
Relations and Equivalences Between Circuit Lower
Bounds and Karp-Lipton Theorems
Lijie Chen
MIT, Cambridge, MA, USA

Dylan M. McKay
MIT, Cambridge, MA, USA

Cody D. Murray
No Affiliation

R. Ryan Williams
MIT, Cambridge, MA, USA

Abstract

A frontier open problem in circuit complexity is to prove PNP 6⊂ SIZE[nk] for all k; this is a necessary
intermediate step towards NP 6⊂ P/poly. Previously, for several classes containing PNP, including
NPNP, ZPPNP, and S2P, such lower bounds have been proved via Karp-Lipton-style Theorems: to
prove C 6⊂ SIZE[nk] for all k, we show that C ⊂ P/poly implies a “collapse” D = C for some larger
class D, where we already know D 6⊂ SIZE[nk] for all k.

It seems obvious that one could take a different approach to prove circuit lower bounds for PNP

that does not require proving any Karp-Lipton-style theorems along the way. We show this intuition
is wrong: (weak) Karp-Lipton-style theorems for PNP are equivalent to fixed-polynomial
size circuit lower bounds for PNP. That is, PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly

implies PH ⊂ i.o.-PNP
/n).

Next, we present new consequences of the assumption NP ⊂ P/poly, towards proving similar results
for NP circuit lower bounds. We show that under the assumption, fixed-polynomial circuit lower
bounds for NP, nondeterministic polynomial-time derandomizations, and various fixed-polynomial
time simulations of NP are all equivalent. Applying this equivalence, we show that circuit lower
bounds for NP imply better Karp-Lipton collapses. That is, if NP 6⊂ SIZE[nk] for all k, then
for all C ∈ {⊕P, PP, PSPACE, EXP}, C ⊂ P/poly implies C ⊂ i.o.-NP/nε for all ε > 0. Note that
unconditionally, the collapses are only to MA and not NP.

We also explore consequences of circuit lower bounds for a sparse language in NP. Among other
results, we show if a polynomially-sparse NP language does not have n1+ε-size circuits, then MA ⊂
i.o.-NP/O(log n), MA ⊂ i.o.-PNP[O(log n)], and NEXP 6⊂ SIZE[2o(m)]. Finally, we observe connections
between these results and the “hardness magnification” phenomena described in recent works.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Karp-Lipton Theorems, Circuit Lower Bounds, Derandomization, Hardness
Magnification

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.30

Funding Supported by NSF CCF-1741615 (Common Links in Algorithms and Complexity).

Acknowledgements Part of this work was completed while three of the authors were visiting the
Simons Institute at UC Berkeley, as part of the program on Lower Bounds in Computational
Complexity. We thank them for their hospitality and excellent environment. We also thank Josh
Alman for helpful last-minute proofreading, and the CCC reviewers for useful comments.

© Lijie Chen, Dylan M. McKay, Cody D. Murray, and
R. Ryan Williams;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 30; pp. 30:1–30:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2326-2233
https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Circuit Lower Bounds and Karp-Lipton Theorems

1 Introduction

Let C be a complexity class containing NP. A longstanding method for proving fixed-
polynomial circuit lower bounds for functions in C, first observed by Kannan [25], applies
versions of the classical Karp-Lipton Theorem in a particular way:
1. If NP 6⊂ P/poly, then SAT ∈ NP ⊂ C does not have polynomial-size circuits.
2. If NP ⊂ P/poly, then by a “collapse” theorem, we have PH ⊆ C. But for every k, there is

an f ∈ PH that does not have nk-size circuits, so we are also done.

Such collapse theorems are called Karp-Lipton Theorems, as they were first discovered by
Karp and Lipton [26] in their pioneering work on complexity classes with advice. The general
theme of such theorems is a connection between non-uniform and uniform complexity:

“C has (non-uniform) polynomial-size circuits implies a collapse of (uniform) complexity
classes.”

Over the years, Karp-Lipton Theorems have been applied to prove circuit lower bounds for
the complexity classes NPNP [25], ZPPNP [6, 27], S2P [9, 10], PP [37, 1]1, and Promise-MA
and MA/1 [33].2 Other literature on Karp-Lipton Theorems include [38, 12, 13].

When one first encounters such a lower bound argument, the non-constructivity of the
result (the two uncertain cases) and the use of a Karp-Lipton Theorem looks strange.3 It
appears obvious that one ought to be able to prove circuit lower bounds in a fundamentally
different way, without worrying over any collapses of the polynomial hierarchy. It is easy to
imagine the possibility of a sophisticated combinatorial argument establishing a lower bound
for PNP functions (one natural next step in such lower bounds) which has nothing to do with
simulating PH more efficiently, and has no implications for it.

PNP Circuit Lower Bounds are Equivalent to Karp-Lipton Collapses to PNP. We show
that, in a sense, the above intuition is false: any fixed-polynomial-size circuit lower bound
for PNP would imply a Karp-Lipton Theorem collapsing PH all the way to PNP. (There are
some technicalities: the PNP simulation uses small advice and only works infinitely often, but
we believe these conditions can potentially be removed, and they do not change the moral
of our story.) We find this result surprising; it shows that in order to prove a circuit lower
bound for PNP, one cannot avoid proving a Karp-Lipton Theorem for PNP in the process. A
Karp-Lipton Theorem is both necessary and sufficient for such lower bounds.

I Theorem 1 (PNP Circuit Lower Bounds are Equivalent to a Karp-Lipton Collapse to PNP).
PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ PH ⊂ i.o.-PNP

/n).

One direction of Theorem 1 follows immediately from the classical lower bound paradigm
described above. In particular, assuming PNP ⊂ SIZE[nk] for some k and assuming NP ⊂
P/poly =⇒ PH ⊂ i.o.-PNP

/n we have

PH ⊂ i.o.-PNP
/n ⊆ i.o.-SIZE[O(n)k],

1 Both Vinodchandran and Aaronson’s proofs of PP 6⊂ SIZE[nk] use the Karp-Lipton-style theorem
“PP ⊂ P/ poly then PP = MA”, which follows from [28]. Aaronson shows further that “PP ⊂ P/ poly
then PPP = MA”. From there, one can directly construct a function in PPP without nk-size circuits.

2 Santhanam used the Karp-Lipton-style theorem “PSPACE ⊂ P/poly implies PSPACE = MA” to prove
lower bounds against Promise-MA and MA with one bit of advice.

3 Note Cai and Watanabe [11] found a constructive proof for NPNP.

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:3

which contradicts known fixed-polynomial lower bounds for PH. The interesting direction is
the converse, showing that proving lower bounds against PNP implies proving a Karp-Lipton
collapse to PNP that is sufficient for the lower bound.

NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses. After observing The-
orem 1, a natural question is whether such a theorem holds for NP circuit lower bounds
as well:

Does NP 6⊂ SIZE[nk] for all k imply a Karp-Lipton Collapse to NP?

While we have not yet been able to prove this under the hypothesis NP ⊂ P/ poly as above,
we can show it for stronger hypotheses. Another class of Karp-Lipton Theorems (used
in circuit lower bounds for PP [37, 1] and Promise-MA [33]) give stronger collapses under
hypotheses like PSPACE ⊂ P/poly: for any class C which is one of NEXP [24], EXPNP ([7]
and [5]), EXP and PSPACE [5], PP [28] and ⊕P [23], we have:

If C ⊂ P/ poly then C ⊆ MA.

We show how NP circuit lower bounds can be used to derandomize MA. In fact, under the
hypothesis NP ⊂ P/ poly, we prove an equivalence between NP circuit lower bounds, fast
Arthur-Merlin simulations of NP, and nondeterministic derandomization of Arthur-Merlin
protocols.

To state our results, we first define a variation of the “robust simulation” which was
originally introduced in [17]. For a complexity class C and a language L, we say L is in
c-r.o.-C for a constant c, if there is a language L′ ∈ C such that there are infinitely many m’s
such that for all n ∈ [m,mc], L′ agrees with L on inputs of length n.4 (See Section 2.1 for
formal definitions.)

I Theorem 2. Assuming NP ⊂ P/poly, the following are equivalent:
1. NP is not in SIZE[nk] for all k.
2. AM/1 is in c-r.o.-NP/nε for all ε > 0 and integers c.

That is, Arthur-Merlin games with O(1) rounds and small advice can be simulated “c-
robustly often” in NP with modest advice, for all constants c.5

3. NP does not have nk-size witnesses for all k.
That is, for all k, there is a language L ∈ NP, a poly-time verifier V for L, and infinitely
many xn ∈ L such that V (xn, ·) has no witness of circuit complexity at most nk.

