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Abstract
We initiate the algorithmic study of retracting a graph into a cycle in the graph, which seeks a
mapping of the graph vertices to the cycle vertices so as to minimize the maximum stretch of any
edge, subject to the constraint that the restriction of the mapping to the cycle is the identity map.
This problem has its roots in the rich theory of retraction of topological spaces, and has strong ties
to well-studied metric embedding problems such as minimum bandwidth and 0-extension. Our first
result is an O(min{k,

√
n})-approximation for retracting any graph on n nodes to a cycle with k

nodes. We also show a surprising connection to Sperner’s Lemma that rules out the possibility of
improving this result using certain natural convex relaxations of the problem. Nevertheless, if the
problem is restricted to planar graphs, we show that we can overcome these integrality gaps by giving
an optimal combinatorial algorithm, which is the technical centerpiece of the paper. Building on our
planar graph algorithm, we also obtain a constant-factor approximation algorithm for retraction of
points in the Euclidean plane to a uniform cycle.
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70:2 Retracting Graphs to Cycles

1 Introduction

Originally introduced in 1930 by K. Borsuk in his PhD thesis [5], retraction is a fundamental
concept in topology describing continuous mappings of a topological space into a subspace
that leaves the position of all points in the subspace fixed. Over the years, this has developed
into a rich theory with deep connections to fundamental results in topology such as Brouwer’s
Fixed Point Theorem [22]. Inspired by this success, graph theorists have extensively studied a
discrete version of the problem in graphs, where a retraction is a mapping from the vertices of
a graph to a given subgraph that produces the identity map when restricted to the subgraph
(i.e., it leaves the subgraph fixed). For a rich history of retraction in graph theory, we refer
the reader to [21]. Define the stretch of a retraction to be the maximum distance between
the images of the endpoints of any edge, as measured in the subgraph. We use stretch-k
retraction to mean a retraction whose stretch is k; in particular, a stretch-1 retraction is a
mapping where every edge of the graph is mapped to either an edge of the subgraph, or both
its ends are mapped to the same vertex of the subgraph1.

In this paper, we study the algorithmic problem of finding a minimum stretch retraction
in a graph. This problem belongs to the rich area of metric embeddings, but somewhat
surprisingly, has not received much attention in spite of the deep but non-constructive
results in the graph theory literature. The graph retraction problem has a close resemblance
to the well-studied 0-extension problem [6, 24, 25] (and its generalizations such as metric
labeling [27, 8]), which is also an embedding of a graph G to a metric over a subset of
terminals H with the constraint that each vertex in H maps to itself. The two problems
differ in their objective: whereas 0-extension seeks to minimize the average stretch of edges,
graph retraction minimizes the maximum stretch. The different objectives lead to significant
technical differences. For instance, a well-studied linear program called the earthmover
LP has a nearly logarithmic integrality gap for 0-extension. In contrast, we show that a
corresponding earthmover LP for graph retraction has integrality gap Ω(

√
n). A well-studied

problem in the metric embedding literature that considers the maximum stretch objective is
the minimum bandwidth problem, where one seeks an isomorphic embedding of a graph into
a line (or cycle) that minimizes maximum stretch. In contrast, in graph retraction, we allow
homomorphic maps2 but additionally require a subset of vertices (called the anchors) to be
mapped to themselves.

From an applications standpoint, our original motivation for studying minimum-stretch
graph retraction comes from a distributed systems scenario where the aim is to map processes
comprising a distributed computation to a network of servers where some processes are
constrained to be mapped onto specific servers. The objective is to minimize the maximum
communication latency between two communicating processes in the embedding. Such
anchored embedding problems can be shown to be equivalent to graph retraction for gen-
eral subgraphs, and arise in several other domains including VLSI layout, multi-processor
placement, graph drawing, and visualization [20, 19, 31].

1 In the literature, a stretch-1 retraction is often simply referred to as a retraction or a retract [21]. Also,
in many studies, a (stretch-1) retraction requires that the two end-points of an edge in the graph are
mapped to two end-points of an edge in the subgraph. These studies differentiate between the case
where the subgraph being retracted to is reflexive (has self-loops) or irreflexive (no self-loops). In this
sense, our notion of graph retraction corresponds to their notion of retraction to a reflexive subgraph.

2 A homomorphic map is one where an image can have multiple pre-images, while an isomorphic map
requires that every image has at most one pre-image.
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1.1 Problem definition, techniques, and results
We begin with a formal definition of the minimum stretch retraction problem.

IDefinition 1. Given an unweighted guest graph G = (V,E) and a host subgraph H = (A,E′)
of G, a mapping f : V → A is a retraction of G to H if f(v) = v for all v ∈ A. For a given
retraction f of G to H, define the stretch of an edge e = (u, v) ∈ E(G) to be dH(f(u), f(v)),
where dH is the distance metric induced by H, and define the stretch of f to be the maximum
stretch over all edges of graph G. The goal of the minimum-stretch graph retraction problem
is to find a retraction of G to H with minimum stretch. We refer to the vertices of A
as anchors.

