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Abstract
Document exchange and error correcting codes are two fundamental problems regarding communica-
tions. In the first problem, Alice and Bob each holds a string, and the goal is for Alice to send a
short sketch to Bob, so that Bob can recover Alice’s string. In the second problem, Alice sends a
message with some redundant information to Bob through a channel that can add adversarial errors,
and the goal is for Bob to correctly recover the message despite the errors. In both problems, an
upper bound is placed on the number of errors between the two strings or that the channel can add,
and a major goal is to minimize the size of the sketch or the redundant information. In this paper
we focus on deterministic document exchange protocols and binary error correcting codes.

Both problems have been studied extensively. In the case of Hamming errors (i.e., bit substitutions)
and bit erasures, we have explicit constructions with asymptotically optimal parameters. However,
other error types are still rather poorly understood. In a recent work [7], the authors constructed
explicit deterministic document exchange protocols and binary error correcting codes for edit errors
with almost optimal parameters. Unfortunately, the constructions in [7] do not work for other
common errors such as block transpositions.

In this paper, we generalize the constructions in [7] to handle a much larger class of errors.
These include bursts of insertions and deletions, as well as block transpositions. Specifically, we
consider document exchange and error correcting codes where the total number of block insertions,
block deletions, and block transpositions is at most k ≤ αn/ logn for some constant 0 < α < 1. In
addition, the total number of bits inserted and deleted by the first two kinds of operations is at most
t ≤ βn for some constant 0 < β < 1, where n is the length of Alice’s string or message. We construct
explicit, deterministic document exchange protocols with sketch size O((k logn+ t) log2 n

k log n+t
) and

explicit binary error correcting code with O(k logn log log logn+ t) redundant bits. As a comparison,
the information-theoretic optimum for both problems is Θ(k logn+ t). As far as we know, previously
there are no known explicit deterministic document exchange protocols in this case, and the best
known binary code needs Ω(n) redundant bits even to correct just one block transposition [23].1
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1 We note that by combining the techniques in [14] and [15], one can get an explicit binary code that
corrects k block transpositions with Õ(

√
kn) redundant bits. However to our knowledge this result has

not appeared anywhere in the literature, and moreover it requires at least Ω̃(
√
n) redundant bits even

to correct one block transposition.
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1 Introduction

In communications and more generally distributed computing environments, there often
arise questions regarding the synchronization of files or messages. For example, a message
sent from one party to another party through a channel may get modified by channel noise
or adversarial errors, and files stored on distributed servers may become out of sync due
to different edit operations by different users. In many situations, these questions can be
formalized in the framework of the following two fundamental problems.

Document exchange. In this problem, two parties Alice and Bob each holds a string x
and y, and the two strings are within distance k in some metric space. The goal is for
Alice to send a short sketch to Bob, so that Bob can recover x based on his string y and
the sketch.
Error correcting codes. In this problem, two parties Alice and Bob are linked by a channel,
which can change any string sent into another string within distance k in some metric
space. Alice’s goal is to send a message to Bob. She does this by sending an encoding of
the message through the channel, which contains some redundant information, so that
Bob can recover the correct message despite any changes to the codeword.

These two problems are closely related. For example, in many cases a solution to the
document exchange problem can also be used to construct an error correcting code, but the
reverse direction is not necessarily true. In both problems, a major goal is to is to minimize
the size of the sketch or the redundant information. For applications in computer science,
we also require the computations of both parties to be efficient, i.e., in polynomial time of
the input length. In this case we say that the solutions to these problems are explicit. Here
we focus on deterministic document exchange protocols and error correcting codes with a
binary alphabet, arguably the most important setting in computer science.

Both problems have been studied extensively, but the known solutions and our knowledge
vary significantly depending on the distance metric in these problems. In the case of
Hamming distance (or Hamming errors), we have a near complete understanding and
explicit constructions with asymptotically optimal parameters. However, for other distance
metrics/error types, our understanding is still rather limited.

An important generalization of Hamming errors is edit errors, which consist of bit
insertions and deletions. These are strictly more general than Hamming errors since a bit
substitution can be replaced by a deletion followed by an insertion. Edit errors can happen
in many practical situations, such as reading magnetic and optical media, mutations in gene
sequences, and routing packets in Internet protocols. However, these errors are considerably
harder to handle, due to the fact that a single edit error can change the positions of all the
bits in a string.
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Non-explicitly, by using a greedy graph coloring algorithm or a sphere packing argument,
one can show that the optimal size of the sketch in document exchange, or the redundant
information in error correcting codes is roughly the same for both Hamming errors and edit
errors. Specifically, suppose that Alice’s string or message has length n and the distance
bound k is relatively small (e.g., k ≤ n/4), then for both Hamming errors and edit errors, the
optimal size in both problems is Θ(k log(nk )) [19]. For Hamming errors, this can be achieved
by using sophisticated linear Algebraic Geometric codes [16], but for edit errors the situation
is quite different. We now describe some of the previous works regarding both document
exchange and error correcting codes for edit errors.

