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Abstract
We revisit a classical graph-theoretic problem, the single-source shortest-path (SSSP) problem, in
weighted unit-disk graphs. We first propose an exact (and deterministic) algorithm which solves the
problem in O(n log2 n) time using linear space, where n is the number of the vertices of the graph.
This significantly improves the previous deterministic algorithm by Cabello and Jejčič [CGTA’15]
which uses O(n1+δ) time and O(n1+δ) space (for any small constant δ > 0) and the previous
randomized algorithm by Kaplan et al. [SODA’17] which uses O(n log12+o(1) n) expected time
and O(n log3 n) space. More specifically, we show that if the 2D offline insertion-only (additively-
)weighted nearest-neighbor problem with k operations (i.e., insertions and queries) can be solved in
f(k) time, then the SSSP problem in weighted unit-disk graphs can be solved in O(n logn+ f(n))
time. Using the same framework with some new ideas, we also obtain a (1+ε)-approximate algorithm
for the problem, using O(n logn+ n log2(1/ε)) time and linear space. This improves the previous
(1 + ε)-approximate algorithm by Chan and Skrepetos [SoCG’18] which uses O((1/ε)2n logn) time
and O((1/ε)2n) space. Because of the Ω(n logn)-time lower bound of the problem (even when
approximation is allowed), both of our algorithms are almost optimal.
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1 Introduction

Given a set S of n points in the plane, its unit-disk graph is an undirected graph in which the
vertices are points of S and two vertices are connected by an edge iff the (Euclidean) distance
between them is at most 1. Unit-disk graphs can be viewed as the intersection graphs of
equal-sized disks in the plane, and find many applications such as modeling the topology of
ad-hoc communication networks. As an important class of geometric intersection graphs,
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unit-disk graphs have been extensively studied in computational geometry. Many problems
that are difficult in general graphs have been efficiently solved (exactly or approximately) in
unit-disk graphs by exploiting their underlying geometric structures.

In this paper, we consider a classical graph-theoretic problem, the single-source shortest-
path (SSSP) problem, in unit-disk graphs. Given an edge-weighted graph G = (V,E) and
a source vertex s ∈ V , the SSSP problem aims to compute shortest paths from s to all
other vertices in G (or equivalently a shortest-path tree from s). In unit-disk graphs, there
are two natural ways to weight the edges. The first way is to equally weight all the edge
(usually called unweighted unit-disk graphs), while the second way is to assign each edge
(a, b) a weight equal to the (Euclidean) distance between a and b (usually called weighted
unit-disk graphs). The SSSP problem in a general graph has a trivial Ω(|E|)-time lower
bound, because specifying the edges of the graph already takes Ω(|E|) time. However, this
lower bound does not hold in unit-disk graphs. A unit-disk graph (either unweighted or
weighted), though having quadratic number of edges in worst case (e.g., all the vertices are
very close to each other), can be represented by only giving the locations of its vertices in the
plane. This linear-complexity representation allows us to solve the SSSP problem without
explicitly constructing the graph and hence beat the Ω(|E|)-time lower bound.

In unweighted unit-disk graphs, the SSSP problem is relatively easy, and various algorithms
are known for solving it optimally in O(n logn) time [2, 3]. However, the weighted case is
much more challenging. Despite of much effort made over years [2, 5, 9, 10, 12], state-of-the-
art algorithms are still far away from being optimal. In this paper, we present new exact and
approximation algorithms for the problem in weighted unit-disk graphs, which significantly
improve the previous results and almost match the lower bound of the problem.

Organization. The remaining paper is organized as follows. In Sect. 1.1, we discuss the
related work and our contributions. Sect. 1.2 presents some notations used throughout the
paper. Our exact and approximation algorithms are given in Sect. 2 and 3, respectively. Due
to the page limit, some lemma proofs are omitted but can be found in the full version [13].

1.1 Related work and our contributions

Besides the SSSP problem, many graph-theoretic problems have also been studied in unit-disk
graphs, such as maximum independent set [11], maximum clique [6], distance oracle [5, 9],
diameter computing [5, 9], all-pair shortest paths [3, 4], etc. Most of these problems have
much more efficient solutions in unit-disk graphs than in general graphs.

The SSSP problem in unit-disk graphs has received a considerable attention in the last
decades. The problem has an Ω(n logn)-time lower bound even when approximation is
allowed, because deciding the connectivity of a unit-disk graph requires Ω(n logn) time [2].
In unweighted unit-disk graphs, at least two O(n logn)-time SSSP algorithms were known
[2, 3], which are optimal. If the vertices are pre-sorted by their x- and y-coordinates, the
algorithm in [3] can solve the problem in O(n) time. In weighted unit-disk graphs, the SSSP
problem was studied in [2, 5, 9, 10, 12]. Both exact and approximation algorithms were given
to solve the problem in sub-quadratic time. For the exact case, the best known results are
the deterministic algorithm by Cabello and Jejčič [2] which uses O(n1+δ) time and O(n1+δ)
space (for any small constant δ > 0) and the randomized algorithm by Kaplan et al. [10]
which uses O(n log12+o(1) n) expected time and O(n log3 n) space. For the approximation
case, the best known result is the (1 + ε)-approximate algorithm by Chan and Skrepetos [5]
which uses O((1/ε)2n logn) time and O((1/ε)2n) space.
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In this paper, we first propose an exact SSSP algorithm in weighted unit-disk graphs
which uses O(n log2 n) time and O(n) space, significantly improving the results in [2, 10].
Using the same framework together with some new ideas, we also obtain a (1+ε)-approximate
algorithm which uses O(n logn+ n log2(1/ε)) time and O(n) space, improving the result in
[5]. Table 1 presents the comparison of our new algorithms with the previous results.