The graph retraction problem is easy if the subgraph H is acyclic (see, e.g., [29]); therefore,
the first non-trivial problem is to retract a graph into a cycle. Indeed, this problem is NP-
hard even when H is just a 4-cycle [13]. Given this intractability result, a natural goal is
to obtain an algorithm for retracting graphs to cycles that approximately minimizes the
stretch of the retraction. This problem is the focus of our work. While there has been
considerable interest in identifying conditions under which retracting to a cycle with stretch
1 is tractable [17, 21, 37], there has been no work (to the best of our knowledge) on deriving
approximations to the minimum stretch.3

We consider the following lower bound for the problem: if anchors u and v are distance
` in H, and there exists a path of p vertices in G between u and v, then every retraction
has stretch at least `/p. This lower bound turns out to be tight when H is acyclic, which is
the reason retraction to acyclic graphs is an easy problem. However, this lower bound is no
longer tight when H is a cycle. For example, consider a grid graph where H is the border of
the grid. The lower bound given above says that any retraction has stretch at least Ω(1).
However, using the well-known Sperner’s lemma, we show that the optimal retraction has
stretch at least Ω(

√
n).

Using just the simple distance based lower bound, we show that the gap on the grid is in
fact the worst possible by giving a O(min{k,

√
n})-approximation for the problem, where k

is the number of vertices of H. Our algorithm works by first mapping vertices of the graph
into a grid, then projecting vertices outward to the border from the largest hole in the grid,
which is the largest region containing no vertices.

I Theorem 2. There is a deterministic, polynomial-time algorithm that computes a retraction
of a graph to a cycle with stretch at most min{k/2, O(

√
n)} times the optimal stretch, where

n and k are respectively the number of vertices in the graph and the cycle.

Our results for retracting a general graph to a cycle appear in Section 2. We also give
evidence that the gap induced by Sperner’s lemma on a grid graph is fundamental, showing an
Ω(min{k,

√
n}) integrality gap for natural linear and semi-definite programming relaxations

of the problem. To overcome this gap, we focus on the special case of planar graphs, of which
the grid is an example. Retraction in planar graphs has been considered in the past, most
notably in a beautiful paper of Quilliot [30] that uses homotopy techniques to characterize
stretch-1 retractions of a planar graph to a cycle. Quillot’s proof, however, does not yield
an efficient algorithm. In Section 3, we provide an exact algorithm for retraction in planar
graphs by developing the gap induced by Sperner’s lemma on a grid into a general lower
bound on the optimal stretch for planar graphs.

3 One direct implication of the NP-hardness proof is that approximating the maximum stretch to a
multiplicative factor better than 2 is also NP-hard.

ICALP 2019



70:4 Retracting Graphs to Cycles

I Theorem 3. There is a deterministic, polynomial-time algorithm that computes a retraction
of a planar graph to a cycle with optimal stretch.

Unfortunately, our techniques rely heavily on the planarity of the graph, and do not
appear to generalize to arbitrary graphs. While we leave the question of obtaining a better
approximation for general graphs open, we provide a more sophisticated linear programming
formulation that captures the Sperner lower bound on general graphs as a possible route to
attack the problem.

We also study natural special cases and generalizations of the problem, all of which are
presented in the full version of our paper [18]. First, we consider a geometric setting, where
a set of points in the Euclidean plane has to be retracted to a uniform cycle of anchors. By a
uniform cycle of anchors we mean a set of anchors which are distributed uniformly on a circle
in the plane. We obtain a constant approximation algorithm for this problem, by building on
our planar graph algorithm. We next consider retraction of a graph of bounded treewidth to
an arbitrary subgraph, and obtain a polynomial-time exact algorithm. Finally, we apply the
lower bound argument of [24] for 0-extension to show that a general variant of the problem
that seeks a retraction of an arbitrary weighted graph G to a metric over a subset of the
vertices of G is hard to approximate to within a factor of Ω(log1/4−ε n) for any ε > 0.

1.2 Related work
List homomorphisms and constraint satisfaction. The graph retraction problem is a
special case of the list homomorphism problem introduced by Feder and Hell [13], who
established conditions under which the problem is NP-complete. Given graphs G,H, and
L(v) ⊂ V (H) for each v ∈ V (G), a list homomorphism of G to H with respect to L is a
homomorphism f : G→ H with f(v) ∈ L(v) for each v ∈ V (G).

Several special cases of graph retraction and variants of list homomorphism have been
subsequently studied (e.g., [12, 21, 36, 37]). These studies have established and exploited the
rich connections between list homomorphism and Constraint Satisfaction Problems (CSPs).
Though approximation algorithms for CSPs and related problems such as Label Cover have
been extensively studied, the objective pursued there is that of maximizing the number of
constraints that are satisfied. For our graph retraction problem, this would correspond to
maximizing the number of edges that have stretch below a certain threshold. Our notion
of approximation in graph retraction, however, is the least factor by which the stretch
constraints need to be relaxed so that all edges are satisfied.

