cylinder and two halfspaces, each with
VC-dimension O(d) and hence by the composition theorem [9], this full range spaces also
has VC-dimension O(d). Finally, the stadium Dr(st) is defined by the union of a capped
cylinder Rr(st) and two balls Br(s) and Br(t); hence again by the composition theorem [9],
its VC-dimension is O(d). However, it is not clear that these improved bounds hold for
the dual range spaces, aside for the case of Br. Moreover, when the ground set X of the
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range space (X,R) is not Rd, then we need to be cautious in using the k-fold composition
theorem [9], which bounds the VC-dimension of complex range spaces derived as the logical
intersection or union of simpler range spaces with bounded VC-dimension. In the case of a
ground set X = Rd, logical and geometric intersections are the same, but for other ground
sets (like dual objects, or line segments Xd2) this is not necessarily the case. For instance, a
line segment e ∈ Xd2 may intersect a ball Br and also a halfspace H while not intersecting
the intersection Br ∩H.

6.4 Representation by predicates
In order to prove bounds on the VC dimension of range spaces defined on continuous curves,
we establish sets of geometric predicates which are sufficient to determine if two curves
have distance at most r to each other. Analyzing the range spaces associated with these
predicates (over all possible radii r) allows us to compose them further and to establish VC
dimension bounds for the range space induced by the corresponding distance measure. For
the Fréchet and Weak Fréchet distance, the predicates mirror those used in range searching
data structures [2, 1]. And for the Hausdorff distance on continuous curves, the predicates
are derived from the Voronoi diagram [5]. The technical challenges for each case are similar,
but require different analyses.

7 The Fréchet distance

We consider the range spaces (Xdm,RFk
) and (Xdm,RwFk

), where RFk
(resp. RwFk

) denotes
the set of all balls, centered at curves in Xdk, under the Fréchet distance (resp. weak
Fréchet) distance.

7.1 Fréchet distance predicates
It is known that the Fréchet distance between two polygonal curves can be attained, either
at a distance between their endpoints, at a distance between a vertex and a line supporting
an edge, or at the common distance of two vertices with a line supporting an edge. The
third type of event is sometimes called monotonicity event, since it happens when the Weak
Fréchet distance is smaller than the Fréchet distance. In this sense, our representation of the
ball of radius r under the Fréchet distance is based on the following predicates. Let s ∈ Xdm
with vertices s1, . . . , sm and q ∈ Xdk with vertices q1, . . . , qk.

P1 (Endpoints (start)) This predicate returns true if and only if ‖s1 − q1‖ ≤ r.
P2 (Endpoints (end)) This predicate returns true if and only if ‖sm − qk‖ ≤ r.
P3 (Vertex-edge (horizontal)) Given an edge of s, sjsj+1, and a vertex qi of q, this predicate

returns true iff there exist a point p ∈ sjsj+1, such that ‖p− qi‖ ≤ r.
P4 (Vertex-edge (vertical)) Given an edge of q, qiqi+1, and a vertex sj of s, this predicate

returns true iff there exist a point p ∈ qiqi+1, such that ‖p− sj‖ ≤ r.
P5 (Monotonicity (horizontal)) Given two vertices of s, sj and st with j < t and an edge

of q, qiqi+1, this predicate returns true if there exist two points p1 and p2 on the line
supporting the directed edge, such that p1 appears before p2 on this line, and such that
‖p1 − sj‖ ≤ r and ‖p2 − st‖ ≤ r.

P6 (Monotonicity (vertical)) Given two vertices of q, qi and qt with i < t and an directed
edge of s, sjsj+1, this predicate returns true if there exist two points p1 and p2 on the
line supporting the directed edge, such that p1 appears before p2 on this line, and such
that ‖p1 − qi‖ ≤ r and ‖p2 − qt‖ ≤ r.

SoCG 2019
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I Lemma 14 (Lemma 9, [1]). Given the truth values of all predicates (P1)− (P6) of two
curves s and q for a fixed value of r, one can determine if dF (s, q) ≤ r.

Predicates P1 − P4 are sufficient for representing metric balls under the weak Fréchet
distance. The proof can be found in the full version of the paper [17].

I Lemma 15. Given the truth values of all predicates (P1)− (P4) of two curves s and q for
a fixed value of r, one can determine if dwF (s, q) ≤ r.

