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Abstract
The determinant polynomial Detn(x) of degree n is the determinant of a n × n matrix of formal
variables. A polynomial f is equivalent to Detn(x) over a field F if there exists a A ∈ GL(n2,F) such
that f = Detn(A · x). Determinant equivalence test over F is the following algorithmic task: Given
black-box access to a f ∈ F[x], check if f is equivalent to Detn(x) over F, and if so then output
a transformation matrix A ∈ GL(n2,F). In (Kayal, STOC 2012), a randomized polynomial time
determinant equivalence test was given over F = C. But, to our knowledge, the complexity of the
problem over finite fields and over Q was not well understood.

In this work, we give a randomized poly(n, log |F|) time determinant equivalence test over finite
fields F (under mild restrictions on the characteristic and size of F). Over Q, we give an efficient
randomized reduction from factoring square-free integers to determinant equivalence test for quadratic
forms (i.e. the n = 2 case), assuming GRH. This shows that designing a polynomial-time determinant
equivalence test over Q is a challenging task. Nevertheless, we show that determinant equivalence test
over Q is decidable: For bounded n, there is a randomized polynomial-time determinant equivalence
test over Q with access to an oracle for integer factoring. Moreover, for any n, there is a randomized
polynomial-time algorithm that takes input black-box access to a f ∈ Q[x] and if f is equivalent to
Detn over Q then it returns a A ∈ GL(n2, Ł) such that f = Detn(A · x), where Ł is an extension
field of Q and [Ł : Q] ≤ n.

The above algorithms over finite fields and over Q are obtained by giving a polynomial-time
randomized reduction from determinant equivalence test to another problem, namely the full matrix
algebra isomorphism problem. We also show a reduction in the converse direction which is efficient if
n is bounded. These reductions, which hold over any F (under mild restrictions on the characteristic
and size of F), establish a close connection between the complexity of the two problems. This then
leads to our results via applications of known results on the full algebra isomorphism problem over
finite fields (Rónyai, STOC 1987 and Rónyai, J. Symb. Comput. 1990) and over Q (Ivanyos et al.,
Journal of Algebra 2012 and Babai et al., Mathematics of Computation 1990).

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Determinant equivalence test, full matrix algebra isomorphism, Lie algebra

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.62

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2019/042/.

EA
T

C
S

© Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:garga@microsoft.com
mailto:nikhilg@iisc.ac.in
mailto:neeraka@microsoft.com
mailto:chandan@iisc.ac.in
https://doi.org/10.4230/LIPIcs.ICALP.2019.62
https://eccc.weizmann.ac.il/report/2019/042/
https://eccc.weizmann.ac.il/report/2019/042/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 Determinant Equivalence Test over Finite Fields and over Q

Acknowledgements We would like to thank Youming Qiao for pointing us to the module decompos-
ition algorithm in [4]. NG would like to thank Vineet Nair for discussions on the structure of the
Lie algebra of Det. We thank him for sharing his proof of Theorem 10. We also thank anonymous
reviewers for their comments.

1 Introduction

Two m-variate polynomials f(x) and g(x) with coefficients from a field F are said to be
equivalent over F if there exists a A ∈ GL(m,F) such that f = g(A · x). The algorithmic
task of determining if f is equivalent to g, and if so then finding a linear transformation A
such that f = g(A · x), is known as the polynomial equivalence test problem. It is a natural
problem arising in algebraic complexity theory, becoming more important with the advent
of Geometric Complexity Theory (GCT) [22] – which proposes the uses of deep tools and
insights from group theory, representation theory and algebraic geometry towards the study
of the VP vs VNP question.

A naïve approach for equivalence test is to reduce it to solving a system of polynomial
equations over F. But, unfortunately, polynomial solvability problem is NP-hard over C
and finite fields and not known to be decidable over Q. Nevertheless, it does appear that
the complexity of equivalence test is much lower than the complexity of solving polynomial
systems. It is known that over finite fields, the polynomial equivalence problem can not be
NP-hard unless PH collapses (when the polynomials are given as lists of coefficients) [29, 28].

Can we hope to solve equivalence test over C and over finite fields 1 in (randomized)
polynomial time? Finding such an algorithm is indeed quite demanding as it was shown in
[1, 2] that the graph isomorphism problem reduces in polynomial time to equivalence test
for cubic forms (i.e. homogeneous degree three polynomials) over any field. Over Q, it is
not even known if cubic form equivalence is decidable. On the other hand, we have a fairly
good understanding of the complexity of quadratic form equivalence test: Over C and finite
fields, equivalence of two quadratic forms can be tested in polynomial time due to well-known
results on classification of quadratic forms. Quadratic form equivalence over Q can be done
in polynomial-time with access to an oracle for integer factoring (IntFact). Moreover, IntFact
reduces in randomized polynomial time to quadratic form equivalence over Q (see [31]).
Given this state of affairs, designing efficient equivalence tests for even bounded degree
polynomials seems like a difficult proposition. Indeed, there is a cryptographic authentication
scheme based on the presumed average-case hardness of equivalence test for constant degree
polynomials (see [23]).