Document exchange

Orlitsky [21] first studied the document exchange problem for generally correlated strings
x, y. Using the greedy graph coloring algorithm mentioned before, he obtained a determin-
istic protocol with sketch size O(k logn) for edit errors, but the running time is exponen-
tial in k. Subsequent improvements appeared in [9], [17], and [18], achieving sketch size
O(k log(nk ) logn) [17] and O(k log2 n log∗ n) [18] with running time Õ(n). A recent work by
Chakraborty et al. [5] further obtained sketch size O(k2 logn) and running time Õ(n), by
using a clever randomized embedding from the edit distance metric to the Hamming distance
metric. Based on this work, Belazzougui and Zhang [2] gave an improved protocol with
sketch size O(k(log2 k + logn)), which is asymptotically optimal for k = 2O(

√
logn). The

running time in [2] is Õ(n+ poly(k)).
Unfortunately, all of the above protocols, except the one in [21] which runs in exponential

time, are randomized. Although randomized protocols are still useful in practice, having
deterministic ones would certainly bring much more benefits. Furthermore, randomized
protocols are also not suitable for the applications in constructing error correcting codes.
However, designing an efficient deterministic protocol appears quite tricky, and it was not
until 2015 when Belazzougui [1] gave the first deterministic protocol even for k > 1. The
protocol in [1] has sketch size O(k2 + k log2 n) and running time Õ(n).

Error correcting codes

As fundamental objects in both theory and practice, error correcting codes have been studied
extensively from the pioneering work of Shannon and Hamming. While great success has
been achieved in constructing codes for Hamming errors, the progress on codes for edit errors
has been quite slow despite much research. A work by Levenshtein [19] in 1966 showed that
the Varshamov-Tenengolts code [22] corrects one deletion with an optimal redundancy of
roughly logn bits, but even correcting two deletions requires Ω(n) redundant bits. In 1999,
Schulman and Zuckerman [23] gave an explicit asymptotically good code, that can correct
up to Ω(n) edit errors with O(n) redundant bits. However the same amount of redundancy
is needed even for smaller number of errors. For more earlier works on this subject, we refer
the reader to the survey by Mercier et al. [20].

In recent years there have been several works trying to improve the situation. Specifically,
a line of work by Guruswami et. al [11], [10], [4] constructed explicit codes that can correct
1 − ε fraction of edit errors with rate Ω(ε5) and alphabet size poly(1/ε); and codes that
can correct 1 − 2

t+1 − ε fraction of errors with rate (ε/t)poly(1/ε) for a fixed alphabet size
t ≥ 2. Another line of work by Haeupler et al. [13], [14], [6] introduced and constructed a
combinatorial object called synchronization string, which can be used to transform standard
error correcting codes into codes for edit errors by increasing the alphabet size. Via this

ICALP 2019
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transformation, [13] achieved explicit codes that can correct δ fraction of edit errors with
rate 1− δ− ε and alphabet size exponential in 1

ε , which approaches the singleton bound. All
of these works however require a relatively large alphabet size.

In the case of binary alphabets, for any fixed constant k, a recent work by Brakensiek et. al
[3] constructed an explicit code that can correct k edit errors with O(k2 log k logn) redundant
bits. This is asymptotically optimal when k is a fixed constant, but the construction in
[3] only works for constant k, and breaks down for larger k (e.g., k = logn). Based on his
deterministic document exchange protocol, Belazzougui [1] also gave an explicit code that
can correct up to k edit errors with O(k2 + k log2 n) redundant bits. Finally, the work by
Haeupler et. al [15] constructed explicit codes that can correct δ fraction of edit errors with
rate 1−Θ(

√
δ log(1/δ)), whereas the (non-explicit) optimal rate is 1−Θ(δ log(1/δ)).

In a very recent work by the authors [7], we significantly improved the situation. Specific-
ally, we constructed an explicit document exchange protocol with sketch size O(k log2 n

k ),
which is optimal except for an additional log n

k factor. This also implies an explicit binary
code that can correct δ fraction of edit errors with rate 1−Θ(δ log2(1/δ)), which is optimal
up to an additional log(1/δ) factor. These two results are also independently obtained by
Haeupler [12]. We also constructed explicit codes for k edit errors with O(k logn) redundant
bits, which is optimal for k ≤ n1−α, any constant 0 < α < 1. These results bring our
understanding of document exchange and error correcting codes for edit errors much closer
to that of standard Hamming errors.

However, the constructions in [7] and [12] do not work for other common types of errors,
such as block transpositions. Given any string x, a block transposition takes an arbitrary
substring z of x, cuts it to make x become x̃, and then finds a different position in x̃ and
insert z as a block into x̃. These errors happen frequently in distributed file systems and
Internet protocols. For example, it is quite common that a user, when editing a file, moves a
whole paragraph in the file to somewhere else; and in Internet routing protocols, packets can
often get rearranged during the process. Block transpositions also arise naturally in biological
processes, where a subsequence of genes can be moved in one step during mutation. In the
setting of document exchange or error correcting codes, it is easy to see that even a single
transposition of a block with length t can result in 2t edit errors, thus a naive application of
document exchange protocols or codes for edit errors will result in very bad parameters.