7.2 Fréchet distance VC dimension bounds
We first consider the range space (Xdm,RwF,k), where RwF,k is the set of all balls under
the Weak Fréchet distance centered at curves in Xdk. The main task is to translate the
predicates P1 −P4 into simple range spaces, and then bound their associated VC dimensions.
Consider any two polygonal curves s ∈ Xdm and q ∈ Xdk. In order to encode the intersection
of polygonal curves with metric balls, we will make use of the following sets:

P r1 (q, s) = Br(q1) ∩ V (s),
P r2 (q, s) = Br(qk) ∩ V (s),
P r3 (q, s) = {Dr(sisi+1) ∩ V (q) | sisi+1 ∈ E(s)},
P r4 (q, s) = {Dr(qiqi+1) ∩ V (s) | qiqi+1 ∈ E(q)}.

The proof of the following theorem can be found in the full version of the paper [17].

I Theorem 16. Let RwF,k be the set of balls under the Weak Fréchet metric centered at
polygonal curves in Xdk. The VC dimension of (Xdm,RwF,k) is O

(
d2k log(dkm)

)
.

We now consider the range space (Xdm,RF,k), where RF,k denotes the set of all balls,
centered at curves in Xdk, under the Fréchet distance. The approach is the same as with
the Weak Fréchet distance, except we also need to bound VC dimension of range spaces
associated with predicates P5 and P6 to encode monotonicity. While there exists geometric
set constructions that are used in the context of range searching [2, 1] we can simply appeal
to Theorem 12. We need to define a set to represent predicates P5 and P6. The appropriate
ground set is over two points qj , qt ∈ Rd, which for notational simplicity we reuse Xd2. Then
the rangesM are defined by sets Mr(st) ∈M, defined with respect to radii r ≥ 0 and line
segments st. Specifically, Mr(st) ⊂ Xd2 so any {q1, q2} ∈Mr(st) satisfies that
‖p1 − q1‖ ≤ r and ‖p2 − q2‖ ≤ r;
p1, p2 ∈ ` where st supports `; and
p1 is less than p2 along the line as 〈p1, t− s〉 ≤ 〈p2, t− s〉.

The predicate P5 is satisfied if sj , st ∈ Mr(qiqi+1) and predicate P6 is satisfied if qi, qt ∈
Mr(sjsj+1).

I Lemma 17. The VC dimension of the range space (Xd2,M), and of the associated dual
range space, is O(d2).

Proof. We may assume that q1 is the origin, since we can subtract q1 from all vectors s, t, q2
using O(d) simple calculations, without changing the outcome. As with bounding the VC
dimension of range spaces on Rd induced by sets Cr(st), we can derive the closest points on
` as πst(q1) and πst(q2) using O(d) simple operations.

If ` is not perpendicular to q2 − q1, then it intersects the bisector of q1 and q2 and we
can compute this intersection point as follows:

b`(q1, q2) := s− 〈q2, s− q2/2〉
〈t− s, q2〉

(t− s), (1)
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q1q2

`

q1q2

`

Figure 2 Illustration of predicate P5 with line ` and the two disks centered at q1 and q2. In these
examples, the projection of q2 onto ` appears before the projection of q1 onto ` along the direction
of ` and the intersection of ` with the bisector lies outside of the lens formed by the two disks. On
the left, the predicate is satisfied by setting p1 = p2 = πst(q1). On the right, the predicate evaluates
to false.

This takes O(d) simple operations. Now, predicate P5 can be computed as follows (Predicate
P6 can be computed in the same way):

1: if (‖πst(q1)− q1‖2 > r2) or (‖πst(q2)− q2‖2 > r2) then
2: return 0
3: else if 〈πst(q1), t− s〉 ≤ 〈πst(q2), t− s〉 then
4: return 1
5: else if ‖πst(q1)− q2‖2 ≤ r2 then
6: return 1
7: else if ‖πst(q2)− q1‖2 ≤ r2 then
8: return 1
9: else if 〈q2 − q1, t− s〉 6= 0 then
10: compute b`(q1, q2) using Eq. (1)
11: if ‖b`(q1, q2)− q1‖2 ≤ r2 and ‖b`(q1, q2)− q2‖2 ≤ r2 then
12: return 1
13: end if
14: else return 0
15: end if

