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Abstract
In the group testing problem we aim to identify a small number of infected individuals within a
large population. We avail ourselves to a procedure that can test a group of multiple individuals,
with the test result coming out positive iff at least one individual in the group is infected. With all
tests conducted in parallel, what is the least number of tests required to identify the status of all
individuals? In a recent test design [Aldridge et al. 2016] the individuals are assigned to test groups
randomly, with every individual joining an equal number of groups. We pinpoint the sharp threshold
for the number of tests required in this randomised design so that it is information-theoretically
possible to infer the infection status of every individual. Moreover, we analyse two efficient inference
algorithms. These results settle conjectures from [Aldridge et al. 2014, Johnson et al. 2019].
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1 Introduction

1.1 Background and motivation
The group testing problem goes back to the work of Dorfman from the 1940s [19]. Among a
large population a few individuals are infected with a rare disease. The objective is to identify
the infected individuals effectively. At our disposal we have a testing procedure capable of
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not merely testing one individual, but several. The test result will be positive if any one
individual in the test group is infected, and negative otherwise; all tests are conducted in
parallel. We are at liberty to assign a single individual to several test groups. The aim is
to devise a test design that identifies the status of every single individual correctly while
requiring as small a number of tests as possible.

A recently proposed test design allocates the individuals to tests randomly [7, 10, 11,
28, 32]. To be precise, given integers n,m,∆ > 0 we create a random bipartite multi-graph
by choosing independently for each of the n vertices x1, . . . , xn “on the left” ∆ neighbours
among the m vertices a1, . . . , am “on the right” uniformly at random with replacement. The
vertices x1, . . . , xn represent the individuals, the a1, . . . , am represent the test groups and an
individual joins a test group iff the corresponding vertices are adjacent. The wisdom behind
this construction is that the expansion properties of the random bipartite graph precipitate
virtuous correlations, facilitating inference.

Given n and (an estimate of) the number k of infected individuals, what is the least m
for which, with a suitable choice of ∆, the status of every individual can be inferred correctly
from the test results with high probability? Like in many other inference problems the answer
comes in two instalments. First, we might ask for what m it is information-theoretically
possible to detect the infected individuals. In other words, regardless of computational
resources, do the test results contain enough information in principle to identify the infection
status of every individual? Second, for what m does this problem admit efficient algorithms?

The first main result of this paper resolves the information-theoretic question completely.
Specifically, Aldridge, Johnson and Scarlett [11] obtained a function minf = minf(n, k)
such that for any fixed ε > 0 the inference problem is information-theoretically infeasible if
m < (1−ε)minf . They conjectured that this bound is tight, i.e., that for m > (1+ε)minf(n, k)
there is an (exponential) algorithm that correctly identifies the infected individuals with high
probability. We prove this conjecture.

Furthermore, concerning the algorithmic question, Johnson, Aldridge and Scarlett [28]
obtained a functionmalg = malg(n, k) that exceedsminf by a modest constant factor such that
for m > (1 + ε)malg certain efficient algorithms successfully identify the infected individuals
with high probability. They conjectured that SCOMP, their most sophisticated algorithm,
actually succeeds for smaller values of m. We refute this conjecture and show that SCOMP
fails to outperform a much simpler algorithm called DD.

A technical novelty of the present work is that we investigate the group testing problem
from a new perspective. While most prior contributions rely either on elementary calculations
and/or information-theoretic arguments [10, 11, 28, 38, 39], here we bring to bear techniques
from the theory of random constraint satisfaction problems [5, 31]. Indeed, group testing can
be viewed naturally as a constraint satisfaction problem: the tests provide the constraints and
the task is to find all possible ways of assigning a status (“infected” or “not infected”) to the n
individuals in a way consistent with the given test results. Since the allocation of individuals
to tests is random, this question is similar in nature to, e.g., the random k-SAT problem that
asks for a Boolean assignment that satisfies a random collection of clauses [4, 6, 16, 18]. Apart
from obtaining the aforementioned new results, this novel perspective allows for short proofs
of results that were established more laboriously in prior work. It also puts the group testing
problem in the same framework as the considerable body of recent work on other inference
problems on random graphs such as the stochastic block model (e.g., [1, 15, 17, 34, 35, 41]).

