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Abstract
One of the most important open problems in finite model theory is the question whether there is
a logic characterising efficient computation. While this question usually concerns Ptime, it can
also be applied to other complexity classes, and in particular to Logspace which can be seen
as a formalisation of efficient computation for big data. One of the strongest candidates for a
logic capturing Ptime is Choiceless Polynomial Time (CPT). It is based on the idea of choiceless
algorithms, a general model of symmetric computation over abstract structures (rather than their
encodings by finite strings). However, there is currently neither a comparably strong candidate for a
logic for Logspace, nor a logic transferring the idea of choiceless computation to Logspace.

We propose here a notion of Choiceless Logarithmic Space which overcomes some of the obstacles
posed by Logspace as a less robust complexity class. The resulting logic is contained in both
Logspace and CPT, and is strictly more expressive than all logics for Logspace that have been
known so far. Further, we address the question whether this logic can define all Logspace-queries,
and prove that this is not the case.
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1 Introduction

The probably most fundamental problem of finite model theory concerns the question
whether there exist logics that precisely characterise the efficiently computable queries on
finite structures. Usually this problem is called the quest for a logic for polynomial time
[15], a problem originally posed by Chandra and Harel [5] and later made more precise by
Gurevich [19]. But Ptime is just one, although certainly the most common, complexity
class to capture the intuitive notion of efficient computability. Another important such class
is Logspace, which formalises efficient computation over large data sets with significantly
smaller working memory, and may thus be viewed as a notion of efficient computability
for big data. When Chandra and Harel [5] enquired about a logical characterization of the
Ptime-queries, they already asked about Logspace as well, and since then, a number of
logics have been proposed that capture relevant parts of Logspace. We briefly compare the
state of the art on the quests for logics for Ptime and Logspace, respectively.

Logics for polynomial time. For Ptime, the logic of reference is fixed-point logic with
counting (FPC), which has first been proposed informally by Immerman [20] and then made
precise in [11]. It extends first-order logic by fixed-point operators and counting terms and
actually comes rather close to being a logic for polynomial time. It is strong enough to
express many of the algorithmic techniques leading to polynomial-time procedures and it
captures Ptime on many interesting classes of structures, including planar graphs, structures
of bounded tree width, and actually all classes of graphs with an excluded minor [16]. For
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a recent survey on FPC, see [6]. Nevertheless there are important problems that separate
Ptime from FPC. The first of these, which still is an interesting benchmark problem for
logics in Ptime, has been the CFI-query due to [4]. Other examples are efficiently solvable
variants of the graph isomorphism problem or problems from linear algebra such as solving
linear equation systems over finite fields or rings [2]. To handle such examples, several more
powerful logics than FPC have been proposed, including for instance rank logic [7, 12].

However, the most promising candidate for a logic for Ptime is Choiceless Polynomial
Time (CPT), introduced by Blass, Gurevich, and Shelah [3]. There are several different
presentations of CPT (see e.g. [9, 10, 22, 25]). The original intention was to explore a model
for efficient computations on finite structures which preserve symmetries at every step in the
computation. This prohibits the explicit introduction of an ordering or, equivalently, arbitrary
choices between indistinguishable elements of the input structure or of the current state.
Such choices appear in many algorithms of fundamental importance, including depth-first
search, Gaussian elimination, and many more. CPT is based on a computation model that
avoids symmetry breaking choices, but allows essentially everything else, including parallelism
and “fancy data structures”, as long as all operations can be carried out in polynomial
time. It works, given a finite structure, on its extension by all hereditarily finite sets over its
universe, which may be seen as a powerful higher-order data structure. Choiceless Polynomial
Time is the restriction of this model to polynomial-time resources. It is known that CPT is
strictly more powerful than fixed-point logic with counting. In particular, CPT can express
several variants of the CFI-queries that are not expressible in FPC and, more generally, CPT
captures polynomial time over interesting classes of structures over which FPC fails to do
so [1, 8, 23]. Nevertheless it is still open whether CPT captures Ptime on arbitrary finite
structures. We refer to [9, 22, 26] for more information on CPT.

Logics for logarithmic space. The state of the art concerning logics for Logspace is less
advanced than for Ptime. On ordered structures, Logspace can be captured by DTC,
the extension of first-order logic by deterministic transitive closures [21]. A more elegant
variant is the symmetric transitive closure logic STC, whose evaluation in Logspace however
depends on the highly non-trivial algorithm by Reingold [24] for undirected graph reachability.
But even with an added counting operation, STC does not capture Logspace on arbitrary
structures, and again this can be proved by the CFI-query. Some of the shortcomings of
transitive closure logics are elegantly countered by the logic LREC (short for L-recursion),
especially in its stronger variant, called LREC= in the literature [17, 18]. The core of
LREC is an elaborate recursion operator, augmented by a mechanism defining symmetric
transitive closures to obtain closure under interpretations. However, although LREC captures
Logspace on a larger class of structures than transitive closure logics, it is still contained in
FPC and thus does not capture Logspace on arbitrary finite structures.