Lines 1-4 test if p1 = πst(q1) and p2 = πst(q2) satisfy the predicate. Lines 5-8 test if
p1 = p2 = πst(q2) or p1 = p2 = πst(q1) satisfies the predicate. Then Line Line 9-12 tests if
p1 = p2 = b`(q1, q2) satisfies the predicate. Otherwise, we conclude that the predicate is not
satisfied for any choice of p1, p2 ∈ `. To see why this is correct, assume the test in line 3
evaluates to false. In this case, the predicate is satisfied only if ` intersects the lens formed
by the intersection of the two balls centered at q1, q2. If the line intersects the bisector of
q1 and q2 inside the lens, then we will find a satisfying assignment to p1 and p2. If the line
intersects the bisector outside of the lens, then by convexity the intersection of the line with
either ball is completely contained in one of the two halfspaces bounded by the bisector.
Therefore we would find a satisfying assignment to p1 and p2 among the closest points on
the line to q1 or q2, if there exists one. See Figure 2 for an example of the last case. J

We define sets to correspond with predicates P5 and P6:
P r5 (q, s) = {{sj , st} ∈ V (s)× V (s) | (sj , st) ∈Mr(qiqi+1) and qiqi+1 ∈ E(q)}.
P r6 (q, s) = {{qi, qt} ∈ V (q)× V (q) | (si, st) ∈Mr(sjsj+1) and sjsj+1 ∈ E(s)}.
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I Theorem 18. Let RF,k be the set of all balls, under the Fréchet distance, centered at
polygonal curves in Xdk. The VC dimension of (Xdm,RF,k) is O

(
d2k2 log(dkm)

)
.

Proof. Due to Lemma 14, if S ⊂ Xdm is a set of t polygonal curves and q ∈ Xdk, the set
{s ∈ S | dF (s, q) ≤ r} is uniquely defined by the sets⋃

s∈S
P r1 (q, s),

⋃
s∈S

P r2 (q, s),
⋃
s∈S

P r3 (q, s),
⋃
s∈S

P r4 (q, s),
⋃
s∈S

P r5 (q, s),
⋃
s∈S

P r6 (q, s).

As in the proof of Theorem 16, the number of all possible sets⋃
r≥0

⋃
s∈S

P1(q, s),
⋃
r≥0

⋃
s∈S

P2(q, s),
⋃
r≥0

⋃
s∈S

P3(q, s),
⋃
r≥0

⋃
s∈S

P4(q, s)


is bounded by (tm)O(d2k).

By Lemma 17 we are able to bound the number of all possible sets
⋃
r≥0

⋃
s∈S P

r
5 (q, s)

as (tm)O(d2k2). The k2 term arises because we consider Θ(k2) pairs sj , st for predicate P5.
And because this bound is proven using Theorem 12, then it applies to the dual range space,
and we also bound the number of possible sets in

⋃
r≥0

⋃
s∈S P

r
6 (s, q) as also (tm)O(d2k2). So

ultimately,

2t ≤ (tm)O(d2k2) =⇒ t = O
(
d2k2 log(dkm)

)
. J

8 Hausdorff distance

We consider the range space (Xdm,RrHk
), where RrHk

denotes the set of all balls, of radius r
centered at curves in Xdk, under the symmetric Hausdorff distance.3 We also consider the
same problems under both directed versions of the Hausdorff distance, and their induced
range spaces (Xdm,Rr−→Hk

) and (Xdm,Rr←−Hk

). While some intermediate arguments hold in Rd,
we are only able to provide VC dimension bounds in R2. Proofs can be found in the full
version of the paper [17].

I Theorem 19. Let −→RH,k be the set of all balls, under the directed Hausdorff distance from
polygonal curves in X2

k. The VC dimension of (X2
m,
−→
RH,k) is O(k2 log(km)).

I Theorem 20. Let ←−RH,k be the set of all balls, under the directed Hausdorff distance to
polygonal curves in X2

k. The VC dimension of (X2
m,
←−
RH,k) is O(k log(km)).

I Theorem 21. Let RH,k be the set of all balls, under the symmetric Hausdorff distance in
X2
k. The VC dimension of (X2

m,RH,k) is O(k2 log(km)).

9 Lower bounds

Our lower bounds are constructed in the simplified setting that either k = 1 or m = 1, i.e.,
either the ground set or the curves defining the metric ball consist of one vertex only. In
this case, all of our considered distance measures (except for one direction of the directed

3 The proofs in this section are written for polygonal curves in Xd
m (resp. X2

m), but they readily extend
to (not-necessarily connected) sets of line segments in Rd (resp. R2) of cardinality m′ = m−1

2 .
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q
P

p0

Figure 3 A curve q with metric ball of radius R− ε containing a subset of P . The shaded area is
the set of points that are contained inside the metric ball.