Model of the adversary: block insertions, deletions, and transpositions

We consider edit errors that happen in bursts. This kind of errors is also pretty common,
as most errors that happen in practice, such as in wireless or mobile communications and
magnetic disk readings, tend to be concentrated. We model such errors as block insertions
and deletions, where in one operation the adversary can insert or delete a whole block of
bits. It is again easy to see that this is indeed a generalization of standard edit errors.

For some parameters k and t and an alphabet Σ, a (k, t) block edit adversary is allowed
to perform three kinds of operations: block insertion, block deletion and block transposition.
The adversary is allowed to perform at most k such operations, while the total number of
symbols inserted/deleted by the first two operations is at most t. We also use (k, t) block
edit errors to denote errors introduced by such an adversary. All our results focus on the
case of binary alphabet, but in our protocols and analysis we will be using larger alphabets.

We note that by the result of Schulman and Zuckerman [23], to correct Ω(n/ logn) block
transpositions one needs at least Ω(n) redundant bits. Thus we only consider k ≤ αn/ logn
for some constant 0 < α < 1. Similarly, we only consider t ≤ βn for some constant 0 < β < 1
since otherwise the adversary can simply delete the whole string. We also note the following
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subtle difference between the three block edit operations. While we need a bound t on
the total number of bits that the adversary can insert or delete, for block transposition an
adversary can choose to move an arbitrarily long substring. Therefore, we need to consider
the three operations separately, and cannot simply replace a block transposition by a block
deletion followed by a block insertion.

Edit errors with block transpositions have been studied before in several different contexts.
For example, Shapira and Storer [24] showed that finding the distance between two given
strings under this metric is NP-hard, and they gave an efficient algorithm that achieves
O(logn) approximation. Interestingly, a work by Cormode and Muthukrishnan [8] showed
that this metric can be embedded into the L1 metric with distortion O(logn log∗ n); and
they used it to give a near linear time algorithm that achieves O(logn log∗ n) approximation
for this distance, something currently unknown for the standard edit distance. Coming back
to document exchange and error correcting codes, in our model, we show in the appendix
that non-explicitly, the information optimum for both the sketch size of document exchange,
and the redundancy of error correcting codes, is Θ(k logn+ t).

Related previous work on block transpositions

When it comes to more general errors such as block transpositions, as far as we know, there are
no known explicit deterministic document exchange protocols. The only known randomized
protocols which can handle edit errors as well as block transpositions are the protocol of
[17], which has sketch size O(k log(nk ) logn); and the protocol of [18], which has sketch size
Õ(k log2 n). The protocol of [17] uses a recursive tree structure and random hash functions,
while the protocol of [18] is based on the embedding of Cormode and Muthukrishnan [8]. We
stress that both of these protocols are randomized, and there are very good reasons why it is
not easy to modify them into deterministic ones. Specifically, unlike in our previous work [7]
and the work of Haeupler [12], a direct derandomization of the hash functions used in [17]
(for example by using almost k-wise independent sample space) does not give a deterministic
protocol, because block transpositions will make the computation of a matching problematic.
We shall discuss this in more details when we give an overview of our techniques. On the
other hand, the embedding of Cormode and Muthukrishnan [8] results in an exponentially
large dimension, thus directly sending a sketch deterministically will result in a prohibitively
large size. This is why the protocol of [18] has to perform a dimension reduction first, which
is necessarily randomized.

Similarly, the only previous explicit codes that can handle edit errors as well as block
transpositions are the work of Schulman and Zuckerman [23], and the work of Haeupler et al.
[14]. Both can recover from Ω(n/ logn) block transpositions with Ω(n) redundant bits ([14]
can also recover from block replications), but [23] has a binary alphabet while [14] has a
constant size alphabet. However the work of Schulman and Zuckerman [23] also needs Ω(n)
redundant bits even to correct one block transposition. We further note that by combining
the techniques in [14] and [15], one can get an explicit binary code that corrects k block
transpositions with Õ(

√
kn) redundant bits. However to our knowledge this result has not

appeared anywhere in the literature, and moreover it requires at least Ω̃(
√
n) redundant bits

even to correct one block transposition. We note that however none of the previous works
mentioned studied edit errors that can allow block insertions/deletions.

ICALP 2019
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1.1 Our results

In this paper we construct explicit deterministic document exchange protocols, and error
correcting codes for adversaries discussed above. We have the following theorems.

I Theorem 1. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N with
k ≤ αn/ logn, t ≤ βn, there exists an explicit binary document exchange protocol with sketch
size O((k logn+ t) log2 n

k logn+t ), against a (k, t) block edit adversary.

This is the first explicit, deterministic document exchange protocol for block edit errors.
The sketch size matches the randomized protocols of [17] and [18] up to an additional
log n

k logn+t factor, and is optimal up to an additional log2 n
k logn+t factor. Using this protocol,

we can construct the following error correcting code.

I Theorem 2. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N with
k ≤ αn/ logn, t ≤ βn, there exists an explicit binary error correcting code with message
length n and codeword length n + O((k logn + t) log2 n

k logn+t ), against a (k, t) block edit
adversary.

