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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16101 “Data Struc-
tures for the Cloud and External Memory Data”. In today’s computing environment vast amounts
of data are processed, exchanged and analyzed. The manner in which information is stored pro-
foundly influences the efficiency of these operations over the data. In spite of the maturity of the
field many data structuring problems are still open, while new ones arise due to technological
advances. The seminar covered both recent advances in the “classical” data structuring topics
as well as new models of computation adapted to modern architectures, scientific studies that
reveal the need for such models, applications where large data sets play a central role, modern
computing platforms for very large data, and new data structures for large data in modern ar-
chitectures. The extended abstracts included in this report contain both recent state of the art
advances and lay the foundation for new directions within data structures research.
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About the Seminar

Data structures provide ways of storing and manipulating data and information that are
appropriate for the computational model at hand. Every such model relies on assumptions
that we have to keep questioning. The aim of this seminar was to exchange ideas for new
algorithms and data structures, and to discuss our models of computations in light of recent
technological advances. This Dagstuhl seminar was the 13th in a series of loosely related
Dagstuhl seminars on data structures.
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Topics

The presentations covered both advances in classic fields, as well as new problems and insights
for recent trends in computing. In particular, Johnson (Section 3.12) and Muth (Section 3.17)
reported on models and research opportunities in the cloud and external memory motivated
by practical demands.

A number of talks highlighted technical challenges in storing and processing large datasets:
Bast (Section 3.2) demonstrated the knowledge database QLever and discussed algorithmic
aspects. Distributed frameworks were presented by Bingmann (Section 3.4) reporting on
the progress of Thrill while focusing on parallel external sorting and by Yan (Section 3.32)
who introduced G-thinker. Farach-Colton (Section 3.7) analyzed the slow-down of various
filesystems caused by updates over time. Owens (Section 3.19) discuses intricacies of GPUs
and presented efficient and practical data structures for this hardware.

In order to mitigate the impact of huge datasets, streaming and online algorithms were
considered. Martinez (Section 3.15) discussed Affirmative Sampling which takes uniform
samples of a stream and adapts the sample size to the stream’s diversity. Sedgewick
(Section 3.26) revisited the cardinality estimation problem and proposed the HyperBitBit
algorithm. A matching of requests to resources in an online setting was covered by Raghvendra
(Section 3.22). Similarly, Mehlhorn (Section 3.16) presented a solution to assigning indivisible
resources approximately optimizing the social welfare.

Nebel (Section 3.18) and Wild (Section 3.31) proposed and analyzed tree-based data
structures. Additionally, various aspects on more general graph processing were covered
ranging from their enumeration (Lumbroso, Section 3.14) and random sampling (Penschuck,
Section 3.20), over representations for k-connectivity (Pettie, Section 3.21) to the detection
of substructures (Silvestri, Section 3.28 and Tarjan, Section 3.29).

Regarding the complexity of graph algorithms, Fagerberg (Section 3.23) presented new
lower bounds on the reorganisation cost of B-trees, while Thankachan (Section 3.30) gave
hardness results on the recognizability of Wheeler graphs. Kopelowitz (Section 3.13) con-
sidered the complexity of data structures for the set-disjointness problem. Emphasizing
cloud-related security concerns, Jacob (Section 3.11) showed that a range of simple data
structures have to incur an Ω(logn) overhead if one wants to prevent information leakage
via their access patterns.

Problems involving large text corpora were considered by Fischer (Section 3.8) presenting
an external memory bi-directional compression scheme, by Golin (Section 3.9) discussing
AIFV codes, and by Salinger (Section 3.24) analyzing persistent full-text indices for versioned
documents.

Data structures using hashing were examined by Conway (Section 3.5), Dietzfelbinger
(Section 3.6), Even and Sanders (Section 3.25). Bender (Section 3.3) discussed variants of
Bloom filters which adapt based on past queries.

Afshani (Section 3.1) presented Fragile Complexity, a novel model of computation with
an element-centric cost function, and gave bounds for various classical problems. Iacono
(Section 3.10) proposed to model locality-of-reference more explicitly and compared his
proposal to the external memory and cache-oblivious model. Sen (Section 3.27) proposed
the novel paradigm HAIbrid augmenting classic data structures with aritifical intelligence.

Final Thoughts

The organizers would like to thank the Dagstuhl team for their continuous support; the
welcoming atmosphere made the seminar both highly productive and enjoyable. They also
thank all participants for their contributions to this seminar.
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3 Overview of Talks

3.1 Fragile Complexity of Comparison-based Algorithms
Peyman Afshani (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Peyman Afshani

Joint work of Peyman Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer,
Manuel Penschuck, Nodari Sitchinava

Main reference Peyman Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer,
Manuel Penschuck, Nodari Sitchinava: “Fragile Complexity of Comparison-Based Algorithms”,
CoRR, Vol. abs/1901.02857, 2019.