Hausdorff distance) are equal. The basic idea behind our lower bound construction is that,
for m = 1, the ranges behave like convex polygons with k facets. In particular, the set of
points contained inside the range centered at a curve q, is equal to the intersection of a
set of equal-size Euclidean balls centered at the vertices of q. Figure 3 shows a sketch of
the construction. For k = 1 and m ≥ 1, we use [24, Lemma 5.18], which bounds the VC
dimension of the dual range space as a function of the VC dimension of the primal space.
Proofs of the lower bounds can be found in the full version of the paper [17].

I Theorem 22. The VC-dimension of the range spaces (X2
m,RdF,k), (X2

m,RdH,k), (X2
m,

RF,k), (X2
m,RwF,k), and (X2

m,RH,k)is Ω(max(k, logm)).

I Theorem 23. For d ≥ 4, the VC-dimension of the range spaces (Xdm,RdF,k), (Xdm,RdH,k),
(Xdm,RwF,k), (Xdm,RF,k), and (Xdm,RH,k) is Ω(max(dk log k, log dm)).

10 Implications

In this section we demonstrate that bounds on the VC-dimension for the range space defined
by metric balls on curves immediately implies various results about prediction and statistical
generalization over the space of curves. In the following consider a range space (X,R) with
a ground set of X of curves of size n = |X|, where R are the ranges corresponding to
metric balls for some distance measure we consider, and the VC-dimension is bounded by
ν. This section discusses accuracy bounds that depend directly on the size |X| = n and
the VC-dimension ν. They will assume that X is a random sample of some much larger set
Xbig or an unknown continuous generating distribution µ. Under the randomness in this

SoCG 2019



28:14 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

assumed sampling procedure, there is a probability of failure δ that often shows up in these
bounds, but is minor since it shows up as log(1/δ). These bounds take two closely-linked
forms. First, given a limited set X from an unknown µ, then how accurate is a query or a
prediction made using only X. Second, given the ability to draw samples (at a cost) from
an unknown distribution µ, how many are required so the prediction on the samples set X
has bounded prediction error. The theme of the following results, as implied by our above
VC-dimension results, is that if these families of curves are only inspected with or queried
with curves with a small number of segments (k is small), then the VC-dimension of the
associated range space ν = O(k log km) or O(k2 log km) is small, and that such analyses
generalize well. We show this in several concrete examples. More examples are detailed in
the full version of the paper [17].

Approximate range counting on curves. Given a large set of curves X (of potentially
very large complexity m), and a query curve q (with smaller complexity k) we would like
to approximate the number of curves nearby q. For instance, we restrict X to historical
queries at a certain time of day, and query with the planned route q, and would like to know
the chance of finding a carpool. VC-dimension ν of the metric balls shows up directly in
two analyses. First, if we assume X ∼ µ where µ is a much larger unknown distribution
(but the real one), then we can estimate the accuracy of the fraction of all curves in this
range within additive error O(

√
(1/|X|)(ν + log(1/δ))). On the other hand, if X is too large

to conveniently query, we can sample a subset S ⊂ X of size O((1/ε2)(ν + log(1/δ))) and
know that the estimate for the fraction of curves from S in that range is within additive ε
error of the fraction from X. Such sampling techniques have a long history in traditional
databases [29], and have more recently become important when providing online estimates
during a long query processing time as incrementally increasing size subsets are considered [3].
Ours provides the first formal analysis of these results for queries over curves.

Density estimation of curves. A related task in generalization to new curves is density
estimation. Consider a large set of curves X which represent a larger unknown distribution
µ that models a distribution of curves; we want to understand how unusual a new curve q
would be given we have not yet seen exactly the same curve before. One option is to use the
distance to the (kth) nearest neighbor curve in X, or a bit more robust option is to choose a
radius r, and count how many curves are within that radius (e.g., the approximate range
counting results above). Alternatively, for X ⊂M, consider now a kernel density estimate
kdeX : M→ R defined by kdeX(p) = 1

n

∑
p∈P K(x, p) with kernel K(x, p) = exp(−d(x, p)2)

(where d is some distance of choice among curves, e.g., dF ). The kernel is defined such that
each superlevel set Kτ

x = {p ∈M | K(x, p) ≥ τ} corresponds with some range R ∈ R so that
R ∩X = Kτ

x ∩X. Then a random sample S ⊂ X of size O((1/ε2)(ν + log 1
δ )) satisfies that

‖kdeX −kdes ‖∞ ≤ ε [26]. Thus, again the VC-dimension ν of the metric balls directly
influences this estimates accuracy, and for query curves with small complexity k, the bound
is quite reasonable.
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