Table 1 Summary of the previous and our new algorithms for SSSP in weighted unit-disk graphs.

Type Source Time Space Rand./Det.

Exact

[12] O(n4/3+δ) O(n1+δ) Deterministic
[2] O(n1+δ) O(n1+δ) Deterministic
[10] O(n log12+o(1) n) O(n log3 n) Randomized

Corollary 9 O(n log2 n) O(n) Deterministic

Approximate
[9] O((1/ε)3n1.5√logn) O((1/ε)4n logn) Deterministic
[5] O((1/ε)2n logn) O((1/ε)2n) Deterministic

Corollary 15 O(n logn+ n log2(1/ε)) O(n) Deterministic

More specifically, our algorithms solve the SSSP problem in weighted unit-disk graphs by
reducing it to the (2D) offline insertion-only additively-weighted nearest-neighbor (OIWNN)
problem, in which we are given a sequence of operations each of which is either an insertion
(inserting a weighted point in R2 to the dataset) or a weighted nearest-neighbor query (asking
for the additively-weighted nearest neighbor of a given query point in the dataset) and our
goal is to answer all the queries. The reductions imply the following results.

If the OIWNN problem with k operations can be solved in f(k) time, then the exact
SSSP problem in weighted unit-disk graphs can be solved in O(n logn+ f(n)) time.
If the OIWNN problem with k1 operations in which at most k2 operations are insertions
can be solved in f(k1, k2) time, then the (1 + ε)-approximate SSSP problem in weighted
unit-disk graphs can be solved in O(n logn+ n log(1/ε) + f(n,O(ε−2))) time.

Our time bounds in Table 1 are derived from the above results by arguing that f(k) =
O(k log2 k) and f(k1, k2) = O(k1 log2 k2). Therefore, the bottleneck of our algorithms in fact
comes from the OIWNN problem.

As an immediate application, our approximation algorithm can be applied to improve
the preprocessing time of the distance oracles in weighted unit-disk graphs given by Chan
and Skrepetos [5] (see the full version [13] for the details).

1.2 Notations

Basic notations. Throughout the paper, the notation ‖·‖ denotes the Euclidean norm;
therefore, for two points a, b ∈ R2, ‖a− b‖ is the Euclidean distance between a and b. For a
point a ∈ R2, we use �a to denote the unit disk (i.e., disk of radius 1) centered at a.

Graphs. Let G = (V,E) be an edge-weighted undirected graph. A path in G is represented
as a sequence π = 〈z1, . . . , zt〉 where z1, . . . , zt ∈ V and (zi, zi+1) ∈ E for all i ∈ {1, . . . , t−1};
the length of π is the sum of the weights of the edges (z1, z2), . . . , (zt−1, zt). For two vertices
u, v ∈ V , we use πG(u, v) to denote the shortest path from u to v in G and use dG(u, v) to
denote the length of πG(u, v). We say v′ ∈ V is the u-predecessor of v if (v′, v) ∈ E is the
last edge of πG(u, v). For two paths π and π′ in G where π is from u to v and π′ is from v

to w, we denote by π ◦ π′ the concatenation of π and π′, which is a path from u to w in G.

SoCG 2019
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2 The exact algorithm

In this section, we describe our exact algorithm. Given a set S of n points in the plane
and a source s ∈ S, our goal is to compute a shortest-path tree from s in the weighted
unit-disk graph G induced by S. For all a ∈ S, we use λa ∈ S to denote the s-predecessor of
a. Specifically, we aim to compute two tables dist[·] and pred[·] indexed by the points in S,
where dist[a] = dG(s, a) and pred[a] = λa.

We first briefly review how the well-known Dijkstra’s algorithm computes shortest paths
from a source s in a graph G. Initially, the algorithm sets all dist-values to infinity except
dist[s] = 0, and sets A = S. Then it keeps doing the following procedure until A = ∅.

1. Pick the vertex c ∈ A with the smallest dist-value.
2. For all b ∈ A that are neighbors of c, update the value dist[b] using c, i.e., dist[b] ←

min{dist[b],dist[c] + w(c, b)}, where w(c, b) is the weight of the edge (c, b).
3. Remove c from A.

Directly applying Dijkstra’s algorithm to solve the SSSP problem in a weighted unit-disk
graph takes quadratic time, since the graph can have Ω(n2) edges in worst-case.

Our algorithm will follow the spirit of Dijkstra’s algorithm in a high level and exploit
many insights of unit-disk graphs in order to achieve a near-linear running time. First of all,
we (implicitly) build a grid Γ on the plane, which consists of square cells with side-length
1/2 (a similar grid is also used in [3]). Assume for convenience that no point in S lies on a
grid line, and hence each point in S is contained in exactly one cell of Γ . A patch of Γ is
a square area consisting of 5× 5 cells of Γ . For a point a ∈ S, let �a denote the cell of Γ
containing a and �a denote the patch of Γ whose central cell is �a. For a set P of points in
R2 and a cell � (resp., a patch �) of Γ , define P� = P ∩� (resp., P� = P ∩�). We notice
the following simple fact.