The work in [15] initiated the study of a kind of equivalence test in which one polynomial f
is given as input and the other polynomial g belongs to a well-defined polynomial family. Some
of the polynomial families that are well-studied in algebraic complexity theory, particularly
in the context of arithmetic circuit lower bounds, are those defined by the power symmetric
polynomial, the elementary symmetric polynomial, the permanent, the determinant and the
iterated matrix multiplication polynomial. In [15], randomized polynomial time equivalence
tests over C were given for the power symmetric polynomial and the elementary symmetric
polynomial families. These equivalence tests, which also hold over finite fields and Q, work

1 Typically, a computation model over C assumes that basic arithmetic operations with complex numbers
and root finding of univariate polynomials over C can be done efficiently. Also, we will work with finite
fields that have sufficiently large size and characteristic.
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even if f is given as a black-box2. Henceforth, let us assume that the input polynomial f is
given as a black-box. Subsequently, in [16], randomized polynomial time equivalence tests
over C were given for the permanent and the determinant polynomial families. The test for
the permanent holds over finite fields and Q, but the same is not true for the determinant
equivalence test in [16]. In [18], an equivalence test for the iterated matrix multiplication
(IMM) was given which holds over C, finite fields and Q (see also [13]). The iterated matrix
multiplication and the determinant families have very similar circuit complexity: Both the
families are complete under p-projections for class of algebraic branching programs (ABP)
(see [20, 21]). But, it was unclear if determinant admits an efficient equivalence test over
finite fields and Q, just like the iterated matrix multiplication polynomial. In this paper, we
fill in this gap in our understanding.

It is worth noting that determinant equivalence test is interesting in the context of
the permanent versus determinant problem [30], which conjectures that the permanent is
not an affine projection of a polynomial-size determinant. Geometric Complexity Theory
[22], an approach to resolving this conjecture, suggests (among other things) to look for an
algorithm to determine if the (padded) permanent is in the orbit closure of a polynomial-size
determinant. In this language, determinant equivalence testing is the related problem of
checking if a given polynomial is in the orbit of the determinant polynomial.

1.1 Our results
Let n ∈ N×, X = (xij)i,j∈[n] be a n × n matrix of formal variables, and
x = (x11 x12 . . . xn n−1 xnn)T a column vector consisting of the variables in X arranged
in a row-major fashion. The polynomial Detn(x) := det(X); we will drop the subscript
n whenever it is clear from the context. Hereafter, we will use the acronym DET for
Determinant Equivalence Test.

I Theorem 1 (DET over finite fields). Let F be a finite field such that |F| ≥ 10n4 and
char(F) - n(n − 1). There is a randomized poly(n, log |F|) time algorithm that takes input
black-box access to a f ∈ F[x] of degree n and does the following with high probability: If
f is equivalent to Det(x) over F then it outputs a A ∈ GL(n2,F) such that f = Det(A · x);
otherwise, it outputs “Fail”.

In [17], a DET over a finite field Fq was given that is similar to the equivalence test for
the permanent in [16], but the test outputs a A ∈ GL(n2,Fqn). Whereas, our algorithm
(which is different and relatively more involved) outputs a A ∈ GL(n2,Fq). One consequence
of this is that the average-case ABP reconstruction algorithm in [17] holds over the base
field Fq.

I Theorem 2 (DET over Q).
(a) There is a randomized algorithm, with oracle access to IntFact, that takes input black-box

access to a f ∈ Q[x] of degree n and does the following with high probability: If f is
equivalent to Det(x) over Q then it outputs a A ∈ GL(n2,Q) such that f = Det(A · x);
otherwise, it outputs “Fail”. If n is bounded then the algorithm runs in time polynomial
in the bit length of the coefficients of f .

2 An algorithm with black-box access to a m-variate polynomial f is only allowed to query the black-box
for evaluations of f at points in Fm.

ICALP 2019
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(b) There is a randomized algorithm that takes input black-box access to a f ∈ Q[x] of degree
n and does the following with high probability: If f is equivalent to Det(x) over Q then
it outputs a A ∈ GL(n2,Ł) such that f = Det(A · x), where Ł is an extension field of Q
and [Ł : Q] ≤ n. The algorithm runs in time polynomial in n and the bit length of the
coefficients of f .

To our knowledge, it was not known if DET over Q is decidable prior to this work. It is
natural to wonder if we can get rid of the IntFact oracle from part (a) of the above theorem.
In this regard, we show the following.

I Theorem 3 (IntFact reduces to DET for quadratic forms). Assuming GRH, we give a
randomized polynomial-time reduction from factoring square-free integers to finding a A ∈
M2(Q) such that a given quadratic form f ∈ Q[x] equals Det2(A · x), if f is equivalent to
Det2.

The complexity of IntFact is the same as that of DET over Q for quadratic forms (modulo
GRH and the use of randomization). Theorem 3 is a reduction from a result in [24].

Theorem 1 and 2 are proved by reducing DET to the full matrix algebra isomorphism
problem. An F-algebra A has two binary operations + and · defined on its elements such
that (A,+) is a F-vector space, (A,+, ·) is an associative ring, and for every a, b ∈ F and
B,C ∈ A it holds that (aB)C = B(aC) = a(BC). For example, the set Mn(F) of all n× n
matrices over F is a F-algebra with respect to the usual matrix addition and multiplication
operations; it is called the full matrix algebra. Two F-algebra A1 and A2 are isomorphic,
denoted by A1 ∼= A2, if there is a bijection φ from A1 to A2 such that for every a, b ∈ F and
B,C ∈ A1 it holds that φ(aB + bC) = aφ(B) + bφ(C) and φ(BC) = φ(B)φ(C). Any finite
dimensional F-algebra is isomorphic to a F-algebra A′ ⊆ Mm(F), where m = dimF(A). A
F-algebra A ⊆Mm(F) can be specified by a F-basis B1, . . . , Br ∈Mm(F).