URL https://arxiv.org/abs/1901.02857

We initiate a study of algorithms with a focus on the computational complexity of individual
elements, and introduce the fragile complexity of comparison-based algorithms as the maximal
number of comparisons any individual element takes part in. We give a number of upper
and lower bounds on the fragile complexity for fundamental problems, including Minimum,
Selection, Sorting and Heap Construction. The results include both deterministic and
randomized upper and lower bounds, and demonstrate a separation between the two settings
for a number of problems. The depth of a comparator network is a straight-forward upper
bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove
that fragile complexity is a different and strictly easier property than the depth of comparator
networks, in the sense that for some problems a fragile complexity equal to the best network
depth can be achieved with less total work and that with randomization, even a lower fragile
complexity is possible.

3.2 SPARQL Autocompletion – a Quick Intro and a Nice Open
Problem

Hannah Bast (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
© Hannah Bast

I gave a brief introduction to knowledge bases and Wikidata, the largest general-purpose
knowledge base at the time of this talk (over 7 billion triples). I showed some demos of
QLever, our query engine that supports SPARQL queries on knowledge bases as large and
complex as Wikidata (SPARQL is the de facto standard query language for knowledge bases).
In particular, I showed QLever’s nifty autocompletion feature and I formulated an interesting
open problem that arises in the context of making this autocompletion more efficient for
very large knowledge bases like Wikdata. The problem in a nutshell: given a set S of sets,
compute a set P of “patterns” (frequent subsets of sets from S) such that sets from S can be
written as the disjoint union of few such patterns. See the slides of the talk for details.
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3.3 Bloom Filters, Adaptivity, and the Dictionary Problem
Michael A. Bender (Stony Brook University, US)

License Creative Commons BY 3.0 Unported license
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Shikha Singh

Main reference Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley,
Shikha Singh: “Bloom Filters, Adaptivity, and the Dictionary Problem”, in Proc. of the 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pp. 182–193, IEEE Computer Society, 2018.

URL https://doi.org/10.1109/FOCS.2018.00026

A Bloom filter (or alternative) maintains a compact, probabilistic representation of a set S
of keys from a universe U . The price of being small is that there is a (bounded) probability
of false positives.

This talk presets alternatives to Bloom filters that are faster, more space efficient, and
support a wider range of operations. We show how these filters can adapt based on the
results of past queries.

Joint work with Martin Farach-Colton, Mayank Goswami, Rob Johnson, Sam McCauley,
and Shikha Singh.

3.4 Thrill: Pipelined External Memory Processing in the Cloud with
C++

Timo Bingmann (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Timo Bingmann, Simon Gog, Florian Kurpicz
Main reference Timo Bingmann, Simon Gog, Florian Kurpicz: “Scalable Construction of Text Indexes with

Thrill”, in Proc. of the IEEE International Conference on Big Data, Big Data 2018, Seattle, WA,
USA, December 10-13, 2018, pp. 634–643, IEEE, 2018.

URL https://doi.org/10.1109/BigData.2018.8622171

We present on-going work on our distributed external Big Data processing framework Thrill [1].
It is a C++ framework consisting of a set of basic scalable algorithmic primitives like mapping,
reducing and sorting, which can be combined into larger more complex algorithms, such as
WordCount, PageRank, k-means clustering, and suffix sorting. These complex algorithms
can then be run on very large inputs using a distributed computing cluster with external
memory on each host.

We discuss how external memory is used in Thrill and the abstractions with which
pipelined data processing loops are built. In this context we present current work on
accelerating the distributed sorting operation with online splitter selection. As a case study
of Thrill and its current external memory sorting implementation we present our freshly
published results on distributed suffix array construction algorithms run on the Amazon EC2
Cloud.

References
1 Bingmann, Timo, et al. “Thrill: High-performance algorithmic distributed batch data pro-

cessing with C++.” 2016 IEEE International Conference on Big Data (Big Data).
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3.5 Optimal Hashing in External Memory
Alexander Conway (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Alexander Conway

Hash tables are a ubiquitous class of dictionary data structures. However, standard hash
table implementations do not translate well into the external memory model, because they
do not incorporate locality for insertions. Iacono and Patracsu established an update/query
tradeoff curve for external hash tables: a hash table that performs insertions in O(λ/B)
amortized IOs require Ω(logλN) expected IOs for queries, where N is the number of items
that can be stored in the data structure, B is the size of a memory transfer, M is the size of
memory, and λ is a tuning parameter. They provide a hashing data structure that meets this
curve for λ that is Ω(log logM + logM N). We present a new and simpler optimal external
memory hash table, the Bundle of Arrays Hash Table (BOA). BOAs are based on size-tiered
LSMs and quotient filters, and are easy to implement. The BOA is optimal for a narrower
range of λ. However, the simplicity of BOAs allows them to be readily modified to achieve
the following results:
1. A new external memory data structure, the Bundle of Trees Hash Table (BOT), that

matches the performance of the IP hash table, while retaining some of the simplicity of
the BOAs.