We proceed to state the main results of the paper precisely, followed by a detailed
discussion of the prior literature on group testing. An outline of the proof strategy follows
in Section 2.
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1.2 The information-theoretic threshold
Throughout the paper we labour under the assumptions commonly made in the context
of group testing; we will revisit their merit in Section 1.4. Specifically, we assume that
the number k of infected individuals satisfies k ∼ nθ for a fixed 0 < θ < 1. Moreover,
let σ ∈ {0, 1}{x1,...,xn} be a vector of Hamming weight k chosen uniformly at random.
The (one-)entries of σ indicate which of the n individuals are infected. Moreover, let
G = G(n,m,∆) signify the aforementioned random bipartite graph. Then σ induces a vector
σ̂ ∈ {0, 1}{a1,...,am} that indicates which of the m tests come out positive. To be precise,
σ̂i = 1 iff test ai is adjacent to an individual xj with σxj

= 1. For what m is it possible to
recover σ from G, σ̂? Here, we settle an important open question [28] on the sharpness of
the information-theoretic threshold. (Throughout the paper all logarithms are base e.)

I Theorem 1. Suppose that 0 < θ < 1, and ε > 0 and let

minf = minf(n, θ) = nθ(1− θ) log(n)
min

{
1, 1−θ

θ log 2
}

log 2
.

(i) If m < (1 − ε)minf(n, θ), then there does not exist any algorithm that given G, σ̂, k
outputs σ with a non-vanishing probability.

(ii) If m > (1 + ε)minf(n, θ), then there exists an algorithm that given G, σ̂ outputs σ with
high probability.

Since for θ ≤ log(2)/(1 + log(2)) the first part of Theorem 1 readily follows from a folklore
argument [20], the interesting regime is θ > log(2)/(1 + log(2)) ≈ 0.41. In this regime
Theorem 1 strengthens a result from [11], who showed that for m < (1− ε)minf any inference
algorithm has a strictly positive error probability. By comparison, Theorem 1 shows that
any algorithm fails with high probability.

But the main contribution of Theorem 1 is the second, positive statement. While the case
θ > 1/2 is easy because a plain greedy algorithms succeeds [28], the case θ < 1/2 proved more
challenging and was so far only heuristically justified using techniques from statistical physics
[32] and for θ < 1/3 for a different test design [38, 39]. Indeed, Aldridge et al. [10] conjectured
that in this case inferring σ from G, σ̂ is equivalent to solving a hypergraph minimum vertex
cover problem. The proof of Theorem 1 vindicates this conjecture. Specifically, the vertex
set of the hypergraph comprises all “potentially infected” individuals, i.e., those that do not
appear in any negative test. The hyperedges are the neighbourhoods ∂ai of the positive tests
ai in G. Exhaustive search solves this vertex cover problem in time exp(O(nθ logn)). But
how about efficient algorithms for general θ?

1.3 Efficient algorithms for group testing
Several polynomial time group testing algorithms have been proposed. A very simple greedy
strategy called DD (for “definitive defectives”) first labels all individuals that are members
of negative test groups as healthy. Subsequently it checks for positive tests in which all
individuals but one have been identified as healthy in the first step. Clearly, the single
as yet unlabelled individual in such a test group must be infected. Up to this point all
decisions made by DD are correct. But in the final step DD marks all as yet unclassified
individuals as healthy, possibly causing false negatives. In fact, the output of DD may be
inconsistent with the test results as possibly some positive tests may fail to spot an individual
classified as “infected”.

ICALP 2019
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Figure 1 The left diagram displays minf , malg. The red line shows the information theoretic
threshold minf , the dashed black line signifies the bound malg which is achieved by the both the
SCOMP and the DD algorithm. The graph on the right illustrates a small example of a group testing
instance, with the individuals x1, . . . , x7 on the left and the tests a1, . . . , a5 on the right. Infected
individuals and positive tests are coloured in grey.

The more sophisticated SCOMP algorithm is roughly equivalent to the well-known greedy
algorithm for the hypergraph vertex cover problem applied to the hypergraph from the
previous paragraph. Specifically, in its first step SCOMP proceeds just like DD, classifying all
individuals that occur in negative tests as healthy. Then SCOMP identifies as infected all
unmarked individuals that appear in at least one test whose other participants are already
known to be healthy. Subsequently the algorithm keeps picking an individual that appears
in the largest number of as yet “unexplained” (viz. uncovered) positive tests and marks
that individual as infected, with ties broken randomly, until every positive test contains an
individual classified as infected. Clearly, SCOMP may produce false positives as well as false
negatives. But at least the output is consistent with the test results.