I Definition 4. The full matrix algebra isomorphism (FMAI) problem over F is the following:
Given a basis of a F-algebra A ⊆ Mm(F), check if A ∼= Mn(F), where n2 = dimF(A). If
A ∼= Mn(F) then output an isomorphism from A to Mn(F).

In [24, 25], a poly(m, log |F|) time randomized algorithm was given to solve FMAI over a
finite field F. Over Q, the FMAI problem is more difficult. In [14, 6], a randomized algorithm
(with access to a IntFact oracle) was given to solve FMAI over Q. The algorithm runs in
polynomial-time if dimQ(A) is bounded. In [3, 10], randomized polynomial time algorithms
were given to compute an isomorphism from A⊗Q Ł to Mn(Ł) for some extension field Ł ⊇ Q
satisfying [Ł : Q] ≤ n, if A ∼= Mn(Q) to begin with. We give a randomized polynomial-time
reduction from DET to FMAI over any sufficiently large F in Section 4, thereby proving
Theorem 1 and 2. The reduction is obtained by giving an algorithm to decompose the Lie
algebra of f into its two simple Lie subalgebras over any sufficiently large F (see Section
3). The same reduction also gives DET over R and C via the FMAI algorithms in [9, 26]
(thereby giving alternative algorithms to the one presented in [16]). We also show a reduction
from FMAI to DET (in Section 7) which is efficient if the dimension n is bounded.

The above results underscore the close connection between the DET and the FMAI
problems. In order to get efficient DET over Q for even bounded degree polynomials, we need
to solve FMAI efficiently for Q-algebras of bounded dimensions. Currently, the best known
algorithm for FMAI over Q uses an IntFact oracle [14]. This situation of the determinant
is somewhat surprising as it contrasts that of IMM (the close cousin of the determinant)
– IMM equivalence test over Q can be solved efficiently for polynomials of degree greater
than four [18].
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2 Preliminaries

2.1 Notations
The set of trace zero or traceless matrices in Mn(F) is denoted by Zn(F); we will drop F from
Mn(F) and Zn(F) when it is clear from the context. Let In be the n× n identity matrix. ⊗
denotes tensor product of two matrices. Define,

Mcol := In ⊗Mn, Mrow := Mn ⊗ In and Lcol := In ⊗Zn, Lrow := Zn ⊗ In.

Observe Mcol, Mrow ⊆ Mn2 are F-algebras isomorphic to Mn, and Lcol, Lrow are their
subspaces , respectively, of dimension n2− 1 each. Henceforth, we set m = n2 and r = n2− 1.

2.2 Definitions
I Definition 5 (Lie bracket). For A,B ∈Mn, the Lie bracket operation [A,B] := AB −BA.

I Definition 6 (Lie algebra of a polynomial). The Lie algebra gf of a m-variate polynomial
f ∈ F[x] is the set of matrices B = (bi,j)i,j∈[m] satisfying,∑

i,j∈[m]

bi,j · xj ·
∂f

∂xi
= 0.

It is easy to verify that [·, ·] is a F-bilinear map on Mn, and gf is an F-vector space.3 Let V
be a F-vector space, EndF(V) := {ϕ : ϕ is a F-linear map from V to V} and T ⊆ EndF(V).

I Definition 7. A subspace U of V is called T -invariant if for every ϕ ∈ T , ϕ(U) ⊆ U .

If T ⊆M2r, the terminology “invariant subspace of T ” means T -invariant subspace of F2r.

I Definition 8 (Irreducible invariant subspace). A T -invariant subspace U of V is irreducible
if there do not exist proper T -invariant subspaces U1,U2 of U , such that U = U1 ⊕ U2.

I Definition 9 (Closure of a vector). Let w ∈ V. Then, the closure of w with respect to T ,
denoted closureT (w), is the smallest T -invariant subspace of V containing w.

2.3 Some basic results
I Observation 2.1. For i, j ∈ [n], i 6= j, let Eij ∈ Mn be such that the (i, j)-th entry is 1
and other entries are 0, and for ` ∈ [2, n], let E` ∈Mn be a diagonal matrix with the (1, 1)-th
and (`, `)-th entries as 1 and −1 respectively and other entries as 0. Then,
1. {In ⊗ Eij , In ⊗ E` : i, j ∈ [n], i 6= j, and ` ∈ [2, n]} is a basis of Lcol. Denote the ele-

ments of this standard basis as S1, . . . , Sr.
2. {Eij ⊗ In, E` ⊗ In : i, j ∈ [n], i 6= j, and ` ∈ [2, n]} is a basis of Lrow. Denote the ele-

ments of this standard basis as Sr+1, . . . , S2r.

I Observation 2.2. For every F ∈Mrow and L ∈Mcol, [F,L] = FL− LF = 0.

I Observation 2.3. For every L1, L2 ∈ Lcol (or Lrow), [L1, L2] ∈ Lcol (respectively. Lrow).

3 Over C, gf also turns out to be a Lie algebra i.e. closed under the Lie bracket operation. However,
over finite fields, it is not clear if it is closed under the bracket operation. We still stick with the
terminology Lie algebra of a polynomial since in many cases, it does turn out to be closed under the
bracket operation.