For small k, t we can actually achieve the following result, which gives better parameters.

I Theorem 3. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N with
k ≤ αn/ logn, t ≤ βn, there exists an explicit binary code with message length n and
codeword length n+O(k logn log log logn+ t), against a (k, t) block edit adversary.

In the case of small k, t, these results significantly improve the result of Schulman and
Zuckerman [23], which needs Ω(n) redundant bits even to correct one block transposition,
and the result obtained by combining the techniques in [14] and [15], which needs Ω̃(

√
n)

redundant bits even to correct one block transposition. The redundancy here is also optimal
up to an extra log log logn factor or log2 n

k logn+t factor.
As a special case, we obtain the following corollaries for standard edit errors with block

transpositions.

I Corollary 4. There exist a constant α ∈ (0, 1) such that for every n, k ∈ N with
k ≤ αn/ logn, there exists an explicit binary document exchange protocol with sketch size
O(k logn log2 n

k logn ), against an adversary who can perform k edit operations or block trans-
positions.

I Corollary 5. There exist a constant α ∈ (0, 1) such that for every n, k ∈ N with
k ≤ αn/ logn, there exists an explicit binary error correcting code with message length
n and codeword length min{n+O(k logn log2 n

k logn ), n+O(k logn log log logn)}, against an
adversary who can perform k edit operations or block transpositions.

I Remark 6. As illustrated by our theorems and corollaries, the sketch size in our document
exchange protocol or the number of redundant bits in our error correcting codes do not
depend on the size of a block in block transpositions, they only depend on the number of
such operations performed. In contrast, the sketch size or the number of redundant bits do
depend on the size of a block in block insertions or deletions. This again shows that we
cannot simply treat a block transposition as a block deletion followed by a block insertion,
because that will lead to a sketch size dependent on the block size.
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2 Document Exchange

This section describes the construction of our document exchange protocol and its proof in
sketch. Details are deferred to the appendix.

IDefinition 7 (Collision free hash functions). Given n, p, q ∈ N, p ≤ n and a string x ∈ {0, 1}n,
we say a hash function h : {0, 1}p → {0, 1}q is collision free (for x), if for every i, j ∈ [n−p+1],
h(x[i, i+ p)) = h(x[j, j + p)) if and only if x[i, i+ p) = x[j, j + p).

I Theorem 8. There exists an algorithm which, on input n, p, q ∈ N, p ≤ n, q = c0 logn for
large enough constant c0, x ∈ {0, 1}n, outputs a description of a hash function h : {0, 1}p →
{0, 1}q that is collision free for x, in time poly(n), where the description length is O(logn).

Also there is an algorithm which, given the description of h and any u ∈ {0, 1}p, can
output h(u) in time poly(n).

Proof Sketch. The construction uses almost κ-wise independence generator to get the hash
functions, assuring no pair of blocks of x collides. The number of pairs is O(n2). The seed
length is O(logn). So we can do an exhaustive search to find such sequence of collision free
hash functions. For details, see the full version. J

I Definition 9 (Matching). Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a function h : {0, 1}p →
{0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , a matching (may not be monotone) between
x and y under h is a sequence of matches (pairs of indices) w = ((i1, j1), . . . (i|w|, j|w|)) s.t.

for every k ∈ [|w|],
ik = 1 + plk ∈ [n] for some lk,
jk ∈ [n′],
h(x[ik, ik + p)) = h(y[jk, jk + p)),

i1, . . . , i|w| are distinct.

A non-overlapping matching is a matching with one more restriction.
Intervals [jk, jk + p), k ∈ [|w|], are disjoint.

When considering overlaps, the matching has overlapping degree d, if each bit of y appears
in at most d matched pairs for some small number d.

For a match (i, j), it matches two intervals, one from x, the other from y. When we say the
y’s interval (of the match (i, j)), we mean [j, j + p), and similarly the x’s interval is [i, i+ p).
A match (i, j) in a matching is called a wrong match (or wrong pair) if x[i, i+p) 6= y[j, j+p).
Otherwise it is called a correct match (or correct pair). A pair of indices (i, j) is called a
potential match between x and y if h(x[i, i+ p)) = h(y[j, j + p)). It may be wrong because
x[i, i+ p) may not be y[j, j + p). When x, y are clear from the context we simply say (i, j) is
a potential match.

To compute a monotone non-overlapping matching we can use the dynamic programming
method in [7]. But our matching is not necessarily monotone. So this raises the question of
how hard this problem is.

It seems difficult to find a polynomial algorithm which can exactly compute it. So instead
we use constant approximation techniques. There’re two difficulties at the first thought. One
is that if we compute the non-overlapping matching over the entire strings, then a constant
approximation is too bad since there will be O(n) unmatched blocks. So for each level, we
restrict our attention to blocks that are uncovered and wrongly recovered (but discovered
by us). The other problem is that we need the approximation rate to be a large enough
constant. To achieve this goal, we actually computing matchings with constant degree.