I Fact 1. For all a ∈ S, we have S�a
⊆ NBG(a) ⊆ S�a

, where NBG(a) is the set of all
neighbors of a in G.

We compute and store S� (resp., S�) for all cells � (resp., patches �) of Γ that contain
at least one point in S. In addition, we associate pointers to each a ∈ S so that from a one
can get access to the stored sets S�a

and S�a
. The above preprocessing can be easily done in

O(n logn) time and O(n) space after computing �a for all a ∈ S. We give in the full version
a method to compute �a for all a ∈ S in O(n logn) time without using the floor function.

In order to present our algorithm, we first define a sub-routine Update as follows.
Suppose we are now at some point of the algorithm. If U and V are two subsets of S, then
the procedure Update(U, V ) conceptually does the following.
1. dist′[u]← dist[u] for all u ∈ U .
2. pv ← arg minu∈U∩�v

{dist′[u] + ‖u− v‖} for all v ∈ V .
3. For all v ∈ V , if dist[v] > dist′[pv] + ‖pv − v‖, then update dist[v]← dist′[pv] + ‖pv − v‖

and pred[v]← pv.
In words, Update(U, V ) updates the shortest-path information of the points in V using the
shortest-path information of the points in U . We use lazy update by copying the dist[·] table
to dist′[·] to guarantee that the order we consider the points in V does not influence the
result of the update (note that U and V may not be disjoint). However, when U and V are
not disjoint, lazy update may result in an inconsistency of shortest-path information, i.e.,
dist[v] > dist[pred[v]] + ‖pred[v]− v‖ for some v ∈ V after Update(U, V ). This can happen
when pv ∈ U ∩ V : for example, we update dist[v] to dist′[pv] + ‖pv − v‖ and at the same
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time dist[pv] also gets updated (hence dist[pv] < dist′[pv]), then dist[v] > dist[pv] + ‖pv − v‖
after Update(U, V ). We call such a phenomenon data inconsistency. Although Update can
result in data inconsistency in general, we shall guarantee it never happens in our algorithm.

The main framework of our algorithm is quite simple, which is presented in Algorithm 1.
Similarly to Dijkstra’s algorithm, we also maintain a subset A ⊆ S during the algorithm and
pick the point c ∈ A with the smallest dist-value in each iteration (line 6). The difference
is that, instead of using c to update (the shortest-path information of) its neighbors, our
algorithm tries to use all points in A�c

to update their neighbors (line 8) and then remove
them simultaneously from A (line 9). However, it is not guaranteed that the shortest-path
information of all the points in A�c

is correct when c is picked. Therefore, before using the
points in A�c

to update their neighbors, we use an extra procedure to “correct” the shortest-
path information of these points, which is not needed in Dijkstra’s algorithm. Surprisingly,
we achieve this by simply updating the points in A�c

once using the current shortest-path
information of their neighbors (line 7).

Algorithm 1 SSSP(S, s).
1: dist[a]←∞ for all a ∈ S
2: pred[a]← NIL for all a ∈ S
3: dist[s]← 0
4: A← S

5: while A 6= ∅ do . Main loop
6: c← arg mina∈A{dist[a]}
7: Update(A�c

, A�c
) . First update

8: Update(A�c
, A�c

) . Second update
9: A← A\A�c

10: return dist[·] and pred[·]

The correctness of our algorithm is non-obvious. Supposem is the number of the iterations
in the main loop. Let ci be the point c picked in the i-th iteration.

I Fact 2. The points c1, . . . , cm belong to different cells in Γ .

To prove the algorithm correctness, we first show that the dist-values of all points in S are
correctly computed eventually. Clearly, during the entire algorithm, the dist-values can only
decrease and never become smaller than the true shortest-path distances, i.e., we always
have dist[a] ≥ dG(s, a) for all a ∈ S. Keeping this in mind, we prove the following lemma.

I Lemma 3. Algorithm 1 has the following properties.
(1) When the i-th iteration begins, dist[a] = dG(s, a) for all a ∈ S with dG(s, a) ≤ dG(s, ci).
(2) After the first update of the i-th iteration, dist[a] = dG(s, a) for all a ∈ S�ci

.
(3) When the i-th iteration ends, dist[a] = dG(s, a) for all a ∈ S with λa ∈ S�ci

.

Proof. We first notice that the property (3) follows immediately from the property (2)
due to the second update. Indeed, for a point a ∈ S, if λa ∈ S�ci

, then a ∈ S�ci
. If

a ∈ A�ci
, then the property (2) implies that the second update makes dist[a] = dG(s, a). If

a ∈ S�ci
\A�ci

, then a ∈ A�cj
for some j < i (since a got removed from A in a previous

iteration) and the property (2) guarantees that dist[a] = dG(s, a) after the first update of the
j-th iteration. As such, we only need to verify the first two properties. We achieve this using
induction on i. The base case is i = 1. Note that c1 = s and dG(s, c1) = 0. Thus, to see (1),
we only need to guarantee that dist[s] = dG(s, s) = 0 when the first iteration begins, which is

SoCG 2019
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Figure 1 Illustrating points a, r, and r′. The solid path is πG(s, a). The solid square is �ck .

clearly true. After the first update of the first iteration, we have dist[a] = ‖s− a‖ = dG(s, a)
for all a ∈ S�c1

, hence the property (2) is satisfied. Assume the lemma holds for all i < k,
and we show it also holds in the k-th iteration.