ICALP 2019
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A proof of the following standard fact is given in Section A.1 of the Appendix of the full
version [11].
I Fact 1. Let B ∈Mn. Then, the dimension of the space of matrices in Mn that commute
with B is at least n, and the dimension of the space of matrices in Zn that commute with B
is at least n− 1.

We would also need the following facts (see [16, 18] for their proofs).
I Fact 2. If g ∈ F[x] and f(x) = g(A · x) for some A ∈ GL(m,F) then gf = A−1 · gg ·A.
I Fact 3. Suppose we have black box access to a m-variate polynomial f ∈ F[x], where
|F| ≥ 2n3. Then, a basis of gf can be computed in randomized polynomial time.
I Fact 4. Given a basis {T1, . . . , Ts} of T ⊆ M2r and a w ∈ F2r, a basis of closureT (w)
can be computed in time polynomial in r and the bit length of the entries in w and T1, . . . , Ts.

The following theorem on the Lie algebra of Det is well-known over C. We give a proof over
any field (with a mild condition on the characteristic) in Section A.2 of the Appendix of [11].
I Theorem 10 (Lie algebra of Det). Let n ≥ 2 and F be a field such that char(F) - n. Then, the
Lie algebra of Detn equals the direct sum of the spaces Lrow and Lcol, i.e., gDet = Lrow⊕Lcol.

The theorem implies that {S1, . . . , S2r}, in Observation 2.1, forms a basis of gDet. The
rows and columns of every element in gDet are indexed by the x variables, in order. Let
f = Det(A · x) for some A ∈ GL(m,F). Then, Theorem 10 and Fact 2 imply that gf =
A−1 ·Lrow ·A ⊕ A−1 ·Lcol ·A. We denote A−1 ·Lrow ·A and A−1 ·Lcol ·A by Frow and Fcol
respectively, and refer to Frow and Fcol (similarly, Lrow and Lcol) as the Lie subalgebras of
gf (respectively, gDet) 4. From Theorem 10, Observation 2.2 and 2.3, we get the following.
I Observation 2.4. For every E,F ∈ gf , [E,F ] ∈ gf .
I Observation 2.5. Let A ⊆Mm be the F-algebra generated by a basis of Fcol. Then,

A = A−1 · (In ⊗Mn) ·A.

This can be proved easily. Finally, we record a special case of the Skolem-Noether theorem
which will be used in Section 4. Its general statement can be found in [19] (page 173).
I Theorem 11 (Skolem-Noether). Let n, s ∈ N× such that n | s, and A ⊆ Ms be a F-
algebra (containing Is) that is isomorphic to Mn via φ : Mn → A. Then there exists a
K ∈ GL(s,F) s.t.,

φ(C) = K−1 · (Is/n ⊗ C) ·K, for every C ∈Mn.

3 Decomposition of gf into its Lie subalgebras

We show how to compute bases of Frow and Fcol from black box access to f = Det(A · x).
I Theorem 12 (Decomposition of gf ). Let n ≥ 2, |F| ≥ 10n4 and char(F) - n(n− 1). There
is a randomized algorithm, which takes input black box access to f and outputs bases of Frow
and Fcol with high probability. The running time is poly(n, γ), where γ is the bit length of
coefficients of f .

We first present the proof idea, and then the algorithm and its proof of correctness. The
missing proofs are given in Sections B,C and D of the Appendix of [11].

4 Observation 2.3 implies that Frow and Fcol are closed under the Lie bracket operation and hence they
are matrix Lie algebras.
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3.1 Proof of Theorem 12: The idea
The algorithm relies on finding the irreducible invariant subspaces of a set of F-linear maps
on gf . These linear maps (a.k.a adjoint homomorphisms of gf ) are defined for every F ∈ gf ,

ρF : gf → gf ; E 7→ [E,F ].

It is easy to see that ρF is linear. Let {B1, . . . , B2r} be a basis of gf which can be
computed in randomized polynomial time (by Fact 3). As ρF is F-linear, we can associate
a matrix PF ∈ M2r with ρF , after fixing an ordering of the basis (B1, . . . , B2r). Let
P := {PF : F ∈ gf}.

B Claim 13. gf and P are isomorphic as vector spaces via the map F 7→ PF for every
F ∈ gf .

Its proof is given in Section B.1 of the Appendix of [11]. This implies the following.

I Observation 3.1. The matrices {PB1 , . . . , PB2r
} is a basis of P, which can be efficiently

computed from {B1, . . . , B2r} (by considering the elements [Bi, Bj ], for i, j ∈ [2r]).

We intend to study the irreducible invariant subspaces of P in order to compute bases of
Frow and Fcol. The following Claim 14 would be useful in this regard.

It follows from Fact 2 that Ji := A ·Bi ·A−1, for i ∈ [2r], is a basis of gDet. Like ρF , we
can associate a F-linear map (i.e. adjoint homomorphism) χL with every L ∈ gDet as follows:

χL : gDet → gDet ; K 7→ [K,L].

Let QL ∈ M2r be the matrix corresponding to the linear map χL, with respect to the
(ordered) basis (J1, . . . , J2r). The following claim implies that P does not depend on the
transformation matrix A. Thus, it is sufficient to focus on gDet to study the invariant
subspaces of P. The proof of the claim is given in Section B.2 of the Appendix of [11].