Analysing SCOMP has been prominently posed as an open problem in the group testing
literature [8, 10, 28]. Indeed, Aldridge et al. [10] opined that “the complicated sequential
nature of SCOMP makes it difficult to analyse mathematically”. On the positive side, [10]
proved that SCOMP succeeds in recovering σ correctly given (G, σ̂) if m > (1 + ε)malg(n, θ)
w.h.p., where

malg = malg(n, θ) = nθ(1− θ) log(n)
min

{
1, 1−θ

θ

}
log2 2

. (1.1)

However, the algorithm succeeds for a trivial reason; namely, for m > (1 + ε)malg even DD
suffices to recover σ w.h.p. Yet based on experimental evidence [10, 28] conjectured that
SCOMP strictly outperforms DD. The following theorem refutes this conjecture.

I Theorem 2. Suppose that 0 < θ < 1 and ε > 0. If m < (1− ε)malg(n, θ), then given G, σ̂
w.h.p. both SCOMP and DD fail to output σ.

For θ < 1/2 the information-theoretic bound provided by Theorem 1 and the algorithmic
bound malg supplied by Theorem 2 remain a modest constant factor apart; see Figure 1. In
some other inference problems on random graphs such as the stochastic block model similar
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gaps appear between the information-theoretic and the algorithmic bounds [1, 17, 34, 41].
There have been attempts at investigating to what extent these gaps are due to genuine
computational barriers, i.e., [23, 24, 25, 26]. Whether there actually exists a computationally
hard regime for group testing, or whether the gap can be closed by smarter algorithms,
remains an exciting question for future research.

1.4 Discussion and related work

Dorfman’s original group testing scheme, intended to test the American army for syphilis,
was adaptive. In a first round of tests each soldier would be allocated to precisely one test
group. If the test result came out negative, none of the soldiers in the group were infected.
In a second round the soldiers whose group was tested positively would then be tested
individually. Of course, Dorfman’s scheme was not information-theoretically optimal. An
optimal adaptive scheme that involves several test stages, with the tests conducted in the
present stage governed by the results from the previous stages, is known [20, 12]. In the
adaptive scenario the information-theoretic threshold works out to be

madapt
inf (n, k) = nθ(1− θ) log(n)

log 2 .

The lower bound, i.e., that no adaptive design gets by with (1− ε)madapt
inf (n, k) tests, follows

from a very simple information-theoretic consideration. Namely, with a total of m tests at
our disposal there are merely 2m possible test outcomes, and we need this number to exceed
the count

(
n
k

)
of possible vectors σ.

More recently there has been a great deal of interest in non-adaptive group testing, where
the infection status of each individual is to be determined after just one round of tests
[7, 9, 10, 11, 14, 22, 28, 32, 38, 39]. This is the version of the problem that we deal with in
the present paper. An important advantage of the non-adaptive scenario is that tests, which
may be time-consuming, can be conducted in parallel. Indeed, some of today’s most popular
applications of group testing are non-adaptive such as DNA screening [14, 30, 37] or protein
interaction experiments [36, 40] in computational molecular biology. The randomised test
design that we deal with here is the best currently known non-adaptive design (in terms of
the number of tests required).

The most interesting regime for the group testing problem is when the number k of
infected individuals scales as a power nθ of the entire population. Mathematically this
is because in the linear regime k = Ω(n) the optimal strategy is to perform n individual
tests [9]. Thus, for k linear in n there is nothing interesting to do. But the sublinear case
is also of practical relevance, as witnessed by Heap’s law in epidemiology [13] or biological
applications [22].

Apart from the randomised test design G where each individual chooses precisely ∆ tests
(with replacement), the so-called Bernoulli design assigns each individual to every test with
a certain probability independently. A considerable amount of attention has been devoted
to this model, and its information-theoretic threshold as well as the thresholds for various
algorithms have been determined [8, 7, 10, 38, 39]. However, the Bernoulli test design, while
easier to analyse, is provably inferior to the test design G that we study here. This is because
in the Bernoulli design there are likely quite a few individuals that participate in far fewer
tests than expected due to random degree fluctuations.