There has, up to now, not really emerged a convincing logspace-analogue of Choiceless
Polynomial Time, and also no other really serious candidate for a logic for Logspace. So
some natural questions arise: “What is Choiceless Logspace? What expressive power does
it have, and could it actually capture all of Logspace?” Addressing these questions, we
propose a notion of Choiceless Logspace. We prove that this provides a logic that is indeed
contained in both CPT and Logspace. Moreover, it is strictly more powerful than all
Logspace-logics known so far, including (the strong variant of) LREC. However, it turns
out that even this logic fails to capture all Logspace queries, which leads to the more general
question of what would be a suitable notion of efficient choiceless computation for big data.
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Sets of logarithmic size. Towards such a definition, we first note that the obvious, but
naïve attempt fails. Since CPT permits polynomially many computation steps using only
sets whose transitive closures contain polynomially many objects, the naïve approach would
simply discard the time bound and allow sets with a transitive closure of logarithmically many
objects. But this would make it possible to define sets containing logarithmically many atoms,
which admits no straightforward evaluation in Logspace: to represent such a set, one would
store every atom as a number with logarithmically many bits, so one would actually have to
represent logarithmically many numbers of logarithmic size. Unless Logspace = NC2, this
should not be possible.

The central question is thus what it means that a set is of logarithmic size. Even though
choiceless computation is invariant under encodings, already the size of an atom depends
on its encoding. On an ordered encoding of a structure, every atom can be referenced by a
binary string with logarithmically many bits. On the basis of this straightforward encoding, a
logspace algorithm could only store constantly many atoms at a time, so a set of logarithmic
size would be a set whose transitive closure is bounded by a constant. In fact, many standard
logspace algorithms operate with a bounded number of storage locations, each of which can
store an object with logarithmically many bits, typically an element of the input structure
or a number that is polynomially bounded by the size of the input structure. A previous
approach to defining choiceless logarithmic space [13, 27] has operated on exactly these
“bounded sets”. It corresponds to a logic, denoted here BDTC, that provides an operator
for deterministic transitive closures over bounded sets. In its original version, BDTC lacks
the ability to count, but besides that it has more fundamental deficiencies. Indeed, the
assumption that a set of logarithmic size can only contain constantly many atoms does not
take into account that there are alternative ways to represent atoms, and logspace algorithms
that operate in a more sophisticated manner, using an unbounded number of storage locations
such as the algorithm for tree isomorphism or Reingold’s algorithm for undirected graph
reachability. It is, for instance, possible to store the unique root of a tree in constant space
by just storing its defining property. In a structure with a unary predicate P , every atom
in P can be represented as “the kth element of P”, so the size of the atom representation
is logarithmic in |P | instead of the size of the whole structure. The size of an atom with
respect to Logspace-algorithms can hence vary depending on its representation.

Towards Choiceless Logspace. This observation leads to the main idea behind CLogspace,
the logic we shall introduce: When evaluating formulae with logarithmic bounds, we do not
assume a fixed size for every atom. Therefore, the sizes of atoms are part of the semantics
and, consequently, the logic is evaluated over size-annotated hereditarily finite sets.

Atoms can be represented using logical formulae. We introduce terms “Atoms .ϕ” in
our logic to make sure that, whenever a set of atoms is defined, that definition is guarded
by a formula. The size of the atoms in that set will then be defined assuming that every
atom is represented as “the ith entry of the kth tuple satisfying ϕ”. So the size of every
hereditarily finite object will depend on the terms of the form Atoms .ϕ generating the atoms
in its transitive closure. However, this way of defining atoms does not allow unbounded
recursion. We therefore add (a modified version of) the recursion operator from LREC to
our logic. But, just like in CPT, iterated creation of sets is necessary to obtain a formalism
that is stronger than common logics. Consequently, our logic also incorporates CPT-style
iteration with some modifications mimicking the behaviour of Logspace-algorithms.

In a nutshell, Choiceless Logspace in our sense means iteration and recursion over
hereditarily finite sets of logarithmic size, where the size of each atom is derived from its
representation through a formula.
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2 Choiceless Logarithmic Space and Choiceless Polynomial Time

In this section we present the precise definition of CLogspace. Readers familiar with Choiceless
Polynomial Time will recall that it is evaluated with the data structure of all hereditarily
finite objects over the given input structure.

The elements of the universe A of an input structure A are assumed to be atoms, i. e. not
sets, and an object is an atom or a set. A set a is transitive if ∈ is a transitive relation on a,
which means that all elements of a are either subsets of a or atoms. The transitive closure
tc(a) of an object a is the smallest transitive set b with a ∈ b. An object a is hereditarily
finite if tc(a) is finite. Given a set A of atoms, HF(A) is the collection of hereditarily finite
objects over A, i. e. the set of all objects x such that x ∈ A or x is a hereditarily finite set
such that all atoms in tc(x) are elements of A.

Choiceless Logspace is evaluated over size-annotated hereditarily finite sets where a size
annotation is a function assigning (in a consistent way) a size to every element of the transitive
closure of the given set. The definition of sizes guarantees that a set of logarithmic size can
be represented in Logspace in a straightforward way.

I Definition 1. Let A be a σ-structure and a ∈ HF(A). A function s : tc(a)→ N is a size
annotation of a if, for each set b ∈ tc(a), s(b) = 1+

∑
c∈b s(c). The set of size-annotated hered-

itarily finite objects is SHF(A) := {(a, sa) : a ∈ HF(A) and sa is a size annotation of a}.
For size annotations (a, sa), (b, sb), we say that (b, sb) ∈ (a, sa) if b ∈ a and sb = sa� tc(b).