B Claim 14. For every i ∈ [2r], QJi
= PBi

and so the space P = {QL : L ∈ gDet}.

Like Claim 13, gDet and P are isomorphic as vector spaces via the map L 7→ QL, for
L ∈ gDet. The algorithm computes two invariant subspaces V1 and V2 of P that are defined
as follows

V1 =

v = (a1, . . . , a2r)T ∈ F2r :
∑

i∈[2r]

ai · Ji ∈ Lcol

 ,

V2 =

v = (b1, . . . , b2r)T ∈ F2r :
∑

i∈[2r]

bi · Ji ∈ Lrow

 . (1)

Clearly, dim(V1) = dim(V2) = r. As Bi = A−1 · Ji ·A, for i ∈ [2r], we get

V1 =

v = (a1, . . . , a2r)T ∈ F2r :
∑

i∈[2r]

ai ·Bi ∈ Fcol

 ,

V2 =

v = (b, . . . , b2r)T ∈ F2r :
∑

i∈[2r]

bi ·Bi ∈ Frow

 . (2)

From bases of V1 and V2, and (B1, . . . , B2r), we get bases of Fcol and Frow readily. The
aspects of the space P that help in computing V1 and V2 are the facts that these are the
only two irreducible invariant subspaces of P and bases of these can be computed from a
random element of P. These facts are proved in the proof of correctness of Algorithm 1.

ICALP 2019
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3.2 The decomposition algorithm

Algorithm 1 Computation of bases of Frow and Fcol.
Input: Black box access to f .
Output: Bases of spaces V1 and V2 (as in Equation (2)).

1: Compute a basis B1, . . . , B2r of gf (see Fact 3), and form the basis PB1 , . . . , PB2r
of P .

2: Pick a random element Q = r1PB1 + · · · + r2rPB2r
from P, where every ri is chosen

uniformly and independently at random from a fixed subset of F of size 10n4.
3: Compute the characteristic polynomial h(z) of Q.
4: Factor h(z) into irreducible factors over F. Let h(z) = z2(n−1) · h1(z) · · ·hk(z), where
z, h1, . . . , hk are mutually coprime and irreducible. If this is not the split, output “Fail”.

5: For every i ∈ [k], compute a basis of the null space Ni of hi(Q), pick a vector v from the
basis of Ni and compute a basis of Ci := closureP(v) (using Fact 4).

6: Remove repetitive spaces from the set {C1, . . . , Ck}. After this, if we are not left with
exactly two spaces U1 and U2 then output “Fail”. Else, output bases of U1 and U2.

3.3 Analysis of the algorithm
Let us view the space P through the lens of a convenient basis of gDet, namely the standard
basis {S1, . . . , S2r} (given in Observation 2.1). For K ∈ gDet, let wK ,vK ∈ F2r be the
coordinate vectors of K with respect to the ordered bases (S1, . . . , S2r) and (J1, . . . , J2r)
respectively. There is a basis change matrix H ∈ GL(2r,F), such that for every K ∈ gDet,

vK = H ·wK . (3)

Recall QL from Claim 14. Let RL := H−1 ·QL ·H, for every L ∈ gDet, and

R := {RL : L ∈ gDet} = H−1 · P ·H. (4)

Observe that {RS1 , . . . , RS2r} is a basis of R. Also, for every L,K ∈ gDet.

RL ·wK = w[K,L], (5)

I Observation 3.2. Every R ∈ R ⊆M2r is a block diagonal matrix having two blocks of size
r × r each, i.e, the non-zero entries of R are confined to the entries {(Si, Sj) : i, j ∈ [r]}
and {(Si, Sj) : i, j ∈ [r + 1, 2r]}.

The proof of Observation 3.2 is given in Section C.1 of the Appendix of [11]. We refer to
the two blocks of R as R(1) and R(2), corresponding to {S1, . . . , Sr} and {Sr+1, . . . , S2r},
respectively. Observation 3.3 follows directly from definition of R.

I Observation 3.3. W is an invariant subspace of R iff H ·W is an invariant subspace of P.

It allows us to switch from P to R while studying the invariant subspaces of P . The following
lemmas on the invariant subspaces of R are crucial in arguing the correctness of Algorithm
1. Their proofs are given in Sections C.2 and C.3 of the Appendix of [11].

I Lemma 15 (Irreducible invariant subspaces). Let wK ∈ F2r for a nonzero K in Lcol or in
Lrow.

Then, closureR(wK) = {wL : L ∈ Lcol} =:W1, if K ∈ Lcol,

closureR(wK) = {wL : L ∈ Lrow} =:W2, if K ∈ Lrow.

Moreover, W1 and W2 are the only two irreducible invariant subspaces of R, and F2r =
W1 ⊕W2.
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I Lemma 16 (Characteristic polynomial). Let R =
∑

i∈[2r] `i(r1, . . . , r2r) ·RSi , where `1, . . . , `2r

are F-linearly independent linear forms and r1, . . . , r2r are picked uniformly and independently
at random from a fixed subset of F of size 10n4. Then, with high probability, the character-
istic polynomial hR(z) of R factors as z2(n−1) · h1(z) · · ·hk(z), where z, h1(z), . . . , hk(z) are
mutually coprime irreducible polynomials over F.