ICALP 2019
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1.5 Notation
Throughout the paper G = G(n,m,∆) denotes the random bipartite graph that describes
which individuals take part in which test groups, the vector σ ∈ {0, 1}{x1,...,xn} encodes which
individuals are infected, and σ̂ ∈ {0, 1}{a1,...,am} indicates the test results. Moreover, k ∼ nθ
signifies the number of infected individuals. Additionally, we write V = Vn = {x1, . . . , xn}
for the set of all individuals and V0 = {xi ∈ V : σxi = 0}, V1 = V \ V0 for the set of healthy
and infected individuals, respectively. For an individual x ∈ V we write ∂x for the set of
tests ai adjacent to x. Analogously, for a test ai we denote by ∂ai the set of individuals
that take part in the test. Finally, all asymptotic notation refers to the limit n→∞. Thus,
o(1) denotes a term that vanishes in the limit of large n, while ω(1) stands for function that
diverges to ∞ as n→∞.

2 Outline

We give an overview of the main arguments upon which the proofs of Theorems 1 and 2 rest.

2.1 The Nishimori identity
The very first item on the agenda is to get a handle on the posterior distribution of σ given
G and σ̂. To this end, let Sk(G, σ̂) be the set of all vectors σ ∈ {0, 1}V of Hamming weight
k such that

σ̂ai
= 1 {∃x ∈ ∂ai : σx = 1} for all i ∈ [m].

In words, Sk(G, σ̂) contains the set of all vectors σ with k ones that label the individuals
infected/healthy in a way consistent with the test results. Let Zk(G, σ̂) = |Sk(G, σ̂)|. The
following proposition shows that the posterior of σ given G, σ̂ is uniform on Sk(G, σ̂).

I Proposition 3 ([7]).

For all τ ∈ {0, 1}{x1,...,xn} we have P [σ = τ | G, σ̂] = 1 {τ ∈ Sk(G, σ̂)}
Zk(G, σ̂) .

Adopting the jargon of the recent literature on inference problems on random graphs, we
refer to Proposition 3 as the Nishimori identity [15, 41]. The proposition shows that apart
from the actual test results, there is no further “hidden information” about σ encoded in
G, σ̂. In particular, the information-theoretically optimal inference algorithm just outputs a
uniform sample from Sk(G, σ̂). In effect, we obtain the following.

I Corollary 4.
1. If Zk(G, σ̂) = ω(1) w.h.p., then for any algorithm A we have

P [A(G, σ̂, k) = σ] = o(1).

2. If Zk(G, σ̂) = 1 w.h.p., then there is an algorithm A such that

P [A(G, σ̂, k) = σ] = 1− o(1).

Both the positive and the negative part of Corollary 4 assume that the precise number k of
infected individuals is known to the algorithm. This assumption makes the negative part
stronger, but weakens the positive part. Yet we will see in due course how in the positive
scenario the assumption that k be known can be removed. The upshot is that we need to
get a handle on Zk(G, σ̂).
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2.2 The information-theoretic threshold
We proceed to discuss the proof of Theorem 1. The proofs of the first, negative statement
and of the second, positive statement hinge on two separate arguments. We begin with the
negative statement that w.h.p. σ cannot be inferred if m < (1− ε)minf .

2.2.1 The information-theoretic lower bound
In light of Corollary 4 in order to prove the first part of Theorem 1 we need to show that
the number Zk(G, σ̂) of assignments consistent with the test results σ̂ is unbounded w.h.p.
The proof of this fact is based on a very simple idea: we just identify a biggish number of
individuals whose infection status could be flipped without affecting the test results. To be
precise, let V +

0 = V +
0 (G, σ̂) be the set of all healthy individuals xi such that every test in

which xi occurs is positive; in symbols,

V +
0 = {xi ∈ V0 : ∀a ∈ ∂xi∃y ∈ ∂a : σy = 1} . (2.1)

Similarly, let V +
1 be the set of all infected individuals xi such that every test in which xi

occurs features another infected individual; in symbols,

V +
1 = {xi ∈ V1 : ∀a ∈ ∂xi∃y ∈ ∂a \ {xi} : σy = 1} .

We think of the individuals in V +
0 as the “potential false positives”. Indeed, if for any xi ∈ V +

0
we obtain σ′ from σ by setting xi to one, then σ′ will render the same test results as σ.
Similarly, the individuals in V +

1 are potential false negatives.
The following lemma yields a bound on m below which potential false positives and

negatives abound. A simple (omitted) calculation also yields the value of ∆ that is optimal
to facilitate inference, namely ∆ = dmk log 2e.