Note that a size annotation is completely determined by the values it assigns to the atoms.
In particular, for a pure set a ∈ HF(A), with tc(a)∩A = ∅, there is a unique size annotation,
which we denote by anna. Further, the size annotation yields an upper bound for the size of
the transitive closure. As atoms may have size 0, conclude that | tc(a) \ A| ≤ s(a) for any
size annotation s of a.

We now formulate a high-level definition of the logic CLogspace, and then proceed to
make precise, and explain, its ingredients step by step.

I Definition 2 (Choiceless Logarithmic Space). The logic CLogspace is defined by rules for
ordinary terms and formulae, iteration terms and recursion formulae as follows. If t is a
term and ϕ is a formula according to these rules, and f is a function f : n 7→ c logn for
c ∈ N, then (t, f) is a CLogspace-term, and (ϕ, f) is a CLogspace-formula.

The function f only plays a role in defining the semantics of iteration terms. Otherwise
the semantics is just given by the semantics of t and ϕ, respectively.

We first explain ordinary terms and formulae which provide the basic operations for
constructing sets.

I Definition 3 (Syntax). Ordinary terms and formulae over a vocabulary σ are defined
inductively as follows:
∅ is a term, and every variable x is a term,
if ϕ ∈ FO[σ] with at least one free variable, then Atoms .ϕ is a term,
if t1, t2 are terms, then Union(t1), Unique(t1), Pair(t1, t2), and Card(t1) are terms,
for R ∈ σ and terms t1, . . . , tk, the expressions t1 = t2, t1 ∈ t2, and Rt1 . . . tk are
formulae,
Boolean combinations of formulae are formulae,
if p and q are terms and ϕ is a formula, then {p : x ∈ q : ϕ} is a (comprehension) term.

The free variables free(t) of a term or formula t are defined as usual, where, in the
term t := {p : x ∈ q : ϕ}, x occurs free in p and ϕ and bound in t. We therefore write
{p(x) : x ∈ q : ϕ(x)}.
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Counting. The terms Card(t) define cardinalities of sets. Since the cardinality of sets of
polynomial size can be computed in Logspace, von Neumann ordinals, which represent
cardinalities in Choiceless Polynomial Time, are in general too large for our purposes.
Therefore cardinalities will be denoted by a set encoding of their binary representation. For
this purpose, we assume the short form 〈a, b〉 = {a, {a, b}} of Kuratowski pairs. This will
make sure that every word of length two is represented by a set with two elements and can
thus be distinguished from bitset(0) and bitset(1).

I Definition 4. We define the function bitset : {0, 1}+ → HF(∅) by setting bitset(0) := ∅,
bitset(1) := {∅}, and bitset(bw) = 〈bitset(b),bitset(w)〉 for b ∈ {0, 1} and w ∈ {0, 1}+.

If n ∈ N, let bitset(n) denote bitset(bin(n)), where bin(n) is the binary representation of
n, with 20 as the right-most bit and without leading zeroes.

It follows from the definition that the function bitset is injective. This representation
of numbers keeps their size logarithmic with respect to their unique size annotation. More
precisely, a simple induction on |w| shows:

I Lemma 5. Let s : tc(bitset(w)) → N be a size annotation for w ∈ {0, 1}+. Then
s(bitset(w)) ≤ 6|w|.

Semantics of ordinary terms and formulae. Evaluation over size-annotated objects means
that the value of every term is equipped with a size annotation. Hence, also the values of
free variables have to incorporate size annotations. Recall that a size annotation defines a
size for every element of the transitive closure of an object, which is uniquely determined by
the sizes associated with the atoms. Unless the size of an atom is given externally through
a free variable, its size originates from the term defining it. The only way to define atoms
directly will be with terms of the form Atoms .ϕ.

We assume every atom to be represented as “the ith entry of the kth tuple satisfying
ϕ”. Both ϕ and i are of constant size, since ϕ is a part of the term. So we can assume that,
up to an additive constant, such an atom can be written as a number with log k bits where
k is bounded by the number of tuples satisfying ϕ. This number is the size we assign to
every atom defined that way. If an atom occurs in the values of multiple subterms, it may
have multiple sizes that contribute to the value of the term. In that case, the minimal size is
picked, which is formalised as follows:

I Definition 6. Let S ⊆ SHF(A) be a set of size-annotated hereditarily finite sets. We
denote by SSHF the pair (s, anns) where s = {s′ : (s′, anns′) ∈ S} and anns is the unique size
annotation of s with anns(a) = min{anns′(a) : (s′, anns′) ∈ S} for every atom a ∈ tc(s).

I Definition 7 (Semantics of ordinary terms). Let A be a σ-structure and let β : X → SHF(A)
be a variable assignment. For α ∈ SHF(A), we write β[x 7→ α] : X ∪ {x} → SHF(A) to
denote the function that behaves like β on X \ {x} and maps x to α. For an ordinary σ-term
t (with free(t) ⊆ X), we define the value tA,β = (JtKA,β

, annA,β
t ) ∈ SHF(A) as follows:

∅A,β = (∅, ∅ 7→ 1), and xA,β = β(x) for any variable x.
For t = Atoms .ϕ with ϕ ∈ FO[σ], let JtKA,β = {a : A |= ϕ(a)} if | free(ϕ)| = 1, and
JtKA,β = {{〈bitset(1), a1〉, . . . , 〈bitset(k), ak〉} : A |= ϕ(a1, . . . , ak)} otherwise. In both
cases annA,β

t is generated by mapping every occurring atom a to log |JtKA,β |.
If t = Pair(t1, t2), then tA,β =

{
t1

A,β , t2
A,β}

SHF.
If t = Unique(t′), then tA,β = (a, annA,β

t′ � tc(a)) if Jt′KA,β = {a} and tA,β = (∅, ∅ 7→ 1)
otherwise.