4. For all k and d, there is a polynomial-time nondeterministic PRG with seed-length O(logn)
and n bits of advice against nk-size circuits d-robustly often.6

5. NP is not in AMTIME(nk) for all k.
6. (NP ∩ coNP)/nε is not in SIZE[nk] for all k and all ε > 0.
7. (AM ∩ coAM)/1 is in c-r.o.-(NP ∩ coNP)/nε for all ε > 0 and all integers c.

That is, under NP ⊂ P/ poly, the tasks of fixed-polynomial lower bounds for NP, lower
bounds for (NP ∩ coNP)/nε, uniform lower bounds on simulating NP within AM, and
derandomizing AM in NP are all equivalent.

4 The original definition of L ⊆ r.o.-C requires that there is a single language L′ ∈ C such that for all c
there are infinitely many m’s such that for all n ∈ [m, mc], L′ agrees with L on inputs of length n.

5 See the Preliminaries for a definition of “c-robustly often”. Intutively, it is a mild strengthening of
“infinitely often”.

6 See the Preliminaries for formal definitions.

CCC 2019

30:4 Circuit Lower Bounds and Karp-Lipton Theorems

We recall another type of Karp-Lipton collapse was shown by [4]: NP ⊂ P/poly implies
AM = MA. An intriguing corollary of Theorem 2 is that fixed-polynomial lower bounds for
NP would improve this collapse, from MA to r.o.-c-NP/nε for all c:

I Corollary 3 (NP Circuit Lower Bounds Equivalent to a Karp-Lipton Collapse of AM to NP).
NP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ AM is in r.o.-c-NP/nε for all c).

Another consequence of Theorem 2 is that NP circuit lower bounds imply better Karp-
Lipton collapses from MA down to NP:

I Theorem 4 (NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses). Let C ∈
{⊕P,PSPACE,PP,EXP}. Suppose NP 6⊂ SIZE[nk] for all k. Then for all ε > 0, (C ⊂
P/poly =⇒ C ⊂ i.o.-NP/nε). In particular, polynomial-size circuits for any C-complete
language L can be constructed in NP infinitely often, with nε advice.

I Remark 5. By “circuits for L can be constructed in NP infinitely often”, we mean that
there is a nondeterministic poly-time algorithm A such that, for infinitely many n, A on
input 1n outputs a circuit Cn for Ln on at least one computation path, and on all paths
where such a Cn is not output, A outputs reject.

Consequences of Weak Circuit Lower Bounds for Sparse Languages in NP. Theorem 2
shows that assuming NP ⊂ P/poly, fixed-polynomial lower bounds for NP imply AM = MA ⊆
i.o.-NP/nε . This is also the reason that we can only show collapses to i.o.-NP/nε in Theorem 4.
It is interesting to ask whether the nε advice in the simulation can be eliminated or reduced.
In the following, we show that an n1.00001-size circuit lower bound for a polynomially-sparse
language in NP would imply an advice reduction, along with other interesting consequences.

I Theorem 6 (Consequences of Weak Circuit Lower Bounds for Polynomially-Sparse NP
Languages). Suppose there is an ε > 0, a c ≥ 1, and an nc-sparse L ∈ NP without n1+ε-size
circuits. Then MA ⊂ i.o.-NP/O(logn), MA ⊆ i.o.-PNP[O(logn)], and NE 6⊂ SIZE[2δ·n] for some
δ > 0 (which implies NP 6⊂ SIZE[nk] for all k).

One step in the proof of Theorem 6 is a form of hardness condensation (as termed by
Impagliazzo [21]) for sparse NP languages. The goal of hardness condensation [8, 22] is that,
given a function f on n input bits with complexity S, we want to construct a function f̃
on `� n input bits that still has complexity roughly S. We show how a hard S(n)-sparse
language in NTIME[T (n)] can be “condensed” in a generic way, based on the sparsity S(n).
We can efficiently build a PRG from the harder condensed function.

Theorem 6 shows how a very weak lower bound (n1+ε) for a sparse language L ∈ NP
would imply an exponential-size lower bound for NE (note, the converse is easy to show). This
is reminiscent of a recent line of work [32, 31, 29] on “hardness magnification” phenomena,
showing that seemingly weak circuit lower bounds for certain problems can in fact imply
strong circuit lower bounds which are out of reach of current proof techniques.

At a high level, the hardness magnification results in the above-cited papers show how
weak lower bounds on “compression problems” can imply strong complexity class separations.
These compression problems have the form: given a string, does it have a small efficient
representation? As an example, in the Minimum Circuit Size Problem for size S(m)� 2m,
denoted as MCSP[S(m)], we are given a truth table of length N = 2m and want to know if
the function has a circuit of size at most S(m). As an example of hardness magnification,
McKay, Murray, and Williams [29] show that, if there is an ε > 0 such that MCSP[2m/ log?m]
is not in SIZE[N1+ε], then NP 6⊂ P/poly. Thus a very weak circuit size lower bound for
MCSP[2m/ log?m] would imply a super-polynomial lower bound for SAT!

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:5

Sparsity Alone Implies a Weak Hardness Magnification. We identify a simple property of
all efficient compression problems which alone implies a (weak) form of hardness magnification:
the sparsity of the underlying language. For any compression problem on length-N strings
where we ask for a length-`(N) representation (think of `(N) ≤ no(1)), there are at most 2`(N)

strings in the language. Scaling up the sparsity of Theorem 6, we show that non-trivial circuit
lower bounds for any NP problem with subexponential sparsity already implies longstanding
circuit lower bounds. In fact, we have an equivalence:

I Theorem 7. NEXP 6⊂ P/poly if and only if there exists an ε > 0 such that for every
sufficiently small β > 0, there is a 2nβ -sparse language L ∈ NTIME[2nβ] without n1+ε-size
circuits.

It follows that an n1+ε-size circuit lower bound for MCSP[2m/ log?m] implies NEXP 6⊂
P/poly. We remark while the lower bound consequence here is much weaker than the
consequences of prior work [32, 31, 29] (only NEXP 6⊂ P/poly, instead of NP 6⊂ P/poly),
the hypothesis has much more flexibility: Theorem 7 allows for any sparse language in
NTIME[2no(1)], while the MCSP problem is in NTIME[n1+o(1)].7

Finally, we observe that Theorem 7 is similar in spirit to the Hartmanis-Immerman-
Sewelson theorem [20] which states that there is a polynomially-sparse language in NP \ P
if and only if NE 6= E. Theorem 7 can be interpreted as a certain optimized, non-uniform
analogue of Hartmanis-Immerman-Sewelson theorem, in a different regime of sparsity.

Organization of the Paper. In Section 2, we introduce the necessary preliminaries for this
paper. In Section 3, we prove that fixed-polynomial circuit lower bounds for PNP is equivalent
to a (weak) Karp-Lipton theorem for P. In Section 4, we prove our equivalence theorem
for NP circuit lower bounds, fast simulations of NP, and nondeterministic polynomial-time
derandomization, under the hypothesis NP ⊂ P/ poly. In Section 5, we show how our
equivalence theorem implies that fixed polynomial circuit lower bounds for NP implies better
Karp-Lipton theorems for higher complexity classes. In Section 6, we prove the consequences
of weak circuit lower bounds for sparse NP languages. Finally, in Section 7, we discuss some
interesting open questions stemming from this work.

2 Preliminaries

We assume basic knowledge of complexity theory (see e.g. [3, 19] for excellent references).
Here we review some notation and concepts that are of particular interest for this paper.

Notation. All languages considered are over {0, 1}. For a language L, we define Ln :=
{0, 1}n ∩ L. For s : N→ N, SIZE[s(n)] is the class of languages decided by an infinite circuit
family where the nth circuit in the family has size at most s(n). ⊕P is the closure under
polynomial-time reductions of the decision problem Parity-SAT: Given a Boolean formula, is
the number of its satisfying assignments odd?

For a deterministic or nondeterministic class C and function a(n), C/a(n) is the class of
languages L such that there is an L′ ∈ C and function f : N→ {0, 1}? with |f(n)| ≤ a(n) for
all x, such that L = {x | (x, f(|x|)) ∈ L′}. That is, the advice string f(n) can be used to
solve all n-bit instances within class C. For “promise” classes C such as MA and AM, C/a(n)
is defined similarly, except that the promise of the class is only required to hold when the
correct advice f(n) is provided.

7 We remark that these results are not directly related to hardness magnification for NC1-complete
problems [2, 15], as the problems studied in these works are clearly not sparse.