We start from a 1/3-approximation algorithm, which is greedy.

ICALP 2019
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I Construction 10. Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a polynomial time computable
function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , we have the following
1/3-approximation algorithm for computing the non-overlapping matching.
1. Let the sequence of matches w be empty;
2. Find i = 1 + pl ∈ [n] and j ∈ [n′], where l ∈ N, s.t.

h(x[i, i+ p)) = h([j, j + p)),
i is not in any match (as the first entry) of the current w,
[j, j + p) does not overlap with any [j′, j′ + p) for any j′ as the second entry in any
matches of the current w;

3. If there is such a pair of indices i, j, then add the match (i, j) to w and go to step 2;
Otherwise, output w and stop.

I Lemma 11. Construction 10 gives a 1/3-approximation algorithm for computing the
non-overlapping matching.

Proof deferred to the full version.
Next we give an explicit algorithm which computes a even larger matching (better

approximation), but it allows overlaps.

I Construction 12. Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a (polynomial time computable)
function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , we have the following
algorithm.
1. Let the matching w be empty, set S = {i = 1 + pl | l ∈ N, i ∈ [n]}, integer c = 0;
2. Conduct Construction 10 to compute a matching w′ between xS and y under h. Here xS

is the projection of x on intervals in set S;
3. Let w = w ∪ w′;
4. Let S = S \ {u | ∃(u, v) ∈ w};
5. c = c+ 1;
6. If c ≥ 3, output w; Otherwise go to step 2.

Note that Construction 12 is in polynomial time since it simply conducts Construction
10 for 3 times and after each conduction it removes matched blocks of x and only considers
the remaining blocks in the next iteration. So we only need to show its correctness.

I Lemma 13. Construction 12 computes a degree 3 overlapping matching w between x and
y under h, such that |w| ≥ 2/3|w∗|, where w∗ is the maximum non-overlapping matching
between x and y under h.

Proof. Let wi, i = 1, 2, 3 be the matching the algorithm computes after round i. Also let
Si, i = 1, 2, 3 be the set S after the ith round.

By Lemma 11, |w1| ≥ 1/3|w∗|. The number of unmatched blocks is n̄−|w1| ≤ n̄−1/3|w∗|,
where n̄ = bn/pc is the total number of blocks of x.

The maximum matching between xS1 and y is at least |w∗| − |w1|. This is because that,
each of the matched blocks of x by w1, should be among the x’s blocks in the matches of w∗.
There are at most |w1| of them. So there are still |w∗| − |w1| remaining matches in w∗ which
corresponds to blocks in xS1 .

Again by Lemma 11, for i ≥ 2, at least 1/3(|w∗| − |wi−1|) blocks of xSi−1 will be matched
in the ith round.
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Thus

|wi| ≥ |wi−1|+ 1/3(|w∗| − |wi−1|) (1)
= 1/3|w∗|+ 2/3|wi−1| (2)
≥ (1− (2/3)i−1)|w∗|+ (2/3)i−1|w1| (3)
≥ (1− (2/3)i−1)|w∗|+ (1/3)(2/3)i−1|w∗| (4)
= (1− (2/3)i)|w∗|. (5)

Inequality 1 is due to Lemma 11 as explained above. Equality 2 is due to a direct computation.
3 is by recursively applying 1 and 2 from i− 1 to 2. 4 is because |w1| ≥ 1/3|w∗|.

As a result, |w3| ≥ 19/27|w∗| ≥ 2/3|w∗|.
Note that we apply Construction 10 for 3 times, where in each time, it gives a non-

overlapping matching. So each entry of y is in at most one of the matches in that round. So
finally we get a degree 3 overlapping matching. J

We now give the following document exchange protocol.

I Construction 14. The protocol works for every input length n ∈ N, every (k1, t) block-
insertions/deletions k2 block-transpositions, k1, k2 ≤ αn/ logn, t ≤ βn, for some constant
α, β. (If k1 or k2 > αn/ logn, or t > βn, we simply let Alice send her input string.) Let
k = k1 + k2.

Both Alice’s and Bob’s algorithms have L = O(log n
k logn+t ) levels.

For every i ∈ [L], in the i-th level,
Let the block size be bi = n

18·2i(k+ t
log n ) , i.e., in each level, divide every block of x in the

previous level evenly into two blocks. We choose L properly s.t. bL = O(logn);
The number of blocks li = n/bi;

Alice: On input x ∈ {0, 1}n,
1. For the i-th level,

a. Construct a hash function hi : {0, 1}bi → {0, 1}b∗=Θ(logn) for x by Theorem 8.
b. Compute the sequence of hash values i.e. v[i] = (hi(x[1, 1 + bi)), hi(x[1 + bi, 1 +

2bi)), . . . , hi(x[1 + (li − 1)bi, libi)));
c. Compute the redundancy z[i] ∈ ({0, 1}b∗)Θ((k+ t

log n )i) for v[i] by using an algebraic
geometry code2, where the code has distance at least 180(k + t

logn )i;
2. Compute the redundancy zfinal ∈ ({0, 1}bL)Θ((k+ t

log n ) logL) for the blocks of the L-th level
by using an algebraic geometry code2., where the code has distance at least 90(k + t

logn )L;
3. Send h = (h1, . . . , hL), z = (z[1], z[2], . . . , z[L]), v[1], zfinal to Bob.