I Lemma 5. Let ε > 0 and 0 < θ < 1 and assume that

m <
(1− ε)θ

(1− θ) log2 2
nθ(1− θ) logn

Then even with the optimal choice ∆ = dmk log 2e we have |V +
0 |, |V

+
1 | = nΩ(1) w.h.p.

The proof of Lemma 5 relies on a basic random graphs argument. As an immediate application
we obtain the following information-theoretic lower bound.

I Corollary 6. Let ε > 0 and 0 < θ < 1 and assume that

m <
(1− ε)θ

(1− θ) log2 2
nθ(1− θ) logn (2.2)

Then Zk(G, σ̂) = ω (1) w.h.p.

Proof. We need to exhibit alternative vectors σ′ ∈ {0, 1}V with Hamming weight k that
render the same test results as σ. Thus, pick any xi ∈ V +

0 and any xj ∈ V +
1 and obtain σ′ from

σ by setting σ′xi
= 1 and σ′xj

= 0. By construction, σ′ has Hamming weight k and renders
the same test results. Hence, Lemma 5 shows that Zk(G, σ̂) ≥ |V +

0 × V
+
1 | = Ω(n2θ) � 1

w.h.p. J

The bound (2.2) matches minf for θ ' 0.41. A simpler, purely information-theoretic argument
covers the remaining θ.

I Lemma 7. Let ε > 0, 0 < θ < 1. If m < 1−ε
log 2n

θ(1− θ) logn, then Zk(G, σ̂) = ω (1) w.h.p.

We thus conclude that for all 0 < θ < 1, w.h.p. Zk(G, σ̂) = ω(1) if m < (1 − ε)minf .
Therefore, the desired information-theoretic lower bound follows from Corollary 4.

ICALP 2019
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2.2.2 The information-theoretic upper bound
The proof of the information-theoretic upper bound is the principal achievement of the
present work. The proof rests upon techniques that have come to play an important role in
the theory of random constraint satisfaction problems. Specifically, we need to show that
Zk(G, σ̂) = 1 w.h.p., i.e., that σ is the only assignment compatible with the test results
w.h.p. We establish this result by combining two separate arguments. First, we use a moment
calculation to show that w.h.p. there are no other solutions that have a small “overlap” with
σ. Then we use an expansion argument to show that w.h.p. there are no alternative solutions
with a big overlap. Both these arguments are variants of the arguments that have been used
to study the solution space geometry of random constraint satisfaction problems such as
random k-SAT or random k-XORSAT [3, 4, 21], as well as the freezing thresholds of random
constraint satisfaction problems [2, 33]. Yet to our knowledge these methods have thus far
not been applied to the group testing problem.

Formally, we define

Zk,`(G, σ̂) = |{σ ∈ Sk(G, σ̂) : 〈σ, σ〉 = `}|

as the number of assignments σ ∈ Sk(G, σ̂) whose overlap 〈σ, σ〉 =
∑n
i=1 1{σxi

= σxi
= 1}

with σ is equal to `. The following two propositions rule out assignments with a small and a
big overlap, respectively. In either case we choose ∆ = dmk log 2e to take its optimal value.

I Proposition 8. Let ε > 0 and 0 < θ < 1 and assume that m > (1 + ε)minf(k, θ). W.h.p.
we have Zk,`(G, σ̂) = 0 for all ` < (1− 1/ logn)k.

I Proposition 9. Let ε > 0 and 0 < θ < 1 and assume that m > (1 + ε)minf(k, θ). W.h.p.
we have Zk,`(G, σ̂) = 0 for all (1− 1/ logn)k ≤ ` < k.

We defer the proofs of Propositions 8 and 9 to Sections 3 and 4, respectively.
Propositions 8 and 9 readily imply that Zk(G, σ̂) = 1 w.h.p. if m > (1 + ε)minf(k, θ).

Hence, Corollary 4 shows that there exists an inference algorithm that given G, σ̂ and k
outputs σ w.h.p. However, up to now this algorithm relies on exactly knowing the number of
infected individuals k, which in practice could be rather difficult to learn.

Fortunately this assumption can be removed. Namely, the following proposition shows
that w.h.p. there is no assignment σ that is compatible with the test results and that has
Hamming weight less than k.

I Proposition 10. Let ε > 0 and 0 < θ < 1 and assume that m > (1 + ε)minf(k, θ). W.h.p.
we have

∑
k′<k Zk′(G, σ̂) = 0.