CCC 2019

30:6 Circuit Lower Bounds and Karp-Lipton Theorems

2.1 Infinitely Often and Robust Simulations
In this section, let C be a class of languages. Here we recall infinitely often and robust
simulations, the latter of which was first defined and studied in [17]. Robust simulations
expand on the notion of “infinitely often” simulations. A language L ∈ i.o.-C (infinitely often
C), if there is a language L′ in C such that there are infinitely many n such that Ln = L′n.
A language L ∈ r.o.-C (robustly often C), if there is a language L′ in C such that for all
k ≥ 1, there are infinitely many n such that Lm = L′m for all m ∈ [n, nk]. In this case, we
say L′ r.o.-computes L.

c-Robust Simulations. We consider a parameterized version of the robust simulation
concept which is useful for stating our results. Let c ≥ 1 be an integer constant. We say
a language L ∈ c-r.o.-C (c-robustly often C) if there is an L′ ∈ C and infinitely many n
such that Lm = L′m for all m ∈ [n, nc]. In this case, we say L′ c-r.o.-computes L. Note that
L ∈ r.o.-C implies L ∈ c-r.o.-C for all c, but the converse is not necessarily true.

More generally, a property P (n) holds c-robustly often (c-r.o.-) if for all integers k, there
are infinitely many m’s such that P (n) holds for all n ∈ [m,mc].

2.2 Non-deterministic Pseudo-Random Generators
Let w(n), s(n) : N → N, and let C be a class of functions. We say a function family G,
specified by Gn : {0, 1}w(n) × {0, 1}s(n) → {0, 1}∗ ∩ {⊥}, is a nondeterministic PRG against
C if for all sufficiently large n and all C ∈ C , the following hold:

For all y ∈ {0, 1}w(n), either Gn(y, z) 6= ⊥ for all z’s (such a y is called good), or
Gn(y, z) = ⊥ for all z’s (a bad y).
There is at least one good y ∈ {0, 1}w(n).
Suppose y ∈ {0, 1}w(n) is good, C has m input bits, and |Gn(y, z)| ≥ m for all z. Then∣∣∣∣ Pr

z∈{0,1}s(n)
[C(Gn(y, z)) = 1]− Pr

z∈{0,1}m
[C(z) = 1]

∣∣∣∣ < 1/n.

As usual, if C takes less than |Gn(y, z)| inputs, C(Gn(y, z)) corresponds to feeding C
with the first m bits of Gn(y, z).

Usually we are only interested in the seed length parameter s(n) and the running time
T (n) of the PRG Gn as a function of n. To be concise, we say G is a T (n)-time NPRG of
seed length s(n) against C .

We say G is a i.o.-NPRG or r.o.-NPRG, if it only fools functions in C infinite often or
robustly often.

2.3 Circuit Complexity of Strings and Pseudorandom Generators
For a circuit C on ` inputs, we define the truth-table of C, denoted tt(C) ∈ {0, 1}2` , to be
the evaluation of C on all possible inputs sorted in lexicographical order. For every string
y, let 2` be the smallest power of 2 such that 2` > |y|. We define the circuit complexity of
y, denoted as CC(y), to be the circuit complexity of the `-input function defined by the
truth-table y102`−|y|−1. We will use the following strong construction of pseudorandom
generators from hard functions:

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:7

I Theorem 8 (Umans [36]). There is a constant g and a function G : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ such that, for all s and Y satisfying CC(Y) ≥ sg, and for all circuits C of size s,∣∣∣∣ Pr

x∈{0,1}g log |Y |
[C(G(Y, x)) = 1]− Pr

x∈{0,1}s
[C(x) = 1]

∣∣∣∣ < 1/s.

Furthermore, G is computable in poly(|Y |) time.

Fortnow-Santhanam-Williams [18]. A work related to this paper is that of Fortnow,
Santhanam, and Williams, who proved the equivalences NP 6⊂ SIZE[nk] for all k ⇐⇒
PNP[nk] 6⊂ SIZE[nc] for all k, c and AM 6⊂ SIZE[nk] for all k ⇐⇒ MA 6⊂ SIZE[nk] for all k.
We use intermediate results of theirs in our equivalence theorems (see the citations).

3 PNP Circuit Lower Bounds Equivalent to Karp-Lipton Collapses to
PNP

In this section we prove Theorem 1 (restated below).

I Reminder of Theorem 1. PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ PH ⊂
i.o.-PNP

/n).

We begin with a lemma on the simulation of poly-time functions with an NP oracle.
Essentially it says that if functions with an NP oracle always output strings of low circuit
complexity, then we can simulate PNP extremely efficiently in the polynomial hierarchy. This
is similar in spirit to Fortnow, Santhanam, and Williams’ result that PNP ⊂ SIZE[nk] implies
NP ⊆ MATIME(nO(k)) [18]; our result is more complex in that we simulate all of PNP.

I Lemma 9. Suppose there is a k such that for all FPNP functions f , the circuit complexity
of f(x) is at most |x|k for all but finite many x. Then PNP ⊆ Σ3TIME[nO(k)].

Proof. Let L ∈ PNP be a language which can be computed by a 3-SAT oracle machine M
in nc time, for a constant c. Without loss of generality, we may assume M is a single-tape
machine.

The FPNP Function fsol. Consider the following FPNP function fsol:

FPNP function fsol for printing assignments to all satisfiable oracle queries

Given an input x, simulate the 3-SAT oracle machine M running on the input x.
On the i-th step, if M makes an oracle query ψ (ψ is a 3-SAT instance) and ψ is
satisfiable, call the NP oracle multiple times to construct a satisfying assignment for
ψ, and print it. Letting m be the length of the assignment (note that m ≤ nc), we
print nc + 1−m additional ones.
Otherwise, print nc + 1 zeros on the i-th step.

In the following we always assume n is sufficiently large. For all x with |x| = n, by
assumption we know the string fsol(x) has an nk size circuit. Let ψ be a 3-SAT query made
on i-th step which is satisfiable; ψ has a satisfying assignment corresponding to a sub-string of
fsol(x) starting from the position (i− 1) · (nc + 1) + 1, and therefore has circuit complexity at
most O(nk) ≤ nk+1. In particular, we can define a circuit Ei(j) := fsol(x)((i−1) ·(nc+1)+j)
whose truth table encodes a SAT assignment to ψ.

CCC 2019

30:8 Circuit Lower Bounds and Karp-Lipton Theorems

The FPNP Function fhistory. Next, we define a function FPNP function fhistory, which prints
the computation history of M . More precisely, we can interpret fhistory(x) as a matrix
cell(x) ∈ Σnc×nc , such that cell(i, j) represents the state of the j-th cell of the working tape
before the i-th step, and Σ is a constant-size alphabet which represents all possible states of
a cell. From our assumption, for an x with |x| = n, we know that fhistory(x) has an nk-size
circuit.

The Algorithm. Now we are ready to describe a Σ3 algorithm for L running in nO(k) time.
At a high level, the algorithm first guesses two circuits Chistory and Csol, whose truth-tables are
supposed to represent fhistory(x) and fsol(x), it tries to verify that these circuits correspond
to a correct accepting computation of M on x. The whole verification can be done in
Π2TIME[nO(k)], utilizing the fact that M is making 3-SAT queries. The formal description
of the algorithm is given below.

A Σ3TIME[nO(k)] algorithm for L

(1) Given an input x, guess two nk-size circuits Chistory and Csol where the truth-table
of Chistory is intended to be fhistory(x)), and the truth-table of Csol is intended to be
fsol(x). Let cell ∈ Σnc×nc be the matrix (tableau) corresponding to the truth-table
of Chistory.

(2) We check that Chistory is consistent and accepting, assuming its claimed answers to
oracle queries are correct. In particular, we universally check over all (i, j) ∈ [nc]×[nc]
that cell(i, j) is consistent with the contents of cell(i−1, j−1), cell(i−1, j), cell(i, j+1)
when i > 1, whether it agrees with the initial configuration when i = 1, and whether
M is in an accept state when i = nc.

(3) We check that the claimed answers to oracle queries in Chistory are correct. For
convenience, we assume the query string always starts at the leftmost position on
the tape. We universally check over all step i ∈ [nc]:

If there is no query at the i-th step, we accept.
(A) Let ψ be the 3-SAT query. If the claimed answer in Chistory for ψ is yes, we examine

the corresponding sub-string of tt(Csol), and check universally over all clauses in
ψ that it is satisfied by the corresponding assignment in tt(Csol) (accepting if the
check passes and rejecting if it fails).

(B) If the claimed answer in Chistory for ψ is no, we universally check over all nk+1-size
circuits D that tt(D) is not an assignment to ψ, by existentially checking that
there is a clause in ψ which is not satisfied by tt(D).

Running Time. It is straightforward to see that the above is a Σ3TIME[nO(k)] algorithm.

Correctness. When x ∈ L, there are Csol and Chistory such that tt(Csol) and (Chistory) corres-
pond to fsol(x) and fhistory(x), so all of the checks pass and the above algorithm accepts x.