MFCS 2019
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If t = Union(t′), then JtKA,β =
⋃
b∈Jt′KA,β b and annA,β

t = annA,β
t′ � JtKA,β.

If t = Card(t′), then JtKA,β = bitset
(∣∣∣Jt′KA,β

∣∣∣) , and annA,β
t = annJtKA,β .

If t = {p : x ∈ q : ϕ}, then tA,β = {pA,β[x7→a] : a ∈ qA,β : A, β[x 7→ a] |= ϕ}SHF.

For a σ-formula ϕ, the truth value of A, β |= ϕ is defined in the obvious way.

We denote the size annA,β
t (JtKA,β) assigned to the value of a term t by ‖t‖A,β . Further,

we write truek to denote a tautology with k free variables, true for true1 and Atoms instead
of Atoms . true. Then Atoms . truek defines the set of all k-tuples over the input structure.

Iteration terms. Ordinary terms and formulae cannot define arbitrarily nested sets. This
is achieved by constructing sets using fixed-point iteration.

I Definition 8 (Syntax of iteration terms). If u and x are variables and t is a term, then
[tu]∗(x) is an iteration term with free variables {x} ∪ free(t) \ {u}.

The fixed-point iteration starts with the object given by the free variable x, and the
variable u is usually a free variable of t, whose value is the previous stage of the iteration. To
ensure Logspace-computability, the fixed point is computed only if the logarithmic bound
given as part of the term is satisfied by all intermediate stages. The value of an iteration
term is not the fixed point itself, but the set of all stages up to that point.

I Definition 9 (Semantics of iteration terms). The i-fold iteration of a term s with free
variable u is defined by induction as s0 = s[u/x] and si+1 = s[u/si], where s[u/t] results
from replacing every occurrence of u in s by the term t.

Now let t = [su]∗(x) be an iteration term, let A be a structure and β : free(t)→ SHF(A)
a variable assignment. Then

JtKA,β =


{(si)A,β : i ≤ `}SHF, for the least ` with s` = s`+1

and ‖si‖A,β ≤ f(|A|) for all i ≤ `
if such an ` exists,

(∅, ∅ 7→ 1), otherwise.

The differences between this definition and iteration in CPT are explained by two
important properties of Logspace-algorithms: Firstly, a Logspace-algorithm can be
sequentially executed for different input values, e.g. in a forall-loop. Iteration terms allow
to do this in parallel for different values of the free variable x using suitable comprehension
terms. Secondly, defining the value of the iteration term as the aggregation of all intermediate
stages allows to generate outputs of polynomial size, which can be the input for other iteration
terms.

Recursion formulae. With recursion formulae, we basically add to our logic the lrec-operator
from [17, 18]. This operator permits a restricted kind of recursion over a graph interpretable
in the input structure. Since our logic operates on hereditarily finite sets, we modify the
interpretation such that the domain of the interpreted structure can be any definable set.
Recursion formulae contain a term tδ that restricts the domain to finitely many objects
and defines their size annotations. Further, the vertices of the graph are labelled by sets of
natural numbers, which we represent as bitsets instead of elements of a distinct number sort.

I Definition 10 (Syntax of recursion formulae). If tδ and tC are terms and ϕE and ϕ= are
formulae, then [lrecu,vtδ, ϕ=, ϕE , tC ](x, y) is a recursion formula.
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For the definition of the semantics, fix a σ-structure A, a variable assignment β, and a
recursion formula ϕ = [lrecu,vtδ, ϕ=, ϕE , tC ](x, y). We first describe how tδ, ϕ=, ϕE and tC
define a labelled graph G = (V,E,C) interpreted in the input structure. The formulae ϕ=
and ϕE will be evaluated for pairs of elements from JtδK

A,β . For that purpose, we define the
extension βa,b := β[u 7→ (a, annA,β

tδ
� tc(a)), v 7→ (b, annA,β

tδ
� tc(b))] of β for a, b ∈ JtδK

A,β .
The vertex set V consists of the equivalence classes of the reflexive, symmetric, transitive

closure of the relation {(a, b) ∈ JtδK
A,β × JtδK

A,β : A, βa,b |= ϕ=}. Let [a] denote the
equivalence class of a. The edge set of G is E := {([a], [b]) : A, βa,b |= ϕE}. Further, the label
of [a] ∈ V is the set C([a]) = {c : there exists a′ ∈ [a] with bitset(c) ∈ JtCKA,βa′}, where
βa′ = β[u 7→ (a′, annA,β

tδ
� tc(a′))].