3.3.1 Proof of correctness of Algorithm 1
In Step 2, we choose a random Q from P. By Equation (4), there is a R ∈ R, such that,

R = H−1 ·Q·H = r1RJ1 +· · ·+r2rRJ2r
= `1(r1, . . . , r2r)·RS1 +· · ·+`2r(r1, . . . , r2r)·RS2r

,

where `1, . . . , `2r are F-linearly independent linear forms in r1, . . . , r2r. By Lemma 16, Step
4 holds with high probability. From Observation 3.2, R is a block diagonal matrix with
blocks R(1) and R(2). Let h(z) = g1(z) · g2(z), where g1(z) and g2(z) are the characteristic
polynomials of R(1) and R(2), respectively. There are a couple of factors of h, say h1 and
h2, that divide g1 and g2, respectively. In Step 5, we compute the null spaces N1 and N2 of
h1(Q) and h2(Q) respectively. As h1(R) = H−1 · h1(Q) ·H and h2(R) = H−1 · h2(Q) ·H,
the null spaces of h1(R) and h2(R), denoted by O1 and O2 respectively, satisfy O1 =
H−1 · N1 and O2 = H−1 · N2 (due to Equation (3)).

B Claim 17. If wK ∈ O1 (similarly, wK ∈ O2) then K ∈ Lcol (respectively, K ∈ Lrow).

Its proof is given in Section D.1 of the Appendix of [11]. In Step 5, we also pick a vector v
from a null space, say N1, and compute closureP(v). Clearly, v = vK for some K ∈ gDet. So,
vK ∈ N1 if and only if wK = H−1 · vK ∈ O1. As R = H−1 · P ·H, Observation 3.3 implies

closureP(vK) = H · closureR(wK)
= H · W1 ( by Claim 17 and Lemma 15)
= V1 ( by Equations (1) and (3), as V1 = {vL : L ∈ Lcol}).

Similarly, if we pick a v ∈ N2 then closureP(v) = V2. Thus, in Step 6, one of U1 and U2 is
V1 and the other is V2. Finally, we can take U1 = V1 and U2 = V2 without loss of generality:
Let P ∈Mm be the permutation matrix, such that when multiplied to x, P maps xij to xji.
Clearly, P−1 = P . The following equation holds because P is a symmetry of Det.

Det(x) = Det(P · x) and hence f(x) = Det(A · x) = Det(PA · x).

Observe that Lcol = P−1 · Lrow · P . Hence,

Fcol = A−1P−1 · Lrow · PA and Frow = A−1P−1 · Lcol · PA.

As the transformation matrix is unknown to the algorithm, we can take it to be either
A or PA.

A comparison with [8], [4]: In [8, 7], a polynomial time algorithm was given to decompose
a semisimple Lie algebra over Q (more generally, a characteristic 0 field) into a direct
sum of simple Lie subalgebras. The Lie algebra gDet is semisimple and Lcol and Lrow are
its two simple Lie subalgebras. So, our decomposition problem is a special case of the
problem studied in [8]. However, our algorithm works over any sufficiently large field F (in
particular, finite fields), if char(F ) - n(n − 1). It is not quite clear to us if the algorithm
in [8] (which is somewhat different from our algorithm) can be easily adapted to achieve
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the same result in this special case. Lemma 15 shows that the decomposition of F2r into
irreducible invariant subspaces of R is unique. Using this information, it is possible to use
the module decomposition algorithm in [4] to compute bases of Fcol and Frow in randomized
polynomial time over finite fields. However, the module decomposition algorithm in [4] does
not work in general over Q without moving to an extension field.

A comparison with [12, 13]: In [12] and Section 4.9 of [13], a DET over C was given by
reducing it to the Lie algebra conjugacy problem. It was also suggested there that the
approach can be made to work over finite field by reduction to the problem of finding and
diagonalizing split Cartan subalgebra and then applying Ryba’s algorithm [27]. However, it
is not quite clear to us how to carry out this approach in full details. Despite the similarities
between these two approaches originating from the use of Lie algebra, our approach of
reducing DET to FMAI does appear somewhat different from the approach suggested in
[12, 13].

4 Reduction of DET to FMAI

We give a randomized polynomial time reduction from DET to the FMAI problem. Recall
the FMAI problem from Definition 4: An algorithm for FMAI takes input an ordered basis
(L1, . . . , Lm) of a F-algebra A ⊆Ms such that A ∼= Mn, and outputs a F-algebra isomorphism
φ : A → Mn in the form of an ordered basis (C1, . . . , Cm) of Mn, where Ci = φ(Li) for
i ∈ [m].

I Lemma 18 (Reduction of DET to FMAI). Let n ≥ 2, |F| > 10n4 and char(F) - n(n − 1).
Then, there exists a randomized algorithm, with oracle access to FMAI, that takes input
black-box access to a f ∈ F[x] of degree n and solves DET for f over F with high probability.
The running time of the algorithm is polynomial in n and the bit length of the coefficients of f .

The proof of this lemma follows from the proof of correctness of the following algorithm.

4.1 The algorithm

Algorithm 2 Reduction of DET to FMAI.
Input: Black-box access to f ∈ F[x] of degree n, and oracle access to an algo for FMAI.
Output: B ∈ GL(m,F) such that f = Det(B · x), if such a B exists. Else, output “Fail”.

1: Invoke Algorithm 1. Let {U1, . . . , Ur} be the basis of the space U1 returned by Algorithm
1, where U1 = Fcol.

2: Generate a basis {L1, . . . , Lk} of the algebra A := F[U1, . . . , Ur]. If k 6= m, output “Fail”.