Let x /∈ L. We want to show that all possible nk-size circuits for Chistory and Csol will be
rejected. Assume for contradiction that there are circuits Chistory and Csol that can pass the
whole verification. By our checks in step (2) of the algorithm, Chistory is consistent and ends
in accept state; therefore, at least one answer to its oracle queries is not correct. Suppose the

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:9

first incorrect answer occurs on the i-th step. Since Chistory is consistent and all queries made
before the i-th are correctly answered, the i-th query ψ is actually the correct i-th query
made by machine M on the input x.

Therefore, if the correct answer to ψ is yes but Chistory claims it is no, case (B) will not be
passed, as there is always a satisfying assignment that can be represented by the truth-table
of an nk+1-size circuit. Similarly, if Chistory incorrectly claims the answer is yes, then case
(A) cannot be passed, as ψ is unsatisfiable. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose (1) PNP does not have SIZE[nk] circuits for any fixed k and
(2) NP ⊂ P/poly. By assumption (2), we have that for every c, Σ3TIME[nc] ⊂ SIZE[nO(c)].
Therefore, applying (1), PNP 6⊆ Σ3TIME[nc] for every c. By the contrapositive of Lemma 9,
for every k there is a PNP function B that for infinitely many x of length n, the circuit
complexity of B(x) is greater than nk. In other words, B(x) outputs the truth tables of hard
functions on infinitely many x.

Assumption (2) also implies a collapse of the polynomial hierarchy to ZPPNP [27]. By
(2), we also have ZPPNP ⊂ P/poly, so every ZPPNP algorithm A has polynomial-size circuits,
and thus by standard hardness-to-PRG constructions (e.g., Theorem 8) there is a fixed k
such that a string of circuit complexity at least nk can be used to construct a PRG that
fools algorithm A on inputs of length n. As shown above, there is a function B in PNP that
can produce such strings on infinitely many inputs x. If the inputs x that make B produce
high complexity strings are given as advice, then the ZPPNP algorithm A can be simulated
in PNP

/n : first, call B on the advice x to generate a hard function, produce a PRG of seed
length O(logn) with the hard function, then simulate A on the input and the pseudorandom
strings output by the PRG, using the NP oracle to simulate the NP oracle of A. Thus we
have ZPPNP ⊂ i.o.-PNP/n.

Finally, we note that the n bits of advice can be reduced to nε bits for any desired ε > 0.
For every k > 0, we can find an FPNP function that outputs a string of circuit complexity
greater than nk. Setting k′ = k/ε, we can use an nε-length input as advice, and still get a
function that is hard enough to derandomize ((nε)k′ = (nε)k/ε = nk). J

4 An Equivalence Theorem Under NP ⊂ P/poly

In this section we prove Theorem 2 together with several applications.
First, we need a strong size lower bound for a language in (MA ∩ coMA)/1. The proof is

based on a similar lemma in a recent work [14] (which further builds on [30, 33]). We present
a proof in Appendix A for completeness.

I Lemma 10 (Implicit in [14]). For all constants k, there is an integer c, and a language
L ∈ (MA ∩ coMA)/1, such that for all sufficiently large τ ∈ N and n = 2τ , either

SIZE(Ln) > nk, or
SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

We also need the following two simple lemmas.

I Lemma 11. NP is not in SIZE[nk] for all k iff NP/n is not in SIZE[nk] for all k.

CCC 2019

30:10 Circuit Lower Bounds and Karp-Lipton Theorems

Proof. The ⇒ direction is trivial. For the ⇐ direction, suppose NP is in SIZE[nk] for an
integer k. Let L ∈ NP/n, and M and {αn}n∈N be its corresponding nondeterministic Turing
machine and advice sequence. Let p(n) be a polynomial running time upper bound of M on
inputs of length n.

Now, we define a language L′ such that a pair (x, α) ∈ L′ if and only if |x| = |α| and M
accepts x with advice bits set to α in p(|x|) steps. Clearly, L′ ∈ NP from the definition, so it
has an nk-size circuit family. Fixing the advice bits to the actual αn’s in the circuit family,
we have an nO(k)-size circuit family for L as well. This completes the proof. J

I Lemma 12 (Theorem 14 [18]). Let k be an integer. If NP ⊂ P/poly and all NP verifiers
have nk-size witnesses, then NP ⊆ MATIME[nO(k)] ⊂ SIZE[nO(k)].

Proof. Assume all NP verifiers have nk-size witnesses. By guessing circuits for the wit-
nesses to PCP verifiers, it follows that NP ⊆ MATIME[nO(k)] [18]. Furthermore, we have
MATIME[nO(k)] ⊂ NTIME[nO(k)]/nO(k) ⊂ SIZE[nO(k)]. The last step follows from the as-
sumption that NP ⊂ P/poly (and therefore SAT ∈ SIZE[nc] for a constant c). J

Now, we are ready to prove our equivalence theorem (restated below).

I Reminder of Theorem 2. Assuming NP ⊂ P/poly, the following are equivalent:
1. NP is not in SIZE[nk] for all k.
2. AM/1 is in c-r.o.-NP/nε for all ε > 0 and integers c.
3. NP does not have nk-size witnesses for all k.8
4. For all k and d, there is a poly-time nondeterministic PRG with n bits of advice against

nk-size circuits d-robustly often.9
5. NP is not in AMTIME(nk) for all k.
6. (NP ∩ coNP)/nε is not in SIZE[nk] for all k and all ε > 0.
7. (AM ∩ coAM)/1 is in c-r.o.-(NP ∩ coNP)/nε for all ε > 0 and all integers c.

Proof. We prove the following directions to show equivalence.
(2) ⇒ (1). Suppose (2) holds. For all k, let L and c be the MA/1 language and the
corresponding constant c guaranteed by Lemma 10. By (2) and the fact that MA/1 ⊆ AM/1,
there is an NP/n language L′ such that for infinitely many n’s, L′ agrees with L on inputs
with length in [n, n2c].

Let τ = dlog(n)e. By the condition of Lemma 10, we know that for at least one ` ∈ [n, n2c],
we have SIZE(L′`) ≥ `k. Since there are infinitely many such n, we conclude that L′ is not in
SIZE[nk]. Since k can be an arbitrary integer, it further implies that NP/n is not in SIZE[nk]
for all k, and hence also NP is not in SIZE[nk] for all k by Lemma 11.

(1) ⇒ (3). We prove the contrapositive. Suppose NP has nk-size witnesses for an integer k.
Then, by Lemma 12, NP ⊂ SIZE[nO(k)].

(3) ⇒ (4). This more-or-less follows directly from standard hardness-to-pseudorandomness
constructions [36]. More specifically, for all integers k and d and ε > 0, there is a language
L ∈ NP without ngkd/ε-size witnesses. Equivalently, there is a poly-time verifier V for L,
such that there are infinitely many x ∈ L such that for all y with V (x, y) = 1, it follows
CC(y) ≥ |x|gkd/ε.

8 See the statement of Theorem 2 in the introduction for the definition of nk-size witnesses.
9 See the Preliminaries for a full definition of nondeterministic PRG and d-robustly often.

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:11

For such an x ∈ L with |x| = m, we can guess a y such that V (x, y) = 1 and apply
Theorem 8 to construct a poly-time nondeterministic PRG with seed length O(logm), which
works for input length n ∈ [m1/ε,md/ε] and against nk-size circuits. Note that advice length
is |x| = m ≤ nε.

(4) ⇒ (2). First, under the assumption that NP ⊂ P/poly, we have the collapse AM/1 =
MA/1 [4]. So it suffices to show that MA/1 ⊂ c-r.o.-NP/nε for all ε > 0 and integers d.

Let L ∈ MA/1. That is, for a constant k, there is an nk-time algorithm A(x, y, z, α) with
one bit of advice αn, such that

x ∈ L⇒ there is a y of |x|k length such that Prz[A(x, y, z, αn) = 1] ≥ 2/3.
x /∈ L⇒ for all y of |x|k length, Prz[A(x, y, z, αn) = 1] ≤ 1/3.

Fixing the x, y, αn, we can construct a circuit Cx,y,αn(z) := A(x, y, z, αn) of size n2k in
n2k time.

Now, by (4), for all d, there is a poly-time NPRG G with seed length O(logn) and advice
length nε such that there are infinitely many m’s such that for all n ∈ [m,md], Gn fools
n2k-size circuits.

Applying Gn to fool Cx,y,αn directly, we have a language L′ ∈ NP/nε such that there are
infinitely many m such that L′ agrees with L on all input lengths in [m,md]. This completes
the proof since d can be made arbitrarily large.