The truth value of the recursion formula depends on a recursive property X of vertices of
a DAG unfolding of G. This unfolding is obtained by augmenting every vertex [a] ∈ V with
a resource ` ∈ N restricting the space necessary to process paths through the DAG (for a
detailed explanation, see [17, 18]). Then ([a], `) ∈ X ⊆ V × N if, and only if,

` > 0 and bitset
(∣∣∣∣{[b] ∈ [a]E :

(
[b],
⌊
`− 1
|E[b]|

⌋)
∈ X

}∣∣∣∣) ∈ C([a]),

If the values of the free variables x, y define a pair in V × N (i.e. a vertex of the DAG), then
the membership of that pair in X determines the truth value of the recursion formula:

I Definition 11 (Semantics of recursion formulae). Let ϕ,A, β and X as above. Then
A, β |= ϕ, where β(x) = (a, annA,β

tδ
� tc(a)) and β(y) = (bitset(`), annbitset(`)) for ` ∈ N, if,

and only if, ([a], `) ∈ X.

This completes the definition of CLogspace. We illustrate it with two short examples.

I Example 12 (Size annotations). To see that the size annotation of a term can map the
atoms to different values, consider the term Union(Pair(Atoms . true,Atoms .Px)). The value
of that term in a structure A is its whole domain. But the size annotation maps every
element of PA to log |PA|, and the other atoms to log |A|.

To demonstrate the use of iteration terms, we construct a formula ϕdtc(x, y) defining that
there is a deterministic path from x to y.

I Example 13 (Deterministic paths). The core of the formula is an iteration term [tu]∗(x)
progressing along the deterministic path starting from x:

t(u) = Unique ({z : z ∈ Atoms . true : Euz}) .

Note that the free variable x determines the value of the first stage. So, by definition of Unique,
the ith stage of [tu]∗(x) is the ith element on the deterministic path starting at x. Every
stage is added to the value of the term, so the desired formula is ϕdtc(x, y) = y ∈ [tu]∗(x).
Since every atom is initially defined with the term Atoms . true, it is mapped to log |A| by
the size annotation for the structure A. Thus n 7→ logn is a suitable bound for the formula.

Choiceless Polynomial Time. The newly introduced features that distinguish Choiceless
Logspace from Choiceless Polynomial Time are size annotations, the addition of recursion
formulae and the semantics of iteration terms. Further, CPT-formulae clearly possess
polynomial instead of logarithmic bounds.

Consequently, the definition of CPT-formulae can be recovered from our definition of
CLogspace by the following modifications: The terms of the form “Atoms .ϕ” are replaced
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by an atomic term “Atoms”, defining the full set of atoms from the input structure. The
rule for recursion formulae is omitted. In terms (t, f) and formulae (ϕ, f), the function f is
a polynomial.

In the definition of the semantics, the size annotations are eliminated completely. The
polynomial bound for iteration terms is applied to the cardinality of the transitive closure
of the current stage. For the computation to remain within polynomial time, the number
of stages is also bounded by the polynomial. The value of an iteration term is the stage
inducing the fixed-point instead of the accumulation of all intermediate stages. For more
detailed definitions of Choiceless Polynomial Time, we refer to, for instance, [25, 9].

3 Inclusion in Logspace and CPT

We next prove the two essential properties of our logic that justify it to be called Choiceless
Logspace: Firstly, every formula in our logic can be evaluated in logarithmic space. Secondly,
it is choiceless in the sense that every formula can be translated to Choiceless Polynomial
Time, the prototypical model of choiceless computation.

I Theorem 14. Every query definable in CLogspace is Logspace-computable.

The explicit logarithmic bound in CLogspace-sentences is intended to enable evaluation
in Logspace. It ensures that every value occurring during an iterated computation has a
sufficiently small size annotation. The size annotations induced by the semantics of terms
and formulae are defined with a certain encoding of hereditarily finite sets in mind. We first
define this encoding, which is the core of our evaluation algorithm.

Recall that elements of the input structure are always defined by means of terms Atoms .ϕ.
Since the algorithm will take as input string encodings of structures, we now operate on
ordered structures. Hence one can represent an atom as “the ith entry of the kth tuple
satisfying ϕ” using the linear order on the input structure. We denote the set of k-tuples
from a structure A satisfying an FO-formula ϕ with k free variables by ϕA.

I Definition 15 (Representations). Let Φ ⊆ FO[σ] for some vocabulary σ. The alphabet
ΣΦ consists of 0,1, “(”, “)”, “{”, “}”, “,” and an alphabet symbol for each ϕ ∈ Φ, which
we also denote by ϕ. A Φ-representation is a word in the alphabet ΣΦ that is either a set
representation or an atom representation:

An atom representation is a word (ϕ, i,m), where ϕ ∈ Φ with k ≥ 1 free variables, and i
and m are binary encodings of natural numbers ≤ k and ≤ |ϕA|, respectively. If |ϕA| = 0,
then m is the empty string.
If r1, . . . , rk are representations, then the word {r1, . . . , rk} is a set representation.

Let A be the expansion of a σ-structure A′ by a linear order <A. The value rA of a
representation r is defined as

(ϕ, i,m)A = ai where (a1, . . . , ak) is the m-th tuple (w.r.t. the lexicographical order
extending <) in ϕA.
{r1, . . . , rk}A = {rA

1 , . . . , r
A
k }.