Bob: On input y ∈ {0, 1}O(n) and received h, z, v[1], zfinal,
1. Create x̃ ∈ {0, 1, ∗}n (i.e. Bob’s current version of Alice’s x), initiating it to be

(∗, ∗, . . . , ∗);
2. For the i-th level where 1 ≤ i ≤ L− 1,

a. Apply the decoding of the algebraic geometry code on hi(x̃′[1, 1 + bi)), hi(x̃′[1 + bi, 1 +
2bi)), . . . , hi(x̃′[1 + (li − 1)bi, libi)), z[i] to get the sequence of hash values v[i]. Note
that v[1] is received directly, thus Bob does not need to compute it;

b. Let S = {j ∈ [n] | hi(x̃[1 + (j − 1)bi, 1 + jbi)) 6= v[i][j] or x[1 + (j − 1)bi, 1 + jbi) =
(∗, . . . , ∗)};

2 See the full version https://arxiv.org/abs/1809.00725.
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c. Compute the matching wi = ((p1, p
′
1), . . . , (p|w|, p′|w|)) ∈ ([li]× [|y|])|wi| between xS and

y under hi, using v[i], by Lemma 12;
d. Evaluate x̃ according to the matching, i.e. let x̃[pj , pj + bi) = y[p′j , p′j + bi), where

pj , p
′
j ∈ wi, j ∈ [|wi|];

3. In the L’th level, apply the decoding of the algebraic geometry code on the blocks of x̃ and
zfinal to get x;

4. Return x.

I Lemma 15. For every i, the maximum non-overlapping matching between xS and y under
hi has size at least |S| − (2k1 + 3k2 + t/ logn).

I Lemma 16. For every i, |wi| ≥ 2/3(|S| − (2k1 + 3k2 + t/ logn)).

I Lemma 17. For every i, if v[1], . . . , v[i] are correctly recovered, then in the i-th level the
number of wrongly recovered blocks of x is at most 3i(2k1 + 3k2 + t

logn ).

Proof. Consider the matching w∗ corresponding to the current recovering of x after i levels,
i.e., this matching is generated at level 1 and adjusted level by level. In level j, we first use
hash values to test every block to see if it is correctly recovered. For wrongly recovered blocks
we delete their corresponding matches. Then for remaining wrongly recovered blocks and
unrecovered blocks, we compute a matching wj for them, and add all matches in wj to w∗.

For wj , j ≤ i, after level i, the number of wrongly recovered blocks in level i caused by
(the remaining part of) wj is at most 3(2k1 + 3k2 + t

logn ).
This is because in wj is constructed by Construction 12, which is a union of 3 matchings.

Each matching of them is non-overlapping. We only need to show that wj , after eliminating
detected wrong pairs in these i levels, contains at most 2k1+3k2+ t

logn wrong matches between
x’s and y’s blocks in the i-th level. To see this, first note that these matches’ y intervals
are only from blocks which are modified from x’s blocks or newly inserted. For each block-
insertion of tj bits, it can contribute at most dtj/bie+ 1 wrong matches. Each block-deletion
can contribute at most 2 wrong matches. So totally block insertions/deletions can cause∑k1
j=1(dtj/bie+ 1) ≤ 2k1 + t/bi wrong matches. On the other hand, k2 block-transpositions

can contribute at most 3k2 wrong matches, because 1 block-transposition can only cause 1
wrong match when deleting the block and inserting the block to its destination may contribute
2 wrong matches. Hence the total number wrong matches is at most 2k1 + 3k2 + t/bi.

Since there are i matchings w1, . . . , wi, each containing 3 non-overlapping matchings, the
number of wrongly recovered blocks remaining in w∗ is at most 3i(2k1 + 3k2 + t

logn ). J

I Lemma 18. For every i, if v[1], . . . , v[i] are correctly recovered, then in level i, the number
of unrecovered blocks is at most 36i(k + t

logn ).

Proof is in the full version.

I Lemma 19. Bob can recover x correctly.

Proof. We use induction to show that for every i ∈ [L], v[i] can be computed correctly by Bob.
For the first level, v[1] is directly received from Alice.
Assume v[1], . . . , v[i − 1] can be computed correctly. By Lemma 18, the number of

unrecovered blocks after level i − 1 is at most 36(i − 1)(k + t/ logn). By Lemma 17, the
number of wrongly recovered blocks is at most 9(i− 1)(k + t/ logn). So the total number of
wrongly recovered and unrecovered blocks is at most

2×(36(i−1)(k+t/ logn)+9(i−1)(k+t/ logn)) ≤ 90(i−1)(k+t/ logn) < 90i(k+t/ logn).



K. Cheng, Z. Jin, X. Li, and K. Wu 37:11

Note that with the redundancy z[i], its corresponding code has distance at least 180(k+t/bi)i.
So Bob can recover v[i] correctly by the property of the algebraic geometry code.