0-extension, minimum bandwidth, and low-distortion embeddings. From an approxima-
tion algorithms standpoint, the graph retraction problem is closely related to the 0-extension
and minimum bandwidth problems [14, 4, 15, 35, 9, 32]. In the 0-extension problem, one
seeks to minimize the average stretch, which can be solved to an O(log k/ log log k) approx-
imation using a natural LP relaxation [6, 11]. In contrast, we give polynomial integrality
gaps for the graph retraction problem. In the minimum bandwidth problem, the objective
is to find an embedding to a line that minimizes maximum stretch, but the constraint
is that the map must be isomorphic rather than that the anchor vertices must be fixed.
In a seminal result [14], Feige designed the first polylogarithmic-approximation using a
novel concept of volume-respecting embeddings. A slightly improved approximation was
achieved in [10] by combining Feige’s approach with another bandwidth algorithm based on
semidefinite-programming [4]. Interestingly, the minimum bandwidth problem is NP-hard
even for (guest) trees, while graph retraction to (host) trees is solvable in polynomial time.
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Conversely, the bandwidth problem is solvable in time O(nb) for bandwidth b graphs [16],
while graph retraction to a cycle is NP-complete even when the host cycle has only four
vertices. Nevertheless, it is conceivable that volume-respecting embeddings, in combination
with random projection, could lead to effective approximation algorithms for graph retraction
to a cycle in a manner similar to what was achieved for VLSI layout on the plane [35].

Also related are the well-studied variants of linear and circular arrangements, but their
objective functions are average stretch, as opposed to maximum stretch. Finally, another
related area is that of low-distortion embeddings (e.g., [23]), where recent work has considered
embedding one specific n-point metric to another n-point metric [26, 28, 2] similar to the
graph retraction problem. But low-distortion embeddings typically require non-contracting
isomorphic maps, which distinguishes them significantly from the graph retraction problem.

A related recent work studies low-distortion contractions of graphs [3]. Specifically, the
goal is to determine a maximum number of edge contractions of a given graph G such that
for every pair of vertices, the distance between corresponding vertices in the contracted
graph is at least a given affine function of the distance in G. Several upper bounds and
hardness of approximations are presented in [3] for many special cases and problem variants.
While graph retraction and contraction problems share the notion of mapping to a subgraph,
the problems are considerably different; for instance, in the graph retraction problem the
subgraph H is part of the input, and the objective is to minimize the maximum stretch.

2 Retracting an arbitrary graph to a cycle

In this section, we study the problem of retracting an arbitrary graph to a cycle over a
subset of vertices of the graph. Let G denote the guest graph over a set V of n vertices, with
shortest path distance function dG. Let H denote the host cycle with shortest path distance
function dH over a subset A ⊆ V of k anchors.

Arguably, the simplest lower bound on the optimal stretch is the distance-based bound
`(G,H) = maxu,v∈A dH(u, v)/dG(u, v), since every retraction places a path of length dG(u, v)
in G on a path of length at least dH(u, v) in H.

We now present our algorithm (Algorithm 1), which achieves a stretch of
min{k/2, `(G,H)

√
n}. Here, we give a high level overview of the algorithm. The first

step of algorithm is to embed the input graph G into a grid of size k/4× k/4 subject to some
constraints. The second step is to find the largest empty sub-grid D such that no point is
mapped inside of D and center of D is within a desirable distance from center of grid M .
And final step is to project the points in grid M to its boundary with respect to center of
sub-grid D.

We now show how to implement the first step of Algorithm 1. Our goal is to embed each
vertex u ∈ G to some point g(u) in a k/4× k/4 grid such that for every u, v, we have the
following inequality, where d∞(a, b) denotes the L∞ distance between a and b. (That is, for
two points (x1, y1) and (x2, y2), d∞((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.)

d∞(g(u), g(v)) ≤ `(G,H)dG(u, v) (1)

Additionally, we require that H is embedded to the boundary of the grid, such that adjacent
anchors lie on adjacent grid points.

I Lemma 4. For every G, we can find an embedding g satisfying inequality 1.

Proof. We incrementally construct the embedding g. Initially, we place the anchors on the
boundary of the grid so that the boundary is isometric to dH . (This can be done since H is
a cycle.) Since d∞(g(u), g(v)) ≤ dH(u, v) and dH(u, v) ≤ `(G,H)dG(u, v), inequality 1 holds
for all anchors u and v in H.