2. The cache-oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious hash
table. This data structure matches the optimality of BOTs and IP hash tables over the
same range of λ.

3.6 Constant-Time Retrieval with O(log m) Extra Bits
Martin Dietzfelbinger (TU Ilmenau, DE)

License Creative Commons BY 3.0 Unported license
© Martin Dietzfelbinger

Joint work of Martin Dietzfelbinger, Stefan Walzer
Main reference Martin Dietzfelbinger, Stefan Walzer: “Constant-Time Retrieval with O(log m) Extra Bits”, in

Proc. of the 36th International Symposium on Theoretical Aspects of Computer Science, STACS
2019, March 13-16, 2019, Berlin, Germany, LIPIcs, Vol. 126, pp. 24:1–24:16, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2019.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2019.24

For a set U (the universe), retrieval is the following problem. Given a finite subset S of U of
size m and f : S → {0, 1}r for a small constant r, build a data structure Df with the property
that for a suitable query algorithm we have query(Df , x) = f(x) for all x ∈ S. For x ∈ U \S
the value query(Df , x) is arbitrary in {0, 1}r. The number of bits needed for Df should be
(1 + ε)rm with overhead ε = ε(m) ≥ 0 as small as possible, while the query time should be
small. Of course, the time for constructing Df is relevant as well. We assume fully random
hash functions on U with constant evaluation time are available. It is known that with ε about
0.09 one can achieve linear construction time and constant query time, and with overhead
εk ∼ e−k it is possible to have O(k) query time and O(m1+α) construction time, for arbitrary
α > 0. Furthermore, a theoretical construction with ε = O((log logm)/

√
logm) gives

constant query time and linear construction time. Known constructions avoiding all overhead,
except for a seed value of size O(log logm), require logarithmic query time. In this paper,
we present a method for treating the retrieval problem with overhead ε = O((logm)/m),

http://creativecommons.org/licenses/by/3.0/
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which corresponds to O(1) extra memory words (O(logm) bits), and an extremely simple,
constant-time query operation. The price to pay is a construction time of O(m2). We employ
the usual framework for retrieval data structures, where construction is effected by solving a
sparse linear system of equations over the 2-element field F2 and a query is effected by a dot
product calculation. Our main technical contribution is the design and analysis of a new and
natural family of sparse random linear systems with m equations and (1 + ε)m variables,
which combines good locality properties with high probability of having full rank. Paying a
larger overhead of ε = O((logm)/mα), the construction time can be reduced to O(m1+α) for
arbitrary constant 0 < α < 1. In combination with an adaptation of known techniques for
solving sparse linear systems of equations, our approach leads to a highly practical algorithm
for retrieval. In a particular benchmark with m = 107 we achieve an order-of-magnitude
improvement over previous techniques with ε about 0.24% instead of the previously best
result of ε about 3%, with better query time and no significant sacrifices in construction
time.

3.7 Dictionary Fragmentation, Affine IOs & File System Aging
Martin Farach-Colton (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Martin Farach-Colton

B-trees fragment because nodes are small. Be-trees don’t fragment because nodes are large.
We test this hypothesis on file systems and find the modern file systems age by factors of 20
or greater, except for BetrFS, which does not age at all.

3.8 Bidirectional Text Compression in External Memory
Johannes Fischer (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Johannes Fischer

Joint work of Johannes Fischer, Patrick Dinklage, Jonas Ellert, Dominik Köppl, Manuel Penschuk

We present a new algorithm for text compression in external memory. It works by substituting
repeated substrings by references, which can point either to the left or to the right of the
current position (unlike Lempel-Ziv-77, which can only refer to the left). The algorithm is
based on the “permuted longest common prefix array”, which can be computed efficiently
while suffix-sorting the text, for which good external memory algorithms exist. We test our
algorithms on inputs of up to 128 GiB on a computer with 16 GiB of RAM, where it uses
much less space than the best external memory implementations of the LZ7-algorithm, while
showing a similar compression rate.
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3.9 Polynomial Time Algorithms for Constructing Optimal AIFV Codes
Mordecai Golin (HKUST – Kowloon, HK)

License Creative Commons BY 3.0 Unported license
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Joint work of Mordecai Golin, Elfarouk Harb
Main reference Mordecai J. Golin, Elfarouk Y. Harb: “Polynomial Time Algorithms for Constructing Optimal

AIFV Codes”, in Proc. of the Data Compression Conference, DCC 2019, Snowbird, UT, USA,
March 26-29, 2019, pp. 231–240, IEEE, 2019.