A representation r is A-minimal if
1. for every atom a in tc(rA), there is a unique atom representation of a that occurs as a

substring of r,
2. if r = {r1, . . . , rk}, then r1, . . . , rk are minimal representations and the values rA

i are
pairwise distinct.
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For an A-minimal representation r, we define the size annotation annA
r by induction on

the representation r:
annA

(ϕ,i,m) : (ϕ, i,m)A 7→ log |ϕA|,
annA

{r1...rk} is the size annotation of {(rA
1 , annA

r1
), . . . , (rA

k , annA
rk

)}SHF.
We say that r is a representation of (rA, annA

r ) ∈ SHF(A).

We omit the structure A and speak about minimal representations if A can be inferred
from the context. Note that there are representations that are not minimal, since the same
set may be listed twice or an atom may occur encoded by different atom representations
throughout the transitive closure of the value. Thus minimal representations ensure that the
size annotation is well-defined. Note further that the size annotation does not agree with the
word length of the representation. It does, however, provide an upper bound on the word
length up to constant factors. Since the size annotation does not depend on the specific
numbers i and m, this upper bound is independent of the linear order. Moreover, the size
annotation of any given minimal representation is Logspace-computable.

Towards the evaluation algorithm, we show how to check whether two representations
have the same value and, using the former as a subroutine, how to compute minimal
representations.

I Lemma 16. There is an algorithm that, given a σ ∪ {<}-structure A (where <A is
obtained from the string representation of A) and A-minimal representations r1, r2, decides
in logarithmic space whether rA

1 = rA
2 .

Proof. We reduce equality of representations to isomorphism of coloured trees, where the
colours are numbers 1, . . . , |A|. An atom representation is encoded by a single node coloured
by its value, and a set representation is encoded by a tree where the subtrees below the
root encode the elements of the set representation. Note that, since the representations
are minimal, every node has at most one child of any isomorphism type, so equality of the
representations indeed implies isomorphism of the corresponding trees. J

I Lemma 17. There is an algorithm that, given a σ∪{<}-structure A (where <A is obtained
from the encoding of A) and A-minimal representations r1, . . . , rk, computes in logarithmic
space a minimal representation r of the size-annotated set {(rA

1 , annA
r1

), . . . , (rA
k , annA

rk
)}SHF.

Proof. We sequentially execute two Logspace-algorithms. The first one copies those
representations to the output tape whose value did not occur before (using the algorithm
from the previous lemma). The second algorithm replaces every atom representation by the
shortest representation of its value occurring in the original string. J

With these subroutines, the evaluation of terms and formulae becomes rather straight-
forward. To simplify the statement of the following lemma, we do not distinguish between
terms and formulae, but assume formulae to be terms with values ∅ and {∅}.

I Lemma 18. For every term t with free variables x1, . . . , xk and every function f : n 7→
c logn, there is a Logspace algorithm that, given a σ-structure A and representations
r1, . . . , rk of α1, . . . , αk ∈ SHF(A), computes a representation of (t, f)A,β : xi 7→αi .

Proof. We proceed by induction on the construction of terms. Evaluation of atomic terms ∅
and x is trivial. For terms of the form Atoms .ϕ, it suffices to compute the number n of tuples
satisfying the FO-formulae ϕ and enumerate all tuples with entries (ϕ, i,m) for 0 ≤ m ≤ n.
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In the induction step, most cases follow directly from the induction hypothesis, using the
fact that Logspace is closed under sequential execution and thus the output of previous
computations can be processed further regardless of its size. For Pair, Union and compre-
hension, the results of the subcomputations can be converted to a minimal representation
with the algorithm from Lemma 17. Formulae t1 = t2 and t1 ∈ t2 can be evaluated using
the algorithm from Lemma 16. For recursion formulae, the lemma follows from inclusion of
LREC in Logspace.

Let [tu]∗ be an iteration term with free variable xj . In its ith iteration, the algorithm
computes a representation of (ti)A,β from (ti−1)A,β (which is possible by induction hypothesis)
and checks whether it satisfies the size bound. This is again possible using sequential execution.
The new stage is compared to the previous one. Whenever a new value has been produced,
it is additionally written to the output tape. A postprocessing step converts the result to a
minimal representation and replaces it by the empty set if the bound has been exceeded at
some point.

The bound on the size of each stage induces a logarithmic bound on the word length of the
representations that are written to the work tape. In particular, this implies that the number
of possible representations occurring as stages is polynomial. This ensures termination, since
a counter can track the number of values that have been produced. J

We have established that CLogspace is a fragment of Logspace. To verify that this
fragment is choiceless, we embed it in CPT.

I Theorem 19. CLogspace ≤ CPT.

The straightforward way to prove the theorem is to inductively translate CLogspace-
formulae to CPT. But the translation of formulae with free variables bears two technical dif-
ficulties: Firstly, CLogspace is evaluated over size-annotated hereditarily finite set. Secondly,
standard definitions of CPT do not allow free variables in iteration terms.

We can, however, assume a non-standard variant of CPT where iteration terms may
have free variables. This does not increase its expressive power because iteration terms
can be simulated for all possible values of the free variables at once without exceeding the
polynomial bound.

We address the first difficulty by the key concept of the translation to CPT: Expressing
size annotations as hereditarily finite sets.