ICALP 2019



70:6 Retracting Graphs to Cycles

Algorithm 1 Algorithm for retracting an arbitrary graph to a cycle.
Input: Graph G, host cycle H
Output: Embedding function f

Embedding in a grid: Determine embedding g from G into a k/4 × k/4 grid M

such that H is embedded one-to-one to the boundary of M and for every u, v ∈ V ,
d∞(g(u), g(v)) ≤ `(G,H)dG(u, v).
Find largest hole: Find the largest square sub-grid D of M such that (a) its center c is
at L∞ distance at most k/16 from the center of M and (b) there is no vertex u in G for
which g(u) is in the interior of D.
Projection embedding: For all v in G:
1. R(v)← ray originating from the center of D and passing through g(v).
2. f(v)← the anchor on the boundary of grid M nearest in the clockwise direction to the

intersection of R(v) with the boundary of M .
return f

We next inductively embed the remaining vertices of G. Suppose we need to embed
vertex vi, and vertices U = v1, . . . , vi−1 have already been embedded. Assume inductively
that the embedding of the vertices of U satisfies inequality 1 for the vertices in U .

Let B∞(g(u), r) denote the L∞ ball around g(u) with radius r (note that these balls
are axis-aligned squares). Let x be any point in

⋂
u∈U B∞(g(u), `(G,H)dG(u, vi)). If we

set g(vi) = x, then inequality 1 holds for all points in U ∪ {vi}. We now show that this
intersection is nonempty (it is straightforward to find an element in the intersection). The
set of axis aligned squares has Helly number4 2; therefore it is enough to show that for every
u, u′ ∈ U , B∞(g(u), `(G,H)dG(u, vi)) and B∞(g(u′), `(G,H)dG(u′, vi)) intersect. Otherwise,

d∞(g(u), g(u′)) > `(G,H)(dG(u, vi) + dG(u′, vi)) ≥ `(G,H)dG(u, u′).

This contradicts our induction hypothesis that the set of vertices in U satisfies inequality 1,
and completes the proof of the lemma. J

In the following lemma, we analyze the projection embedding step of the algorithm.

I Lemma 5. Suppose r is the side length of the largest empty square D inside M . Then for
any vertices u and v in G, dH(f(u), f(v)) is at most 1 + (10

√
2k/r)d∞(g(u), g(v)).

Proof. For any point x, let π(x) denote the intersection of the boundary of M and the ray
from the center c of D passing through x. Note that for any vertex v in G, f(v) is the anchor
in H nearest in clockwise direction to π(g(v)). We show that for any x, y ∈M , the distance
between π(x) and π(y) along the boundary of M is at most (10

√
2k/r)d∞(x, y).

We first argue that it is sufficient to establish the preceding claim for points on the
boundary of D, at the loss of a factor of

√
2. Let x and y be two arbitrary points in M but

not in the interior of D. Let x′ (resp., y′) denote the intersection of R(x) (resp., R(y)) and
the boundary of D. From elementary geometry, it follows that d(x′, y′) ≤ d(x, y), where d
is the Euclidean distance; since d∞(x, y) ≥ d(x, y)/

√
2 and d∞(x′, y′) ≤ d(x′, y′), we obtain

d∞(x′, y′) ≤
√

2d∞(x, y). Since π(x) = π(x′) and π(y) = π(y′), establishing the above
statement for x′ and y′ implies the same for x and y, up to a factor of

√
2.

4 A family of sets has Helly number h if any minimal subfamily with an empty intersection has h or fewer
sets in it.
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(a) Points x and y are on the
same side of square D, and
points π(x) and π(y) are on one
side of boundary of M parallel
to segment xy.

(b) Points x and y are on the
same side of square D, and
points π(x) and π(y) are on one
side of boundary of M ortho-
gonal to segment xy.

(c) General case where Points
x and y (resp. points π(x)
and π(y)) are anywhere on the
boundary of D (resp. on the
boundary of M).

Figure 1 Embedding of points inside the grid M to its boundary using an empty square D.
Referred to in the proof of Lemma 5.

Consider points x and y on the boundary of D. We consider three cases. In the first
two cases, x and y are on the same side of D. In the first case (Figure 1a), π(x) and π(y)
are on the same side of the boundary of M and segment π(x)π(y) is parallel to segment
xy; then, by similarity of triangle formed by c, x, and y and the one formed by c, π(x) and
π(y), we obtain that the distance between π(x) and π(y) is at most 3kd∞(x, y)/(16r). In
the second case (Figure 1b), π(x) and π(y) are on same side of the boundary of M , and
segment π(x)π(y) is orthogonal to segment xy. In this case, w.l.o.g. assume that π(y) is
closer to center c than π(x) with respect to d∞ distance. Let point z be a point on segment
cπ(x) such that segments xy and π(y)z are parallel. From center c extend a line parallel to
segment xy until it hits the side of M on which π(x) and π(y) are. Let w be the intersection.
Using elementary geometry and similarity argument, we have the following:

|π(x)π(y)|
|zπ(y)|

= |π(x)w|
|cw|

≤ k/4
k/16 = 4 and zπ(y)

xy
= π(y)w

r
≤ k

4r

We thus obtain |π(x)π(y)|
|xy| ≤ k/r. For the third case (Figure 1c), we observe that d∞(x, y) is

at least half the shortest path between x and y that lies within the boundary of D. This
latter shortest path consists of at most five segments, each residing completely on one side of
the boundary of D. We apply the argument of the first and second case to each of these
segments to obtain that the distance between π(x) and π(y) is at most 10kd∞(x, y)/r.