As an immediate consequence of Proposition 10 we conclude that for m > (1+ε)minf(k, θ)
the problem of inferring σ boils down to a minimum vertex cover problem, as previously
conjectured by Aldridge, Baldassini and Johnson [10]. Namely, let P be the set of all positive
tests, i.e., all tests ai, i ∈ [m], with σ̂ai

= 1. Moreover, let V + be the set of all variables
xi ∈ V such that ∂xi ⊆ P; in words, xi takes part in positive tests only. We set up a
hypergraph H with vertex set V + and hyperedges ∂ai ∩ V +, ai ∈ P. Clearly, the set of all
individuals xi with σxi

= 1 provides a valid vertex cover of H (as any positive test must
feature an infected individual). Conversely, Propositions 8 and 9 show that w.h.p. this is
the unique vertex cover of size k, and Proposition 10 shows that there is no strictly smaller
vertex cover w.h.p. Therefore, w.h.p. we can infer σ even without prior knowledge of k by
way of solving this minimum vertex cover instance.
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2.3 The SCOMP algorithm
For θ ≥ 1/2 we have malg = minf and thus Theorem 1 implies that SCOMP fails to infer σ
w.h.p. for m < (1 − ε)malg. Therefore, we are left to establish Theorem 2 for θ < 1/2, in
which case

malg = nθ(1− θ) log(n)
log2 2

. (2.3)

The proof of Theorem 2 for θ < 1/2 hinges on two lemmas. First we show that below
malg, the set V −−1 of infected individuals that the second step of SCOMP identifies correctly is
empty. Formally, with V +

0 from (2.1),

V −−1 =
{
x ∈ V1 : ∃a ∈ ∂x : ∂a \ {x} ⊆ V0 \ V +

0
}
.

I Lemma 11. Suppose that 0 < θ < 1/2 and ε > 0. If m < (1− ε)malg, then for all ∆ > 0
we have V −−1 (G, σ̂∗) = ∅ w.h.p.

With the second step of SCOMP failing to ’explain’ (viz. cover) any positive tests, the
greedy vertex cover algorithm takes over. This algorithm is applied to the hypergraph whose
vertices are the as yet unclassified individuals and whose edges are the neighbourhoods of
the positive tests. Our second lemma shows that the set V +,∆ of potententially false positive
individuals x ∈ V +

0 that participate in the maximum number ∆ of different test is far greater
than the actual number k of infected individuals. Formally, let

V +,∆
0 =

{
x ∈ V +

0 : |∂x| = ∆
}
.

I Lemma 12. Suppose that 0 < θ < 1/2 and ε > 0. If m < (1− ε)malg, then for all ∆ > 0
we have V +,∆

0 ≥ k logn w.h.p.

The proofs of Lemmas 11 and 12 are based on moment calculations that turn out to
be mildly subtle due to the potentially very large degrees of the underlying graph G. We
complete the proof of Theorem 2 as follows.

Proof of Theorem 2. The first step of SCOMP (correctly) marks all individuals that appear
in negative tests as healthy. Moreover, Lemma 11 implies that the second step of SCOMP is
void w.h.p., because there is no single infected individual that appears in a test whose other
individuals have already been identified as healthy by the first step. Consequently, SCOMP
simply applies the greedy vertex cover algorithm. Now, thanks to Lemma 12 it suffices to
prove that SCOMP will fail w.h.p. if V +

0 = ω (k). Because they belong to positive tests only,
all the individuals of V +

0 are present in the vertex cover instance that SCOMP attempts to
solve. Moreover, in the hypergraph no vertex has degree greater than ∆, because the degrees
of x1, . . . , xn in G are equal to ∆. (Some of the hypergraph degrees may be strictly smaller
than ∆ because G is a multi-graph.) Therefore, since |V +

0 | ≥ k logn while the actual set of
infected individuals only has size k, w.h.p. the individual classified as infected by the very
first step of the greedy set cover algorithm belongs to V +

0 . Hence, this individual is not
actually infected, i.e., SCOMP errs w.h.p. J

Since the success probability of the SCOMP algorithm is at least as high as of the DD
algorithm, we can prove the conjecture of [28] regarding the upper bound of the DD algorithm.

I Corollary 13. If m < (1− ε)malg, the DD algorithm will fail to retrieve the correct set of
infected individuals w.h.p..
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3 Proof of Proposition 8

For i ∈ [m] let Γi be the degree of ai in G, i.e., the number of edges incident with ai; this
number may exceed the number of different individuals that participate in test ai as G may
feature multi-edges. Let G be the σ-algebra generated by the random variables (Γi)i∈[m].