To see the property (1), let a ∈ S be a point such that dG(s, a) ≤ dG(s, ck). Consider the
moment when the k-th iteration begins. Assume for a contradiction that dist[a] > dG(s, a) at
that time. Suppose πG(s, a) = 〈z0, z1, . . . , zt〉 where z0 = s and zt = a. Define j as the largest
index such that dist[zj ] = dG(s, zj). Note that j ∈ {0, . . . , t− 1} because dist[s] = dG(s, s)
and dist[a] 6= dG(s, a). Therefore, dist[zj ] = dG(s, zj) < dG(s, a) ≤ dG(s, ck) ≤ dist[ck].
This implies zj /∈ A (otherwise it contradicts the fact that ck is the point in A with the
smallest dist-value). It follows zj ∈ S�ci

for some i < k, as it got removed from A in
some previous iteration. Then by our induction hypothesis and the property (3), we have
dist[zj+1] = dG(s, zj+1) at the end of the i-th iteration and thus at the beginning of the k-th
iteration, because λzj+1 = zj . However, this contradicts the fact that dist[zj+1] > dG(s, zj+1).
As such, dist[a] = dG(s, a) when the k-th iteration begins.

Next, we prove the property (2). For convenience, in what follows, we use A to denote
the set A during the k-th iteration (before line 9). We have S�ck

= A�ck
, since A =

S\(
⋃k−1
i=1 S�ci

) and ck /∈ �ci
for all i < k by Fact 2. Let a ∈ A�ck

be a point and r = λa.
We want to show that dist[a] = dG(s, a) after the first update of the k-th iteration. If r /∈ A,
then r got removed from A in the i-th iteration for some i < k, namely, r ∈ S�ci

. By our
induction hypothesis and the property (3), we have dist[a] = dG(s, a) at the end of i-th
iteration (and thus in all the next iterations). So assume r ∈ A (this implies that r 6= s and
thus λr exists). In this case, a key observation is that before the first update of the k-th
iteration, dist[r] = dG(s, r). To see this, let r′ = λr (e.g., see Fig. 1). Note that ‖r′ − a‖ > 1,
otherwise the path πG(s, r′) ◦ 〈r′, a〉 would be shorter than πG(s, r′) ◦ 〈r′, r, a〉 = πG(s, a),
contradicting the fact that πG(s, a) is the shortest path from s to a. It follows that

dG(s, a) = dG(s, r′) + dG(r′, a) ≥ dG(s, r′) + ‖r′ − a‖ > dG(s, r′) + 1.

On the other hand, since a ∈ �ck
, we have

dG(s, a) ≤ dG(s, ck) + dG(ck, a) = dG(s, ck) + ‖ck − a‖ ≤ dG(s, ck) + 1.

Therefore, dG(s, r′) < dG(s, ck), and by the property (1) we have dist[r′] = dG(s, r′) when
the k-th iteration begins. This further implies r′ /∈ A, since dist[r′] = dG(s, r′) < dG(s, ck) =
dist[ck] when the k-th iteration begins. Hence, r′ got removed from A in the i-th iteration for
some i < k. Using our induction hypothesis and the property (3), we have dist[r] = dG(s, r)
at the end of the i-th iteration (and thus in all the next iterations). Note that r ∈ �ck

,
because r ∈ �a. We further have r ∈ A�ck

, as we assumed r ∈ A. Hence, the first update of
the k-th iteration makes dist[a] = dG(s, a). This proves the property (2). J
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Lemma 3 implies that dist[a] = dG(s, a) for all a ∈ S at the end of Algorithm 1. Indeed,
any point a ∈ S belongs to S�ci

for some i ∈ {1, . . . ,m}, thus the property (2) of Lemma 3
guarantees dist[a] = dG(s, a). Next, we check the correctness of the pred[·] table. We want
dist[a] = dist[pred[a]] + ‖pred[a] − a‖ for all a ∈ S. However, as mentioned before, the
sub-routine Update in general may result in data inconsistency, making this equation false.
The next lemma shows this can not happen in our algorithm.

I Lemma 4. At any moment of Algorithm 1, we always have dist[a] = dist[pred[a]] +
‖pred[a]− a‖ for all a ∈ S.

Now we see that Algorithm 1 correctly computes shortest paths from s. However, it is
still not clear why simultaneously processing all points in one cell in each iteration makes our
algorithm faster than the standard Dijkstra’s algorithm. In what follows, we focus on the
time complexity of the algorithm. At this point, let us ignore the two Update sub-routines
and show how to efficiently implement the remaining part of the algorithm. In each iteration,
all the work can be done in constant time except lines 6 and 9. To efficiently implement lines 6
and 9, we maintain the set A in a (balanced) binary search tree using the dist-values as keys.
In this way, line 6 can be done in O(logn) time, and lines 9 can be done in O(|S�c

| · logn)
time. Note that whenever the dist-value of a point in A is updated, we also need to update
the binary search tree in O(logn) time. This occurs in the two Update sub-routines, which
has at most O(|S�c

|+ |S�c
|) = O(|S�c

|) modifications of the dist-values. Therefore, the time
for updating the binary search tree is O(|S�c

| · logn). To summarize, the time cost of the i-th
iteration, without the Update sub-routines, is O(|S�ci

| · logn). Since
∑m
i=1 |S�ci

| ≤ 25n
by Fact 2, the overall time is O(n logn). In the following two sections, we shall consider
the time complexities of the two Update sub-routines. To efficiently implement the first
Update is relatively easy, while the second one is more challenging.