To complete the proof, we note that distance between anchor nearest (clockwise) to π(x)
and anchor nearest (clockwise) to π(y) is at most one plus the distance between π(x) and
π(y). Therefore, the dH(f(u), f(v)) is at most 1 + 10

√
2kd∞(g(u), g(v))/r. J

I Theorem 6. Algorithm 1 computes a retraction of G to the cycle H with stretch at most
the minimum of k/2 and O(

√
n) times the optimal stretch.

Proof. By Lemma 4, the embedding g satisfies inequality 1 for every u and v in G. By a
straightforward averaging argument, there exists a square of side length k/(8

√
n) whose

center is at L∞ distance at most k/16 from the center of M and which does not contain g(u)
for any u in V . By Lemma 5, the projection embedding ensures that for any u and v in V ,
dH(f(u), f(v)) is at most 1 +O(

√
n)`(G,H)dG(u, v). Since the distance in H cannot exceed

k/2, the claim of the theorem follows. J

ICALP 2019
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The Sperner bottleneck. Unfortunately, we cannot improve on the approximation ratio in
Theorem 6 using only the distance-based lower bound. Consider the following instance: the
guest graph G is the

√
n×
√
n grid, and the host H is the cycle of G formed by the 4

√
n

vertices on the outer boundary of G. It is easy to see that the distance-based lower bound
has a value of 2 on this instance. On the other hand, using Sperner’s Lemma from topology,
we show that a stretch of o(

√
n) is ruled out:

I Lemma 7. The optimal stretch achievable for an n-vertex grid is at least 2
√
n/3.

Proof. Suppose we triangulate the grid by adding northwest-to-southeast diagonals in each
cell of the grid. Consider the following coloring of the boundary H with 3 colors. Divide H
into three segments, each consisting of a contiguous sequence of at least b4

√
n/3c vertices; all

vertices in the first, second, and third segment are colored red, green, and blue, respectively.
Let f be any retraction from G to H. Let cf denote the following coloring for G \H: the
color of u is the color of f(u). By Sperner’s Lemma [34], there exists a tri-chromatic triangle.
This implies that there are two vertices within distance at most two in G that are at least
4
√
n/3 apart in the retraction f , resulting in a stretch of at least 2

√
n/3. J

Note that k = Θ(
√
n) in this instance, so the above lemma also rules out an o(k) approximation

using the distance-based lower bound. A natural approach to improving the approximation
factor is to use an LP or SDP relaxation for the problem. Indeed, the so-called earthmover
LP used for the closely related 0-extension problem [24, 7] can be easily adapted to our
minimum stretch retraction problem. Similarly, SDP relaxations previously used for minimum
bandwidth and related problems [4, 33] can also be adapted to our problem. However, these
convex relaxations also have an integrality gap of Ω(

√
n) for precisely the same reason: they

capture the distance-based lower bound but not the one from Sperner’s lemma on the grid
(see the full version of the paper [18] for a detailed discussion of these LP/SDP relaxations
and integrality gaps).

In spite of these gaps, we show that the grid is not a particularly challenging instance of
the problem. In fact, in the next section, we give an exact algorithm for retraction in planar
graphs, of which the grid is an example. Retraction of planar graphs to cycles has been
considered in the past, and non-constructive characterizations of stretch-1 embeddings were
known [30]. Our constructive result, while using planarity extensively, suggests that there
might be a general technique for addressing the Sperner bottleneck described above. Indeed,
we give a candidate LP relaxation (in the full version of the paper [18]) that captures the
Sperner bound on the grid. Rounding this LP to obtain a better approximation ratio, or
showing an integrality gap for it, is an interesting open question.

3 Retracting a planar graph to a cycle

The main result of this section is the following theorem.

I Theorem 8. Let G be a planar graph and H a cycle of G. Then there is a polynomial
time algorithm that finds a retraction from G to H with optimal stretch.

We begin by presenting some useful definitions and elementary claims in Section 3.1. We
then present an overview of our algorithm in Section 3.2. Finally, we present the algorithm
and its analysis in Section 3.3, leading to the proof of Theorem 8.