Given G we can generate G from the well-known pairing model [27]. Specifically, we
create a set {xi} × [∆] of ∆ clones of each individual as well as sets {ai} × [Γi] of clones
of the tests. Then we draw a perfect matching of the complete bipartite graph on the
vertex sets

⋃n
i=1 {xi} × [∆],

⋃m
i=1 {ai} × [Γi] uniformly at random. For each matching edge

linking a clone of xi with a clone of aj we insert an i-j-edge. The resulting bipartite random
multi-graph has the same distribution as G given G. As an immediate application of this
observation we obtain the following estimate.

I Lemma 14. For every integer 0 ≤ ` < k we have

E[Zk,`(G, σ̂) | G] ≤ O(1) ·
(
k

`

)(
n− k
k − `

) m∏
i=1

1− 2(1− k/n)Γi + 2 (1− 2k/n+ `/n)Γi

(3.1)

Proof. We use the linearity of expectation. The product of the two binomial coefficients
simply accounts for the number of assignments σ that have overlap ` with σ. Hence, with S
the event that one specific σ ∈ {0, 1}V that has overlap ` with σ belongs to Sk,`(G, σ̂), we
need to show that

P [S | G] ≤
m∏
i=1

1− 2(1− k/n)Γi + 2 (1− 2k/n+ `/n)Γi . (3.2)

By symmetry we may assume that σxi
= 1{i ≤ k} and that σxi

= 1{i ≤ `} + 1{k < i ≤
2k − `}.

To establish (3.2) we harness the pairing model. Namely, given G we can think of each
test ai as a bin of capacity Γi. Moreover, we think of each clone (xi, h), h ∈ [∆], of an
individual as a ball. The ball is labelled (σxi

, σxi
) ∈ {0, 1}2. The random matching that

creates G effectively tosses the ∆n balls randomly into the bins. Hence, for i ∈ [m] and for
j ∈ [Γi] let us write Ai,j = (Ai,j,1,Ai,j,2) ∈ {0, 1}2 for the label of the jth ball that ends up
in bin number i. Then we are left to calculate

P [S | G] = P
[
∀i ∈ [m] : max

j∈[Γi]
Ai,j,1 = max

j∈[Γi]
Ai,j,2

∣∣G] , (3.3)

i.e., the probability that a test ai is positive with respect to first assignment (Ai,j,1)j∈[Γi] iff
it is positive with respect to the second assignment (Ai,j,2)j∈[Γi].

To calculate this probability we borrow a trick from the analysis of the random k-
SAT model [16]. Namely, we consider a new set {0, 1}2-valued random variables A′i,j =
(A′i,j,1,A′′i,j,2) such that (A′i,j)i∈[m],j∈[Γi] are mutually independent and such that

P
[
A′i,j = (1, 1)

]
= `/n, P

[
A′i,j = (0, 1)

]
= P

[
A′i,j = (1, 0)

]
= (k − `)/n,

P
[
A′i,j = (0, 0)

]
= (n− 2k + `)/n
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for all i, j. Now, let R be the event that
m∑
i=1

Γi∑
j=1

1
{
A′i,j = (1, 1)

}
= `∆,

m∑
i=1

Γi∑
j=1

1
{
A′i,j = (0, 0)

}
= (n− 2k + `)∆,

m∑
i=1

Γi∑
j=1

1
{
A′i,j = (1, 0)

}
=

m∑
i=1

Γi∑
j=1

1
{
A′i,j = (0, 1)

}
= (k − `)∆,

i..e, that all of the sums on the l.h.s. are precisely equal to their expected values. Then
A′ = (A′i,j)i,j given R is distributed precisely as A = (Ai,j)i,j . Hence, (3.3) yields

P [S | G] = P
[
∀i ∈ [m] : max

j∈[Γi]
A′i,j,1 = max

j∈[Γi]
A′i,j,2 | G,R

]
. (3.4)

Thus, let A =
{
∀i ∈ [m] : maxj∈[Γi]A

′
i,j,1 = maxj∈[Γi]A

′
i,j,2
}
. Because the (A′i,j)i,j

are mutually independent, we can easily compute the unconditional probability A: by
inclusion/exclusion,

P [A | G] =
m∏
i=1

1− 2(1− k/n)Γi + 2(1− 2k/n+ `/n)Γi (3.5)

(the probability that maxA′i,j,1 = maxA′i,j,2 = 1, i.e., both tests positive, equals one minus
the probability that maxA′i,j,1 = 0 minus the probability that maxA′i,j,2 = 0 plus the
probability that maxA′i,j,1 = maxA′i,j,2 = 0; then add the probability that maxA′i,j,1 =
maxA′i,j,2 = 0, i.e., both tests negative).