I Definition 20. Let A be a σ-structure, and let (a, s) ∈ SHF(A). The set representation
set ((a, s)) ∈ HF(A) is the set 〈a, {〈b, [s(b)]〉 : b ∈ tc(a) ∩ A}〉, where [s(b)] is the ordinal
corresponding to s(b). We say that {〈b, s(b)〉 : b ∈ tc(a)∩A} represents the size annotation s.

Proof of Theorem 19. Set representations of size annotations induce a translation between
variable assignments, and thus a meaningful definition of translation between formulae
with free variables. It remains to show that every CLogspace-formula can be (inductively)
translated to CPT in that sense.

Most cases follow directly from the induction hypothesis, using CPT-terms that define
combinations of size annotations. Size annotations are combined by using the minimal known
size for every atom, which is definable in CPT.

In case a size annotation is not derived from the subterms, it originates from a term of
the form “Atoms .ϕ”. So the corresponding CPT-term has to define the size annotation that
assigns the value log |ϕA| to every atom from the structure A occurring in the value of the
term. This is possible since logarithms are CPT-definable.
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Further, CPT can check the logarithmic bound of iteration terms using the size annotation
at each stage. Finally, recursion formulae can be translated to CPT because LREC ≤ FPC ≤
CPT. This concludes the proof of Theorem 19. J

4 The expressive power of CLogspace

To substantiate the idea that the rich syntax of CLogspace leads to greater expressive power,
we compare it to known logics below Logspace. As classical benchmarks, we consider the
logics DTC and STC, which augment FO by deterministic and symmetric transitive closure
operators. For precise definitions, we refer to [14, Sect. 3.5.2]. These logics are known [17]
to be included in LREC, which is the strongest logic inside Logspace known so far. Hence
our main theorem of this kind is:

I Theorem 21. CLogspace 
 LREC.

LREC is a logic with counting terms, so it features a linearly ordered number sort and
terms defining the cardinality of definable sets of tuples. Its core is the recursion operator,
a modified version of which appears in our logic. We describe the lrec-operator in terms
of the differences to our version, and refer to [17] for the full definition. Recall that the
recursion operator interprets a graph in the input structure. In the original version, the
elements of that graph are k-tuples from the input structure instead of hereditarily finite sets.
Consequently, the domain term tδ does not occur, and the subformulae can have multiple free
variables. Further, the labels of the graph are defined as tuples over the number sort instead
of bitsets. Both for counting of tuples and defining the labels of the graph, LREC uses a
Logspace-computable encoding of numbers polynomial in the size of the input structure by
fixed-size tuples over the number sort. To verify that the Logspace-computable arithmetic
operations used in LREC are CLogspace-definable, we show:

I Proposition 22. Let R ⊆ {0, . . . , |A|k}` be any Logspace-computable relation. Then
there is a CLogspace-term defining {〈bitset(n1), . . . ,bitset(n`)〉 : (n1, . . . , n`) ∈ R}.

Proof. By implementing basic bit operations in CLogspace, the successor of any natural
number is definable in the bitset encoding. This makes it possible to define a linear order
on all bitsets up to any definable number. The elements of the linear order are bitsets of
logarithmic size, so DTC-formulae can be simulated on that order analogously to Example 13.
As DTC captures Logspace on ordered structures, the proposition follows. J

The different encodings of numbers also pose a difficulty when translating formulae
with free variables, since these variables can be domain or number variables. Defining a
translation between variable assignments, inclusion of LREC in CLogspace can be made
precise on the level of formulae with free variables. The translation to CLogspace is then
rather straightforward. In particular, the only necessary iteration terms are those defining
the operations on the number sort, so there exists an appropriate logarithmic bound.

So LREC is included in CLogspace. The inclusion is strict because of a property that
CLogspace shares with CPT but not with traditional logics such as FPC and LREC: It
benefits from padding of the input structure, i.e. it can define all Logspace-properties of
sufficiently small, definable substructures.

I Definition 23. A σ ∪ {U}-structure A is a padded σ-structure if U /∈ σ is a unary
predicate. The underlying structure of A is the σ-reduct of UA.
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I Theorem 24. Let C be the class of padded structures such that 2u!(u2(6 logu+2)+1) ≤ n for
every structure in C of size n with underlying structure of size u. For every Logspace-
computable property P, there is a CLogspace-sentence (ϕ, f) such that any structure in C
satisfies (ϕ, f) if, and only if, the underlying structure satisfies P.

Proof. We define the set of all linear orders on the underlying structure. Then, since
DTC ≤ LREC ≤ CLogspace and DTC captures Logspace on ordered structures, every
Logspace-computable property can be defined on the resulting ordered structures.

Initially, all linear orders on two elements are created, defining pairs of atoms with the
term Atoms .(Ux ∧ Uy ∧ x 6= y). Then an iteration term extends every linear order by every
atom that does not occur yet, defined by Atoms .Uy. It remains to show that there is a
logarithmic bound for the iteration term. Its value in the ith stage is the set of all orders
of the form {〈a, b〉 : a, b ∈ V : a < b} for subsets V ⊆ U of size i+ 2. All atoms are defined
by the terms Atoms .Ux and Atoms .(Ux ∧ Uy ∧ x 6= y), so every atom is annotated with a
size ≤ 2 log |U |. Then the pair 〈a, b〉 = {a, {a, b}} is mapped to 6 log |U |+ 2. Every linear
order contains < |V |2 ≤ |U |2 many pairs of that form, and there are |V |! ≤ |U |! many linear
orders in the ith iteration. So ‖ti‖A,β ≤ (|U |2 · (6 log |U |+ 2) + 1) · |U |! + 1. By assumption,
this is logarithmic in the size of the full input structure. J

Since the CFI-query is in Logspace, it is CLogspace-definable on padded structures.
But LREC is included in FPC [18], so it cannot define this query even in the presence of
padding. Thus Theorem 24 implies that CLogspace is strictly more expressive than LREC.
It follows that also DTC and STC, and their extensions with counting, are strictly included
in CLogspace. The same holds for all models of choiceless computation with a constant
bound on the number of objects in the transitive closure of a set.