S. Haney, M. Liaee, B.M. Maggs, D. Panigrahi, R. Rajaraman, and R. Sundaram 70:9

3.1 Preliminaries
We begin with a simple lemma that reduces the problem of finding a minimum-stretch
retraction to the problem of finding a stretch-1 retraction, in polynomial time. Formally,
suppose we have an algorithm A that, given graphs G and H either finds a stretch-1 retraction
from G to H, or proves that no such retraction exists. Then, we can use this algorithm to find
the minimum stretch embedding of G into H, using Lemma 9 below, whose straightforward
proof is deferred to the full paper [18]. Let Gk be the graph where we replace each edge
e ∈ G, e 6∈ H with a path of k edges. Clearly, Gk can be computed in polynomial time.

I Lemma 9. G can be retracted to H with stretch k if and only if Gk can be retracted in H
with stretch-1.

The following lemma, proved in [18], implies that degree-1 vertices can be eliminated.

I Lemma 10. Without loss of generality, we can assume G is 2-vertex connected.

Lemmas 9 and 10 apply to general graphs. In the rest of this subsection, we focus our
attention on planar graphs. We note that all the transformations in Lemmas 9 and 10
preserve planarity of the graph. In 2-connected planar graph, every face of a plane embedding
is bordered by a simple cycle. Finally, we can assume that there is a planar embedding
of G with H bordering the outer face. If this is not the case, G \H contains at least two
connected components, which can each be retracted independently.

Next, we give some definitions related to planar graphs. We call G triangulated if it is
maximally planar, i.e., adding any edge results in a graph that is not planar. Equivalently, G
is triangulated if every face of a plane embedding (including the outer face) of G has 3 edges.
We will make use of the Jordan curve theorem, which says that any closed loop partitions the
plane into an inner and outer region (see e.g. [1]). In particular, this implies that any curve
crossing from the inner to the outer region intersects the loop. For some cycle C in G and a
plane embedding of G, we denote the subset of R2 surrounded by C as RC (including the
intersection with C itself). We say that R ⊂ R2 is inside cycle C of G for a plane embedding
if R ⊆ RC . If R is inside C, we also say that C surrounds R. In a slight abuse of notation,
we say C surrounds subgraph G′ of G for some fixed plane embedding, if C surrounds the
subset of R2 on which G′ is drawn in the plane embedding.

3.2 Overview of our algorithm
Consider some plane embedding of graph G such that H is the subgraph of G bordering G’s
outer face. We give a polynomial-time algorithm that finds a stretch-1 retraction from G to
H or proves that none exists. Using Lemma 9, this immediately yields an algorithm that
finds a minimum stretch retraction from G to H.

Fix a planar embedding of G, let H be defined as above, and let F be a bounded face of
G. A key component of our algorithm is to find a suitable set of curves connecting F to H.
Our aim is to find a set of k = |V (H)| curves in R2 such that the following hold.

Each curve begins at a distinct vertex of F and ends at a distinct vertex of H.
The curves do not intersect each other.
A curve that intersects an edge of G either contains the edge, or intersects the edge only
at its vertices.
Each curve lies totally in RH \ F .
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F

H

(a) A graph G. The outer cycle
H and the face F are shown in
bold.

F

H

(b) Non-intersecting curves par-
tition the region contained in H
but not in F .

`1

`2

u

v

(c) Vertices on `1 are mapped to
u, and vertices on `2 are mapped
to v. All other vertices in the
region are mapped arbitrarily to
u or v.

Figure 2 Using non-intersecting curves to find an embedding from face F to H.

We call curves with these properties valid with respect to F . We argue that the curves
partition RH \ F (up to their boundaries being duplicated) into a set of regions. Each of
these regions is defined by the subset of R2 surrounded by the closed loop made up of two of
the aforementioned curves, a single edge of H, and a path on the boundary of F .

Given a face F and a set of curves valid with respect to F , we can give a stretch-1
retraction from G to H. In essence, the curves partition the graph into regions such that all
vertices in a particular region map to one of two end-points of a particular edge of H. See
Figure 2 for an illustration.

Of course, it is not obvious that a valid set of curves exists for a given face, and, if it
does, how to compute it. We show that if the graph has a stretch-1 retraction, then there is
some face F with k valid curves, and that we can efficiently compute them. Our algorithm
(Algorithm 2) iterates over all faces in the graph, in each case finding the maximum number
of valid curves it can with respect to that face. The number of valid curves we can find is
the length of the shortest cycle surrounding F . If the shortest cycle C surrounding F has
length `, then it is impossible to find more than ` valid curves with respect to F : By the
Jordan curve theorem, each curve must intersect C, and by the definition, valid curves do
not intersect each other and can intersect C only at its vertices. Our construction of the
valid curves shows that this is tight (i.e. we can always find ` curves). We show that if a
stretch-1 retraction exists, then there is some face for which ` = k. Algorithm 2 gives an
outline of the algorithm.