(5) ⇒ (3). We prove the contrapositive. Suppose NP has nk-size witnesses for an integer k.
By Lemma 12, it follows that NP ⊆ MATIME[nO(k)] ⊆ AMTIME[nO(k)].

(1) ⇒ (5). Again, we prove the contrapositive. We have NP ⊆ AMTIME[nO(k)] ⊂
NTIME[nO(k)]/nO(k) ⊂ SIZE[nO(k)]. The last step follows from the assumption that NP ⊆
P/poly (and therefore SAT ∈ SIZE[nc] for a constant c).

(6) ⇒ (1). (NP ∩ coNP)/nε is not in SIZE[nk] for all k and ε > 0 implies NP/n is not in
SIZE[nk] for all k, which in turn implies NP is not in SIZE[nk] for all k by Lemma 11.

(4) ⇒ (7). This follows similarly as the direction from (4) to (2).

(7) ⇒ (6). This follows similarly as the direction from (2) to (1). Note that [4] also implies
(MA ∩ coMA)/1 = (AM ∩ coAM)/1 under the assumption NP ⊂ P/poly. J

5 NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses

Now we show a corollary of Theorem 2 that NP circuit lower bounds imply better Karp-Lipton
collapses.

I Reminder of Theorem 4. Let C ∈ {⊕P,PSPACE,PP,EXP}. Suppose NP 6⊂ SIZE[nk] for
all k. Then for all ε > 0, (C ⊂ P/poly =⇒ C ⊂ i.o.-NP/nε). In particular, polynomial-size
circuits for any C-complete language can be constructed in NP on infinitely many input lengths
with nε advice.

Proof of Theorem 4. We first prove it for ⊕P. Suppose for all k, NP 6⊂ SIZE[nk] and
⊕P ⊂ P/poly.

First, note that BPP⊕P ⊂ P/poly, implying PH ⊂ P/poly by Toda’s theorem [34]. Therefore,
by Theorem 2 together with our assumption, we have MA ⊂ c-r.o.-NP/nε for all ε > 0
and integers c. In particular, MA ⊂ i.o.-NP/nε for all ε > 0. Now it suffices to show that
⊕P ⊂ P/poly =⇒ ⊕P ⊆ MA.

Let Π be the random self-reducible and downward self-reducible ⊕P-complete language
in [23]. By our assumption that ⊕P ⊂ P/poly, Π has a poly-size circuit family.

CCC 2019

30:12 Circuit Lower Bounds and Karp-Lipton Theorems

Then we can guess-and-verify these circuits in MA. We first existentially guess a circuit
Ck for Π on every input length k = 1, . . . , n. C1 can be verified in constant time, and each
successive circuit can be verified via random downward self-reducibility: given a circuit of
length m that computes Πm exactly, a circuit of length m+ 1 can be checked on random
inputs to verify (with high probability) its consistency with Πm+1 (which is computable
using the downward self-reducibility and the circuit for Πm). Then we can apply the random
self-reducibility to construct an exact circuit for Πm+1 from Cm+1 with high probability, as
we already know Cm+1 approximates Πm+1 very well. Therefore, with high probability, we
can guess-and-verify a circuit for Πn via a poly-time MA computation. This puts ⊕P ⊆ MA.
Combining that with MA ⊂ i.o.-NP/nε for all ε > 0, we can conclude that ⊕P ⊂ i.o.-NP/nε
for all ε > 0.

To construct a circuit for Πn in i.o.-NP/nε , note that by Theorem 6, for all k, we have an
i.o.-NPRG fooling nk-size circuits. We can pick k to be a sufficiently large integer, and use
the i.o.-NPRG to derandomize the above process. This turns out to be more subtle than one
might expect.

Construction of poly-size circuits of Πn in i.o.-NP/nε . Let d be a sufficiently large
constant. Since we only aim for an i.o.-construction, we can assume that our i.o.-NPRG
works for the parameter n, and fools all nd-size circuits. Also, suppose we have SIZE(Πn) ≤ nc
for all n and a constant c.

We say a circuit C γ-approximates a function f , if C(x) = f(x) for at least a γ fraction
of the inputs.

Again, suppose we already constructed the circuits C1, C2, . . . , Ck for Π1,Π2, . . . ,Πk.
This time we cannot guarantee Ci exactly computes Πi. Instead, we relax the condition a bit
and ensure that Ci (1− 4/n)-approximates Πi for all i ∈ [k]. Clearly, we can check C1 ≡ Π1
directly so this can be satisfied when k = 1.

We now show how to construct an approximate circuit for Πk+1. First, using the random
self-reducibility of Π and the circuit Ck approximating Πk, there is an oracle circuit E of size
poly(n), which takes two inputs x with |x| = k and r with |r| = poly(n), such that for all x,

Pr
r

[
ECk(x, r) = Πk(x)

]
≥ 1− 1/2n.

Also, by the downward self-reducibility of Π, there is an oracle machine D of poly(k) size,
such that DΠk(z) = Πk+1(z) for all z.

Now, consider the following circuit G(x, r) for computing Πk+1: the circuit simulates
DΠk , while answering all queries w to Πk using ECk(w, r). For each input x ∈ {0, 1}k+1,
let w1, w2, . . . , wpoly(n) be all queries to Πk made by running D on the input x assuming
all answers are correct, we can see that if ECk(wj , r) = Πk(wj) for all these wj ’s, then
G(x, r) = Πk+1(x). Therefore, we have

Pr
r

[G(x, r) = Πk+1(x)] ≥ 1− poly(n)/2n,

for all x ∈ {0, 1}k+1.
Now, we guess a circuit Ck+1 of size (k + 1)c which is supposed to compute Πk+1. By an

enumeration of all possible seeds to our NPRG, we can estimate the probability

pgood := Pr
x∈{0,1}k+1

Pr
r

[G(x, r) = Ck+1(x)].

within 1/n in poly(n) time, as the expression [G(x, r) = Ck+1(x)] has a poly(n) size circuit
with inputs being x and r. Let our estimation be pest. We have |pgood − pest| ≤ 1/n.

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:13

Putting the above together, we have∣∣∣∣ Pr
x∈{0,1}k+1

[Πk+1(x) = Ck+1(x)]− pgood

∣∣∣∣ ≤ poly(n)/2n.

We reject immediately if our estimation pest < 1− 2/n (note that if Ck+1 is the correct
circuit, pgood would be larger than 1− poly(n)/2n > 1− 1/n, and therefore pest > 1− 2/n).
So after that, we can safely assume that Ck+1 (1− 4/n)-approximates Πk+1.

Therefore, at the end we have an nc-size circuit Cn which (1−4/n)-approximates Πn, and
we try to recover an exact circuit for Πn from Cn by exploiting the random self-reducibility
of Πn again. Note that there is an oracle circuit E(x, r), which takes two inputs x with
|x| = n and r with |r| = poly(n) such that for all x,

Pr
r

[ECn(x, r) = Πn(x)] ≥ 2/3.

Now, we generate ` = nO(1) strings r1, r2, . . . , r` by enumerating all seeds to the NPRG.
We construct our final circuit C to be the majority of ECn(x, rj) for all j ∈ [`]. It is
not hard to see that C computes Πn exactly, as our inputs {rj}j∈[`] fool the expression[
ECn(x, r) = Πn(x)

]
for all x ∈ {0, 1}n.

For the case of PP and PSPACE, one can implement the above procedure in the same way,
using the corresponding random self-reducible and downward self-reducible PP-complete and
PSPACE-complete languages (Permanent and the PSPACE-complete language in [35]).

For the case of EXP, note that EXP ⊂ P/poly =⇒ EXP = PSPACE, so we can proceed
the same way as for PSPACE (since EXP = PSPACE, PSPACE-complete languages are also
EXP-complete). J

6 Consequence of Weak Circuit Lower Bounds for Sparse Languages
in NP

Now, we are ready to prove the consequences of weak circuit lower bounds for sparse NP
languages. We first need the following lemma.

I Lemma 13 (Hardness Verification from Circuit Lower Bounds for Sparse NTIME[T (n)]
Languages). Let Sckt(n), Ssparse(n), T (n) : N → N be time constructible functions. Suppose
there is an Ssparse(n)-sparse language L ∈ NTIME[T (n)] without (n · Sckt(n))-size circuits.
Then there is a procedure V such that:

V takes a string z of length n · Ssparse(n) as input and an integer ` ≤ Ssparse(n) as advice.
V runs in O(Ssparse(n) · T (n)) nondeterministic time.
For infinitely many n, there is an integer `n ≤ Ssparse(n) such that V (z, `n) accepts exactly
one string z, and z has circuit complexity Ω(Sckt(n)/ logSsparse(n)).