Even though our results demonstrate that CLogspace is stronger than all previously
studied logics for Logspace, we can show that it does not capture all of Logspace. To
establish this result we use a technique for proving inexpressibility results for fragments of
CPT that is based on supports of hereditarily finite objects (see e.g. [3, 8, 26]).

I Definition 25. Let Aut(A) be the automorphism group of a finite structure A. For
a ∈ HF(A), let Stab(a) be the stabiliser of a with respect to Aut(A), and let Stab•(a) be its
point-wise stabiliser. An object s ∈ HF(A) is a support of a if Stab•(s) ⊆ Stab(a).

Every CPT-formula can be translated to an FPC-formula over a substructure of HF(A)
containing the sets activated by the formula. For general CPT-formulae, this can be
an arbitrary substructure of HF(A), depending on both the CPT-formula and the input
structure. But for some fragments of CPT, the substructure can be over-approximated
by those hereditarily finite objects that have a sufficiently small support. In particular,
CLogspace-formulae can be translated to FPC-formulae that are evaluated over hereditarily
finite sets with a support of logarithmic size.

I Lemma 26. For a structure A and f : N→ N, let HFf (A) be the substructure of HF(A)
containing exactly those sets that have a support of size f(n), where n is the size of the
domain of A. For every CLogspace-formula (ϕ, f), there is an FPC-formula ψ such that,
for every structure A, A |= (ϕ, f) if, and only if, HFf (A) |= ψ.

Proof. Since the stages of all iteration terms are of size at most f(n) with respect to their
size annotations, they are elements of HFf (A). Analogously to the translation of CPT-terms
to interpretations in an extension of FO in [10], every ordinary term or formula in CLogspace
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can be translated to an LREC-interpretation. Iteration terms can be translated to FPC-
interpretations that create new objects representing the value of the iteration term, i.e. the
aggregation of all stages. The element relation between that new element and the stages
can then be defined by a fixed-point formula, maintaining the size annotations as a separate
relation. J

By the same arguments as used in the proof of Theorem 40 in [8], this implies that the
Cai-Fürer-Immerman query cannot be defined in CLogspace. As a consequence we get

I Theorem 27. CLogspace is a strict fragment of Logspace.

5 Discussion

We have introduced Choiceless Logarithmic Space formalising the notion of symmetric,
choiceless computations using only logarithmic workspace. Through the notion of size-
annotated hereditarily finite sets, our logic takes into account that sizes of objects in
Logspace are sensitive to their encoding. The logic is a fragment of both Choiceless
Polynomial Time and Logspace, and it captures Logspace on certain classes of structures
with padding. This demonstrates the similarity to CPT, and, more importantly, makes it
stronger than all previously known logics in Logspace, in particular LREC.

However, we have seen that CLogspace does not capture Logspace because it can only
define sets with a support of logarithmic size, which, as shown in [8], makes it impossible
to define the Cai-Fürer-Immerman query. It remains open whether the concepts used in
CLogspace can be used to obtain a stronger logic that could capture all queries in Logspace.

Of course, our definition can be tuned in several ways, addressing issues such as closure
under interpretations, or trying to avoid the use of two different kinds of recursion operators
(iteration terms and recursion formulae). Even for the current definition of CLogspace, it
is open whether the lrec-operator can be eliminated without losing expressive power. It
can, however, be shown that iteration terms are necessary (see [26]). However, contrary to
polynomial time, logspace complexity is a much less robust notion, and the conflicting goals
of providing sufficient power for choiceless computation and remaining inside Logspace
necessarily seem to result in a rather involved construction of CLogspace. It seems difficult
to overcome, with further tunings of the definition, the barrier that the definable sets in
CLogspace have a (far too) small support. In the light of the research carried out here, we
therefore consider it improbable that some variant of choiceless computation can capture
precisely all (symmetry-invariant) Logspace-queries.

We may take a step back, and reconsider our general objectives. One of the reasons why
we are looking for a logic that captures logspace complexity on arbitrary finite structures is
that Logspace, other than being a well-studied complexity class for standard computation
models on ordered objects, is a reasonable formalisation of efficient computation for big data.
But there are also other, less restrictive, complexity classes that can serve a similar purpose,
for instance on the basis of polylogarithmic space bounds. Such variants may be more robust
and make it possible to assume a standard encoding of atoms with small space and might
grant more freedom in defining tree-like recursion using only iteration terms. Rather than
trying to tune the definition of CLogspace to find stronger notions of choiceless computation
inside Logspace, we may thus also go beyond the logspace bound and ask more generally:
“What is efficient choiceless computation for big data?”.
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