As a result, at level L. By Lemma 17, the number of wrongly recovered blocks is at
most 3L(2k1 + 3k2 + t

bL
). By Lemma 18 the number of unrecovered blocks, is at most

36L(k + t/ logn). So the total number of wrongly recovered and unrecovered blocks is at
most 45L(k+ t/ logn). Note that the code distance corresponding to the redundancy zfinal is
at least 90(k+ t/bL)L. So all blocks of x can be recovered correctly by using the decoding of
the algebraic geometry code. J

Communication Complexity and running time computation are in the full version.
To this end, we showed Theorem 1.

3 Error Correcting Codes

We now briefly describe how to construct an error correcting code from a document exchange
protocol for block edit errors. Similar to the construction in [7], our starting point is to
first encode the sketch of the document exchange protocol using the code by Schulman and
Zuckerman [23], which can resist edit errors and block transpositions. Then we concatenate
the message with the encoding of the sketch. When decoding, we first decode the sketch,
then apply the document exchange protocol on Bob’s side to recover the message.

However, here we have an additional issue with this approach: a block transposition may
move some parts of the encoding of the sketch to somewhere in the middle of the message,
or vice versa. In this case, we won’t be able to tell which part of the received string is the
encoding of the sketch, and which part is the original message.

To solve this issue, we use a fixed string buf = 0`buf ◦ 1 as a buffer to mark the encoding
of the sketch, for some `buf = O(logn). More specifically, we evenly divide the encoding of
the sketch into small blocks of length `buf , and insert buf before every block. Note that this
only increases the length of the encoding of the sketch by a constant factor. The reason we
use such a small block length is that, even if the adversary can forge or destroy some buffers,
the total number of bits inserted or deleted caused by this is still small. In fact, we can
bound this by O(k) block insertions/deletions with at most O(k logn) bits inserted/deleted,
for which both the sketch and the encoding of the sketch can handle. When decoding, we
first recognize all the buf’s. Then we take the `buf bits after each buf to form the decoding of
the sketch, and take the remaining bits as the message.

Unfortunately, this approach introduces two additional problems here. The first problem
is that the original message may contain buf as a substring. If this happens then in the
decoding procedure again we will be taking part of the message to be in the encoding of the
sketch. The second problem is that the small blocks of the encoding of the sketch may also
contain buf. In this case we will be deleting information from the encoding of the sketch,
which causes too many edit errors.

To address the first problem, we turn the original message into a pseudorandom string
by computing the XOR of the message with the output of an appropriate pseudorandom
generator that has seed length O(logn). We show that with high probability buf does not
appear as a substring in the XOR. We can then exhaustively search for a seed that satisfies
this requirement, and append the seed to the sketch of the document exchange protocol.

To address the second problem, we choose the length of the buffer to be longer than the
length of each block in the encoding of the sketch, so that buf doesn’t appear as a substring
in any block. This is exactly why we choose the length of the buffer to be `buf + 1 while we
choose the length of each block to be `buf .
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If we directly apply our document exchange protocol to the construction above, we obtain
an error correcting code with O((k logn+ t) log2 n

k logn+t ) redundant bits. Next we discuss
how to achieve better redundancy for small k and t.

We first briefly describe the construction of the explicit binary code for k edit errors with
redundancy O(k logn) in [7]. The construction in [7] starts by transforming the message
into a string with the B-distinct property: any two substrings of length some B = O(logn)
are distinct. This is obtained by computing the XOR of the message with the output of an
appropriately designed pseudorandom generator. The construction then designs a document
exchange protocol for such a string, and encodes the sketch of the document exchange
protocol to give an error correcting code.

The document exchange protocol for a B-distinct string in [7] actually consists of two
stages: in stage I, Alice uses a fixed pattern p to divide her string into blocks of size poly(logn).
Next, Alice sends a sketch of size O(k logn) to help Bob recover the partition of her string.
To achieve this, Bob also divides his string into blocks in the same way that Alice does.
Alice creates a vector V where each entry of V is indexed by a binary string of length B.
Specifically, Alice looks at each block in her partition, and stores the B-prefix (the prefix of
length B) of its next block and the length of the current block in the entry of V indexed by
the B-prefix of the current block. This ensures each entry of the vector V has only O(logn)
bits. Bob creates a vector V ′ in the same way. [7] shows that V and V ′ differ in at most O(k)
entries, thus Alice can send a sketch of size O(k logn) using the Reed-Solomon Code to help
Bob recover V from V ′. Once this is done, Bob can use V to obtain a guess of Alice’s string.

Stage II consists of several levels. In each level, both parties divide each of their blocks
evenly into O(log0.4 n) smaller blocks, and Alice generates a sequence of special hash functions
called ε-synchronization hash functions. The nice properties of these hash functions guarantee
that in each level Alice can send O(k logn) bits to Bob, so that Bob can recover all but O(k)
blocks of Alice’s string. This stage ends in O(loglog0.4 n(poly(logn))) = O(1) levels, where in
the last level Alice can simply send a sketch of size O(k logn) for Bob to recover her string x.