Algorithm 2 Outline for finding a stretch-1 retraction, or proving that none exists.
1: for inner face F in G do
2: Compute maximum number of valid curves between F and H p1, . . . , p`
3: if ` = k then
4: Compute stretch-1 retraction from G to H using p1, . . . , pk
5: end if
6: end for
7: If no retraction was computed, report no stretch-1 retraction exists
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3.3 Algorithm and analysis
This section gives the details of various components of Algorithm 2, and provides a proof of
correctness. The following is an outline of the rest of the section:
1. Lemma 12 shows how to compute a stretch-1 retraction using the k valid curves in line 4

of Algorithm 2.
2. Next, Lemma 13 shows that if a stretch-1 retraction exists, there must be some face F in

the graph such that the smallest cycle surrounding F has length k.
3. Finally, Lemma 15 gives a construction of largest set of valid curves for a given face F

from line 2, and shows that the number of curves computed equals the length of the
smallest cycle surrounding F .

We begin by showing in Lemma 11 a somewhat obvious fact: A set of valid curves
partition RH \F , and each region of the partition contains a single edge of H. We then show
in Lemma 12 that this partition can be used to produce a stretch-1 embedding. See Figure 2
for pictorial presentation of these two lemmas.

I Lemma 11. Let {p1, · · · , pk} be a set of curves that are valid with respect to F . Let Z
denote the set of faces of H∪F ∪

⋃
i pi excluding the outer face and F . Then, each face f ∈ Z

is bordered by exactly 1 edge of H, and every vertex of G \
⋃
i pi is in a unique face of Z.

Proof. Consider the faces of H ∪ F ∪
⋃
i pi. H and F still define faces since the paths pi fall

in RH \F . Let (u, v) be an edge of H, and consider X = pi ∪ (u, v)∪ pj ∪ pF (i, j) where pi is
the path containing u, pj is the path containing v, and pF (i, j) is the path on the boundary
of F between the vertices where i and j meet F such that F is not contained in X. If pi and
pj are both degenerate (i.e., each is empty), then (u, v) = pF (i, j). Otherwise X is a simple
cycle. We claim that X defines a face. In particular, we show that the path pF (i, j) contains
no other vertex of path pz for all z 6= i, j. Suppose it does and let w be that vertex. Let w′
be the vertex adjacent to w on pz. Then w′ ∈ RH \ F , and so w′ ∈ X. The other end of
path pz, call it vertex y, is in H, but y 6= u, v. By the Jordan curve theorem, pz \ w must
cross X. Since the graph is planar, pz \ w must contain a vertex of F,H, pi, or pj . Any of
these outcomes leads to a contradiction. J

I Lemma 12. Given a non-outer face F and a set {p1, p2, . . . , pk} of curves that are valid
with respect to F , we can construct a stretch-1 retraction from G to H in polynomial time.

Proof. Let Z be as defined in Lemma 11. For each vertex w on pi, map w to the unique
vertex v ∈ H∩pi. Otherwise, map w to u or v, where (u, v) is the unique edge of H contained
in the same face of Z as w. Fix a face f of Z. Let (u, v) be the unique edge of H contained
in f . Any edge (x, y) contained in f also has x, y ∈ f , and so x and y are each mapped to
either u or v. Thus, this retraction to H has stretch 1. J

As mentioned earlier, we will show that our construction produces ` valid curves for face
F , where ` is the minimum length cycle surrounding F . So we must show that if a stretch-1
retraction exists, there is some F such that every cycle surrounding F has length at least k.

I Lemma 13. Fix a plane embedding of G where H defines the outer face of the embedding
and suppose there is a stretch-1 retraction G to H. Then there exists a non-outer face F
such that every cycle surrounding F has length at least k.
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Proof. We prove a related claim that implies the statement in the lemma. Fix some stretch-1
retraction of G to H. Then there exists a non-outer face F such that for every cycle C in the
set of cycles surrounding F , and for each vertex v ∈ H, there is some vertex of C mapped to
v. This implies that each of these cycles has length at least k, since the statement says that
vertices of C are mapped to k vertices of H.

The claim is very similar to Sperner’s lemma, and the proof is similar as well. Let
φ : V (G) → V (H) denote the retraction. We associate a score with each cycle C of the
graph: Order the vertices of the cycle in clockwise order, denoted v1, v2, . . . , vj , vj+1 = v1.
Consider the sequence φ(v1), . . . , φ(vj), φ(vj+1). Let the score of C be 0 to start. For each
pair φ(vi), φ(vi+1), we have: either φ(vi) = φ(vi+1), or φ(vi) and φ(vi+1) are adjacent in H.
If φ(vi+1) is clockwise of φ(vi) (i.e. if they are in the same order as on C), add 1 to the score
of C. If they are in counterclockwise order, subtract 1. If they are the same vertex, the score
remains the same. If φ(v1), . . . , φ(vj) does not contain every vertex on the outer cycle, the
score of C must be 0, since each edge along the path φ(v1), . . . , φ(vj+1) is traversed exactly
the same number of times in each direction. On the other hand, a cycle with a non-zero
score must have a score that is divisible by k.