URL http://dx.doi.org/10.1109/DCC.2019.00031

Huffman Codes are optimal Fixed-to-Variable (FV) codes if every source symbol can only be
encoded by one codeword. Relaxing these constraints permits constructing better FV codes.
More specifically, recent work has shown that AIFV codes can beat Huffman coding. AIFV
codes construct a set of different coding trees between which the code alternates and are
only almost instantaneous (AI). This means that decoding a word might require a delay of a
finite number of bits.

Current algorithms for constructing optimal AIFV codes are iterative processes. One
iteration step improves the current set of trees to a “better” set. The process has been proven
to finitely converge to the optimal code but with but no known bounds on the convergence
time.

This paper derives a geometric interpretation of the space of AIFV codes. This permits
the development of new polynomially time-bounded iterative procedures for constructing
optimal AIFV codes.

For the simplest case we show that a binary search procedure can replace the current
iterative process. For the more complicated cases we describe how to frame the problem as a
linear programming problem with an exponential number of constraints but a polynomial
time separability oracle. This permits using the Grötschel, Lovász and Schrijver ellipsoid
method to solve the problem in a polynomial number of steps.

This work will be presented at DCC’19.

3.10 The cache-oblivious model is better than you thought
John Iacono (UL – Brussels, BE)

License Creative Commons BY 3.0 Unported license
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The performance of modern computation is characterized by locality of reference, that is, it
is cheaper to access data that has been accessed recently than a random piece of data. This
is due to many architectural features including caches, lookahead, address translation and
the physical properties of a hard disk drive; attempting to model all the components that
constitute the performance of a modern machine is impossible, especially for general algorithm
design purposes. What if one could prove an algorithm is asymptotically optimal on all
systems that reward locality of reference, no matter how it manifests itself within reasonable
limits? We show that this is possible, and that algorithms that are asymptotically optimal in
the cache-oblivious model are asymptotically optimal in any reasonable locality-of-reference
rewarding setting. This is surprising as the cache-oblivious model envisions a particular
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architectural model involving blocked memory transfer into a multi-level hierarchy of caches
of varying sizes, and was not designed to directly model locality-of-reference correlated
performance.

3.11 Lower Bounds for Oblivious Data Structures
Riko Jacob (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Riko Jacob

Joint work of Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen
Main reference Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen: “Lower Bounds for Oblivious Data

Structures”, in Proc. of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 2439–2447, SIAM, 2019.

URL https://doi.org/10.1137/1.9781611975482.149

An oblivious data structure is a data structure where the memory access patterns reveals no
information about the operations performed on it. Such data structures were introduced by
Wang et al. [ACM SIGSAC’14] and are intended for situations where one wishes to store
the data structure at an untrusted server. One way to obtain an oblivious data structure is
simply to run a classic data structure on an oblivious RAM (ORAM). Until very recently,
this resulted in an overhead of ω(logn) for the most natural setting of parameters. Moreover,
a recent lower bound for ORAMs by Larsen and Nielsen [CRYPTO’18] show that they always
incur an overhead of at least Ω(logn) if used in a black box manner. To circumvent the
ω(logn) overhead, researchers have instead studied classic data structure problems more
directly and have obtained efficient solutions for many such problems such as stacks, queues,
deques, priority queues and search trees. However, none of these data structures process
operations faster than Θ(logn), leaving open the question of whether even faster solutions
exist. In this paper, we rule out this possibility by proving Ω(logn) lower bounds for oblivious
stacks, queues, deques, priority queues and search trees.

3.12 Modeling (and Other Research) Opportunities in Cloud and
External Memory

Rob Johnson (VMware – Palo Alto, US)

License Creative Commons BY 3.0 Unported license
© Rob Johnson

This talk will describe several trends in cloud computing that can serve as inspiration for
new models and new algorithms and data structure research.
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3.13 The Optimal (?) Complexity of Set-disjointness Data-structures
Tsvi Kopelowitz (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 3.0 Unported license
© Tsvi Kopelowitz

In the set-disjointness problem the goal is to preprocess a family of sets F = {S1, S2, ..., Sk},
all from universe U , so that given two sets Si, Sj ∈ F , one can quickly establish whether the
two sets are disjoint or not. If N is the sum of the sizes of the sets in F, then let Np be the
preprocessing time and let Nq be the query time. A folklore combinatorial algorithm has a
tradeoff curve of p+ q = 2, which is optimal (up to sub-polynomial terms) for combinatorial
algorithms, assuming the combinatorial BMM conjecture. In SODA’16, Kopelowitz, Pettie,
and Porat showed that, based on the 3SUM, there is a conditional lower bound curve of
p+ 2q ≥ 2, and so there exists a gap between the upper bound curve and the lower bound
curve when allowing non-combinatorial techniques.