3: Invoke the FMAI oracle on (L1, . . . , Lm) which returns a basis (C1, . . . , Cm) of Mn.
4: Pick a random M ∈Mm satisfying Li ·M = M · (In ⊗ Ci) for every i ∈ [m].
5: Let b be the evaluation of f(M · x) at x11 = . . . = xnn = 1 and remaining xij set to 0.
6: If M 6∈ GL(m,F) or b = 0, output “Fail”. Else, set D = diag(b, 1, . . . , 1) ∈Mn. Output

(In ⊗D) ·M−1.
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4.2 Proof of correctness of Algorithm 2
If f is not equivalent to Det then it can be detected with high probability by checking
if f(a) = b · Det(M−1a) at a random point a ∈r Sm, where S ⊆ F is sufficiently large.
So, assume that f = Det(A · x) for some A ∈ GL(m,F). The correctness of Algorithm
1 ensure that U1 = Fcol without loss of generality. Step 2 can be executed efficiently by
checking if UiUj ∈ spanF{U1, . . . , Ur} for i, j ∈ [r]. Observation 2.5 implies that A ∼= Mn, i.e.,
Li = A−1 · (In⊗Bi) ·A for every i ∈ [m], where {B1, . . . , Bm} is a basis ofMn. In Step 3, the
FMAI oracle returns a F-algebra isomorphism φ : A →Mn such that {Ci = φ(Li) : i ∈ [m]}
is a basis of Mn. The following claim ensures the existence of a matrix M , computed in Step
4. Its proof is given in Section E.1 of the Appendix of [11].

B Claim 19. There exists a S ∈ GL(n,F) such that Bi = S−1 · Ci · S for every i ∈ [m].

Consider the linear system defined by the equation Li ·M = M · (In ⊗ Ci), where the
entries of M are taken as variables. Step 4 is executed by picking the free variables of the
solution space of the system from a sufficiently large subset of F. Finally, the correctness
of Step 6 is argued in the proof of the following claim which is given in Section E.2 of the
Appendix of [11].

B Claim 20. Suppose f = Det(A ·x), where A ∈ GL(m,F). Then, f = Det((In⊗D) ·M−1 ·x)
with high probability.

5 DET over finite fields and over Q

The proofs of Theorem 1 and 2 are completed by replacing the FMAI oracle in Step 3 of
Algorithm 2 by the following known algorithms for FMAI over finite fields and Q.

I Theorem 21 (Theorem 5.1 of [25]). Let F be a finite field. Given a basis of a F-algebra
A ⊆Mm such that A ∼= Mn, an isomorphism φ : A →Mn can be constructed in randomized
(m, log |F|) time.

I Theorem 22 (Theorem 1 of [14]). There is a randomized algorithm with oracle access to
IntFact that takes input a basis of a Q-algebra A ⊆Mm such that A ∼= Mn, and outputs an
isomorphism φ : A →Mn with high probability. The algorithm runs in time polynomial in
the bit length of the input, if n is bounded.

I Theorem 23 (Lemma 2.5 of [3]). There is a randomized algorithm that takes input a basis
of a Q-algebra A ⊆Mm such that A ∼= Mn, and outputs an isomorphism φ : A⊗QŁ→Mn(Ł)
with high probability, where Ł is an extension field of Q satisfying [Ł : Q] ≤ n. The algorithm
runs in time polynomial in the bit length of the input.

6 Factoring hardness of DET over Q

This section is devoted to proving Theorem 3. We show that DET in the 2× 2 setting over
Q is at least as hard as factoring square-free integers. We will need the following theorem.

I Theorem 24 ([24]). Assuming GRH, there is a randomized polynomial time reduction
from the problem of factoring square-free integers to the following problem: Given non-zero
a, b ∈ Q, find rational numbers x, y, z (not all zero) such that x2 − ay2 − bz2 = 0, if there
exists such a solution.

We will also need the following proposition, cited in [24], to prove the next theorem. We
give a proof from [5] in Section F.1 of [11], for completeness.
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I Proposition 25. Let a, b ∈ Q×. Then the equation x2 − ay2 − bz2 = 0 has a non-zero
rational solution if and only if the equation x2 − ay2 − bz2 + abw2 = 0 has a non-zero
rational solution.

We are now ready to prove integer factoring hardness of DET in the next theorem.

I Theorem 26. Consider the polynomial fa,b(x) = x2
1,1 − ax2

1,2 − bx2
2,1 + abx2

2,2, where
a, b ∈ Q are non-zero. Then fa,b(x) = Det2(A · x) for some A ∈ GL(4,Q) if and only if
the equation x2 − ay2 − bz2 = 0 has a non-zero rational solution (moreover, such a rational
solution can be efficiently computed from A).

Its proof is given in Section F.2 of [11]. Combining Theorems 24 and 26, we obtain
Theorem 3.

I Remark 27. We want to explain how we got to the above reduction. Ronyai [24] proved
that the FMAI problem over Q is factoring hard even for n = 2 via quaternion algebras. If
one takes a specific quaternion algebra and tries to constructs a polynomial f whose Lie
algebra is the traceless part of the quaternion algebra, then it turns out the polynomial
fa,b(x) is the unique homogeneous degree 2 polynomial that comes out. But in any case, in
hindsight, the polynomial fa,b(x) seems like a natural candidate to use.