2.1 First update
In this section, we show how to implement the first update (line 7) in O(|S�c

| · logn) time.
As mentioned before, we can obtain the points in S�c

using the pointer associated to c, and
then further find the points in A�c

and A�c
. After this, we do dist′[a] ← dist[a] for all

a ∈ A�c
. To implement Update(A�c

, A�c
), the critical step is to find, for every r ∈ A�c

,
a point p ∈ A�c

∩ �r that minimizes dist′[p] + ‖p− r‖. This is equivalent to searching the
weighted nearest-neighbor of r in the unit disk �r (if we regard A�c

as a weighted dataset
where the weight of each point equals its dist′-value). Unfortunately, it is currently not
known how to efficiently solve this problem. Therefore, we need to exploit some special
property of the problem in hand. An observation here is that c is the point in A�c

with
the smallest dist′-value and all the points in A�c

are of distance at most 1 to c (because
c ∈ A�c

). Using this observation, we prove the following key lemma.

I Lemma 5. Before the first update of each iteration, for all r ∈ A�c
, we have

arg min
a∈A�c

∩�r

{dist′[a] + ‖a− r‖} = arg min
a∈A�c

{dist′[a] + ‖a− r‖}.

Proof. Let p = arg mina∈A�c
∩�r
{dist′[a]+‖a−r‖}. Define B = A�c

\(A�c
∩�r). It suffices

to show that dist′[p] + ‖p− r‖ < dist′[b] + ‖b− r‖ for all b ∈ B. Fix a point b ∈ B (e.g., see
Fig. 2). We have ‖b− r‖ > 1 by construction. On the other hand, since r ∈ A�c

, we have
c ∈ �r and hence ‖c − r‖ ≤ 1. Furthermore, dist′[c] ≤ dist′[b], because b ∈ A and c is the
point in A with the smallest dist-value (as well as the smallest dist′-value). It follows that

dist′[p] + ‖p− r‖ ≤ dist′[c] + ‖c− r‖ < dist′[b] + ‖b− r‖,

where the first “≤” follows from the definition of p and the fact that c ∈ A�c
∩ �r. J

SoCG 2019
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c
r

b

Figure 2 Illustrating the proof of Lemma 5. The solid square is �c and the solid circle is �r.

The above lemma makes the problem easy. Indeed, for every r ∈ A�c
, we only need to find a

point p ∈ A�c
that minimizes dist′[p] + ‖p− r‖ and Lemma 5 guarantees that p ∈ �r. This

is just the standard (additively-)weighted nearest-neighbor search, which can be solved by
building a weighted Voronoi Diagram (WVD) on A�c

and then querying for each r ∈ A�c
.

Building the WVD takes O(|A�c
| · log |A�c

|) time and linear space [8], and each query can be
answered in O(log |A�c

|) time. The last step, updating the dist-values and pred-values of the
points in A�c

, is easy. So the first update of the i-th iteration can be done in O(|S�ci
| · logn)

time. Since
∑m
i=1 |S�ci

| ≤ 25n, the total time for the first update is O(n logn).

2.2 Second update
In this section, we consider the second update (line 8) in Algorithm 1. Unfortunately, the
trick used in the first update does not apply, which makes the second update more difficult.
Here we design a more general algorithm, which can implement Update(U, V ) for arbitrary
subsets U, V ⊆ S in O(f(k) + k log k) time where k = |U |+ |V | and f(k) is the time cost of
the OIWNN problem with k operations (i.e., insertions and queries). The framework of the
algorithm is presented in Algorithm 2. After copying dist[·] to dist′[·], we first sort the points
in U in increasing order of their dist′-values (line 2). Then we compute |U | disjoint subsets
V1, . . . , V|U | of V (line 4), where Vi consists of the points contained in �ui

but not contained
in �uj

for any j < i. Note that
⋃|U |
i=1 Vi consists of all the points in V who have neighbors in

U , and hence we only need to update the shortest-path information of these points. For each
point v ∈ Vi, what we do is to find its weighted nearest-neighbor p in {ui, . . . , u|U |} where
the weights are the dist-values (line 9), and update the shortest-path information of v by
attempting to use p as predecessor (line 10-12).

We first prove the correctness of Algorithm 2. Consider a point v ∈ Vi. The purpose
of Update(U, V ) is to find the weighted nearest-neighbor of v in U ∩ �v (and use it to
update the shortest-path information of v), while what we find in line 9 is the weighted
nearest-neighbor p in {ui, . . . , u|U |}. We notice that U ∩�v ⊆ {ui, . . . , u|U |} because v /∈ �uj

for all j < i by the definition of Vi. Therefore, we only need to show that the point p
computed by line 9 is contained in U ∩ �v.

I Lemma 6. At line 9 of Algorithm 2, we have p ∈ U ∩ �v.