In this talk we will show that both curves can be improved. Specifically, if one assumes
that the constant in the exponent of fast matrix multiplication is ω = 2, then one can obtain
an upper bound curve of p+ 2q ≥ 2 for q ≤ 1/3 (matching the 3SUM based lower bound for
this case), and 2p+ q = 3 for q ≥ 1/3. Moreover, we introduce a new conjecture on the time
required for detecting a triangle in an unbalanced tripartite graph, which is closely related
to the triangle detection conjecture for general graphs, and is used to show that the new
upper bound curve for set-disjointness is tight.

3.14 Enumerations Derived from Compact Encodings
Jérémie Lumbroso (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Jérémie Lumbroso

Joint work of Jérémie Lumbroso, Maryam Bahrani, Cédric Chauve, Éric Fusy, Jessica Shi
Main reference Jérémie O. Lumbroso, Jessica Shi: “Exponential Bounds on Graph Enumerations from Vertex

Incremental Characterizations”, in Proc. of the Fifteenth Workshop on Analytic Algorithmics and
Combinatorics, ANALCO 2018, New Orleans, LA, USA, January 8-9, 2018., pp. 118–132, SIAM,
2018.

URL http://dx.doi.org/10.1137/1.9781611975062.11

We compare several methodologies to either compute or approximate the enumeration of a
combinatorial class:
1. The “compact encoding” methodology, in which an encoding of the objects of the

combinatorial class is designed, and then the enumeration sequence is bounded by
lower/upper-bounding the number of bits required by the encoding for any object of a
given size.

2. A method using the analytic combinatorics toolset, in which a bijection allows us to
reduce the objects of the combinatorial class to an easier to count class, which can then
be exactly enumerated using existing techniques.

3. A “hybrid” methodology, in which we design an encoding for the combinatorial class,
but then count all possible encodings using analytic combinatorics tree enumeration
techniques.

We argue that the third method provides a good trade-off between technical complexity
and accuracy. We illustrate these arguments on various examples taken from recent work on
the enumeration of unlabeled graph classes, including papers by Nakano et al. [2], Lumbroso
and Shi [3], and Chauve et al. [1].
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This is joint work with several researchers: Maryam Bahrani (Princeton), Cédric Chauve
(Simon Fraser University), Éric Fusy (Polytechnique), Jessica Shi (MIT).
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Hereditary Graphs, in Proceedings of the Fourteenth Meeting on Analytic Algorithmics
and Combinatorics (ANALCO 2017), C. Martiínez and M. D. Ward, Eds., Barcelona,
Spain: Society for Industrial and Applied Mathematics, pp. 31–45, Jan. 2017. doi:
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2 Nakano, Shin-ichi, Ryuhei Uehara, and Takeaki Uno. A new approach to graph recogni-
tion and applications to distance-hereditary graphs, in Journal of computer science and
technology 24.3, pp. 517-533, 2009.

3 Lumbroso, Jérémie, and Jessica Shi.. Exponential Bounds on Graph Enumerations from
Vertex Incremental Characterizations, in Proceedings of the Fifteenth Meeting on Analytic
Algorithmics and Combinatorics (ANALCO 2018), M. Nebel and S. Wagner, Eds., New
Orleans, USA: Society for Industrial and Applied Mathematics, pp. 118–132, Jan. 2018.

3.15 Affirmative Sampling
Conrado Martinez (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Conrado Martinez

Joint work of Conrado Martine, Jérémie Lumbroso

Affirmative Sampling is a practical and efficient novel algorithm to obtain random samples
of distinct elements from a data stream, its most salient feature being that the size S of
the sample will, on expectation, grow with the (unknown) number n of distinct elements in
the data stream. As any distinct element has the same probability to be sampled, and the
sample size is greater when the cardinality (when the “diversity”) is greater, the samples that
Affirmative Sampling delivers are more representative and enable more accuarte inferences
than those produced by any scheme where the sample size is fixed a prori – hence, its name.

3.16 Fair Division of Indivisble Goods
Kurt Mehlhorn (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, Kurt
Mehlhorn

Main reference Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, Kurt
Mehlhorn: “On Fair Division for Indivisible Items”, in Proc. of the 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018,
December 11-13, 2018, Ahmedabad, India, LIPIcs, Vol. 122, pp. 25:1–25:17, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25

We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our
notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean
of the utilities of the agents. Each good comes in multiple items or copies, and the utility
of an agent diminishes as it receives more items of the same good. The utility of a bundle
of items for an agent is the sum of the utilities of the items in the bundle. Each agent has

19051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.25


116 19051 – Data Structures for the Cloud and External Memory Data

a utility cap beyond which he does not value additional items. We give a polynomial time
approximation algorithm that maximizes Nash social welfare up to a factor of e1/e ≈ 1.445.
The computed allocation is Pareto-optimal and approximates envy-freeness up to one item
up to a factor of 2 + ε.