Proof. Let L be the NTIME[T (n)] language in the assumption. Let N = n · Ssparse(n). We
define a string ListLn ∈ {0, 1}N as the concatenation of all x ∈ Ln in lexicographical order,
together with additional zeros at the end to make the string have length exactly N .

Now define a function fn on m = logdN + 1e bits, with truth-table ListLn102m−N .
We claim that SIZE(Ln) ≤ O(SIZE(fn) ·n · log(Ssparse(n))). To determine whether x ∈ Ln,

it would suffice to perform a binary search on the list ListLn . We construct a circuit
for Ln which performs binary search using fn. First, we hard-wire the length of the list
` := |Ln| ≤ Ssparse(n) into our circuit for Ln so that the binary search can begin with the
correct range. A binary search on List(Ln) takes O(logSsparse(n)) comparisons, and each

CCC 2019

30:14 Circuit Lower Bounds and Karp-Lipton Theorems

comparison requires O(n) calls to fn (to print the appropriate string). It is easy to see
that the circuit size required for the binary search is dominated by the total cost of the
comparisons; this proves the claim.

From the assumption, we know that for infinitely many n, Ln has no circuit of size
n · Sckt(n). By our upper bound on the circuit size of Ln, it follows that on the same set of
n, the function fn has circuit complexity at least Ω(Sckt(n)/ logSsparse(n)).

Now, we construct an algorithm V that only accepts the string fn = ListLn102m−N . We
first need the integer ` = |Ln| as the advice. Given a string Y of length N , we check that Y
contains exactly ` distinct inputs in {0, 1}n in lexicographical order with the correct format,
and we guess an O(T (n))-length witness for each input to verify they are indeed all in L.
It is easy to see that V runs in O(Ssparse(n) · T (n)) nondeterministic time, which completes
the proof. J

I Remark 14. Note that the advice integer ` can be calculated directly with an NP oracle by
doing a binary search for `, which takes O(logSsparse(n)) NP-oracle calls. That is, one can
also use a PNP[O(logSsparse(n))] verifier without advice bits in the statement of Lemma 13.

I Remark 15. As mentioned in the introduction, the above proof can be seen as a type
of hardness condensation for all sparse NTIME[T (n)] languages. The goal of hardness
condensation [8, 22] is that, given a hard function f on n input bits with complexity S, we
want to construct a function f̃ on `� n input bits that still has complexity roughly S. The
above proof shows any hard sparse language in NTIME[T (n)] can be “condensed” into a
function representing its sorted yes-instances.

Combing Lemma 13 with Theorem 8, we obtain a construction of an i.o.-NPRG.

I Corollary 16 (NPRG from lower bounds against sparse NTIME[T (n)] languages). Under the
circuit lower bound assumption of Lemma 13, there is an i.o.-NPRG G with the properties:

G has O(logSsparse(n) + logn) seed length.
G takes O(logSsparse(n)) bits of advice.
G runs in Ssparse(n) · T (n) + poly(n · Ssparse(n)) time.
G fools circuits of size at most (Sckt(n)/ logSsparse(n))Ω(1).

Now we are ready to prove Theorem 6.

I Reminder of Theorem 6. Suppose there is an ε > 0, a c ≥ 1, and an nc-sparse L ∈ NP
without n1+ε-size circuits. Then MA ⊂ i.o.-NP/O(logn), MA ⊆ i.o.-PNP[O(logn)], and NE 6⊂
SIZE[2δ·n] for some δ > 0 (which implies NP 6⊂ SIZE[nk] for all k).

Proof. First, by Corollary 16 and setting Sckt(n) = nε, Ssparse(n) = nc and T (n) = poly(n),
there is an i.o.-NPRG with seed length O(logn) which takes O(logn) bits of advice, runs in
poly(n) time, and fools circuits of size nΩ(ε) = nΩ(1). Note that we can simply scale it up to
make it fool circuits of size nk for any k, with only a constant factor blowup on seed length
and advice bits and a polynomial blowup on the running time.

Applying the i.o.-NPRG to arbitrary Merlin-Arthur computations, we conclude MA ⊂
i.o.-NP/O(logn). Similarly, MA ⊆ i.o.-PNP[O(logn)] follows from Remark 14.

Now we show NE 6⊂ SIZE[2δ·n] for some δ > 0. By Lemma 13, there is a nondeterministic
algorithm running in poly(n) time, given αn = c logn bits of advice, guess and verify a string
of length nc+1 which has circuit complexity at least nε/2, for infinitely many n. We say these
infinitely many n are good n.

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:15

Next, we define the following language L ∈ NE: Given an input of length m. It treats the
first ` = m/4c bits a binary encoded integer n ≤ 2`. Then it treats the next c logn input bits
a as the advice, and tries to guess-and-verify a string z which passes the verification procedure
in Lemma 13 with advice a and parameter n, and then it treats the next (c+ 1) · logn input
bits as an integer i ∈ [nc+1], and accepts if and only zi = 1.

First, it is easy to verify L ∈ NE, as the algorithm runs in poly(n) = 2O(`) = 2O(m)

nondeterministic time. For the circuit complexity of L, we know that for the good n, on
inputs of length of m = 4 · c · dlogne, if we fix the first m/4c bits to represent the integer n,
and next c logn bit to the actual advice αn, L would compute the hard string of length nc+1

on the next (c+ 1) · logn bits. Therefore, SIZE(Lm) ≥ nε ≥ 2Ω(m) for infinitely many m’s,
which completes the proof. J

Finally, we prove Theorem 7.

I Reminder of Theorem 7. NEXP 6⊂ P/poly if and only if there is an ε > 0 such that for all
sufficiently small β > 0, there is a 2nβ -sparse language L ∈ NTIME[2nβ] without n1+ε-size
circuits.

Proof. (⇒) This direction is easy to prove using standard methods. Suppose NEXP 6⊂ P/poly;
this also implies NE 6⊂ P/poly. Therefore, there is a language L ∈ NTIME[2n] that does not
have n2/β-size circuits. Define a padded language L′ = {x10|x|1/β−1|x ∈ L}. It is easy to see
that L′ ∈ NTIME[2mβ], by running the NE algorithm for L on its first n = O(mβ) input bits.
From the circuit lower bound on L, it follows that L′ does not have n2/β = m2-size circuits.

(⇐) First, by Impagliazzo-Kabanets-Wigderson [24], if for every ε and integer k, there is
an i.o.-NPRG with seed length nε, nε advice bits, and 2nε running time that fools nk-size
circuits, then NEXP 6⊂ P/poly.

Setting Sckt(n) = nε, Ssparse(n) = 2nβ and T (n) = 2nβ in Corollary 16, there is an
i.o.-NPRG with seed length O(nβ), takes O(nβ) bits of advice, and runs in 2O(nβ) time that
fools circuits of size nΩ(ε/β) = nε

′ for ε′ > 0. By setting m = nε
′/k, we obtain an i.o.-NPRG

with seed/advice length O(mβ·k/ε′) and running time 2O(mβ·k/ε
′
), which fools circuits of size

mk. Therefore, by [24], it follows that NEXP 6⊂ P/poly. J

7 Open Problems

We conclude with three interesting open questions stemming from this work.

1. Are fixed-polynomial circuit lower bounds for NP equivalent to a Karp-Lipton collapse of
PH to NP?
Formally, is NP 6⊂ SIZE[nk] for all k equivalent to (NP ⊂ P/poly =⇒ PH ⊂ i.o.-NP/n)?
Recall we showed that similar Karp-Lipton-style collapses do occur, assuming NP circuit
lower bounds (e.g., (PSPACE ⊂ P/poly =⇒ PSPACE ⊂ i.o.-NP/n)), and we showed that
NP 6⊂ SIZE[nk] implies a type of collapse of AM into NP.

2. It is also a prominent open problem to prove that ZPPNP
tt 6⊂ SIZE[nk] for some constant

k [16] (that is, prove lower bounds for ZPP with nonadaptive queries to an NP oracle).
Is this lower bound equivalent to a Karp-Lipton collapse of PH?
The difficulty is that, assuming ZPPNP

tt 6⊂ SIZE[nk], it appears that we may obtain a good
simulation of BPPNP

tt , but we presently have no Karp-Lipton Theorem collapsing PH to
BPPNP

tt (indeed, lower bounds for this class are also open). Furthermore, [16] observe
that NP ⊂ P/poly does imply the (small) collapse BPPNP

tt = ZPPNP
tt ; it is unclear how a

circuit lower bound against ZPPNP
tt would aid a further collapse.

CCC 2019

30:16 Circuit Lower Bounds and Karp-Lipton Theorems

3. In light of our Theorem 7, is it possible to show interesting hardness magnification results
for non-sparse versions of MCSP (say, MCSP[2m/m2])?
Currently, we only know hardness magnification results when the circuit size parameter
is 2o(m) [32, 31, 29].