Proof. Clearly, we have p ∈ U since B = {ui, . . . , u|U |} ⊆ U . It suffices to show ‖p− v‖ ≤ 1.
Assume for a contradiction that ‖p−v‖ > 1. We have ‖ui−v‖ ≤ 1 since v ∈ Vi. Furthermore,
dist′[ui] ≤ dist′[p] because p ∈ {ui, . . . , u|U |} and dist′[ui] ≤ dist′[uj ] for all j ≥ i. Hence,

dist′[ui] + ‖ui − v‖ ≤ dist′[ui] + 1 ≤ dist′[p] + 1 < dist′[p] + ‖p− v‖,

which contradicts the fact that p is the weighted nearest-neighbor of v in {ui, . . . , u|U |}. J
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Algorithm 2 Update(U, V ).
1: dist′[u]← dist[u] for all u ∈ U .
2: Sort the points in U = {u1, . . . , u|U |} such that dist′[u1] ≤ · · · ≤ dist′[u|U |]
3: for i = 1, . . . , |U | do
4: Vi ← {v ∈ V : v ∈ �ui

and v /∈ �uj
for all j < i}

5: B ← ∅
6: for i = |U |, . . . , 1 do
7: B ← B ∪ {ui}
8: for v ∈ Vi do
9: p← arg minb∈B{dist′[b] + ‖b− v‖}
10: if dist[v] > dist′[p] + ‖p− v‖ then
11: dist[v]← dist′[p] + ‖p− v‖
12: pred[v]← p

Next, we analyze the time complexity of Algorithm 2. At the beginning, we need to sort
the points in U in increasing order of their dist-values, which can be done in O(|U | · log |U |)
time and hence O(k log k) time. Algorithm 2 basically consists of two loops. We first consider
the second loop (line 6-12). In this loop, what we do is weighted nearest-neighbor search
on B (line 9) with insertions (line 7), where the weight of each point b ∈ B is dist′[b]. Note
that all insertions and queries here are offline, since the points u1, . . . , u|U | and the sets
V1, . . . , V|U | are already known before the loop. We have |U | insertions and |V | queries, and
hence k operations in total. Recall that f(k) is the time for solving the OIWNN problem
with k operations. So this loop takes f(k) time.

Now we consider the first loop (line 3-4). This loop requires us to compute Vi, the subset
of V consisting of the points contained in �ui

but not contained in �j for all j < i, for
i ∈ {1, . . . , |U |}. We have the following lemma. With the lemma, Update(U, V ) can be done
in O(f(k) + k log k) time.

I Lemma 7. The first loop of Algorithm 2 takes O(k log k) time where k = |U |+ |V |.

2.3 Putting everything together
As argued before, except the two Update sub-routines, Algorithm 1 runs in O(n logn) time.
Section 2.1 shows that the first update can be done in O(|S�c

| · logn) time. Section 2.2
demonstrates that the second update of each iteration can be done in O(f(k) + k log k) time
where k = |A�c

|+ |A�c
| = O(|S�c

|) and f(k) is the time for solving the OIWNN problem
with k operations. Noting the fact

∑m
i=1 |S�ci

| ≤ 25n, we can conclude the following.

I Theorem 8. Suppose the OIWNN problem with k operations can be solved in f(k) time,
where f(k)/k is a non-decreasing function. Then there exists an SSSP algorithm in weighted
unit-disk graphs with O(n logn+ f(n)) running time, where n is the number of the vertices.

Proof. According to our analysis and the fact
∑m
i=1 |S�ci

| ≤ 25n, the overall time of
Algorithm 1 is O(n logn+

∑m
i=1 f(|S�ci

|)). Since f(k)/k is non-decreasing, we have

m∑
i=1

f(|S�ci
|) =

m∑
i=1
|S�ci

| ·
f(|S�ci

|)
|S�ci

|
≤

m∑
i=1
|S�ci

| · f(n)
n
≤ 25f(n).

Therefore, Algorithm 1 runs in O(n logn+ f(n)) time. J
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Using the standard logarithmic method [1] (see also [7] with an additional “bulk update”
operation), we can solve the OIWNN problem (even the online version) with k operations
in O(k log2 k) time using linear space, implying f(k) = O(k log2 k). To explore the offline
nature of our OIWNN problem, we give in the full version [13] an easier solution with the
same performance. By plugging in this algorithm, we obtain the following corollary.

I Corollary 9. There exists an SSSP algorithm in weighted unit-disk graphs with O(n log2 n)
time and O(n) space, where n is the number of the vertices.

3 The approximation algorithm

We now modify our algorithm framework in the last section (Algorithm 1) to obtain a
(1 + ε)-approximate algorithm for any ε > 0. Again, let (S, s) be the input of the problem
where |S| = n and G be the weighted unit-disk graph induced by S. Formally, a (1 + ε)-
approximate algorithm computes two tables dist[·] and pred[·] indexed by the points in S
such that dist[a] ≤ (1 + ε) · dG(s, a) and dist[a] = dist[pred[a]] + ‖pred[a]− a‖ for all a ∈ S.
Note that the two tables dist[·] and pred[·] enclose, for each point a ∈ S, a path from s to a
in G that is a (1 + ε)-approximation of the shortest path from s to a.