7 Characterization of the determinant by its Lie algebra

In this section, we reduce FMAI to DET under mild restrictions on F. We start with the claim
that the Lie algebra of the determinant characterizes the determinant. This is well known
over C, but we give a proof in Section G.1 of [11] that works under mild restrictions on F.

I Lemma 28. Let f ∈ F[x] be any homogeneous polynomial of degree n such that Lcol ⊆ gf

(recall Lcol from Section 2). Also suppose char(F) - n. Then f(x) = α · Detn(x) for some
α ∈ F.

I Remark 29. Note that without the char(F) - n condition, Lemma 28 is not true. For
example, f(x) = xn

1,1 + Detn(x) will have the same Lie algebra as Detn(x) if char(F) | n.

I Corollary 30. Let f ∈ F[x] be a degree n homogeneous polynomial. Suppose that A−1 ·
Lcol ·A ⊆ gf for some A ∈ GL(n2,F) and char(F) - n. Then f(x) = α ·Detn(A · x) for some
α ∈ F.

Proof. Consider f ′(x) = f(A−1 ·x). By Fact 2, gf ′ = A · gf ·A−1, so Lcol ⊆ gf ′ . By Lemma
28, we get that f ′(x) = α · Detn(x) for some α ∈ F and hence f(x) = α · Detn(A · x). J

Corollary 30 allows us to reduce FMAI to DET when n is constant (see Algorithm 3).

7.1 Proof of correctness of Algorithm 3 when char(F) - n

The proof of correctness will follow from the following proposition, proved in Section G.2 of
[11]. The matrices Bi,j and Li,j are as defined in Step 2 of the algorithm.

I Proposition 31. Suppose the algebra A spanned by B1,1, . . . , Bn,n is isomorphic to Mn.
Then there exist K ∈ GL(n2,F) and C1,1, . . . , Cn,n ∈Mn, s.t. Li,j = K−1 (In ⊗ Ci,j)K for
all i, j ∈ [n].
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Now let us proceed to the proof of correctness of Algorithm 3. First of all, it is easy to
ensure that whenever the algorithm outputs an isomorphism, it is actually an isomorphism.
So what we need to prove is the converse. Suppose the algebra A is isomorphic to Mn. Then
by Proposition 31, the space spanned by L̃1, . . . , L̃n2−1 is K−1 · Lcol ·K. Then by Corollary
30, there is a unique solution to the equations in Step 4 given by f(x) = α · Detn(K · x), for
some α ∈ F, and so f is equivalent to the determinant. Hence, in Step 5, we will get an
A ∈ GL(n2,F) s.t. f(x) = Detn(A · x). Since L̃1, . . . , L̃n2−1 span a Lie algebra of dimension
n2−1 and since they lie inside the Lie algebra of Detn(A·x), we must have that L̃1, . . . , L̃n2−1
span either A−1 · Lcol · A or A−1 · Lrow · A. From this, we get that one of the following
conditions should be true:

There exist matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = In ⊗ Fi,j for all
i, j ∈ [n].
There exist matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = Fi,j ⊗ In for all
i, j ∈ [n].

The implies that the algorithm will output 1 and an isomorphism into Mn. The complexity
of the reduction is dominated by Step 4 which takes nO(n) field operations.

Algorithm 3 Reduction of FMAI to DET.
Input: Basis {B1, . . . , Br} of a F-algebra A ⊆Mm, and access to an algorithm for DET.
Output: if A ∼= Mn for some n ∈ N, then output an isomorphism, 0 otherwise.

1: If r = dimFA 6= n2 for any n ∈ N, output 0 and halt.
2: Index the basis elements by [n] × [n], i.e., rename them as B1,1, . . . , Bn,n. Com-

pute n2 × n2 matrices L1,1, . . . , Ln,n as follows: Li,j is the matrix corresponding
to the left-multiplication action of Bi,j on B1,1, . . . , Bn,n. That is Bi,j · Bi2,j2 =∑

i1,j1
Li,j ((i1, j1), (i2, j2)) ·Bi1,j1 .

3: Compute a basis for the traceless parts of the matrices Li,j . That is, compute a basis
L̃1, . . . , L̃s of the space spanned by L1,1− tr(L1,1)

n2 In2 , . . . , Ln,n− tr(Ln,n)
n2 In2 . If s 6= n2−1,

output 0 and halt.
4: Find a non-zero homogeneous polynomial of degree n, f(x), satisfying the equations∑

i1,j1,i2,j2

M((i1, j1), (i2, j2)) · xi2,j2 ·
∂f

∂xi1,j1

= 0

for every M ∈ {L̃1, . . . , L̃n2−1} (these give linear equations in the coefficients of f). If
no such non-zero polynomial exists then output 0 and halt.

5: Run DET on f . If the output is “Fail” then output 0 and halt. If f(x) = Detn(A ·x) then
check if there exist matrices F1,1, . . . , Fn,n ∈Mn such A ·Li,j ·A−1 = In⊗Fi,j for all i, j.
If yes, output 1 and the isomorphism φ(Bi,j) = Fi,j (extended linearly to whole of A). If
no, check if there exist matrices F1,1, . . . , Fn,n ∈Mn such that A · Li,j ·A−1 = Fi,j ⊗ In

for all i, j. If yes, output 1 and the isomorphism φ(Bi,j) = Fi,j (extended linearly to
whole of A). If no, output 0.
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