Finally, to deal with the conditioning we use Bayes’ rule:

P [A | R,G] = P [A | G]P [R | A,G]
P [R | G] . (3.6)

Since the (A′i,j)i,j are independent, the Local Limit Theorem for sums of independent
variables [29] yields P [R | G] = Θ(∆n)−3/2, P [R | A,G] = Θ(∆n)−3/2. Hence, (3.2) follows
from (3.4)–(3.6). J

Proof of Proposition 8. The Chernoff bound implies that Γi ≥ Γmin =
∆n/m −

√
∆n/m logn for all i ∈ [m] w.h.p. Further, assuming that the Γi satisfy this

bound, we perform an elementary calculation to check that∑
0≤`≤(1−1/ logn)k

(
k

`

)(
n− k
k − `

) m∏
i=1

1− 2(1− k/n)Γi + 2 (1− 2k/n+ `/n)Γi = o(1). (3.7)

Therefore, the proposition follows from Lemma 14 and Markov’s inequality. J

4 Proof of Proposition 9

The argument from Section 3 does not extend large overlaps (close to k) because the
expression on the r.h.s. of (3.1) gets too large. In other words, merely just computing the
expected number of solutions with a given overlap does not do the trick. This “lottery
phenomenon” is ubiquitous in random constraint satisfaction problems: for big overlap values
rare solution-rich instances drive up the expected number of solutions [4, 5]. In order to cope
with this issue we take another leaf out of the random CSP literature [2, 33]. Namely, we
show that the solution σ is locally rigid. That is, the expansion properties of the random
bipartite graph G preclude the existence of other solutions that have a big overlap with σ.
The following lemma holds the key to this effect.
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I Lemma 15. For any ε > 0 there exists δ = δ(ε) > 0 such that for all m > (1 + ε)minf the
following is true. Let R be the event that for every xi with σxi

= 1 there are at least δ∆
tests a ∈ ∂xi such that ∂a \ {xi} ⊆ V0. Then P [R] = 1− o(1).

Hence, w.h.p. any infected individual appears in plenty of tests where all the other
individuals are healthy. This property causes σ to be locally rigid. To see why, consider the
repercussions of just changing the status of a single individual xi from infected to healthy.
Because given R the individual xi appears as the only infected individual in at least δ∆ tests,
in order to maintain the same tests results we will also need to flip at least one individual
in each of these tests from healthy to infected. Since tests typically have relatively few
individuals in common, the necessary number of flips from 0 to 1 will be Ω(∆) = Ω(logn).
But then in order to keep the total number of infected individuals constant k, we will need
to perform another Ω(∆) flips from 1 to 0. Yet given R each of these “second generation”
individuals that we flip from infected to healthy is itself the only infected individual in many
tests. Thus, the single flip that we started from triggers a veritable avalanche of flips, which
will stop only after the overlap has dropped significantly. The next lemma formalises this
intuition. The lemma shows that while the unconditional expectation of Zk,`(G, σ̂) is “too
big”, the conditional expectation of Zk,`(G, σ̂) given R is much smaller. Letm0 = m0(G, σ̂)
be the total number of negative tests.

I Lemma 16. Suppose that (1 − 1/ logn)k ≤ ` < k and let Γmin = mini∈[m] Γi, Γmax =
maxi∈[m] Γi. Then

E[Zk,`(G, σ̂) | G,R,m0] ≤

O(1)
(
k

`

)(
n− k
k − `

)(
1−

(
1− k − `

n

)Γmax
)δ∆(k−`)(

n− 2k + `

n− k

)Γminm0

= o(1) (4.1)

The proof of Lemma 16 requires some mildly delicate manoeuvres to cope with the stochastic
dependences that are inherent in the random bipartite graph model.

Proof of Proposition 9. Standard tail bound arguments show that Γmax,Γmin = mini∈[m] Γi
= ∆n/m + O(

√
∆n/m logn) w.h.p. Plugging these estimates into (4.1) and summing on

` > (1− 1/ logn)k completes the proof. J
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