3.17 Reflections On Cost
Robert Muth (Google – New York, US)

License Creative Commons BY 3.0 Unported license
© Robert Muth

This informal talk is a practioner’s view of running algorithms in the cloud at Google.
We discuss various forms of cost metrics, including total cost of ownership (TCO). We

point out how cloud needs differ from the classical space/time metrics, make some predictions
about how certain cost models will change and point out opportunities for new research and
how theory can inform pratice.

3.18 Median-of-k Jumplists and Dangling-Min BSTs
Markus E. Nebel (Universität Bielefeld, DE) and Sebastian Wild (University of Waterloo,
CA)

License Creative Commons BY 3.0 Unported license
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Joint work of Markus E. Nebel, Elisabeth Neumann, Sebastian Wild
Main reference Markus E. Nebel, Elisabeth Neumann, Sebastian Wild: “Median-of-k Jumplists”, CoRR,

Vol. abs/1609.08513, 2016.
URL http://arxiv.org/abs/1609.08513

In this talk we discuss a variant of jumplists where the jump pointer’s target is chosen as
the median of a random sample of size k. We present a new search strategy called spine
search which allows to skip some elements of the list which the traditional algorithm would
have inspected. We prove a precise asymptotic for the average number of key comparisons
performed by this new strategy which shows that larger values of k imply an improved
lookup time for the jump lists tend to be more balanced. On the other hand, insertions and
deletions get more costly with increasing k since the need for rebalancing gets worth. As a
second improvement we analyse the effect of omitting jump-pointer for sublists of length at
most w, proving that a constant fraction of pointer is saved while search costs only increase
by a constant additive term.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1609.08513
http://arxiv.org/abs/1609.08513
http://arxiv.org/abs/1609.08513


Gerth Stølting Brodal, Ulrich C. Meyer, Markus E. Nebel, and Robert Sedgewick 117

3.19 What We Learned About Dynamic GPU Data Structures
John D. Owens (University of California, Davis, US)

License Creative Commons BY 3.0 Unported license
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Joint work of John Owens, Martin Farach-Colton, as well as many coauthors

In this talk I discuss four dynamic data structures we built for the GPU – log-structured
merge trees, quotient filters, linked lists and hash tables built atop them, and B-trees. I
discuss principles that we followed in building them and then what we learned, including
lessons from mapping work to threads vs. warps, issues with contention, the use of the
cache hierarchy, surprising insertion throughput results for the LSM vs. the B-tree, memory
allocation, resizing, and semantics.
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4 Afton Geil, Martin Farach-Colton, and John D. Owens. Quotient Filters: Approximate
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3.20 Parallel and I/O-efficient Randomisation of Massive Networks
using Global Curveball Trades

Manuel Penschuck (Goethe-Universität – Frankfurt a. M., DE) and Ulrich Carsten Meyer
(Goethe-Universität – Frankfurt a. M., DE)
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Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically
implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random
edge pairs while maintaining the degrees involved. We discuss EM-ES, an I/O-efficient edge
switching algorithm for this setting.

In this context, Curveball is a novel approach that instead considers the whole neighbour-
hoods of randomly drawn node pairs. Its Markov chain converges to a uniform distribution,
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and experiments suggest that it requires less steps than the established ESMC. Since trades
however are more expensive, we study Curveball’s practical runtime by introducing the first
efficient Curveball algorithms: the I/O-efficient EM-CB for simple undirected graphs and its
internal memory pendant IM-CB.

Further, we investigate global trades processing every node in a graph during a single
super step, and show that undirected global trades converge to a uniform distribution and
perform superior in practice. We then discuss EM-GCB and EM-PGCB for global trades
and give experimental evidence that EM-PGCB achieves the quality of the state-of-the-art
ESMC algorithm EM-ES nearly one order of magnitude faster.

3.21 A Cactus-type Structure for Vertex Connectivity?
Seth Pettie (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
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It is well known that the set of all global minimum edge cuts in a graph can be succinctly
represented as an O(n)-space “cactus tree”. In this talk I’ll survey efforts to develop an
analogue of the cactus structure for k-vertex connectivity, such as the block tree (k = 1), the
SPQR tree (k = 2), and the structure proposed by Cohen et al. for general k-connectivity.