References
1 Scott Aaronson. Oracles Are Subtle But Not Malicious. In 21st Annual IEEE Conference

on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
340–354, 2006. doi:10.1109/CCC.2006.32.

2 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010. doi:10.1145/1706591.1706594.

3 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

4 Vikraman Arvind, Johannes Köbler, Uwe Schöning, and Rainer Schuler. If NP has Polynomial-
Size Circuits, then MA=AM. Theor. Comput. Sci., 137(2):279–282, 1995. doi:10.1016/
0304-3975(95)91133-B.

5 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Computations
in Polylogarithmic Time. In Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31, 1991. doi:
10.1145/103418.103428.

6 Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon.
Oracles and Queries That Are Sufficient for Exact Learning. J. Comput. Syst. Sci., 52(3):421–
433, 1996. doi:10.1006/jcss.1996.0032.

7 Harry Buhrman and Steven Homer. Superpolynomial Circuits, Almost Sparse Oracles and
the Exponential Hierarchy. In Foundations of Software Technology and Theoretical Computer
Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, pages 116–127,
1992. doi:10.1007/3-540-56287-7_99.

8 Joshua Buresh-Oppenheim and Rahul Santhanam. Making Hard Problems Harder. In 21st
Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague,
Czech Republic, pages 73–87, 2006. doi:10.1109/CCC.2006.26.

9 Jin-yi Cai. SP
2 is subset of ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2007. doi:10.1016/j.

jcss.2003.07.015.
10 Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara.

Competing provers yield improved Karp-Lipton collapse results. Inf. Comput., 198(1):1–23,
2005. doi:10.1016/j.ic.2005.01.002.

11 Jin-yi Cai and Osamu Watanabe. On Proving Circuit Lower Bounds against the Polynomial-
Time Hierarchy. SIAM J. Comput., 33(4):984–1009, 2004. doi:10.1137/S0097539703422716.

12 Venkatesan T Chakaravarthy and Sambuddha Roy. Oblivious symmetric alternation. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 230–241. Springer,
2006.

13 Venkatesan T. Chakaravarthy and Sambuddha Roy. Arthur and Merlin as Oracles. Computa-
tional Complexity, 20(3):505–558, 2011. doi:10.1007/s00037-011-0015-3.

14 Lijie Chen. Non-deterministic Quasi-Polynomial Time is Average-case Hard for ACC Circuits.
Electronic Colloquium on Computational Complexity (ECCC), 26:31, 2019. URL: https:
//eccc.weizmann.ac.il/report/2019/031.

15 Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits "just beyond" known
lower bounds. Electronic Colloquium on Computational Complexity (ECCC), 25:199, 2018.
URL: https://eccc.weizmann.ac.il/report/2018/199.

16 Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. On Pseudodeterministic Approximation
Algorithms. In 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 61:1–61:11, 2018. doi:
10.4230/LIPIcs.MFCS.2018.61.

https://doi.org/10.1109/CCC.2006.32
https://doi.org/10.1145/1706591.1706594
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1109/CCC.2006.26
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.1016/j.ic.2005.01.002
https://doi.org/10.1137/S0097539703422716
https://doi.org/10.1007/s00037-011-0015-3
https://eccc.weizmann.ac.il/report/2019/031
https://eccc.weizmann.ac.il/report/2019/031
https://eccc.weizmann.ac.il/report/2018/199
https://doi.org/10.4230/LIPIcs.MFCS.2018.61
https://doi.org/10.4230/LIPIcs.MFCS.2018.61

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:17

17 Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations. Inf.
Comput., 256:149–159, 2017. doi:10.1016/j.ic.2017.07.002.

18 Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed-Polynomial Size Circuit Bounds.
In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009,
Paris, France, 15-18 July 2009, pages 19–26, 2009. doi:10.1109/CCC.2009.21.

19 Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008.

20 Juris Hartmanis, Neil Immerman, and Vivian Sewelson. Sparse Sets in NP-P: EXPTIME versus
NEXPTIME. Information and Control, 65(2/3):158–181, 1985. doi:10.1016/S0019-9958(85)
80004-8.

21 Russell Impagliazzo, 2018. Personal Communication.
22 Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform

Direct Product Theorems: Simplified, Optimized, and Derandomized. SIAM J. Comput.,
39(4):1637–1665, 2010. doi:10.1137/080734030.

23 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The Power of Natural Properties
as Oracles. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San
Diego, CA, USA, pages 7:1–7:20, 2018. doi:10.4230/LIPIcs.CCC.2018.7.

24 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7.

25 Ravi Kannan. Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets. Information
and Control, 55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5.

26 Richard Karp and Richard Lipton. Turing Machines That Take Advice. L’Enseignement
Mathématique, 28(2):191–209, 1982.

27 Johannes Köbler and Osamu Watanabe. New Collapse Consequences of NP Having Small
Circuits. SIAM J. Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206.

28 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods for
Interactive Proof Systems. J. ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605.

29 Dylan McKay, Cody Murray, and Ryan Williams. Weak Lower Bounds on Resource-Bounded
Compression Imply Strong Separations of Complexity Classes, 2019. To appear in STOC 2019.

30 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 890–901, 2018. doi:10.1145/3188745.3188910.

31 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-
the-art lower bounds, 2019. To appear in CCC 2019.

32 Igor Carboni Oliveira and Rahul Santhanam. Hardness Magnification for Natural Problems.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 65–76, 2018. doi:10.1109/FOCS.2018.00016.

33 Rahul Santhanam. Circuit Lower Bounds for Merlin–Arthur Classes. SIAM J. Comput.,
39(3):1038–1061, 2009. doi:10.1137/070702680.

34 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

35 Luca Trevisan and Salil P. Vadhan. Pseudorandomness and Average-Case Complexity
Via Uniform Reductions. Computational Complexity, 16(4):331–364, 2007. doi:10.1007/
s00037-007-0233-x.

36 Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003. doi:10.1016/S0022-0000(03)00046-1.

37 N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005. doi:10.1016/j.tcs.2005.07.032.

38 Chee-Keng Yap. Some Consequences of Non-Uniform Conditions on Uniform Classes. Theor.
Comput. Sci., 26:287–300, 1983. doi:10.1016/0304-3975(83)90020-8.

CCC 2019

https://doi.org/10.1016/j.ic.2017.07.002
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1016/S0019-9958(85)80004-8
https://doi.org/10.1016/S0019-9958(85)80004-8
https://doi.org/10.1137/080734030
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1137/S0097539795296206
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1137/070702680
https://doi.org/10.1137/0220053
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1016/j.tcs.2005.07.032
https://doi.org/10.1016/0304-3975(83)90020-8

30:18 Circuit Lower Bounds and Karp-Lipton Theorems

A Almost Almost-everywhere (MA ∩ coMA)/1 Circuit Lower Bounds

Here we provide a proof for Lemma 10 for completeness. The proof is based on a similar
lemma from [14].

A.1 Preliminaries
A crucial ingredient of the proof is a PSPACE-complete language [35] satisfying strong
reducibility properties, which is also used in the fixed-polynomial lower bounds for MA/1
and promiseMA [33], and the recent new witness lemmas for NQP and NP [30].

We first define these reducibility properties.

I Definition 17. Let L : {0, 1}∗ → {0, 1} be a language, we define the following properties:
L is downward self-reducible if there is a constant c such that for all sufficiently large
n, there is an nc size uniform oracle circuit A such that for all x ∈ {0, 1}n, ALn−1(x) =
Ln(x).
L is paddable, if there is a polynomial time computable projection Pad (that is, each
output bit is either a constant or only depends on 1 input bit), such that for all integers
1 ≤ n < m and x ∈ {0, 1}n, we have x ∈ L if and only if Pad(x, 1m) ∈ L, where
Pad(x, 1m) always has length m.
L is same-length checkable if there is a probabilistic polynomial-time oracle Turing
machine M with output in {0, 1, ?}, such that, for any input x,
M asks its oracle queries only of length |x|.
If M is given L as an oracle, then M outputs L(x) with probability 1.
M outputs 1− L(x) with probability at most 1/3 no matter which oracle is given to it.

We call M an instance checker for L.

I Remark 18. Note that the paddable property implies that SIZE(Ln) is non-decreasing.

The following PSPACE-complete language is given by [33] (modifying a construction of
Trevisan and Vadhan [35]).

I Theorem 19 ([33, 35]). There is a PSPACE-complete language LPSPACE which is paddable,
downward self-reducible, and same-length checkable.

We also need the following folklore theorem which is proved by a direct diagonalization
against all small circuits.