Checking these two stages, it turns out that stage I can be modified to work for block
edit errors as well. Intuitively, this is because it is still true that such errors won’t cause too
many different blocks between V and V ′. On the other hand, stage II becomes problematic,
since the use of ε-synchronization hash functions crucially relies on the monotone property
of standard edit errors. Allowing block transpositions ruins this property, and it is not clear
how to give suitable ε-synchronization hash functions to work in this case.

To solve the issue, in stage II, we can apply the deterministic document exchange protocol
we developed earlier. This implies an error correcting code of redundancy O(k logn log logn+
t). However, we show that we can further reduce the redundancy to O(k logn log log logn+ t)
by using the string parsing idea in [8] to improve the partition in Stage I.

Given an input string, string parsing builds a tree where each leaf corresponds to a symbol
of the input string, and each non-leaf node corresponds to a substring of the input string.
Each node of the tree is associated with a label, which is the hash value of its corresponding
substring under some hash function. The structure of the tree only depends locally on the
input string, e.g., an edit error on the input string only affects O(logn log∗ n) nodes.

More specifically, string parsing builds the tree bottom-up from one level to another.
The labels in the bottom level are obtained by directly applying the hash function to the
symbols. Then, the algorithm builds one level of the tree as follows. The labels of the nodes
in the previous level form a string of alphabet size poly(n). The algorithm first finds all
repetitive substrings in this string (we say a substring is repetitive, if it’s of the form al, for
some l ≥ 2). The remaining substrings satisfy the property that any two adjacent symbols
are different, and we say such substrings are non-repetitive. [8] then applies an alphabet
reduction algorithm to the non-repetitive substrings, and obtains a new non-repetitive string
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for each substring over the alphabet {0, 1, 2}. The alphabet reduction works in log∗ n steps,
where in each step the alphabet size is reduced from the current size a to log a. Thus in
log∗ n steps the alphabet size becomes a constant. Now for all the new strings obtained,
the algorithm finds local maximums and local minimums that are not adjacent to any local
maximum as landmarks, and partition the strings into small blocks of length 2 or 3 by using
the landmarks. Finally, for each block, the algorithm builds a new node in this level, whose
children are the nodes in the block and whose label is the hash value of the subtree.

Here, in our construction of error correcting codes, we use the idea of string parsing in
stage I to partition Alice’s string x into small blocks. Our goal is to partition the string into
blocks of length roughly Θ(logn · poly(log logn)), while an edit error on the string can only
affect a small number of contiguous blocks. In this way, stage II only takes O(log log logn)
levels and the sketch size in stage II is O(k logn log log logn+ t). Note that each node in the
parsing tree depends only locally on the input string. We use this property to bound the
number of errors among the small blocks obtained in stage I.

To achieve our goal, instead of building a full parsing tree, we only build a partial parsing
tree. That is, in each level of the parsing tree, we check the number of leaves under each
node. If a node has more than T leaves for some threshold T , we mark the node as “finish”.
We also mark a node as “frozen”, if all its adjacent nodes are marked as “finish”. For each
“finish” node, we build a new node in the next level, with the only child being this “finish”
node. We then use these “finish” nodes to divide the string into several substrings, and apply
alphabet reduction to the substrings, choose the landmarks, and partition each substring
into small blocks according to the landmarks. Then for each small block, we build a new
node in the next level, and set the children of the new node to be all nodes in the same
block. We keep doing this until each node is either marked as “finish” or “frozen”. Finally, we
merge each “frozen” node to the “finish” node on its left or right. At the end of this process,
we obtain several trees, and we partition the string x into small blocks, where each block
consists of all the leaves in a tree. To remove the O(log∗ n) factor, we only do two levels of
alphabet reduction in each level of the tree. However, this will result in an alphabet size of
O(log logn), which means the tree may have O(log logn) children. Hence, the block size may
be as large as O(T log logn). Note that each block depends on O(log T ) blocks on its left and
right, since in each level of the partial parsing tree, each node depends locally on a constant
number of adjacent nodes. We prove that, if y is obtained from x by (k, t) block edit errors,
then the partition of y can be obtained from the partition of x by (k,O(t/T + k log T )) block
edit errors over a larger alphabet. If we set T = logn, then in stage I Alice still needs to
send a sketch of O(k logn log logn+ t) bits. To further reduce the redundancy, we apply the
partial parsing tree method again with another threshold T ′ = Θ(log logn). Now the errors
are reduced to (k,O( t

TT ′ + k log T ′)) block edit errors over a larger alphabet, and the block
size increases by a O(T ′ log logn log log logn) factor, and becomes O(logn(log logn)2).

We show that now in stage I, Alice can send a sketch with O( t
TT ′ + k log T ′) ·O(logn) =

O(k logn log log logn + t) bits; and in stage II, Alice can send a sketch with
O(k logn log log logn + t) bits. So the total sketch size is still O(k logn log log logn + t).
By using the encoding of Schulman and Zuckerman [23] and the buffer buf, the final redund-
ancy of the error correcting code is also O(k logn log log logn+ t).
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