3.22 An Algorithm for Real-Time Matching of Requests to Resources
Sharath Raghvendra (Virginia Polytechnic Institute – Blacksburg, US)
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Society, 2017.
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In the online minimum-metric bipartite matching problem, we are given a set S of server
locations in a metric space. The locations of requests are revealed one at a time and when a
request is revealed, we must immediately and irrevocably match it to a “free” server. The
cost of matching a server to request is given by the distance between the two locations (which
we assume satisfies triangle inequality). The objective of this problem is to come up with
a matching of servers to requests which is competitive with respect to the minimum-cost
matching of S and R.

In this talk, I present an online algorithm that, in the adversarial request generation
model, achieves near-optimal competitive ratio for any metric space. I will also show that
this algorithm achieves an optimal competitive ratio of 2Hn− 1 in the random arrivals model.
I will show that this algorithm not only achieves near-optimal bounds in adversarial settings
but also performs well in practical settings.
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3.23 What is the Cost of Staying in Perfect Shape (if You are a
B-Tree)?

Rolf Fagerberg (University of Southern Denmark – Odense, DK) and Ulrich Carsten Meyer
(Goethe-Universität – Frankfurt a. M., DE)
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Any B-tree has height at least dlogB(n)e. Static B-trees achieving this are easy to build,
but in the dynamic case, standard B-tree rebalancing algorithms only maintain a height
within a constant factor of this optimum. We investigate exactly how close to dlogB(n)e the
height of dynamic B-trees can be maintained and at what rebalancing costs. As usual, cost
means the number of nodes accessed. We prove a lower bound on the cost of maintaining
optimal height dlogB(n)e, which shows that this cost must increase from Ω(1/B) to Ω(n/B)
rebalancing per update as n grows from one power of B to the next. We also provide an
almost matching upper bound, demonstrating this lower bound to be essentially tight. We
then give a variant upper bound which can maintain near-optimal height at low cost. As
two special cases, we can maintain optimal height for all but a vanishing fraction of values of
n using Θ(logB(n)) amortized rebalancing cost per update and we can maintain a height
of optimal plus one using O(1/B) amortized rebalancing cost per update. More generally,
for any rebalancing budget, we can maintain (as n grows from one power of B to the next)
optimal height essentially up to the point where the lower bound requires the budget to be
exceeded, after which optimal height plus one is maintained. Finally, we prove that this
balancing scheme gives B-trees with very good storage utilization.

3.24 Persistent Data Structures for Full-Text Indexes
Alejandro Salinger (SAP SE – Walldorf, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Alejandro Salinger, Divya Venkatesan

We study an extension of the dynamic text collection problem in which versions of the text
collection are maintained. In this problem, texts can be inserted to or deleted from any
version of the collection, which in turn creates a new version of the collection. A solution
should support the efficient location of a pattern in any version of the collection. An example
of an application of this problem is in indexes of textual data in databases which support
Multiversion Concurrency Control (MVCC). We present a full-text index which supports
multi-version access while enabling users to modify any version of the indexed text collection.
The index is based on the dynamic full-text indexes by Chan et al. [1] and Navarro and
Mäkinen [2] and makes use of persistent data structures techniques to keep track of the
versions of the collection in all data structures. We also present a simple variant of the above
index which we use to compare its performance. It consists of a set of separate static indexes
for the changes in the collection and achieves full persistence by maintaining a global version
tree. We present an experimental evaluation of both indexes with respect to time and space
usage for different operations.

This talk is based on the master’s thesis of Divya Venkatesan (TU Kaiserslautern and
SAP SE).
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3.25 Hashing with Linear Probing and Referential Integrity
Peter Sanders (KIT – Karlsruher Institut für Technologie, DE)
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We describe a variant of linear probing hash tables that never moves elements and thus
supports referential integrity, i.e., pointers to elements remain valid while this element is
in the hash table. This is achieved by the folklore method of marking some table entries
as formerly occupied (tombstones). The innovation is that the number of tombstones is
minimized. Experiments indicate that this allows an unbounded number of operations with
bounded overhead compared to linear probing without tombstones (and without referential
integrity).

3.26 Cardinality Estimation: A Poster Child for Algorithm Science
Robert Sedgewick (Princeton University, US)

License Creative Commons BY 3.0 Unported license
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The problem of determining an approximate count of the number of items in a data stream
ha a rich history, dating back to a paper by Flajolet and Martin in the 1980s. This talk
surveys the useful methods that have been invented, focusing on algorithms developed by
Flajolet and co-authors that culminated in the HyperLogLog algorithm. These algorithms
are characterized by careful analysis validated by experimentation, and are widely used today
in cloud computing. The talk ends with a proposed new algorithm, HyperBitBit, that seems
to provide accurate estimates for large streams using very little computation per item and
only a very small amount of memory.