I Theorem 20. Let n ≤ s(n) ≤ 2o(n) be space-constructible. There is a universal constant c
and a language L ∈ SPACE[s(n)c] that SIZE(Ln) > s(n) for all sufficiently large n.

A.2 Definitions
We need the following convenient definition of an MA∩ coMA algorithm, which simplifies the
presentation.

I Definition 21. A language L is in MA ∩ coMA, if there is a deterministic algorithm
A(x, y, z) (which is called the predicate) such that:

A takes three inputs x, y, z such that |x| = n, |y| = |z| = poly(n) (y is the witness while
z is the collection of random bits), runs in O(T (n)) time, and outputs an element from
{0, 1, ?}.

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:19

(Completeness) There exists a y such that

Pr
z

[A(x, y, z) = L(x)] ≥ 2/3.

(Soundness) For all y,

Pr
z

[A(x, y, z) = 1− L(x)] ≤ 1/3.

I Remark 22. (MA ∩ coMA) languages with advice are defined similarly, with A being an
algorithm with the corresponding advice.

Note that by above definition, the semantic of (MA ∩ coMA)/1 is different from MA/1 ∩
coMA/1. A language in (MA∩coMA)/1 has both an MA/1 algorithm and a coMA/1 algorithm,
and their advice bits are the same. While a language in MA/1 ∩ coMA/1 can have an MA/1
algorithm and a coMA/1 algorithm with different advice sequences.

A.3 Proof for Lemma 10

Now we are ready to prove Lemma 10 (restated below).

I Reminder of Lemma 10. For all constants k, there is an integer c, and a language
L ∈ (MA ∩ coMA)/1, such that for all sufficiently large τ ∈ N and n = 2τ , either

SIZE(Ln) > nk, or
SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

Proof. Let LPSPACE be the language specified by Theorem 19. By Theorem 20, there is an
integer c1 and a language Ldiag in SPACE(nc1), such that SIZE(Ldiag

n) ≥ nk for all sufficiently
large n. By the fact that LPSPACE is PSPACE-complete, there is a constant c2 such that Ldiag

n

can be reduced to LPSPACE on input length nc2 in nc2 time. We set c = c2.

The Algorithm. Let τ ∈ N be sufficiently large. We also let b to be a constant to be
specified later. Given an input x of length n = 2τ and let m = nc, we first provide an
informal description of the (MA∩ coMA)/1 algorithm which computes the language L. There
are two cases:
1. When SIZE(LPSPACE

m) ≤ nb. That is, when LPSPACE
m is easy. In this case, on inputs of

length n, we guess-and-verify a circuit for LPSPACE
m of size nb and use that to compute

Ldiag
n .

2. Otherwise, we know LPSPACE
m is hard. Let ` be the largest integer such that

SIZE(LPSPACE
`) ≤ nb. On inputs of length m1 = m+ `, we guess-and-verify a circuit for

LPSPACE
` and compute it (that is, compute LPSPACE

` on the first ` input bits while ignoring
the rest).

Intuitively, the above algorithm computes a hard function because either it computes
the hard language Ldiag

n on inputs of length n, or it computes the hard language LPSPACE
` on

inputs of length m1. A formal description of the algorithm is given in Algorithm 1, while an
algorithm for setting the advice sequence is given in Algorithm 2. It is not hard to see that a
yn can only be set once in Algorithm 2.

CCC 2019

30:20 Circuit Lower Bounds and Karp-Lipton Theorems

Algorithm 1: The MA ∩ coMA algorithm.
1 Given an input x with input length n = |x|;
2 Given an advice bit y = yn ∈ {0, 1};
3 Let m = nc;
4 Let n0 = n0(n) be the largest integer such that nc0 ≤ n;
5 Let m0 = nc0;
6 Let ` = n−m0;
7 if y = 0 then
8 Output 0 and terminate
9 if n is a power of 2 then

10 (We are in the case that SIZE(LPSPACE
m) ≤ nb.);

11 Compute z in nc time such that Ldiag
n (x) = LPSPACE

m (z);
12 Guess a circuit C of size at most nb;
13 Let M be the instance checker for LPSPACE

m ;
14 Flip an appropriate number of random coins, let them be r;
15 Output MC(z, r);
16 else
17 (We are in the case that SIZE(LPSPACE

m0
) > nb0 and ` is the largest integer such that

SIZE(LPSPACE
`) ≤ nb0.);

18 Let z be the first ` bits of x;
19 Guess a circuit C of size at most nb0;
20 Let M be the instance checker for LPSPACE

` ;
21 Flip an appropriate number of random coins, let them be r;
22 Output MC(z, r);

Algorithm 2: The algorithm for setting advice bits.
1 All yn’s are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ ;
4 Let m = nc;
5 if SIZE(LPSPACE

m) ≤ nb then
6 Set yn = 1;
7 else
8 Let ` = max{` : SIZE(LPSPACE

`) ≤ nb};
9 Set ym+` = 1;

L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:21

The Algorithm Satisfies the MA ∩ coMA Promise. We first show the algorithm satisfies
the MA∩ coMA promise (Definition 21). The intuition is that it only tries to guess-and-verify
a circuit for LPSPACE when it exists, and the properties of the instance checker (Definition 17)
ensure that in this case the algorithm satisfies the MA ∩ coMA promise. Let y = yn, there
are three cases:
1. y = 0. In this case, the algorithm computes the all zero function, and clearly satisfies the

MA ∩ coMA promise.
2. y = 1 and n is a power of 2. In this case, from Algorithm 2, we know that SIZE(LPSPACE

m) ≤
nb for m = nc. Therefore, at least one guess of the circuit is the correct circuit for LPSPACE

m ,
and on that guess, the algorithm outputs Ldiag

n (x) = LPSPACE
m (z) with probability at least

2/3, by the property of the instance checker (Definition 17).
Again by the property of the instance checker, on all possible guesses, the algorithm
outputs 1−Ldiag

n (x) = 1−LPSPACE
m (z) with probability at most 1/3. Hence, the algorithm

correctly computes Ldiag
n on inputs of length n, with respect to Definition 21.

3. y = 1 and n is not a power of 2. In this case, from Algorithm 2, we know that
SIZE(LPSPACE

`) ≤ nb0. Therefore, at least one guess of the circuit is the correct circuit for
LPSPACE
` , and on that guess, the algorithm outputs LPSPACE

` (z) (z = z(x) is the first ` bits
of x) with probability at least 2/3, by the property of the instance checker (Definition 17).
Again by the property of the instance checker, on all possible guesses, the algorithm
outputs 1 − LPSPACE

` (z) with probability at most 1/3. Hence, the algorithm correctly
computes LPSPACE

` (z(x)) on inputs of length n, with respect to Definition 21.

The Algorithm Computes a Hard Language. Next we show that the algorithm indeed
computes a hard language as stated. Let τ be a sufficiently large integer, n = 2τ , and m = nc.
According to Algorithm 2, there are two cases:

SIZE(LPSPACE
m) ≤ nb. In this case, Algorithm 2 sets yn = 1. And by previous analyses, we

know that Ln computes the hard language Ldiag
n , and therefore SIZE(Ln) > nk.

SIZE(LPSPACE
m) > nb. Let ` be the largest integer such that SIZE(LPSPACE

`) ≤ nb. By
Remark 18, we have 0 < ` < m.
Note that SIZE(LPSPACE

`+1) ≤ (`+ 1)d · SIZE(LPSPACE
`) for a universal constant d, because

LPSPACE is downward self-reducible. Therefore,

SIZE(LPSPACE
`) ≥ SIZE(LPSPACE

`+1)/(`+ 1)d ≥ nb/md ≥ nb−c·d.

Now, on inputs of length m1 = m + `, we have ym1 = 1 by Algorithm 2 (note that
m1 ∈ (m, 2m) as ` ∈ (0,m)). Therefore, Lm1 computes LPSPACE

` , and

SIZE(Lm1) = SIZE(LPSPACE
`) ≥ nb−c·d.

We set b such that nb−cḋ ≥ (2m)k ≥ mk
1 (we can set b = cd + 3 · ck), which completes

the proof. J

CCC 2019

	Introduction
	Preliminaries
	Infinitely Often and Robust Simulations
	Non-deterministic Pseudo-Random Generators
	Circuit Complexity of Strings and Pseudorandom Generators

	P^{NP} Circuit Lower Bounds Equivalent to Karp-Lipton Collapses to P^{NP}
	An Equivalence Theorem Under NP subset P_{/poly}
	NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses
	Consequence of Weak Circuit Lower Bounds for Sparse Languages in NP
	Open Problems
	Almost Almost-everywhere (MA cap coMA)_{/1} Circuit Lower Bounds
	Preliminaries
	Definitions
	Proof for Lemma 10