Our algorithm is shown in Algorithm 3, which differs from our exact algorithm (Algo-
rithm 1) as follows. First, in the initialization, we directly compute the dist-values and
pred-values of all the neighbors of s in G (line 4-6); note that if a is a neighbor of s then
the shortest path from s to a is 〈s, a〉, because G is a weighted unit-disk graph. Second, the
first update in Algorithm 1 is replaced with two update procedures (line 10-11). Finally,
the second update in Algorithm 1 is replaced with an approximate update (line 12) in
Algorithm 3, which involves a new sub-routine ApproxUpdate defined as follows. If U and
V are two disjoint subsets of S, ApproxUpdate(U, V ) conceptually does the following.
1. For each v ∈ V , pick a point pv ∈ U∩�v such that dist[pv]+‖pv−v‖ ≤ dist[u]+‖u−v‖+ε/2

for all u ∈ U ∩ �v.
2. For all v ∈ V , if dist[v] < dist[pv] + ‖pv − v‖, then dist[v] ← dist[pv] + ‖pv − v‖ and

pred[v]← pv.
Unlike the Update sub-routine, ApproxUpdate cannot result in data inconsistency because
we require U and V to be disjoint.

The basic idea of Algorithm 3 is similar to that of our exact algorithm. To verify the
correctness of the algorithm, we need to introduce some notations. For a ∈ S, let la be the
number of the edges on the path πG(s, a) and define τa = dG(s, a) + (la − 1) · (ε/2). Also, as
in Section 2, we use λa to denote the s-predecessor of a. We first notice the following fact.

I Fact 10. For all a ∈ S, τa ≤ (1 + ε) · dG(s, a).

Proof. Suppose πG(s, a) = 〈z0, z1, . . . , zla〉 where z0 = s and zla = a. Note that ‖zi−zi+2‖ >
1 for all i ∈ {0, . . . , la − 2}, for otherwise 〈z0, z1, . . . , ẑi+1, . . . , zla〉 would be a shorter path
from s to a than πG(s, a) (here ẑi+1 means zi+1 is absent in the sequence). Therefore,
dG(s, a) ≥ (la − 1)/2, and τa = dG(s, a) + (la − 1) · (ε/2) ≤ (1 + ε) · dG(s, a). J

Let m be the number of iterations of the main loop and ci be the point c picked in the
i-th iteration. Note that Fact 2 also holds for Algorithm 3. Further, we have the following
observation, which is similar to Lemma 3 in Section 2.

I Lemma 11. Algorithm 3 has the following properties.
(1) When the i-th iteration begins, dist[a] ≤ τa for all a ∈ S with τa ≤ dist[ci].
(2) After line 11 of the i-th iteration, dist[a] ≤ τa for all a ∈ S�ci

.
(3) When the i-th iteration ends, dist[a] ≤ τa for all a ∈ S with λa ∈ S�ci

.
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Algorithm 3 ApproxSSSP(S, s).
1: dist[a]←∞ for all a ∈ S
2: pred[a]← NIL for all a ∈ S
3: dist[s]← 0
4: for a ∈ (S\{s}) ∩ �s do
5: dist[a]← ‖s− a‖
6: pred[a]← s

7: A← S

8: while A 6= ∅ do . Main loop
9: c← arg mina∈A{dist[a]}
10: Update(A�c

\A�c
, A�c

)
11: Update(A�c

, A�c
)

12: ApproxUpdate(A�c
, A�c

\A�c
) . Approximate update

13: A← A\A�c

14: return dist[·] and pred[·]

By the above lemma, we see that dist[a] ≤ τa for all a ∈ S at the end of Algorithm 3.
Indeed, any point a ∈ S belongs to S�ci

for some i ∈ {1, . . . ,m}, thus the property
(2) of Lemma 11 guarantees that dist[a] ≤ τa. Using Fact 10, we further conclude that
dist[a] ≤ (1 + ε) · dG(s, a) for all a ∈ S at the end of Algorithm 3. Next, we need to check the
correctness of the pred[·] table. We want dist[a] = dist[pred[a]] + ‖pred[a]− a‖ for all a ∈ S.
As mentioned in Section 2, the procedure Update(U, V ) may result in data inconsistency,
namely dist[v] > dist[pred[v]] + ‖pred[v]− v‖ for some v ∈ V , when U and V are not disjoint.
In Algorithm 3, the only place where this can happen is line 11 (note that the Update
sub-routine in line 10 acts on two disjoint sets). However, the following lemma shows that
even line 11 cannot result in data inconsistency.

I Lemma 12. After line 11 of each iteration in Algorithm 3, we have dist[a] ≤ dist[b]+‖b−a‖
for all a, b ∈ A�c

. In particular, at any moment of Algorithm 3, we always have dist[a] =
dist[pred[a]] + ‖pred[a]− a‖ for all a ∈ S.

The correctness of Algorithm 3 is thus proved. Later, the first statement of Lemma 12 will
also be used to obtain an efficient implementation of the approximate update.

Next, we consider the time complexity of Algorithm 3. Using the same argument as
in Section 2, we see that the running time of Algorithm 3 without line 10-12 is O(n logn).
Line 10 can be implemented using the same method as in Section 2.1, namely building a
WVD on the points in A�c

\A�c
and querying for each point in A�c

(the correctness follows
from the argument in Section 2.1). Also, line 11 can be implemented in this way, because
the points in A�c

are pairwise adjacent in G. Therefore, the total running time for line 10
and 11 is O(n logn). It suffices to analyze the time cost of line 12, the approximate update.