Next, we claim that the score of cycle C is the same as the sum of the scores of the cycles
defining the faces contained in C. To see this, consider the total contribution to the scores of
these cycles from any fixed edge. If the edge is not in cycle C, it is a member of exactly 2
faces contained in C, and contributes either 0 to both faces, or −1 to one and 1 to the other.
Edges in C are each a member of just one face surrounded by C. Therefore, the score of
cycle C is the same as the sum of scores of its surrounded faces. Since the score of cycle H
is k, there must be some face f that has non-zero score.

Finally, we show that there is some face with nonzero score such that every cycle
surrounding the face also has nonzero score. Suppose this is not the case. Then, every face
with a non-zero score is surrounded by a cycle with score 0, which implies that the sum of
all scores of faces with non-zero scores is 0. This is a contradiction, since it implies that the
sum of scores of all internal faces in the graph is 0. J

We complete the section by giving a construction of the largest set of valid curves with
respect to some face F , and show that the number of curves equals the length of the shortest
cycle surrounding F . Our curves will be disjoint paths in a supergraph G∆(F ) of G. It is
necessary to relate the maximum number of disjoint paths to the length of the shortest cycle
surrounding F . The following lemma, proved in full paper [18], establishes this connection.
We believe this lemma should be known, but cannot find it in the relevant literature.

I Lemma 14. Let G be a triangulated graph. The graph induced by any minimum s-t vertex
cut is the shortest simple cycle separating s and t.

If G was already triangulated, we could compute a set of vertex disjoint paths from F

to H (note that a set of vertex disjoint paths yields a set of valid curves). By Menger’s
theorem and Lemma 14, we would find ` paths, where ` is the shortest cycle surrounding F .
G may not be triangulated, so instead we could first triangulate G and then compute the
paths. However, the number of paths we find in this case is the length of the shortest cycle
surrounding F in the triangulation of G, which may be smaller than `. We prevent this from
happening by producing a triangulation that adds vertices as well as edges.

I Lemma 15. Fix a planar embedding of G with H as the outer face, and let F be other
face. Then we can compute ` valid curves in polynomial time, where ` is the length of the
shortest cycle surrounding F .
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(a) Some face F ′ with y>3
edges.

(b) Add a new cycle C with y−1
edges inside F ′ along with con-
necting edges.

(c) Add stars in the newly
created faces, except the one
formed by C. Distances between
vertices of the original face are
preserved.

Figure 3 Iteratively triangulate faces.

Proof. We build a triangulated graph G∆(F ) from the planar embedding of G. First, add
vertices and edges to every face of G, excluding the outer face and F . We do this such that
(1) every face except F and the outer face is a triangle, and (2) the distance between any
u, v ∈ G is preserved. From each face with more than 3 edges, we create one new face that
has one fewer edge. One step of this iterative construction is shown in Figure 3.

Note that distances are preserved inductively, and we make progress by reducing the size
of some face. The graph we produce has 3 edges bordering each face, except for the outer
face and F . In all, the number of vertices and edges added to each face of G is polynomial
in the number of edges bordering the face.

Finally, we add vertices s and t, and edges from s to each vertex of F and from t to each
vertex of C. The resulting graph is triangulated, and we call this graph G∆(F ).

At this point, we can find the maximum set of vertex disjoint paths between s and t in
G∆(F ), by setting vertex capacities to 1 and computing a max flow between s and t. Because
we have preserved distances between vertices of G in our construction of G∆(F ), the length
of the minimum cycle surrounding F must be `. Therefore, the number of disjoint paths we
find must also be `. Finally, we claim that this set of disjoint paths from F to H in G∆(F )
is a set of valid curves for G. This is because G is a subgraph of G∆(F ), and therefore the
criteria for valid curves are still met after removing the vertices and edges of G∆(F ) \G. J

We conclude by tying together the pieces of the section to show we proved Theorem 8.

Proof of Theorem 8. Fix a face F . By Lemma 14, we determine the set of ` disjoint paths
from F to H where the surrounding minimum cycle is of length `. By Lemma 13, there is a
stretch-1 retraction only if there exists a face F whose surrounding min-cycle is of length
k. So if there is no stretch-1 retraction, we find < k disjoint paths for all faces, and our
algorithm returns “no”. Otherwise, there exists a face F for which the surrounding min-cycle
is of length k, and this gives a set of k valid paths. Then, by Lemma 12, the retraction that
we construct has stretch 1. J

4 Open problems

Our work leaves several interesting directions for further research. First, we would like to
determine improved upper and/or lower bounds on the best approximation factor achievable
for retracting a general graph to a cycle. Second, we would like to explore extending our
approach for planar graphs (Section 3) and Euclidean metrics (details in the full paper
[18]) to more general graphs and high-dimensional metrics. Another open problem is that
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of finding approximation algorithms for retracting a general guest graph to an arbitrary
host graph over a subset of anchor vertices, for which we present a hardness result in the
full paper [18].
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