3.27 HAIbrid Algorithms
Siddhartha Sen (Microsoft – New York, US)
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HAIbrid (Human + AI) Algorithms synergize human solutions with AI to enhance the
performance and adaptivity of hand-designed data structures and algorithms. These data
structures and algorithms underlie our cloud storage, search, and scheduling systems. Rather
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than avoiding AI or using it blindly, we seek the right combination – a new form of human-AI
collaboration. I will describe a paradigm that combines reinforcement learning with the
ability to ask counterfactual (“what if”) questions about any decision-making algorithm,
provided there is sufficient randomness in its decisions. This paradigm can readily be applied
to data structures like skip lists and treaps which are naturally randomized. Our ultimate
goal is to create a “universal data structure” that delivers the best performance at every
point in time, for any workload, through human + AI co-design.

3.28 External Memory Output Sensitive Triangle Enumeration
Francesco Silvestri (University of Padova, IT)
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Joint work of Rasmus Pagh, Francesco Silvestri

Triangle enumeration in the external memory model has been widely studied in a worst
case scenario. It is not clear however if we can derive a more efficient algorithm whose I/O
complexity is a function of the actual number of triangles of the input graph. In this talk, I
provide a quick overview of the state-of-the-art, and describe some preliminary results on
output-sensitive triangle enumeration in the external memory model.

3.29 Concurrent Connected Components
Robert Endre Tarjan (Princeton University, US)
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Finding the connected components of a graph is one of the most basic graph problems.
Although it is easy to find components sequentially using graph search or a disjoint set
union algorithm, some important applications require finding the components of huge graphs,
making sequential algorithms too slow. We describe recent progress on concurrent algorithms
for this problem. Some simple algorithms seem surprisingly hard to analyze.

3.30 On the Hardness and Inapproximability of Recognizing Wheeler
Graphs

Sharma V. Thankachan (University of Central Florida – Orlando, US)

License Creative Commons BY 3.0 Unported license
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Main reference Daniel Gibney, Sharma V. Thankachan: “On the Hardness and Inapproximability of Recognizing

Wheeler Graphs”, CoRR, Vol. abs/1902.01960, 2019.
URL https://arxiv.org/abs/1902.01960

In recent years the relationship between a newly defined class of graphs and several important
string indexing structures has been discovered. This class of graphs, known as Wheeler
graphs, were shown by Gagie it et al. to model de Bruijn graphs, generalized compressed
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suffix arrays, and several other BWT related structures. Moreover, the Wheeler graph
axioms reveal a sufficient condition for a data structure to be indexed efficiently. In our
work, we prove the NP-hardness of recognizing Wheeler graphs, in addition to providing an
exponential time algorithm for the recognition problem which has better time complexity
than the naive approach. We also show the APX-hardness of finding the minimum number of
edges that must be removed to transform a graph into a Wheeler graph. On the other hand,
we demonstrate that the dual of this optimization problem, finding the maximal Wheeler
graph, admits a constant approximation.

3.31 Entropy Trees & Range-Minimum Queries in Optimal
Average-Case Space

Sebastian Wild (University of Waterloo, CA)
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Main reference J. Ian Munro, Sebastian Wild: “Entropy Trees and Range-Minimum Queries In Optimal

Average-Case Space”, CoRR, Vol. abs/1903.02533, 2019.
URL https://arxiv.org/abs/1903.02533

The range-minimum query (RMQ) problem is a fundamental data structuring task with
numerous applications. Despite the fact that succinct solutions with worst-case optimal
2n+o(n) bits of space and constant query time are known, it has been unknown whether such
a data structure can be made adaptive to the reduced entropy of random inputs (Davoodi
et al. 2014). We construct a succinct data structure with the optimal 1.73n+ o(n) bits of
space on average for random RMQ instances, settling this open problem. Our solution relies
on a compressed data structure for binary trees of independent interest.

References
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3.32 Mining Subgraphs from a Big Graph: Solution and Challenges
Da Yan (The University of Alabama – Birmingham, US)
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Tan: “T-thinker: a task-centric distributed framework for compute-intensive divide-and-conquer
algorithms”, in Proc. of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February 16-20, 2019, pp. 411–412,
ACM, 2019.

URL https://doi.org/10.1145/3293883.3295709

The problem of mining subgraphs from a big data graph finds numerous applications including
social community detection and finding patterns from biological networks. Due to the high
computational complexity of this problem, parallel and distributed computing is essential in
order to scale to big graphs. However, existing cloud computing models such as MapReduce
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and Google’s Pregel are IO-bound and severely underutilize CPU cores when applied to this
problem. This talk describes a new framework called G-thinker for large-scale graph mining,
by briefly overviewing the parallel data structures used in G-thinker’s design. G-thinker has
been open-sourced at http://www.cs.uab.edu/yanda/gthinker. This talk will also bring some
design challenges found during the development of G-thinker for open discussion.
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