3.1 Approximate update
In order to implement the approximate update (line 12) in Algorithm 3, we (implicitly) build
another grid Γ ′ on the plane, which consists of square cells with side-length ε/8. To avoid
confusion, we use � to denote a cell in Γ ′. For a point a ∈ S, let �a denote the cell in Γ ′
containing a. For a set P of points in R2 and a cell � in Γ ′, define P� = P ∩�.
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Line 12 of Algorithm 3 is ApproxUpdate(A�c
, A�c

\A�c
). Let U = A�c

and V =
A�c
\A�c

. We shall use two special properties of the set U : (i) all the points in U are contained
in one cell in Γ and (ii) dist[u] ≤ dist[u′] + ‖u′ − u‖ for all u, u′ ∈ U before the procedure
ApproxUpdate(U, V ), which follows from Lemma 12. Our algorithm for implementing
ApproxUpdate(U, V ) is shown in Algorithm 4, which is a variant of Algorithm 2. Here we
no longer need the dist′[·] table because U and V are disjoint.

Algorithm 4 ApproxUpdate(U, V ).
1: Sort the points in U = {u1, . . . , u|U |} such that dist[u1] ≤ · · · ≤ dist[u|U |]
2: for i = 1, . . . , |U | do
3: Vi ← {v ∈ V : v ∈ �ui

and v /∈ �uj
for all j < i}

4: U ′ ← {uj : j ≥ k for all k such that uk ∈ �uj}
5: B ← ∅
6: for i = |U |, . . . , 1 do
7: if ui ∈ U ′ then B ← B ∪ {ui}
8: for v ∈ Vi do
9: p← arg minb∈B{dist[b] + ‖b− v‖}

10: if p /∈ �v then p← ui
11: if dist[v] > dist[p] + ‖p− v‖ then
12: dist[v]← dist[p] + ‖p− v‖
13: pred[v]← p

Recall the definition of the sub-routine ApproxUpdate in Section 3. To verify the
correctness of Algorithm 4, it suffices to show that just before line 11, the point p satisfies
that p ∈ U ∩ �v and dist[p] + ‖p − v‖ ≤ dist[r] + ‖r − v‖ + ε/2 for all r ∈ U ∩ �v. The
condition p ∈ �v is clearly satisfied, because of line 10 (note that ui ∈ �v). To verify the
latter condition, we establish the following lemma.

I Lemma 13. Just before line 11 of Algorithm 4, we have dist[p] + ‖p− v‖ ≤ dist[r] + ‖r −
v‖+ ε/2 for all r ∈ U ∩ �v.

For the time complexity of Algorithm 4, let k = |U |+ |V |. The sorting in line 1 takes
O(|U | · log |U |) time. The loop in line 2-3 can be implemented in O(k log |U |) time using the
same method as in Section 2.2. In line 4, we can compute the set U ′ in O(|U | · log(|S�c

|/ε))
time by grouping the points in U that belong to the same Γ ′-cell (see the full version [13]
for a more detailed discussion). The loop in line 6-13 is basically weighted nearest-neighbor
search (line 9) with insertions (line 7). There are O(|V |) queries and O(|U ′|) insertions.
Note that |U ′| = O(ε−2), because of the property (i) of U . Therefore, if we use f(k1, k2) to
denote the time cost for solving the OIWNN problem with k1 operations in which at most
k2 operations are insertions, then the loop in line 6-13 takes f(k,O(ε−2)) time. In sum, the
running time of Algorithm 4 is O(f(k,O(ε−2)) + k log k) time. Therefore, the approximate
update in Algorithm 3 can be done in O(f(|S�c

|, O(ε−2)) + |S�c
| · log(|S�c

|/ε)) time.

3.2 Putting everything together
Except the approximate update, Algorithm 1 runs in O(n logn) time. Section 3.1 shows that
the approximate update of each iteration can be done in O(f(k,O(ε−2))+k log k+k log(1/ε))
time where k = |A�c

|+ |A�c
| = O(|S�c

|) and f(k1, k2) is the time for solving the OIWNN
problem with k1 operations in which at most k2 operations are insertions. Noting the fact∑m
i=1 |S�ci

| ≤ 25n, we can conclude the following.
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I Theorem 14. Suppose the OIWNN problem with k1 operations in which at most k2
operations are insertions can be solved in f(k1, k2) time, and assume f(k1, k2)/k1 is a non-
decreasing function of k1 for any fixed k2. Then there exists a (1 + ε)-approximate SSSP
algorithm in weighted unit-disk graphs with O(n logn+ n log(1/ε) + f(n,O(ε−2))) running
time, where n is the number of the vertices.

We give in the full version [13] a linear-space algorithm with f(k1, k2) = O(k1 log2 k2). By
plugging in this algorithm, we can obtain the following corollary.

I Corollary 15. For any ε > 0, there exists a (1+ε)-approximate SSSP algorithm in weighted
unit-disk graphs with O(n logn+ n log2(1/ε)) time and O(n) space, where n is the number
of the vertices.

Our algorithm in the above corollary further improves the preprocessing time of the
distance oracles in weighted unit-disk graphs given by Chan and Skrepetos [5] (see the full
version [13] for details).
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